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The critical points of vorticity in a two-dimensional viscous flow are essential for
identifying coherent structures in the vorticity field. Their bifurcations as time progresses
can be associated with the creation, destruction or merging of vortices, and we analyse
these processes using the equation of motion for these points. The equation decomposes
the velocity of a critical point into advection with the fluid and a drift proportional to
viscosity. Conditions for the drift to be small or vanish are derived, and the analysis is
extended to cover bifurcations. We analyse the dynamics of vorticity extrema in numerical
simulations of merging of two identical vortices at Reynolds numbers ranging from 5 to
1500 in the light of the theory. We show that different phases of the merging process can
be identified on the basis of the balance between advection and drift of the critical points,
and identify two types of merging, one for low and one for high values of the Reynolds
number. In addition to local maxima of positive vorticity and minima of negative vorticity,
which can be considered centres of vortices, minima of positive vorticity and maxima
of negative vorticity can also exist. We find that such anti-vortices occur in the merging
process at high Reynolds numbers, and discuss their dynamics.
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1. Introduction
The merging of two-dimensional identical co-rotating vortices is a complicated process.
The most basic configuration for exploring vortex merging is an initial state with two
isolated, identical and axisymmetric blobs of vorticity that evolve with the dynamics
of the flow. A large body of experimental, computational and theoretical studies of this
fundamental flow problem exists in the literature. Early research focused on the inviscid
dynamics of vortex patches (Overman & Zabusky 1982; Dritschel 1985), and the main tool
to study vortex merging was contour dynamics combined with contour surgery (Deem &
Zabusky 1978; Dritschel 1986). For more recent work on viscous flows, see e.g. Meunier
et al. (2002, 2005), Le Dizès & Verga (2002), Cerretelli & Williamson (2003), Josserand
& Rossi (2007) and the review by Leweke et al. (2016).

Keeping track of the dynamics of the vortex centres, defined as the local extrema of
vorticity of each of the two vortices, has proved to give useful insight into the merging
process in viscous flow. From experimental data, Cerretelli & Williamson (2003) identified
stages in the merging process based mainly on the distance d(t) between the two vortex
centres. They found that in the early stage, called the first diffusive stage, the vortices
behave essentially as point vortices with a constant distance. As the vortex cores grow by
diffusion and start to overlap, the dynamics enters the convective stage, where the distance
between the vortex centres decreases linearly. This is followed by the second diffusive
stage, where the inward motion of the vortex centres slows down markedly, before they
quickly approach and merge. In the final stage, the merged diffusive stage, the vorticity
organises itself into a single symmetric Gaussian vortex of decaying strength.

Several studies have contributed to our understanding of the dynamics of the distance
d(t). Cerretelli & Williamson (2003) show that the anti-symmetric part of vorticity in a
frame co-rotating with the vortices is responsible for the radial advection of the vortices.
They found experimentally that the anti-symmetric vorticity induces an inward velocity of
the vortices. Brandt & Nomura (2006) and Josserand & Rossi (2007) have determined the
contribution from the filaments of vorticity that develop in the merging process to d(t)
in the convective stage. Jing et al. (2012) and Andersen et al. (2019) have used the core
growth model, shown by Nielsen et al. (2021) to be a good approximation to Navier–Stokes
dynamics at low Reynolds numbers, to compute d(t). Computational studies by Sreejith
& Anil (2021) have separated the effects of advection and diffusion on d(t) – an approach
that we will pursue – and give a theoretical foundation for in what follows.

In the present paper, we explore the dynamics of the vortex centres further by revisiting a
general equation of motion for critical points of vorticity first derived by Brøns & Bisgaard
(2010). The equation holds for local extrema of vorticity, such as vortex centres, and for
saddle points. The equation, (2.9) in § 2.1, expresses the velocity of a critical point of
vorticity as the advection with the fluid velocity plus a drift proportional to viscosity.
We will discuss conditions for the viscous drift to be small or zero, and extend the
analysis to bifurcation of critical points when time is considered the bifurcation parameter.
Such bifurcations correspond to the creation, destruction or merging of vortices. Both
the generic case (cusp bifurcation) and the symmetric case (pitchfork bifurcation), which
is relevant for merging of identical vortices, are covered. An important result is that
the viscous drift velocity goes to infinity as a bifurcation is approached, and hence
dominates the motion of the vortex centre no matter the fluid velocity. The bifurcations
have previously been identified in the vortex dynamics in the flow behind stationary and
oscillating cylinders (Heil et al. 2017; Nielsen et al. 2022) and in vortex merging, modelled
by the core growth model (Andersen et al. 2019), but has to our knowledge not been
analysed fully before.
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Our analysis holds for all types of critical points of vorticity. Local maxima of positive
vorticity and local minima of negative vorticity are vortex centres, but minima of positive
vorticity and maxima of negative vorticity can also exist. We call such points anti-vortices,
and show that in contrast to true vortices, anti-vortices gain strength as time progresses.

The equation of motion and the bifurcation analysis are of a general nature and can
be applied to describe the vortex dynamics of any two-dimensional flow. We illustrate
this by analysing numerical simulations of the merging of two identical vortices in the
Reynolds number range from 5 to 1500. We show how the decomposition of the motion of
the vortex centres into advection and viscous drift can be used to identify different phases
during merging, and on this basis, identify two qualitatively different merging processes
depending on the Reynolds number.

The paper is organised as follows. In § 2, we derive the equation of motion for critical
points of vorticity, and discuss the physical consequences. The bifurcation analysis is
performed in § 3. In § 4, we apply the theoretical results to numerical simulation of vortex
merging. Conclusions are drawn in § 5.

