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Introduction

In this chapter we introduce basic notions needed in what follows. We also
discuss nearest neighbour Markov chains and diffusion processes, which
represent the two classes of Markov processes whose invariant measure, in
the case of positive recurrence, or Green function, in the case of transience,
is available in closed form. A closed form makes possible the direct analysis
of such Markov processes: their classification and the tail asymptotics of the
invariant probabilities or Green function. This discussion sheds some light on
what we may expect for general Markov chains.

1.1 Countable Markov Chains

Let us start with a simple process, a countable time-homogeneous Markov
chain X = {Xn,n ≥ 0}, which is a stochastic process with a countable state
space, which can always be reduced to S = Z

+. The process is determined by
an initial distribution X0 and a collection of transition probabilities pxy ≥ 0,
x, y ∈ S, such that

∑
y∈S pxy = 1 for all x ∈ S and

P{Xn+1 = xn+1 | Xn = xn,Xn−1 = xn−1, . . . ,X0 = x0}
= P{Xn+1 = xn+1 | Xn = xn} = pxnxn+1, (1.1)

for all time epochs n and all sequences of states xn+1, xn, . . . , x0 in S. In words,
the probability of moving from one state to another does not depend on the
trajectory that determined how X arrived in its current state. This memoryless
property can be equivalently defined as independence of the future and the past
given the current state, that is,

P{BA | Xn = xn} = P{B | Xn = xn}P{A | Xn = xn}
for any n ≥ 1 and events B ∈ σ(Xn+1,Xn+2, . . .) and A ∈ σ(X0, . . . ,Xn−1).
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2 Introduction

Definition 1.1 A random variable T taking non-negative integer values which
is possibly improper, is called the stopping time if, for all n ∈ Z

+, the event
{T ≤ n} belongs to the σ -algebra σ(X0,X1, . . . ,Xn).

The Markov property (1.1) can be extended to stopping times as follows. If
T is a stopping time then the process {XT +n}n≥0 is also a Markov chain with
initial distribution XT . Moreover, for any x ∈ S, this chain is independent of
X0, X1, . . . , XT −1 given XT = x. This property is called the strong Markov
property.

For any state x ∈ S, denote by τx the first hitting time of x,

τx := inf{n ≥ 1 : Xn = x},

with standard convention inf ∅ = ∞. For all x, τx is a stopping time.

Definition 1.2 A state x is called positive recurrent if Exτx < ∞.

Definition 1.3 A state x is called non-positive if it is not positive recurrent,
more precisely, if either Px{τx = ∞} > 0, or Px{τx < ∞} = 1 and Exτx = ∞.

Definition 1.4 A state x is called recurrent (persistent) if Px{τx < ∞} = 1.

Definition 1.5 A state x is called null recurrent if Px{τx < ∞} = 1 while
Exτx = ∞.

Definition 1.6 A state x is called transient if Px{τx < ∞} < 1.

By the strong Markov property, the time lengths between consecutive visits
of the chain to a fixed state x are independent and identically distributed.
Therefore, a state x is transient if and only if Px{τx < ∞} < 1, which is
equivalent to the convergence of the following series (a Green function):

∞∑
n=0

Px{Xn = x} = Ex

∞∑
n=0

I{Xn = x} < ∞.

Definition 1.7 The period of state x is defined as

dx := gcd{n ≥ 1 : Px{Xn = x}}.

A state x is called aperiodic if dx = 1.

Definition 1.8 A Markov chain Xn is called irreducible if, for all x and y,
Px{Xn = y} > 0 for some n.

Notice that, for an irreducible countable Markov chain, the following soli-
darity property holds true: the positive recurrence, non-positivity, recurrence,
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1.1 Countable Markov Chains 3

null recurrence, transience, or aperiodicity of any state implies the same
property for all other states.

Definition 1.9 A measure {πx}x∈S is called invariant (or stationary) for a
countable Markov chain {Xn} if

π(y) =
∑
j∈S

π(x)pxy for all y ∈ S.

Definition 1.10 A probability distribution {πx}x∈S is called asymptotic (or
limiting) for a countable Markov chain {Xn} if

Px{Xn = y} → π(y) as n → ∞ for any x ∈ S.

An asymptotic distribution – if exists – is necessarily an invariant probabil-
ity measure; however, this does not hold vice versa. For Markov chains with
finitely many states, the following ergodic theorem is a major result.

Theorem 1.11 Any finite irreducible aperiodic Markov chain possesses an
asymptotic distribution.

For a Markov chain with infinitely many states the last result may fail
in general. For example, a simple random walk with transition probabilities
px,x+1 = p > 1/2 and px,x−1 = 1−p < 1/2 is irreducible; however, there is
no convergence to an asymptotic distribution. This Markov chain is transient
which is only possible due to the infinite number of states.

Theorem 1.12 Let {Xn} be a countable irreducible Markov chain. Fix some
x ∈ S. If {Xn} is recurrent then a measure π defined by

μ(y) := Ex

τx∑
n=1

I{Xn = y} =
∞∑

n=1

Px{Xn = y,n ≤ τx}, y ∈ S, (1.2)

is a σ -finite invariant measure for {Xn}.
Proof Let us first check that μ(y) < ∞ for all y ∈ S. By its definition,
μ(x) = 1. Since {Xn} is irreducible, there exists a state y such that pyx > 0.
Then the random variable

Ex

τx∑
n=1

I{Xn = y}

is stochastically bounded by a geometric distribution with success probability
pyx > 0, hence μ(y) < ∞. Then, by the solidarity property, μ(z) < ∞ for all
z �= x.
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4 Introduction

Now let us show that μ is invariant. Indeed, for z = x,∑
y∈S

μ(y)pyx = pxx +
∑
y �=x

∞∑
n=1

Px{Xn = y,n ≤ τx}pyx

= pxx +
∞∑

n=1

∑
y �=x

Px{Xn = y,n < τx}pyx

= pxx +
∞∑

n=1

Px{τx = n + 1}

= Px{τx < ∞} = 1 = μ(x),

because {Xn} is recurrent. For any z �= x,∑
y∈S

μ(y)pyz = pxz +
∞∑

n=1

∑
y �=x

Px{Xn = y,n < τx}pyz

= pxz +
∞∑

n=1

Px{Xn+1 = z,n + 1 < τx}

=
∞∑

n=1

Px{Xn = z,n < τx}

= μ(z),

by the definition of μ(z) for z �= x. �

So, any irreducible recurrent Markov chain possesses a σ -finite invariant
distribution. However, the existence of a σ -finite invariant distribution does
not guarantee recurrence, as the following example demonstrates. For a simple
random walk on Z, the Haar measure assigning μ(x) = 1 for all x ∈ Z is
invariant whatever the success probability p.

For positive recurrence there is a criterion in terms of an invariant measure,
as follows.

Theorem 1.13 For a countable irreducible Markov chain {Xn}, the following
are equivalent:

(i) some state is positive recurrent;
(ii) all states are positive recurrent;

(iii) the measure μ defined in (1.2) is finite;
(iv) there exists a probability invariant measure π .