2. Dynamics of regular critical points of vorticity

2.1. Equation of motion
Let xc(t) denote a critical point of a smooth, two-dimensional unsteady vorticity field
ω(x, t). By definition, it fulfils

∇ω(xc(t), t)= 0. (2.1)

If the Hessian H = ∇(∇ω) in rectangular coordinates (x, y) given by

H =
(
∂xxω ∂xyω

∂xyω ∂yyω

)
, (2.2)

evaluated at xc(t), is regular, then the type of the critical point is determined by the sign of
the determinant, det H. If det H> 0, then xc is a local extremum of vorticity; if det H< 0,
then it is a saddle point. Local maxima of positive vorticity and local minima of negative
vorticity are considered centres of vortices. The physical interpretation of saddle points is
less obvious, but as we will see, they play an important topological role in the creation and
destruction of vortices.

The eigenvalues λ1, λ2 of H describe the shape of a vortex in a neighbourhood of an
extremum. Close to such a point, the iso-vorticity curves are closed, and to second order in
the distance, the curves are ellipses. If the half-axes are denoted a, b, then the eccentricity
is

e =
√

1 − b2/a2 =√
1 − λ1/λ2, (2.3)

where |λ1|� |λ2| is assumed. The eccentricity is a measure of how much the shape of
the vortex deviates from axisymmetry. The absolute values of the eigenvalues measure
the concentration of the vortex. The larger they are, the more rapidly the magnitude of
vorticity decays away from the extremum.

Implicit differentiation of (2.1) yields

Hẋc + ∂t∇ω= 0, (2.4)

from which the velocity of the critical point can be found:

ẋc = −H−1 ∂t∇ω. (2.5)
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Further information can be obtained from the vorticity transport equation

∂tω= −u·∇ω+ νΛ, (2.6)

where u is the underlying fluid velocity field, ν is the kinematic viscosity, and Λ=�ω

is the Laplacian of the vorticity. Taking the gradient on both sides of this equation, one
obtains

∂t∇ω= −(∇u)∇ω− Hu + ν ∇Λ. (2.7)

Evaluating at a critical point of vorticity where ∇ω= 0, this reduces to

∂t∇ω= −Hu + ν ∇Λ. (2.8)

Inserting (2.8) in (2.5) then gives

ẋc = u − νH−1 ∇Λ. (2.9)

This equation of motion for a critical point of vorticity was first derived in rectangular
coordinates by Brøns & Bisgaard (2010), but not analysed in any detail. The form (2.9) is a
general, coordinate-free vector equation. It expresses the velocity of the critical point ẋc as
the sum of the advection by the fluid va = u and a viscous drift velocity vd = −νH−1 ∇Λ.
The viscous drift velocity is proportional to viscosity but otherwise depends only on spatial
derivatives of the vorticity field, evaluated at the critical point. However, the effect of
viscosity is not isolated to the viscous drift velocity. The velocity field itself satisfies
the Navier–Stokes equations, hence the advection velocity va implicitly depends on the
viscosity too.

2.2. The viscous drift velocity
The viscous drift velocity obviously vanishes if the viscosity is zero. Thus in an inviscid
fluid, the critical points of vorticity are material points. This also follows directly from the
fact that in an inviscid fluid, vorticity is simply advected by the flow.

The viscous drift velocity is also zero if

∇Λ= 0 (2.10)

at the critical point. To understand (2.10), consider a Cartesian coordinate system (x, y)
centred at a critical point of vorticity, with corresponding polar coordinates (r, θ). In this
coordinate system, (2.10) becomes

∂xxxω0 + ∂xyyω0 = 0, ∂xxyω0 + ∂yyyω0 = 0, (2.11)

where the subscript 0 denotes evaluation at the critical point.
We now consider a Fourier expansion of the vorticity, ω=∑∞

n=−∞ cn(r) einθ . A Taylor
expansion in r then shows that the third-order derivatives of ω occur only in the terms

c1 = c−1 = 1
16
(∂xxxω0 + ∂xyyω0 − i(∂xxyω0 + ∂yyyω0))r

3 +O(r5), (2.12)

c3 = c−3 = 1
48
(∂xxxω0 − 3∂xyyω0 − i(3∂xxyω0 − ∂yyyω0))r

3 +O(r5). (2.13)

Thus from (2.11) and (2.12), the critical point follows the flow if and only if the basic
angular mode of vorticity, represented by c1, is zero to third order in r . In that case, (2.13)
becomes

c3 = c−3 = 1
12
(∂xxxω0 + i ∂yyyω0)r

3 +O(r5), (2.14)

which in general is non-zero.
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We note that (2.10) is satisfied for an axisymmetric vorticity field since all cn with n �= 0
then vanish. Interestingly, there is no connection to the eccentricity (2.3); vortices of any
local shape as defined by the eccentricity may (or may not) follow the flow. We stress that
(2.10) will, in general, hold at only one time instant. The acceleration of a critical point
of vorticity will usually be different from the acceleration of the fluid particle on which it
resides at the given time instant. In that case, (2.10) will be violated immediately. Only if
(2.10) holds for an interval of time will a critical point of vorticity also be a material point.

If the eigenvalues of H are numerically large, the eigenvalues of H−1 are small, and the
viscous velocity correction will also be small. That is, the more concentrated a vortex is,
the closer it follows the fluid flow – for given viscosity and ∇Λ.

The strength of a vortex measured by the value ω0 at the extremum plays no role for
its motion, as (2.9) depends only on derivatives of ω. In particular, the analysis above also
holds for local maxima of negative vorticity and local minima of positive vorticity. We call
such points anti-vortices. They are reminiscent of the holes inside a Q-vortex observed by
Nielsen et al. (2021). The rate of change of vorticity at a critical point is

d
dt
ω(xc(t), t)= ∇ω·ẋc + ∂tω= ∇ω·(ẋc − u)+ νΛ= νΛ, (2.15)

where we used the vorticity transport equation (2.6) and the definition (2.1) of a critical
point. Since Λ= tr(H), it follows that vorticity decreases for a maximum of vorticity and
increases for a minimum of vorticity. Hence an anti-vortex will preserve its type, whereas
a vortex can turn into an anti-vortex as time progresses. For saddle points, Λ can have
either sign.