Then

π(y) = 1

Eyτy

for all y ∈ S.
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1.2 Real-Valued Markov Chains 5

Proof The equivalence of (i) or (ii) to (iii) is immediate from the definition
(1.2), because

∑
y∈S

π(y) =
∑
y∈S

Ex

τx∑
n=1

I{Xn = y}

= Ex

τx∑
n=1

∑
y∈S

I{Xn = y} = Exτx,

which is only finite if {Xn} is positive recurrent.
The most difficult implication is (iv)→(iii). It follows from the observation

that any invariant measure π satisfies the equalities

π(y) := π(x)Ex

τx∑
n=1

I{Xn = y} = π(x)

∞∑
n=1

Px{Xn = y,n ≤ τx}, y ∈ S.

For a proof, see e.g. Meyn and Tweedie [126, Theorem 10.4.9]. �

1.2 Real-Valued Markov Chains

Now let us proceed with a time-homogeneous Markov chain X = {Xn,n ≥ 0},
whose state space is a Borel subset S of R, that is, for all x ∈ S and Borel sets
B0, . . . , Bn−1, Bn+1 ∈ B(S),

P{Xn+1 ∈ Bn+1 | X0 ∈ B0, . . . ,Xn−1 ∈ Bn−1,Xn = x}
= P{Xn+1 ∈ Bn+1 | Xn = x}.

We usually simply say that Xn takes values in R, keeping in mind that the
corresponding transition probabilities may be defined only on some subset S

of the real line.
Denote by P(·,·) : S × B(S) → [0,1] the transition probabilities of {Xn}:

P(x,B) = P{Xn+1 ∈ B | Xn = x};

this function is measurable in x for each fixed B and is a probability measure
for each fixed x, that is, it is a stochastic transition kernel. Then, for all n and B,

P{Xn+1 ∈ B} =
∫

S

P (y,B)P{Xn ∈ dy}.

Let Px{·} = P{· | X0 = x} and Ex{·} = E{· | X0 = x}.
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Denote by ξ(x), x ∈ S, a random variable corresponding to the jump of the
chain at point x ∈ S, that is, a random variable with distribution

P{ξ(x) ∈ B} = P{Xn+1 − Xn ∈ B | Xn = x}
= Px{X1 ∈ x + B}, B ∈ B(R).

In the sequel we will always assume that S is a right unbounded set.
Furthermore, for ease of notation, we assume that P(x,B) is defined for all
x ∈ R.

Denote the kth moment of the jump at point x by

mk(x) := Eξk(x).

Definition 1.14 We say that a Markov chain {Xn} has an asymptotically zero
drift if m1(x) = Eξ(x) → 0 as x → ∞.

The study of processes with asymptotically zero drift was initiated by
Lamperti in a series of papers [111, 112, 113].

The first topic of basic importance is the classification of Markov chains,
which is discussed in detail in Chapter 2. For any Borel set B ⊂ R denote by
τB the time of the first entry of {Xn} to B,

τB := inf{n ≥ 1 : Xn ∈ B}.
If B is a singleton then we can repeat the classification of B as in the previous
section. However, this does not work well for Markov chains that are truly
real-valued, as it could happen that then PB{τB < ∞} = 0. For that reason
we introduce a classification of a general Borel set B with respect to Xn that
reduces to the classification presented in the last section if B is a singleton.

Definition 1.15 A set B is called positive recurrent if ExτB < ∞ for all
x ∈ B.

Definition 1.16 A set B is called non-positive if it is not positive recurrent;
more precisely, if either Px{τB = ∞} > 0, or Px{τB < ∞} = 1 and ExτB =
∞ for some x ∈ B.

Definition 1.17 A set B is called recurrent if τB is finite a.s. for all initial
states x ∈ B.

Definition 1.18 A set B is called null recurrent if τB is finite a.s. and ExτB =
∞ for all initial states x ∈ B.

Definition 1.19 A set B is called transient if Px{τB < ∞} < 1 for all initial
states x ∈ B.
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1.3 Random Walks 7

Definition 1.20 A measure π is called invariant for {Xn} if

π(B) =
∫

S

P (x,B)π(dx) for all B ∈ B(S).

In [111] Lamperti showed that if S = R
+, lim sup Xn = ∞, and E|ξ(x)|2+δ

is bounded for some δ > 0 then

• 2xm1(x) ≤ m2(x) + O(x−δ) implies that some neighborhood of zero is
recurrent,

• 2xm1(x) ≥ (1+ε)m2(x), for some ε > 0 and all sufficiently large x, implies
that any compact set is transient.

In [113] Lamperti proved that 2xm1(x) + m2(x) ≤ −ε is sufficient for
the positive recurrence of any compact set and that 2xm1(x) + m2(x) ≥ ε

implies the non-positivity of any compact set (for the case of either null
recurrence or transience). These criteria were improved later by Menshikov
et al. [124]. Instead of the existence of moments of order 2 + δ they assumed
that Eξ2(x) log2+δ(1 + |ξ(x)|) is bounded. Moreover, they obtained a more
precise classification of positive recurrence, null recurrence, and transience
which involves iterated logarithms.

In the next section we discuss classical random walks to show the difference
between them and Lamperti processes. That is followed by a couple of sections
devoted to two types of specific processes – nearest neighbour Markov chains
and diffusion processes – where many characteristics of interest may be
computed in closed form by following quite elementary calculations; this
provides the basic intuition needed to approach general Markov chains with
asymptotically zero drift.

In Section 1.6 we describe our approach to general Markov chains with
asymptotically zero drift.

1.3 Random Walks

Let us consider a fundamental example of Markov chains, random walks. We
start by recalling some important asymptotic results, which will be extended
to Lamperti’s Markov chains later.

Definition 1.21 A random walk with initial state x is a sequence of partial
sums, S0 = x,

Sn := Sn−1 + ξn = x + ξ1 + · · · + ξn, n ≥ 1,
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where the ξn are independent and identically distributed random variables.

Any random walk is a Markov chain with transition kernel

P(x,B) = P{ξ1 ∈ B − x}, x ∈ R, B ∈ B(R).

It is a space-homogeneous Markov chain because all its jumps ξ(x), x ∈ R, are
distributed as ξ1. Roughly speaking, it is a process with continuous statistics in
the sense that there are no boundary effects in this model.

If E|ξ1| < ∞ then the strong law of large numbers holds, that is,

Sn/n → Eξ1 a.s. as n → ∞.

This implies, in particular, that if Eξ1 > 0 then the set (−∞,x̂ ] is transient for
all x̂ ∈ R. If Eξ1 < 0 then the set (−∞,x̂ ] is positive recurrent. It is also well
known that in the case Eξ1 = 0 the random walk Sn is null recurrent, that is,
any bounded set is null recurrent.

In addition, if Eξ2
1 < ∞ then the central limit theorem holds, that is,

Sn − nEξ1√
nVar ξ1

⇒ N0,1 as n → ∞.

The simplest process with discontinuous statistics – that is, with boundary
effects – is a random walk delayed at zero, which is defined next.

Definition 1.22 A random walk delayed at zero (a Lindley recursion) is a
stochastic process W = {Wn,n ≥ 0} such that, for all n ≥ 1,

Wn = (Wn−1 + ξn)
+ := max(0,Wn−1 + ξn),

where the ξn are independent and identically distributed random variables that
are independent of W0 ≥ 0.

The process W is a Markov chain with transition kernel

P(x,B) = P{(x + ξ1)
+ ∈ B}, x ∈ R

+, B ∈ B(R);
this is a particular example of a Markov chain that is asymptotically homoge-
neous in space, defined below, because its jumps satisfy the following weak
(and in total-variation distance) convergence:

ξ(x) =st (x + ξ1)
+ − x ⇒ ξ1 as x → ∞.

Definition 1.23 We say that a Markov chain {Xn} is asymptotically homoge-
neous in space if

ξ(x) ⇒ ξ as x → ∞, (1.3)

for some random variable ξ . Equivalently, P(x,x + ·) ⇒ P{ξ ∈ ·}.
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1.3 Random Walks 9

Let W0 = 0. Then

Wn = max(0,ξn,ξn + ξn−1,ξn + ξn−1 + ξn−2, . . . ,ξn + ξn−1 + · · · + ξ1);
hence, for all n, Wn is equal in distribution to the maximum

Mn := max(0,ξ1,ξ1 + ξ2,ξ1 + ξ2 + ξ3, . . . ,ξ1 + ξ2 + · · · + ξn)

= max
0≤k≤n

Sk, where S0 = 0.

An application of the Lindley recursion {Wn} is the waiting time process
in the single-server queue system with ξ = σ − τ , where σ represents the
typical service time and τ the typical inter-arrival time. Among applications
of the process of maxima Mn is the collective risk process, with ξ = X − cτ ,
where X represents the typical claim size, τ the typical inter-arrival time, and
c the premium rate; here P{M∞ > x} represents the ruin probability given the
initial reserve x > 0.

If Eξ1 > 0 then {Wn} is a transient Markov chain (any bounded set is
transient), which satisfies the central limit theorem provided that Eξ2

1 < ∞:

Wn − nEξ1√
nVar ξ1

⇒ N0,1 as n → ∞.

If Eξ1 = 0 then {Wn} is null recurrent (any bounded set is null recurrent),
and, by the functional central limit theorem (Donsker’s theorem),

Wn√
nVar ξ1

⇒ sup
t≤1

B(t) as n → ∞,

where B(t) is a Brownian motion; see, e.g. Billingsley [16, Section 10].
If Eξ1 < 0 then {Wn} is positive recurrent (any bounded set is positive

recurrent) and possesses a unique invariant probability measure, say πW . This
measure is the distribution of M∞ := maxn≥0 Sn, and the distribution of Wn

converges to πW in the total-variation metric, that is,

sup
B∈B(R)

|P{Wn ∈ B} − πW(B)| → 0 as n → ∞.

The distribution πW is explicitly known in few cases only. The tail
behaviour of πW is understood very well; it depends heavily on the existence
of positive exponential moments of ξ1. For that reason the following classes of
distributions are introduced:

Definition 1.24 We say that a distribution F is light-tailed if∫
R

eλxF (dx) < ∞ for some λ > 0.

A random variable ξ is called light-tailed if its distribution is light-tailed.
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Definition 1.25 We say that a distribution F is heavy-tailed if∫
R

eλxF (dx) = ∞ for all λ > 0.

A random variable ξ is called heavy-tailed if its distribution is heavy-tailed.

Definition 1.26 We say that a function g(x) is long-tailed if, for any fixed y,
g(x + y) ∼ g(x) as x → ∞. A distribution F with right unbounded support
is called long-tailed if F(x,∞) is a long-tailed function.

Any long-tailed distribution is necessarily heavy-tailed.

Definition 1.27 A distribution F on R
+ is called subexponential if

(F ∗ F)(x,∞) ∼ 2F(x,∞) as x → ∞.

A distribution F of a random variable ξ is called subexponential if the
distribution of ξ+ is subexponential.

Any subexponential distribution is necessarily long-tailed and hence heavy-
tailed; see e.g. [67, Lemma 3.2].

In order to describe the tail behaviour of πW , let us introduce ϕ(λ) = Eeλξ1

and β = sup{λ ≥ 0 : ϕ(λ) ≤ 1}. Given P{ξ1 > 0} > 0, it follows that β < ∞.
It turns out that the asymptotic behavior of P{M∞ > x} depends heavily on
the values of β and ϕ(β). The following three different cases are considered:

(i) β > 0 and ϕ(β) = 1, the Cramér case;
(ii) β = 0, the heavy-tailed case where all positive exponential moments of

ξ1 are infinite;
(iii) β > 0 and ϕ(β) < 1, the intermediate case.

In the Cramér case, under the additional assumption ϕ′(β − 0) < ∞, for
some c ∈ (0,1) we have

P{M∞ > x} ∼ ce−βx as x → ∞;

this result goes back to H. Cramér, see e.g. [38] or [63, Chapter XII]. In Chapter
10, a similar exponential asymptotics of invariant probabilities of this type
is proven for a broad class of Markov chains on R that are asymptotically
homogeneous in space and have asymptotically negative drift.

In the heavy-tailed case, the tail asymptotics for M∞ is only available under
subexponential-type conditions, namely,

P{M∞ > x} ∼ 1

|Eξ1|
∫ ∞

x

P{ξ1 > y}dy as x → ∞
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if and only if the integrated tail distribution FI on R
+ defined by its tail

FI (x) := min
(

1,
∫ ∞

x

P{ξ1 > y}dy
)

is subexponential; see e.g. [67, Theorem 5.12].
In the intermediate case, we have EeβM∞ < ∞. In addition, if the function

eβx
P{ξ1 > x} is long-tailed then

P{M∞ > x} ∼ cP{ξ1 > x} as x → ∞,

for some c ∈ (0,∞) (in the lattice case x must be taken as a multiple of the
lattice step), if and only if the distribution of the random variable ξ+

1 belongs
to the so-called class S(β); see [14, Theorem 1] and [102, Theorem 2]. In that
case c = EeβM∞/(1 − ϕ(β)).

So, the invariant measure of {Wn} is light-tailed if and only if the distribu-
tion of ξ1 is light-tailed. As we will see in what follows, for Markov chains with
asymptotically zero drift the situation is very different – the invariant measure
is always heavy-tailed apart from degenerate cases.

1.4 Nearest Neighbour Markov Chains

In this section we discuss nearest neighbour Markov chains, which represent
one of the two classes of Markov chains for which either the invariant measure,
in the case of positive recurrence, or the Green function, in the case of
transience, is available in closed form. A closed form makes possible the direct
analysis of such Markov chains: their classification and the tail asymptotics of
their invariant probabilities or of Green function. This discussion should shed
some light on what we may expect for general Markov chains. Another class
is provided by diffusion processes, which are discussed in the next section.