3. Bifurcation of critical points of vorticity

3.1. The generic case
As long as H is regular at a critical point of vorticity, the point will move according to
(2.9), and the type of the point (extremum or saddle) will not change. If, however, at some
time instant, H becomes singular, then a local bifurcation event is expected, as the velocity
of the critical point is no longer well-defined from (2.4). Here, we consider the case where
H attains a simple zero eigenvalue at t = 0. We choose the coordinate system such that
the critical point is at the origin, and H is diagonal. The Hessian then has a simple zero
eigenvalue exactly when one of ∂xxω and ∂yyω is zero. Here, we assume

∂xyω0 = 0, ∂xxω0 = 0, ∂yyω0 �= 0, (3.1)

where the subscript 0 here and in the following indicates evaluation at (x, y, t)= (0, 0, 0),
so any quantities with a subscript 0 are constants. Specifically, we have

H0 =
(

0 0
0 ∂yyω0

)
, (3.2)

and since H0 is singular, it is not possible to solve ∇ω(x, y, t)= 0 for x, y with the
implicit function theorem as in § 2.1. However, assuming for now the non-degeneracy
condition

ν ∂xΛ0 �= 0, (3.3)

the equation can be solved for y, t since the Jacobian matrix

J0 = ∂(∂xω, ∂yω)

∂(y, t)

∣∣∣∣
0
=
(
∂xyω0 ∂xtω0
∂yyω0 ∂ytω0

)
=
(

0 ν ∂xΛ0
∂yyω0 −∂yyω0v0 + ν ∂yΛ0

)
(3.4)
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is then regular. In § 3.2, we consider a symmetric flow where (3.3) is violated. The
expressions in the last column of the last matrix follow from (2.8), using that H0u0 =
(0, ∂yyω0v0)

T, where u0 = (u0, v0)
T is the velocity at the origin. Thus it follows from the

implicit function theorem that there exist functions y = y∗(x), t = t∗(x) defined for x
close to 0 with y∗(0)= 0, t∗(0)= 0 such that

∂xω(x, y∗(x), t∗(x))= 0, ∂yω(x, y∗(x), t∗(x))= 0. (3.5)

Derivatives of y∗, t∗ at x = 0 can be found by repeated differentiation of (3.5), the first
two orders being (

y∗′(0)
t∗′(0)

)
= −J−1

0

(
∂xxω0
∂xyω0

)
=
(

0
0

)
(3.6)

and

(
y∗′′(0)
t∗′′(0)

)
= −J−1

0

(
∂xxxω0
∂xxyω0

)
=

⎛
⎜⎜⎝

−∂xxxω0v0

ν ∂xΛ0
+ ∂xxxω0 ∂yΛ0 − ∂xxyω0 ∂xΛ0

∂yyω0 ∂xΛ0

−∂xxxω0

ν ∂xΛ0

⎞
⎟⎟⎠ ,

(3.7)
where (3.1) has been used. A Taylor expansion yields

y∗(x)= y∗′′(0)
2

x2 +O(x3), t∗(x)= t∗′′(0)
2

x2 +O(x3), (3.8)

and further assuming the non-degeneracy condition

∂xxxω0 �= 0, (3.9)

it follows that t∗′′(0) �= 0 such that (3.8) can be solved to yield trajectories of critical points:

xc(t)= ±
√

2t

t∗′′(0)
+O(t), yc(t)= y∗′′(0)

t∗′′(0)
t +O(t3/2). (3.10)

The dominating terms can be found from (3.7). For xc(t), it is interesting to resolve the
O(t) term, which requires finding t∗′′′(0). We omit the tedious computations and only state
the final result:

xc(t)= ±
√

−2ν
∂xΛ0

∂xxxω0
t

+
(

u0 + ν

[
∂xxxω0 ∂xxyω0 ∂yΛ0 − ∂xxyω

2
0 ∂xΛ0

∂xxxω
2
0 ∂yyω0

+ ∂xxxxω0 ∂xΛ0 − 3∂xxxω0 ∂xxΛ0

3∂xxxω
2
0

])
t

+O(t3/2), (3.11a)

yc(t)=
(
v0 + ν

∂xxyω0 ∂xΛ0 − ∂xxxω0 ∂yΛ0

∂yyω0 ∂xxxω0

)
t +O(t3/2). (3.11b)

If ∂xΛ0/∂xxxω0 > 0, then two critical points exist for t < 0, one for each sign of xc(t);
these merge and disappear at the origin at t = 0. If ∂xΛ0/∂xxxω0 < 0, then two critical
points are created at t = 0 and exist for t > 0. The types of the critical points are found
from the eigenvalues of the Hessian

H(x, y∗(x), t∗(x))=
(
∂xxxω0x +O(x2) O(x)

O(x) ∂yyω0 +O(x)
)
. (3.12)
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y(a) (b) (c)

x

y

x x

y

Figure 1. Illustration of annihilation of critical points in a cusp bifurcation. The grey curves are iso-lines of
vorticity. The red (black) point is the extremum (saddle point) of vorticity, and the red and black curves are the
corresponding trajectories: (a) before bifurcation; (b) at the bifurcation point; (c) after bifurcation. For critical
point creation, the temporal order is reversed.

The eigenvalues are λ1 = ∂xxxω0x + O(x2) and λ2 = ∂yyω0 + O(x). Since x > 0 for one
critical point and x < 0 for the other, one point is an extremum, and the other is a saddle.

The bifurcation is therefore a cusp or a saddle–centre bifurcation, and it is illustrated in
figure 1. The sequence (a) → (b) → (c) shows the merging of an extremum and a saddle.
The critical points follow each of the two branches of a locally parabolic trajectory for
t < 0 (figure 1a), coalesce into a degenerate critical point at t = 0 (figure 1b), and then
disappear for t > 0 (figure 1c).

The bifurcation occurs in viscous flows only, as the second condition in (3.3) requires
ν �= 0. In inviscid flow, critical points of vorticity never merge, and no new ones are
created.

The terms linear in t in (3.11) have the same structure as in the regular case (2.9); the
velocity of a critical point is the sum of an advection with the fluid and a drift velocity
proportional to viscosity. For the motion in the y-direction, the linear term is dominating
near the bifurcation, but in the x-direction, the leading-order term of the position is of
order t1/2, which leads to a velocity that goes to infinity as |t |−1/2 when the bifurcation is
approached. Hence the viscous drift dominates the motion of the critical points completely,
no matter the fluid velocity. That viscous drift must be present near the bifurcation is
already clear from (3.3). It implies that ∇Λ0 �= 0, hence violating (2.10) for zero viscous
drift.

The eccentricity (2.3) of the level curves of vorticity close to the extremum of vorticity
when the bifurcation is approached is

e =
√

1 − ∂xxxω0

∂yyω0
x +O(x2)≈ 1 − ∂xxxω0

2∂yyω0
x ≈ 1 −

√
ν

2
|∂xxxω0 ∂xΛ0|(

∂yyω0
)2 √|t |, (3.13)

where we used (3.11a) in the last step. This is consistent with the plot of the vortex
annihilation shown in figure 1. The almost elliptic iso-vorticity curves close to the
extremum are squeezed together in the y-direction faster than they shrink in the
x-direction, as measured by the eccentricity, which tends to the largest possible value 1
as t → 0.

3.2. Symmetric bifurcation
If two vortices with identical distribution of vorticity are placed symmetrically around the
origin in a Cartesian coordinate system, then the symmetry

ω(−x,−y)=ω(x, y) (3.14)

will be fulfilled for the total vorticity of the two distributions. As the flow evolves, the
symmetry will be preserved such that (3.14) holds for all times. This implies that all odd-
order spatial derivatives at the origin are zero, and it follows that the origin is always a
critical point of vorticity. If the Hessian at the origin is singular at some time instant, then
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a bifurcation event is expected. However, the analysis of § 3.1 does not apply; the non-
degeneracy condition (3.3) is violated since ∂xΛ0 is a sum of third-order derivatives of
ω. Here, we therefore derive the bifurcation structure under the symmetry (3.14), which
we use to study the merging of two identical vortices in § 4. We omit some details as the
analysis to a large extent follows that of § 3.1.

We consider a coordinate system such that the Hessian at the origin is singular and
diagonal at t = 0 under the assumptions (3.1), yielding the Hessian

H(0, 0, t)=
(
∂xxtω0t +O(t2) ∂xytω0t +O(t2)

∂xytω0t +O(t2) ∂yyω0 +O(t)
)
. (3.15)

Furthermore, we assume the non-degeneracy condition

∂xxtω0 = ν ∂xxΛ0 �= 0, (3.16)

where the identity is obtained by differentiation of (2.8). As before, the subscript indicates
evaluation at the bifurcation point (x, y, t)= (0, 0, 0). It follows that

det H(0, 0, t)= ν ∂xxΛ0 ∂yyω0t +O(t2), (3.17)

such that the critical point at the origin changes between an extremum and a saddle at
t = 0.

We introduce a new variable η by y = ηx , and define

f̃ (x, η, t)= ∂xω(x, ηx, t), g̃(x, η, t)= ∂yω(x, ηx, t), (3.18)

and note that f̃ (0, η, t)= g̃(0, η, t)= 0 for all η, t . It follows that x is a factor in both f̃
and g̃, and that critical points of vorticity other than the origin can be found from

f (x, η, t)= f̃ (x, η, t)/x = 0, g(x, η, t)= g̃(x, η, t)/x = 0. (3.19)

Consider the Jacobian

J0 = ∂( f, g)

∂(η, t)

∣∣∣∣
0
=
(

0 ∂xxtω0
∂yyω0 ∂xytω0

)
=
(

0 ν ∂xxΛ0
∂yyω0 −∂yyω0 ∂xv0 + ν ∂xyΛ0

)
, (3.20)

where ∂xytω0 is obtained by differentiation of (2.8). Since J0 is regular, it follows from
the implicit function theorem that there exist functions η= η∗(x), t = t∗(x) defined for x
close to 0, with η∗(0)= 0, t∗(0)= 0, such that

f (x, η∗(x), t∗(x))= 0, g(x, η∗(x), t∗(x))= 0. (3.21)

By implicit differentiation of (3.21), one finds

η∗′(0)= 0, η∗′′(0)= −∂xxxxω0 ∂xv0

3ν∂xxΛ0
+ ∂xxxxω0 ∂xyΛ0 − ∂xxxyω0 ∂xxΛ0

3∂yyω0 ∂xxΛ0
,

t∗′(0)= 0, t∗′′(0)= − ∂xxxxω0

3ν∂xxΛ0
.

(3.22)

Adding the non-degeneracy condition

∂xxxxω0 �= 0, (3.23)

the Taylor expansion t = t∗′′(0) x2/2 +O(x3) can be solved for x , and inserting the
solution into y = ηx = η∗′′(0) x3/2 +O(x4) yields trajectories of two critical points:

xc(t)= ±
√

−6ν
∂xxΛ0

∂xxxxω0
t +O(t), yc(t)= ±1

2
η∗′′(0)

(
−6ν

∂xxΛ0

∂xxxxω0
t

)3/2

+O(t2).

(3.24)
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y
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y
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y

x
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Figure 2. Illustration of the final phase of merging of identical vortices in a pitchfork bifurcation. The grey
curves are iso-lines of vorticity. The red (black) points are the extrema (saddle points) of vorticity, and the red
curve is the trajectory of the two extrema. (a) Before bifurcation: the heavy grey curve is the separatrix loop
associated with the saddle point. (b) At the bifurcation point: the critical points coalesce at the origin. (c) After
bifurcation: a single extremum remains at the origin.