Definition 1.28 A Markov chain {Xn} on Z
+ is called a nearest neighbour

(skip-free or continuous) Markov chain, if ξ(x) takes only the values −1, 1,
or 0, with probabilities p−(x), p+(x), and p0(x) = 1 − p−(x) − p+(x)

respectively, with p−(0) = 0.

Let

p+(x) = p + ε+(x) and p−(x) = p − ε−(x), p ≤ 1/2,

where the probabilities are assumed to be neither 0 nor 1, so that we have an
irreducible Markov chain.
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Assume that ε±(x) → 0 as x → ∞, which corresponds to the case of
asymptotically zero drift, m1(x) = ε+(x) + ε−(x) → 0 as x → ∞. Then the
second moment of the jumps is convergent: m2(x) → 2p as x → ∞.

1.4.1 Positive Recurrence

To find a sufficient condition for the positive recurrence of {Xn}, let us consider
a test function L(y) = y2. Its drift at all states x ≥ 1 equals

EL(x + ξ(x)) − L(x) = 2xEξ(x) + Eξ2(x)

= 2(ε+(x) + ε−(x))x + 2p + ε+(x) − ε−(x),

so the chain is positive recurrent if

lim sup
x→∞

(ε+(x) + ε−(x))x < −p, (1.4)

see e.g. Lamperti [111] or Section 2.2. Let us denote the stationary probabili-
ties of {Xn} by π(x), x ∈ Z

+.

Proposition 1.29 Under the condition (1.4), for some c1 ∈ R,

π(x) ∼ exp

(
1

p

x∑
k=1

(ε+(k) + ε−(k)) + c1

)
as x → ∞, (1.5)

provided that

∞∑
k=0

ε2(k) < ∞, (1.6)

where ε(k) := max(|ε−(k)|,|ε+(k)|).
Proof If the chain {Xn} is positive recurrent then its stationary probabilities
π(x), x ∈ Z

+, satisfy the equations

π(0) = π(0)p0(0) + π(1)p−(1),

π(x) = π(x − 1)p+(x − 1) + π(x)p0(x) + π(x + 1)p−(x + 1), x ≥ 1,

which are equivalent to

π(0)p+(0) = π(1)p−(1),

π(x + 1)p−(x + 1) − π(x)p+(x) = π(x)p−(x) − π(x − 1)p+(x − 1)

...

= π(1)p−(1) − π(0)p+(0) = 0,
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which yields π(x)p−(x) = π(x −1)p+(x −1) for all x ≥ 1. Hence we obtain
the following solution:

π(x) = π(0)

x∏
k=1

p+(k − 1)

p−(k)
, x ≥ 1, (1.7)

where

π(0) =
(

1 +
∞∑

x=1

x∏
k=1

p+(k − 1)

p−(k)

)−1

.

So {Xn} is positive recurrent if and only if

∞∑
x=1

x∏
k=1

p+(k − 1)

p−(k)
< ∞;

see Harris [77] or Karlin and Taylor [87, pp. 86–87], in which these calcula-
tions are carried out for the case where p0(k) = 0 for all k ≥ 1.

Since ε±(k) → 0,

x∏
k=1

p+(k − 1)

p−(k)
= p+(0)

p+(x)

x∏
k=1

1 + ε+(k)/p

1 − ε−(k)/p

∼ p+(0)

p

x∏
k=1

1 + ε+(k)/p

1 − ε−(k)/p
as x → ∞.

The logarithm of the product on the right-hand side equals

x∑
k=1

(
log(1 + ε+(k)/p) − log(1 − ε−(k)/p)

)
= 1

p

x∑
k=1

(
ε+(k) + ε−(k)

)+
x∑

k=1

δ(k), (1.8)

where δ(k) = O(ε2(k)) as k → ∞, for ε(k) := max(|ε−(k)|, |ε+(k)|). Hence,
for some c1 ∈ R,

π(x) = π(0)

x∏
k=1

p+(k − 1)

p−(k)
∼ e

1
p

∑x
k=1(ε+(k)+ε−(k))+c1 as x → ∞,

provided (1.6) holds. �

Let us consider a couple of examples with expressions for specific ε. In what
follows we need the following results on the harmonic series and generalised
harmonic series.
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Proposition 1.30 For the truncated harmonic series,

n∑
x=1

1

x
= log n + γ + O(1/n) as n → ∞, (1.9)

where γ is the Euler constant.
For the truncated generalised harmonic series, for any α ∈ (0,1),

n∑
x=1

1

xα
= n1−α

1 − α
+ γα + O(1/nα) as n → ∞. (1.10)

The first example of expressions for ε concerns a drift of order −μ/x.

Example 1.31 If ε+(x) ∼ −μ+/x and ε−(x) ∼ −μ−/x as x → ∞ in such a
way that

∞∑
x=0

∣∣∣ε+(x) + ε−(x) + μ+ + μ−
x

∣∣∣ < ∞

then (1.4) yields a positive recurrence of the chain provided that μ := μ+ +
μ− > p and (1.5) implies an asymptotic equivalence, for some c2 ∈ R:

π(x) ∼ e−(μ/p) log x+c2 = ec2

xμ/p
as x → ∞. (1.11)

In Chapter 8 the power asymptotics of invariant probabilities of this type
are extended to a broad class of Markov chains on R with asymptotically zero
drift of order −μ/x.

The second example of expressions for ε concerns a drift of order −μ/xα ,
α ∈ (0,1).

Example 1.32 If ε+(x) ∼ −μ+/xα and ε−(x) ∼ −μ−/xα as x → ∞, for
some μ+, μ− > 0 and α ∈ (1/2,1), in such a way that

∞∑
x=0

∣∣∣ε+(x) + ε−(x) + μ+ + μ−
xα

∣∣∣ < ∞

then the series
∑

ε2(x) is again convergent and we observe a Weibullian
asymptotic behaviour of the invariant probabilities,

π(x) ∼ c3 exp
(
−(μ+ + μ−)x1−α/p(1 − α)

)
as x → ∞. (1.12)

If now α ∈ (1/3,1/2] then the series (1.6) diverges and the quadratic terms
in (1.8) make a significant contribution to the asymptotic behaviour of the
invariant probabilities,
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π(x) ∼ c4 exp
(
−μ+ + μ−

p(1 − α)
x1−α + μ2− − μ2+

(2α − 1)2p2
x1−2α

)
as x → ∞.

If α ∈ (1/4,1/3] then we need to keep the cubic terms in the Taylor expansion
of the logarithm, which adds a further correction term of order x1−3α to the
exponential function, and so on.

General Markov chains on R with asymptotically zero drift of order −μ/xα ,
α ∈ (0,1), are considered in Chapter 9, where Weibullian-type asymptotics of
invariant probabilities are proven.

1.4.2 Transience

Let a nearest neighbour Markov chain {Xn} be irreducible and transient. Then
Px{τx < ∞} < 1 for all x and hence the renewal measure (Green function)

hx0(x) :=
∞∑

n=0

Px0{Xn = x}

= Ex0

∞∑
n=0

I{Xn = x}

is finite for all x0, x ∈ Z
+, because

hx0(x) = Px0{Xk = x for some k}
∞∑

n=0

Px{Xn = x}

= Px0{Xk = x for some k} 1

1 − Px{τx < ∞} < ∞.