The two non-degeneracy conditions (3.16) and (3.23) will be fulfilled generically if no
further symmetries or similar constraints are imposed. In the case that ∂yyω0, ∂xxΛ0 and
∂xxxxω0 all have the same sign, it follows from (3.17) that the origin changes from a saddle
to an extremum at t = 0. A simple computation shows that the critical points (3.24) that
exist for t < 0 are both extrema. Hence the bifurcation is a supercritical pitchfork that
describes the merging of two vortices as illustrated in figure 2.

If (r, θ) are polar coordinates for one of the extrema, then (3.24) yields

r2 =
∣∣∣∣6ν ∂xxΛ0

∂xxxxω0
t

∣∣∣∣+O(t3/2), θ =
∣∣∣∣3η∗′′(0) ν ∂xxΛ0

∂xxxxω0
t

∣∣∣∣+O(t3/2). (3.25)

In analogy with the generic case of § 3.1, it follows that the radial velocity ṙ of the extrema
scales as |t |−1/2. The angular velocity of the line connecting the two extrema scales as a
constant as the bifurcation is approached.

4. Application: merging of identical vortices
To illustrate our theoretical results, we consider the merging of two identical Gaussian
vortices, initially centred at (±d/2, 0). We study the evolution of these vortices in a finite
domain S = {(x, y) | −L/2 � x, y � L/2}, where L � d, and characterise the strength of
the vortices by the quantity

Γ0 =
∫∫

S
|ω0| dx dy, (4.1)

where ω0 is the vorticity field at the initial time t = t0, both of which are specified below.
We non-dimensionalise the variables as (x∗, y∗)= (x, y)/d, t∗ = tΓ0/d2, ω∗ =

ωd2/Γ0, (u∗, v∗)= (u, v) d/Γ0, ψ
∗ =ψ/Γ0. The flow is then governed by the non–

dimensional vorticity transport equations

∂t∗ω
∗ = −u∗·∇ω∗ + 1

2 Re
�ω∗, �ψ∗ = −ω∗, u∗ = ∂y∗ψ∗, v∗ = −∂x∗ψ∗,

(4.2)
where the Reynolds number is defined as Re = Γ0/(2ν) for consistency with previous
work (e.g. Meunier et al. 2002; Andersen et al. 2019). For ease of notation, we now drop
the asterisks, so the variables appearing in the rest of the paper are assumed to be non-
dimensional.

In the numerical simulations described below, we impose periodic boundary conditions.
This requires that the integral of the vorticity over the domain vanishes, i.e.

∫∫
S ω dx dy =

0, for all times. We therefore imposed the initial condition
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ω0 =ω(x, y, t = t0)

= 1
2πσ 2

0

[
exp

(
−(x − 1/2)2 + y2

σ 2
0

)
+ exp

(
−(x + 1/2)2 + y2

σ 2
0

)]
− C, (4.3)

where the first term represents the two Gaussian vortices; the constant C represents a
constant background vorticity, chosen such that the integral of ω0 over S vanishes. Since
the initial size of the vortices is determined by the parameter σ0, we choose σ0 	 d/L 	 1,
in which case C ≈ (d/L)2 	 1.

4.1. Numerical method
We solved the vorticity transport equation (4.2) numerically using a forward time centred
space algorithm (E & Liu 1996a,b; Andersen et al. 2019), keeping the time step well
below the von Neumann stability criterion. The Poisson equation was solved using a sparse
linear equation solver (Hansen 2011; Eaton et al. 2021). We validated the accuracy of the
scheme by repeating the simulation for the largest Reynolds number (Re = 1500) against
a central difference scheme using a fourth-order Runge–Kutta integrator. Computations
were performed on a square grid with 500 × 500 grid points, using domain size L/d = 5.
When imposing the initial condition (4.3), we used σ0 = 0.015, to ensure that the initial
vorticity field resembles that associated with two point vortices. Tests on a finer grid show
that the initial condition is sufficiently resolved to ensure grid-independent results. The
initial time t0 was set using the approach of Josserand & Rossi (2007), who determined t0
such that t = 0 corresponds to the time when the isolated Gaussian vortices in (4.3) would
have zero core radius. On the overall time scale of the vortex merging process, this is so
small that the difference from choosing t0 = 0 is negligible.

Given the results of the simulations, we determined the critical points of vorticity (where
∇ω= 0) as the intersections of the iso-contour lines ∂xω= 0 and ∂yω= 0. All spatial
derivative calculations were performed using a fourth-order centred finite difference
operator. The vorticity, the Hessian and ∇Λ were found at the critical points by a two-
dimensional cubic interpolation scheme. The velocity of the critical points was predicted
at each time step using these quantities and (2.9).

We captured the motion of the critical points by tracking their pathlines, and calculated
the velocity of a critical point by using a fourth-order centred finite difference operator.
Figure 3(a) shows the trajectories of the vortex centres for the case Re = 1500. We
obtained perfect agreement between the velocity calculated from the trajectories and
that predicted by (2.9), thus validating both the equation of motion and the numerical
discretisation schemes used.

4.2. Numerical results
Figure 3(b) shows the quantities that we will consider in the following: the distance d(t)
between the vortex centres, the angle θ(t) between the line connecting the vortex centres
and the x-axis, and the velocity ẋc of a critical point decomposed into its radial and
azimuthal components, ẋc = vr er + vθ eθ = ṙ er + r θ̇eθ .