Since we are considering a Markov chain that jumps by 1 only, hx0(x) =
hx(x) for all x0 ≤ x. In the next result we find hx0(x) in closed form.

Proposition 1.33 Under the condition

∞∑
u=1

u∏
z=1

p−(z)

p+(z)
< ∞, (1.13)

the following representations hold true:

hx0(x) = 1

p+(x)

∞∑
u=x∨x0

u∏
z=x+1

p−(z)

p+(z)

= 1

p−(x)

∞∑
u=x∨x0

u∏
z=x

p−(z)

p+(z)
.
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Proof We first look for a function g(x,z) ≥ 0 such that, for all x, the process

Zn = g(x,Xn) −
n−1∑
k=0

I{Xk = x}, n ≥ 0, (1.14)

is a martingale, which is the case if g satisfies the following system of
equations:

g(x,0) = p0(0)g(x,0) + p+(0)g(x,1) − I{x = 0},
g(x,y) = p−(y)g(x,y − 1) + p0(y)g(x,y) + p+(y)g(x,y + 1) − I{y = x},
for y ≥ 1. Take g(x,0) = g(x,1) = · · · = g(x,x) = 0. Then for y = x we get

g(x,x + 1) = g(x,x + 1) − g(x,x) = 1

p+(x)
,

and, for y ≥ x + 1,

g(x,y + 1) − g(x,y) = p−(y)

p+(y)
(g(x,y) − g(x,y − 1))

=
y∏

z=x+1

p−(z)

p+(z)
(g(x,x + 1) − g(x,x))

= 1

p+(x)

y∏
z=x+1

p−(z)

p+(z)
.

Therefore, for y ≥ x + 1,

g(x,y) =
y−1∑
u=x

(g(x,u + 1) − g(x,u)) = 1

p+(x)

y−1∑
u=x

u∏
z=x+1

p−(z)

p+(z)

= 1

p−(x)

y−1∑
u=x

u∏
z=x

p−(z)

p+(z)
,

which is increasing in y. This sequence is bounded under the condition (1.13).
Then

g(x,∞) := lim
y→∞ g(x,y) = 1

p+(x)

∞∑
u=x

u∏
z=x+1

p−(z)

p+(z)
< ∞.

The sequence (1.14) is a martingale, so for all n, x, and x0,

g(x,x0) = Ex0Z0 = Ex0Zn = Ex0g(x,Xn) − Ex0

n−1∑
k=0

I{Xk = x}
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and hence

n−1∑
k=0

Px0{Xk = x} = Ex0g(x,Xn) − g(x,x0) < g(x,∞) < ∞.

The finiteness of the Green function implies the transience of {Xn}; hence
Xn → ∞ a.s. as n → ∞. Thus, we get the following explicit representation
for the renewal measure:

hx0(x) = g(x,∞) − g(x,x0) = 1

p+(x)

∞∑
u=x∨x0

u∏
z=x+1

p−(z)

p+(z)

= 1

p−(x)

∞∑
u=x∨x0

u∏
z=x

p−(z)

p+(z)
.

�

Now let us derive some asymptotics for hx0(x) as x → ∞.

Proposition 1.34 Assume that

2m1(x)

m2(x)
= 2(ε+(x) + ε−(x))

2p + ε+(x) − ε−(x)
∼ r(x) as x → ∞, (1.15)

where r(x) is a differentiable decreasing function such that r ′(x)/r2(x) has a
limit at infinity. Then

hx0(x) ∼ 1

pr(x)

1

1 + limy→∞ r ′(y)/r2(y)
as x → ∞.

Proof We have

u∏
z=x

p−(z)

p+(z)
= exp

{ u∑
z=x

log
1 − ε−(z)/p

1 + ε+(z)/p

}
.

The asymptotic equivalence (1.15) is equivalent to

log
1 − ε−(x)/p

1 + ε+(x)/p
∼ −r(x) as x → ∞.

Fix an ε > 0. Then, for all sufficiently large x, we can write

−(1 + ε)r(x) ≤ log
1 − ε−(x)/p

1 + ε+(x)/p
≤ −(1 − ε)r(x).
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Therefore, for such x, we have the following upper bound:

hx0(x) ≤ 1

p−(x)

∞∑
u=x

exp

{
−(1 − ε)

u∑
z=x

r(z)

}

≤ 1

p−(x)

∞∑
u=x

exp

{
−(1 − ε)

∫ u+1

x

r(z)dz

}
≤ 1

p−(x)

∫ ∞

x

exp

{
−(1 − ε)

∫ u

x

r(z)dz

}
du,

as r(z) is a decreasing function. Setting

Uε(x) =
∫ ∞

x

exp

{
−(1 − ε)

∫ u

0
r(z)dz

}
du

we observe that∫ ∞

x

exp

{
−(1 − ε)

∫ u

x

r(z)dz

}
du = Uε(x)

−U ′
ε(x)

.

By L’Hôpital’s rule and the equality U ′′
ε (x) = −(1 − ε)r(x)U ′

ε(x) we have

lim
x→∞

Uε(x)

−U ′
ε(x)/r(x)

= lim
x→∞

U ′
ε(x)

−U ′′
ε (x)/r(x) + U ′

ε(x)r ′(x)/r2(x)

= 1

1 − ε + limx→∞ r ′(x)/r2(x)
.

Therefore,

lim sup
x→∞

hx0(x)r(x) ≤ 1

p

1

1 − ε + limx→∞ r ′(x)/r2(x)
.

Similarly, starting from the inequalities

hx0(x) ≥ 1

p+(x)

∞∑
u=x

exp

{
−(1 + ε)

u∑
z=x+1

r(z)

}

≥ 1

p+(x)

∞∑
u=x

exp

{
−(1 + ε)

∫ u

x

r(z)dz

}
≥ 1

p+(x)

∫ ∞

x

exp

{
−(1 + ε)

∫ u

x

r(z)dz

}
du,

we get the lower bound

lim inf
x→∞ hx0(x)r(x) ≥ 1

p

1

1 + ε + limx→∞ r ′(x)/r2(x)
.

Since ε > 0 is arbitrary we arrive at the claim of the theorem. �
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1.4 Nearest Neighbour Markov Chains 19

Example 1.35 Assume that ε+(x) ∼ μ+/x and ε−(x) ∼ μ−/x as x → ∞. If
μ := μ+ + μ− > p then (1.15) is valid, with r(x) = μ/px, r ′(x)/r2(x) →
−p/μ, and we deduce that

hx0(x) ∼ x

μ − p
as x → ∞.

Example 1.36 Assume that ε+(x) ∼ μ+/xα and ε−(x) ∼ μ−/xα as x → ∞.
If μ := μ+ + μ− > 0 and α ∈ (0,1) then (1.15) is valid with r(x) = μ/pxα ,
r ′(x)/r2(x) → 0, and we deduce a Weibullian asymptotics for the renewal
measure at infinity,

hx0(x) ∼ xα

μ
∼ 1

m1(x)
as x → ∞.

These two examples demonstrate the kind of asymptotic behaviour of the
renewal measure that we could expect for general Markov chains; see Chapters
4 and 6.

We conclude this section by showing that the condition (1.13) is also
necessary for the transience of nearest neigbour Markov chains. The transience
of {Xn} implies that, for all x, the sequence

∑n−1
k=0 I{Xk = x} monotonically

converges a.s. and in L1 as n → ∞. Therefore, the sequence (1.14) satisfies
Eminn Zn > −∞. This allows us to apply the martingale convergence
theorem: Zn converges almost surely to an integrable random variable Z∞.
Combining this with the convergence of

∑n−1
k=0 I{Xk = x}, we infer that

g(x,Xn) converges almost surely too. If we assume now that (1.13) is not
valid then

g(x,y) ↑ g(x,∞) = ∞ as y → ∞,

and the irreducibility of {Xn} would imply that

lim sup
n→∞

g(x,Xn) = ∞ a.s.

This would contradict the convergence of g(x,Xn), hence (1.13) is necessary
for the transience of {Xn}.

An alternative approach to the classification of nearest neighbour Markov
chains may be found in Karlin and Taylor [87, Section 3.7].

1.4.3 Harmonic Functions and h-Transforms

Consider {Xn} killed at hitting zero, by setting p−(1) = 0. The corresponding
transition kernel is substochastic, which means that each row sums to a value
not greater than 1. Let us construct a harmonic function for this kernel, that is,
a non-negative solution V to the system of linear equations
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V (x) = p+(x)V (x + 1) + p0(x)V (x) + p−(x)V (x − 1), x ≥ 1, (1.16)

with initial condition V (0) = 0.

Lemma 1.37 For all x ≥ 1,

V (x) = V (1)

x−1∑
y=0

y∏
k=1

p−(k)

p+(k)
. (1.17)

Proof Let τy be the first hitting time of y, that is,

τy := inf{n ≥ 1 : Xn = y}.
Then the equations (1.16) with initial condition V (0) = 0 are equivalent to

V (x) = Ex{V (X1); τ0 > 1}, x ≥ 1, (1.18)

which defines a harmonic function for the chain {Xn} killed at hitting zero.
It is clear that (1.16) can be rewritten in the form

p+(x)[V (x + 1) − V (x)] = p−(x)[V (x) − V (x − 1)].

Consequently,

V (x + 1) − V (x) = [V (1) − V (0)]
x∏

k=1

p−(k)

p+(k)
, x ≥ 1. (1.19)

Recalling that V (0) = 0, we then obtain the harmonic function V for the chain
{Xn} killed at hitting zero in closed form:

V (x) =
x−1∑
y=0

[V (y + 1) − V (y)] = V (1)

x−1∑
y=0

y∏
k=1

p−(k)

p+(k)
.

�

The existence of a positive harmonic function allows us to transform a
strictly substochastic transition kernel for the chain {Xn} killed at hitting zero
into a stochastic transition kernel. For every x ≥ 1, define

p̂+(x) := V (x+1)

V (x)
p+(x), p̂0(x) = p0(x), and p̂−(x) := V (x−1)

V (x)
p−(x).

The new transition kernel P̂ is stochastic because, as follows from (1.16),

p̂−(x) + p̂0(x) + p̂+(x) = 1 for all x ≥ 1.

This transformation is called Doob’s h-transform, for a Markov chain killed at
hitting zero. Let {X̂n} be a Markov chain on {1,2, . . .} with transition kernel P̂ .
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Lemma 1.38 The chain {X̂n} is always transient.

Proof As shown in the previous subsection, it suffices to show that (1.13)
holds for the transition probabilities P̂ . We first apply the definition of P̂ :

∞∑
u=1

u∏
z=2

p̂−(z)

p̂+(z)
=

∞∑
u=1

u∏
z=2

V (z − 1)

V (z + 1)

p−(z)

p+(z)

=
∞∑

u=1

V (1)V (2)

V (u)V (u + 1)

u∏
z=2

p−(z)

p+(z)
.

It follows from (1.19) that

1

V (u)
− 1

V (u + 1)
= V (u + 1) − V (u)

V (u)V (u + 1)
= V (1)

V (u)V (u + 1)

u∏
z=1

p−(z)

p+(z)
.

Therefore,

∞∑
u=1

u∏
z=2

p̂−(z)

p̂+(z)
= p+(1)

p−(1)
V (2)

∞∑
u=1

(
1

V (u)
− 1

V (u + 1)

)
≤ p+(1)

p−(1)

V (2)

V (1)
< ∞,

which is equivalent to the transience of the transformed chain {X̂n}. �

A standard application of Doob’s h-transform is a random walk conditioned
to stay positive. Let {Xn} be a simple symmetric random walk on Z, that is,
p−(x) = p+(x) = 1/2 for all x ∈ Z. Then it follows from (1.17) that V (x) =
xV (1). As a result the transformed chain {X̂n} has transition probabilities

p̂−(x) = x − 1

2x
= 1

2
− 1

2x
, p̂+(x) = x + 1

2x
= 1

2
+ 1

2x
, x ≥ 1.

It is immediate from these formulae that the transformed chain has an
asymptotically zero drift and unit second moment of jumps.

If the original Markov chain {Xn} is recurrent then one can use the h-
transform to connect the stationary measure π of {Xn} with the Green function
of {X̂n}. The following representation for the invariant measure π via a cycle
structure (generated by the returning time to the state 0) of the Markov chain
{Xn} is well known – see e.g. [126, Theorem 10.4.9] – for x ≥ 1:

π(x) = π(0)

∞∑
n=1

P0{Xn = x, τ0 > n}

= π(0)p+(0)

∞∑
n=0

P1{Xn = x, τ0 > n}.
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Noting that P1{Xn = x, τ0 > n} = V (1)
V (x)

P1{X̂n = x} for all x, n ≥ 1, we
obtain

π(x) = π(0)p+(0)V (1)

V (x)
ĥ1(x), (1.20)

where

ĥ1(x) :=
∞∑

n=0

P1{X̂n = x}, x ≥ 1.

Let us consider a couple of examples; we first discuss a drift of order −μ/x.

Example 1.39 Let ε+(x) ∼ −μ+/x and ε−(x) ∼ −μ−/x as x → ∞ in such
a way that

∞∑
x=0

∣∣∣ε+(x) + ε−(x) + μ+ + μ−
x

∣∣∣ < ∞.

Let μ := μ+ + μ− > p, so the chain is positive recurrent. As follows from
(1.19), for all x ≥ 1,

V (x + 1) − V (x) = [V (1) − V (0)]
x∏

k=1

p−(k)

p+(k)

= [V (1) − V (0)] exp

(
x∑

k=1

(log p−(k) − log p+(k))

)

= [V (1) − V (0)] exp

(
x∑

k=1

(log(1 − ε−(k)/p) − log(1 + ε+(k)/p))

)
.