Figure 4 shows the distance d(t) as a function of time t for a range of Reynolds numbers
Re. A common feature for all Re is that initially d(t) is almost constant. This can be
understood from a visual inspection of the vorticity field, which shows that the vortices
are highly concentrated and almost axisymmetric. The axisymmetry implies that the anti-
symmetric vorticity field in the co-rotating frame is vanishing, hence there is almost no
radial advection. As discussed in § 2.2, the axisymmetry and the high concentration of
vorticity both imply that the viscous drift is also small, and hence that the total radial
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Figure 3. (a) Trajectories of vortex centres for Re = 1500 with initial positions (1/2, 0) (black) and (−1/2, 0)
(dotted green). The initial positions are marked with filled circles. The open circle marks the origin, where the
merging occurs. The motion is anticlockwise. (b) Instantaneous positions of vortex centres of identical vortices
1, 2 (red) with definitions of distance d(t), angle θ(t) and polar decomposition (vr , vθ ) of the velocity of vortex
centre 1.
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Figure 4. Distance d(t) between the vortex centres during vortex merging. Scaling from (4.4) close to the
bifurcation is shown as dashed black lines. Merging times are shown as inverted triangles. The upright triangles
mark the inflection points.

velocity of the critical points is initially small. Another common feature is the final
behaviour as merging is approached. Here, the motion is completely dominated by viscous
drift according to the bifurcation analysis in § 3.2. The theory predicts, from (3.25), a
scaling

d(t)2 = −adt + bd (4.4)

close to merging, where

ad = 12
Re

∣∣∣∣ ∂xxΛ0

∂xxxxω0

∣∣∣∣ , bd = 12
Re

∣∣∣∣ ∂xxΛ0

∂xxxxω0

∣∣∣∣ tm, (4.5)
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101 102 103

Re

10–2

10–1

100

ad

Figure 5. Scaling coefficient ad in (4.4) as a function of Re. The dashed line is a least squares linear fit
ln(a)= −0.989 ln(Re)+ 2.584.

with tm denoting the time of merging (bifurcation). Note that the coordinate system used
here is that of § 3.2, which is aligned with the eigenvectors of H0 = H(0, 0, 0) as shown in
figure 2, and not the computational frame of figure 3; the two systems differ by a rotation
around the origin.

We determine tm by interpolation as the time where the Hessian H(0, 0, t) has a zero
eigenvalue. The merging times are marked with inverted triangles in figure 4. Computing
ad , bd in the rotated coordinate system yields for (4.4) the dashed lines in figure 4. The
very good agreement between the scaling and the simulation data confirms the theory.

Figure 5 shows that the dependence of ad on Re is well described by the relation

ad = 13.25 Re−0.989, (4.6)

i.e. ad is essentially inversely proportional to Re. Comparing with (4.5) suggests that, at
least for this flow, ∂xxΛ0/∂xxxxω0 is independent of Re.

Figure 6 shows the radial velocity vr of vortex centre 1, decomposed into its radial
advection velocity vr,a and its radial viscous drift velocity vr,d according to (2.9). Again,
there are common features for all Re. The radial advective velocity vr,a decreases
monotonically from zero (with some minor initial oscillations for higher Re) until a
minimum is reached. Subsequently, vr,a approaches zero again, monotonically for lower
Re, and with damped oscillations for higher Re. We term the time where the global
minimum of vr,a is reached the time of maximal inward advection ta . The radial drift
velocity vr,d initially increases from zero to reach a small positive maximum. The viscous
drift subsequently decreases to negative values, again possibly with some oscillations, and
finally goes monotonically to −∞ as the merging time tm is approached. We term the time
when the global maximum of vr,d is reached the time of maximal outward drift td .

The dependence of the key time instants ta and td on Re relative to the merging time
tm is shown in figure 7. In general, td < ta . At low Re, td/tm is much smaller than ta/tm ,
but as Re increases, the interval between the times become shorter. The fact that in the
high-Re range, ta and td approach each other, is closely related to the development of
an inflection point for d(t) that occurs at time instant ti , where d̈(ti )= 0. Such inflection
points appear in figure 4 for Re = 500 and above. To see the connection, consider the
second-order Taylor expansions of vr,a and vr,d based at ta and td , respectively:

1010 A64-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.330


Journal of Fluid Mechanics

5
×10–3

0

–5

–10

–15

–20

0.02

0.01

0

–0.01

–0.02

–0.03

–0.04

–0.05

0.02

0

–0.02

–0.04

–0.06
0.70 0.75 0.80 0.85 0.90

0 0.2 0.4 0.6 0.8 1.0

0 0.2

Re = 1500

Re = 1000

Re = 500

Re = 1500

Re = 1000

Re = 500

0.4

t/tm

v
r,a

 ,  v
r,d

v
r,a

 ,  v
r,d

t/tm

t/tm

v
r,a

 ,  v
r,d

0.6 0.8 1.0

Re = 100

Re = 50

Re = 5

(a)

(b)

(c)

Figure 6. Radial advection velocity vr,a (solid lines) and radial viscous drift velocity vr,d (dashed lines) of
vortex centre 1. Time of maximal inward advection ta is marked with circles. Time of maximal outward drift
td is marked with squares. Time is shown relative to the merging time tm : (a) low Re, (b) high Re, (c) zoom of
(b) near ta and td .
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Figure 7. Relative time of maximal inward advection ta/tm , and relative time of maximal outward drift td/tm ,
versus the Reynolds number.
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Figure 8. Angle θ of the line connecting the two vortices. The black dashed line shows the evolution for point
vortices according to (4.10). The red dashed lines are expressions (4.11). The triangles mark the inflection times
ti at Re = 500, 100, 1500.

vr,a(t)≈ vr,a(ta)+ 1
2
v̈r,a(ta) (t − ta)

2, (4.7)

vr,d(t)≈ vr,d(td)+ 1
2
v̈r,d(td) (t − td)

2. (4.8)

Both are valid simultaneously when ta and td are close. Since d̈(t)= 2(v̇r,a(t)+ v̇r,d(t)),
one finds from (4.7) and (4.8) that d̈(t)= 0 is solved by a weighted average of ta and td :

ti ≈ v̈r,a(ta) ta + v̈r,d(td) td
v̈r,a(ta)+ v̈r,d(td)

. (4.9)

It appears from figure 6(c) that |v̈r,d(td)| 	 |v̈r,a(ta)|, and it follows that ti is located
between td and ta .

We now turn to the evolution of the angle θ of the line connecting the two vortex centres.
The results are shown in figure 8. Two point vortices with unit distance, each of circulation
1/2, give rise to a constant angular velocity such that
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θ = 1
2π

t, (4.10)

independent of Re. It appears from figure 8 that this describes the initial dynamics well
for all Re.

As the bifurcation is approached, the scaling (3.25) also implies a constant angular
velocity, but now depending on Re. Inserting (3.22) into (3.25), an expression of the form

θ = aθ t + bθ , (4.11)

analogous to (4.4), can be derived. Similar to (4.5), aθ and bθ depend on derivatives of
the flow field evaluated at the bifurcation point in a complicated way. The relation (4.11)
is shown as red dashed lines in figure 8 for the higher Re, where they deviate significantly
from the point vortex scaling (4.10); it appears that the theoretical result agrees very well
with the simulations. It is interesting that at high Re, the transition from the initial scaling
(4.10) to the bifurcation scaling (4.11) takes place over a very narrow time interval around
ti that is defined solely by the properties of the radial velocity.

A decomposition of the angular velocity into advection and viscous drift, θ̇ = θ̇a + θ̇d ,
shows that θ̇a is generally two orders of magnitude larger than θ̇d . Hence advection
completely dominates the rotation of the vortex pair.

4.3. Phases of the merging process
We summarise the results of § 4.2 by describing the merging process as consisting of
a series of phases. Each phase has a characteristic balance between advection vr,a and
viscous drift vr,d . We use the term ‘phases’ to avoid confusion with the ‘stages’ defined
by Cerretelli & Williamson (2003) on the basis of the dynamics of d(t).

The initial constant phase is characterised by both advection and viscous drift being
small, which results in d(t) being almost constant. The final bifurcation phase is
characterised by viscous drift being dominating as vr,d → −∞ for t → tm with d(t)
following the scaling (4.4).

For Re up to 100, where td is much smaller than ta (see figure 7), the constant phase
blends smoothly into the bifurcation phase before any significant advection has occurred;
see figure 6(a).

For Re = 500 and above, where td is close to ta and an inflection time ti exists, there
is sufficient time for inward advection to grow while viscous drift is still negligible. This
gives rise to an advective phase where the vortex centres move inwards due to advection.
The constant phase now blends into the advective phase, and while we do not define a
specific time instant where it starts, we formally define that the phase ends at ta , where
vr,a starts damped oscillations; see figures 6(b,c). The oscillations of vr,a persist until
merging, and as long as the viscous drift is not too large, oscillations of d(t) ensue.
We term the phase after ta where d(t) oscillates the oscillatory phase, which continues
until the monotonicallly decreasing viscous drift ultimately dominates, and the bifurcation
phase is entered.

An overview of the phases and the resulting dynamics is shown in table 1. The last
column shows the angular velocity θ̇ during each phase, according to the results shown in
figure 8.

We note that in their experiments at Re = 530, Cerretelli & Williamson (2003) also
observed an early constant phase, termed the first diffusive stage, which after a well-
defined transition was followed by a regime termed the convective stage, where d(t)
varies linearly with t . This is in contrast to our results, where d(t) varies smoothly as
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Phase Characterisation Distance Angular velocity

Constant |vr,a | 	 1, |vr,d | 	 1 d(t)≈ 1 θ̇ ≈ 1
2π

Advective
(high Re only)

|vr,a | � |vr,d | d(t) decreases
monotonically

θ̇ ≈ 1
2π

Oscillatory
(high Re only)

vr,a oscillates,
|vr,a |> |vr,d |

d(t) oscillates θ̇ ≈ aθ >
1

2π

Bifurcation vr,a → 0, vr,d → −∞ d(t)2 ≈ −ad t + bd θ̇ ≈ aθ �
1

2π

Table 1. Overview of merging phases, classified by the variation of advection and viscous drift.

advection builds up. Similar smooth development of d(t) is observed in the simulations
by Josserand & Rossi (2007) and Sreejith & Anil (2021). However, it is interesting to
note that the occurrence of an inflection point in d(t) at the beginning of what we
defined as the oscillatory phase implies the existence of a regime where d(t)= d(ti )+
ḋ(ti ) (t − ti )+ o((t − ti )2). Mathematically, this implies that in the vicinity of ti , d(t)
varies almost linearly, and while clearly visible in figure 4, this regime is much shorter than
the convective stage found experimentally. This suggests that the experimentally observed
behaviour must arise via mechanisms not included in our model, e.g. three-dimensional
effects.

As mentioned in the Introduction, Cerretelli & Williamson (2003) argue that the anti-
symmetric vorticity in the co-rotating frame is responsible for the radial advection of the
vortices. It is important to note that this gives a complete description of the motion of the
vortex centres only if the viscous drift is negligible. Our analysis shows that this holds
only in the advective phase, which exists only for sufficiently high Re. In the oscillatory
phase and the bifurcation phase, viscous drift cannot be ignored, and for low Re, the vortex
motion is completely dominated by viscous drift.

4.4. Dynamics of anti-vortices
The extrema of vorticity that we have described hitherto are positive maxima that we
interpreted as vortex centres. At low Re, no further vorticity extrema occur, but at
higher Re, the vorticity field deforms sufficiently for other critical points to be created
through bifurcations. We show here that at Re = 1000, local minima of positive vorticity,
termed anti-vortices in § 2.2, can develop through cusp bifurcations as described in § 3.1.
The generic case is relevant here, as there is no symmetry around the points where
the bifurcations occurs. However, as the global vorticity field satisfies the symmetry
(3.14), a bifurcation event at some (x0, y0) must be accompanied by an identical event
at (−x0,−y0) at the same time.