As in (1.5), we conclude that there is an asymptotic relation, for some c1,

V (x + 1) − V (x) ∼ [V (1) − V (0)] exp

(
− 1

p

x∑
k=1

(ε−(k) + ε+(k)) + c1

)

∼ [V (1) − V (0)] exp

(
μ− + μ+

p
log x + c2

)
∼ c3x

μ/p as x → ∞.

Therefore, as x → ∞,

V (x + 1)

V (x)
= 1 + V (x + 1) − V (x)

V (x)
= 1 + μ/p + 1

x
+ o(1/x),

and

V (x − 1)

V (x)
= 1 − V (x) − V (x − 1)

V (x)
= 1 − μ/p + 1

x
+ o(1/x).
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Hence, the transition probabilities of the transformed Markov chain satisfy the
relations

p̂+(x) := V (x + 1)

V (x)
p+(x) = p + μ− + p

x
+ o(1/x),

p̂−(x) := V (x − 1)

V (x)
p−(x) = p − μ+ + p

x
+ o(1/x).

It follows from Example 1.35 with μ̂+ = μ− + p and μ̂− = μ+ + p that

ĥ1(x) ∼ x

μ̂+ + μ̂− − p
= x

μ + p
,

which, on being substituted into (1.20), implies, as x → ∞,

π(x) = c3
ĥ1(x)

V (x)
∼ c4

xμ/p
,

which coincides with the expression (1.11).

This relation between the stationary measure of a nearest neighbour Markov
chain and the Green function of the transformed chain may be extended to
the general case. We follow this approach in Chapter 8 to derive the power
asymptotics of invariant probabilities of this type for a broad class of Markov
chains on R, those with asymptotically zero drift of order −μ/x.

The second example concerns a drift of order −μ/xα , α ∈ (0,1).

Example 1.40 Let ε+(x) ∼ −μ+/xα and ε−(x) ∼ −μ−/xα as x → ∞ for
some μ+, μ− > 0 and α ∈ (1/2,1), in such a way that

∞∑
x=0

∣∣∣ε+(x) + ε−(x) + μ+ + μ−
xα

∣∣∣ < ∞.

Similarly to the last example, for some c5,

V (x + 1) − V (x) ∼ [V (1) − V (0)] exp

(
− 1

p

x∑
k=1

(ε−(k) + ε+(k)) + c5

)

∼ c6 exp

(
μ− + μ+
p(1 − α)

x1−α

)
as x → ∞.

Therefore, as x → ∞,

V (x + 1)

V (x)
= 1 + μ+ + μ−

pxα
+ o(1/x)

and

V (x − 1)

V (x)
= 1 − μ+ + μ−

pxα
+ o(1/x).
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Hence, the transition probabilities of the transformed Markov chain satisfy the
relations

p̂+(x) := V (x + 1)

V (x)
p+(x) = p + μ−

xα
+ O(1/x2α),

p̂−(x) := V (x − 1)

V (x)
p−(x) = p − μ+

xα
+ O(1/x2α).

It follows from Example 1.35 with μ̂+ = μ− and μ̂− = μ+ that

ĥ1(x) ∼ xα

μ̂+ + μ̂−
,

which, on being substituted into (1.20), implies a Weibullian asymptotic
behaviour of the invariant probabilities, as x → ∞:

π(x) = c7
ĥ1(x)

V (x)
∼ c8 exp

(
−μ− + μ+

p(1 − α)
x1−α

)
,

which coincides with the expression (1.12).

General Markov chains on R with asymptotically zero drift of order −μ/xα ,
α ∈ (0,1), are considered in Chapter 9 where we again follow the above
approach to derive the Weibullian-type asymptotics of invariant probabilities.

1.4.4 Down-Crossing Probabilities for Transient Chain

Let {Xn} be transient, that is, its probability of hitting the origin, Px{τ0 < ∞},
is less than 1 for all x ≥ 1. The goal of the following calculations is to find this
probability.

The function V (x) computed in (1.17) is increasing and bounded provided
that the condition (1.13) holds. As it has already been noticed in (1.18), the
sequence V (Xn∧τ0) is a bounded non-negative martingale, so, by the optional
stopping theorem (see e.g. [56, Section 4.7]),

V (x) = ExV (X0) = ExV (Xτ0)

= V (0)Px{τ0 < ∞} + V (∞)Px{τ0 = ∞}

and hence

Px{τ0 < ∞} = V (∞) − V (x)

V (∞) − V (0)
=
∑∞

y=x

∏y

k=1
p−(k)
p+(k)∑∞

y=0
∏y

k=1
p−(k)
p+(k)

.
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1.4 Nearest Neighbour Markov Chains 25

Owing to the left-continuity of the Markov chain, similarly we get, for all
0 ≤ x̂ < x,

Px{τx̂ < ∞} = V (∞) − V (x)

V (∞) − V (̂x)
=
∑∞

y=x

∏y

k=1
p−(k)
p+(k)∑∞

y=x̂

∏y

k=1
p−(k)
p+(k)

. (1.21)

Example 1.41 In the case where ε+(x) ∼ μ+/x and ε−(x) ∼ μ−/x as x → ∞,
μ := μ+ + μ− > p, and

∞∑
x=0

∣∣∣ε+(x) + ε−(x) − μ

x

∣∣∣ < ∞,

then similarly to (1.11) we derive that

y∏
k=1

p−(k)

p+(k)
∼ c5y

−μ/p as y → ∞,

where c5 > 0. Therefore, (1.21) implies that there exists a function c(̂x) → 1
as x̂ → ∞ such that

Px{τx̂ < ∞} ∼ c(̂x)(̂x/x)μ/p−1 as x → ∞, uniformly for all x̂ < x.

In particular,

Px{τx̂ < ∞} ∼ (̂x/x)μ/p−1 as x̂, x → ∞, x > x̂.

Compare this result with Theorem 3.2 and Corollary 3.3, where a general
transient Markov chain with a drift of order μ/x is studied.

Example 1.42 Assume that ε+(x) ∼ μ+/xα and ε−(x) ∼ μ−/xα as x → ∞.
If μ := μ+ + μ− > 0, α ∈ (1/2,1), and

∞∑
x=0

∣∣∣ε+(x) + ε−(x) − μ

xα

∣∣∣ < ∞

then the series
∑

ε2(x) is convergent and we obtain

y∏
k=1

p−(k)

p+(k)
∼ c6e

−μy1−α/p(1−α) as y → ∞,

where c6 > 0. Therefore, (1.21) implies a Weibullian asymptotic behaviour
of the down-crossing probability, that is, there exists a function c(̂x) → 1 as
x̂ → ∞ such that
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Px{τx̂ < ∞} ∼ c(̂x)

∑∞
u=x exp

(−μu1−α/p(1 − α)
)∑∞

u=x̂ exp
(−μu1−α/p(1 − α)

)
∼ c(̂x)

(x

x̂

)α

exp
(
μ(̂x1−α − x1−α)/p(1 − α)

)
as x → ∞ uniformly for all x̂ < x. In particular,

Px{τx̂ < ∞} ∼
(x

x̂

)α

exp
(
μ(̂x1−α − x1−α)/p(1 − α)

)
as x̂, x → ∞, x > x̂.