Figure 9 shows the trajectories of all critical points of vorticity at Re = 1000. In addition
to the original vortex centres and the saddle point at the origin, two extremum/saddle pairs
are created at t = 35.8 in cusp bifurcations (c) → (b) → (a) in figure 1, and they are
annihilated again at t = 60.9 in the reverse bifurcation. It follows from the analysis in
§ 3.1 that close to the bifurcation, the extremum and the saddle essentially move along
the eigendirection e of the zero eigenvalue of the Hessian that defines the x-coordinate
used in the analysis. The two points move in opposite directions, and their velocities go to
infinity as the bifurcation is approached. Under the generic assumption that the azimuthal
direction eθ (see figure 3a) at the bifurcation point is not collinear with e, it follows that
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Figure 9. Trajectories of critical points of vorticity at Re = 1000. The black and dotted green curves are the
trajectories of the vortices (local maxima), with the initial positions marked with filled circles. Red curves
are anti-vortices (local minima), and blue curves are saddle points. Open circles mark bifurcations: purple for
creation, and black for annihilation or vortex merging.

one of the critical points will rotate with the fluid flow in the anticlockwise direction, and
the other will rotate against the flow, when sufficiently close to the bifurcation. Figure 9
shows that the saddle points rotate against the flow after the creation, but only for a very
short time. As annihilation is approached, the anti-vortices exhibit the retrograde motion.

The annihilation process is illustrated in figure 10. Note that the bifurcations take place
quite far from the origin. At the time of annihilation, the vorticity has been stretched
out into filaments, and figure 10(a) shows that the anti-vortices and their corresponding
saddles are present in the troughs between the filaments.

The anti-vortices continue to exist after the merging at t = 55.6 of the original vortices.
Thus the axisymmetrisation of the single vortex left after merging is a topologically
complex process, with an intermediate phase with two anti-vortices and two saddles.

Equations (3.11) predict that the distance des between an extremum and a saddle close
to bifurcation follows a scaling of the form

d2
es = aest + bes, (4.12)

similar to (4.4), valid for the distance between the extrema in vortex merging. The fits
shown in figure 11 confirm this theoretical prediction.

Recall that (2.15) showed that the strength of a positive vortex, measured by the value
of vorticity at its centre, will decrease over the course of time. The same equation implies
that, somewhat counter-intuitively, the opposite is the case for a positive anti-vortex. This
is confirmed in figure 12, which shows that an anti-vortex increases its strength by six
orders of magnitude between the creation at t = 35.8 and the destruction at t = 60.9.
Nevertheless, the strength of the anti-vortex at the time of annihilation is 7.9 × 10−3 times
the strength of the merged vortex at the origin, so it is still rather weak.

While the anti-vortices in the merging process considered here do not interact with
the vortices, they may do so in flows that are more complex. In fact, it may be the
saddles that are created together with anti-vortices in cusp bifurcations that have a physical
significance. These saddles may merge with a true vortex in a subsequent cusp bifurcation,
and hence remove that vortex from the flow. Bifurcations to that effect have been observed
in a preliminary study of the vortex dynamics in the flow around a cylinder in a channel
(Ozdemir 2023).

1010 A64-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.330


M. Brøns, I.R. Ozdemir, M. Heil, M. Andersen and J.S. Hansen

(a)

(b)

–1.5 –1.0 –0.5 0 0.5 1.0 1.5

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

–3.00

–2.50

–2.00

–1.50

–1.00

–0.50

lo
g

1
0
 ω

lo
g

1
0
 ω

x

–1.5 –1.0 –0.5 0 0.5 1.0 1.5

x

y

y

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

–2.50

–2.00

–1.50

–1.00

–0.50

Figure 10. Snapshots of the vorticity field at Re = 1000: (a) just before anti-vortex annihilation at t = 60.9; (b)
just after annihilation.The green point marks the merged vortex at the origin, cyan points are anti-vortices, and
red points are saddles. Typical iso-vorticity curves are shown in white. In (a), the iso-vorticity curve through
the saddle points is also shown. As t → 60.9, the saddles and the corresponding anti-vortices approach each
other.
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Figure 11. The distance des between the critical points in an anti-vortex/saddle pair at Re = 1000. Quadratic
fits of the form (4.12) near the bifurcations are shown as dashed lines.
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Figure 12. Development of the vorticity at an anti-vortex over its lifetime, at Re = 1000.

5. Conclusions
Keeping track of the critical points of vorticity ω is a simple way of understanding the
fundamental features of the vortex dynamics of a two-dimensional fluid flow. Positive local
maxima of ω (or negative minima) can be interpreted as vortex centres, and bifurcations
of these points, with time as a parameter, indicate creation, annihilation or merging of
vortices.

We have presented a general description of the dynamics of critical points of vorticity
that decomposes their velocities into advection with the fluid and a drift proportional to
viscosity. The viscous drift accounts for the influence of diffusion on the motion of the
vortex centre. We give precise conditions, related to the local symmetry of the vorticity
field, for the viscous drift to be zero or small. These conditions are violated close to a
bifurcation, where the viscous drift velocity becomes unbounded and invariably dominates
the motion.

Analysing the merging of two identical vortices in the light of the theory identifies low-
Re and high-Re regimes, each consisting of temporal phases with a characteristic balance
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between advection and viscous drift. This balance changes smoothly with time, and there
do not seem to be specific physical events that instantaneously trigger the change from one
phase into another. Only the merging time tm is rigorously defined as a bifurcation point.

In addition to vortex centres as local maxima of positive vorticity, we have also identified
anti-vortices in the form of local minima of positive vorticity. They appear in the troughs
between the vorticity filaments that develop during vortex merging. They are created
and annihilated together with a saddle point in cusp bifurcations. While the anti-vortices
themselves may have limited physical importance, their companion saddles have the
potential to interact with true vortices and annihilate them in cusp bifurcations. This may
occur in more complex flows and is currently under investigation.

Declaration of interests. The authors report no conflict of interest.
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