Compare this result with Theorem 3.7, where a general transient Markov chain
with a drift of order μ/xα , α ∈ (1/2,1), is studied.

1.5 Heuristics Coming from Diffusion Processes

1.5.1 Diffusion with Bounded Smooth Infinitesimal Parameters

Another example where various characteristics are available in closed form
is provided by diffusion processes on R that are continuous-time Markov
processes with continuous paths. If they are sampled at non-random equally
spaced time epochs they give us examples of Markov chains for which some
characteristics are explicitly calculable.

Let us start with a result that demonstrates that the existence of an
invariant probability measure for a diffusion process is equivalent to its positive
recurrence.

Lemma 1.43 For a diffusion process {X(t)} with diffusion coefficient every-
where positive the following are equivalent:

(i) there is a stationary version of the process {X(t)};
(ii) the process {X(t)} is positive recurrent, that is, Exτy < ∞ for all states x

and y, where τy := inf{t : X(t) = y}.
Proof Let {X(t)} possess an invariant probability measure π . Then the same
is true for the slotted Markov chain Xn = X(n), n ∈ Z

+. Since the diffusion
coefficient is everywhere positive, the jumps of {Xn} are absolutely continuous
with positive density function, so the chain {Xn} is ψ-irreducible; see [126,
Proposition 4.2.2]. Therefore, the existence of an invariant probability measure
for {Xn} implies the positive recurrence of any compact set B of positive
Lebesgue measure, in the sense that ExτB < ∞ for all x. Hence, B is positive
recurrent for {X(t)} too, which implies the positive recurrence of the diffusion
process due to the continuity of its paths.
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Vice versa, let {X(t)} be positive recurrent. Then, for any two fixed distinct
states x and y, the stopping time

τ := min{t : X(t) = x and X(s) = y for some s < t}
is finite on average given X(0) = x, Exτ < ∞. In addition, τ > 0. For that
reason a measure

μ(B) := Ex

∫ τ

0
I{X(t) ∈ B} dt

=
∫ ∞

0
Px{X(t) ∈ B, τ > t} dt

is non-zero and finite, μ(R) = Exτ ∈ (0,∞). Let us show that it is invariant for
{X(t)}, that is, for any s > 0 and any bounded continuous function ϕ : R → R,
we have ∫

R

ϕ(z)μ(dz) =
∫
R

E{ϕ(X(s)) | X(0) = z}μ(dz).

Indeed, the difference between the right- and left-hand side integrals equals∫
R

E{ϕ(X(s)) − ϕ(z) | X(0) = z}μ(dz)

=
∫
R

E{ϕ(X(t + s)) − ϕ(X(t)) | X(t) = z}
∫ ∞

0
Px{X(t) ∈ dz, τ > t} dt

=
∫ ∞

0
Ex{ϕ(X(t + s)) − ϕ(X(t)), τ > t} dt,

because {τ > t} = {τ ≤ t} ∈ σ(Xu, u ≤ t). Since∫ ∞

0
Ex{ϕ(X(t + s)), τ > t} dt = Ex

∫ τ

0
ϕ(X(t + s))dt

= Ex

∫ τ+s

s

ϕ(X(t))dt,

we get ∫ ∞

0
Ex{ϕ(X(t + s)) − ϕ(X(t)), τ > t} dt

= Ex

∫ τ+s

s

ϕ(X(t))dt − Ex

∫ τ

0
ϕ(X(t))dt

= Ex

∫ τ+s

τ

ϕ(X(t))dt − Ex

∫ s

0
ϕ(X(t))dt

= 0,

by the Markov property, since X(τ) = x. �
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Consider a diffusion process X = {X(t)} on R with smooth drift μ(x) and
diffusion coefficient σ 2(x) > 0. In the case of a stationary diffusion process,
the invariant density function p(x) solves the stationary Kolmogorov forward
equation

0 = − d

dx
(μ(x)p(x)) + 1

2

d2

dx2
(σ 2(x)p(x)),

which has the following solution:

p(x) = c

σ 2(x)
exp

(∫ x

0

2μ(y)

σ 2(y)
dy

)
, c > 0. (1.22)

It follows that a diffusion process possesses a probabilistic invariant distribu-
tion – is positive recurrent – if and only if

the function
1

σ 2(x)
exp

(∫ x

0

2μ(y)

σ 2(y)
dy

)
is integrable at ± ∞. (1.23)

It is also known that the half-line (−∞,0] is recurrent for a diffusion
process, in the sense that Px{X(t) ≤ 0 for some t} = 1 for all x > 0 if

the function exp

(
−
∫ x

0

2μ(y)

σ 2(y)
dy

)
is not integrable at ∞; (1.24)

see, e.g. [88, Chapter 15, Theorem 7.3] or [34, Section 4.1]; and, vice versa, it
is transient in the sense that Px{X(t) > 0 for all t > 0} > 0 for all x > 0 if

the function exp

(
−
∫ x

0

2μ(y)

σ 2(y)
dy

)
is integrable at ∞, (1.25)

see e.g. [88, Chapter 15, Lemma 6.1].
As one can see, the classification of diffusion processes relies heavily on

the asymptotic behaviour of the ratio 2μ(x)/σ 2(x) at infinity. In particular, if

μ(x) ∼ −μ/x and σ 2(x) → σ 2 > 0 as x → ∞ (1.26)

for some μ ∈ R and σ 2 > 0 then:

• integrability at infinity in (1.23) holds for 2μ > σ 2;
• non-integrability at infinity in (1.24) holds for 2μ > −σ 2;
• integrability at infinity in (1.25) holds for 2μ < −σ 2.

Knowledge of the invariant probability density function in closed form,
(1.22), allows us to analyse its asymptotic behaviour under various regularity
conditions of the drift and diffusion coefficients at infinity.
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Example 1.44 Let {X(t)} possess a probabilistic invariant measure and let
(1.26) hold with 2μ > σ 2. If∫ ∞

1

∣∣∣ μ(x)

σ 2(x)
+ μ

σ 2x

∣∣∣dx < ∞

then (1.22) yields the following asymptotic equivalence, for some c1 > 0,

p(x) ∼ c1

x2μ/σ 2 as x → ∞.

Example 1.45 Let {X(t)} possess a probabilistic invariant measure. If μ(x) ∼
−μ/xα and σ 2(x) → σ 2 > 0 as x → ∞ for some μ > 0 and α ∈ (0,1), in
such a way that ∫ ∞

1

∣∣∣ μ(x)

σ 2(x)
+ μ

σ 2xα

∣∣∣dx < ∞,

then

p(x) ∼ c2 exp
(
−2μx1−α/σ 2(1 − α)

)
as x → ∞.

Let {X(t)} be a diffusion process satisfying the condition (1.25), so that the
negative half-line (−∞,0] is transient. A harmonic function h(x) for such a
diffusion process with transition kernel P(t,x,dy), that is, a solution to the
equation (σ 2(x)

2

d2

dx2
+ μ(x)

d

dx

)
h(x) = 0, (1.27)

is computable in closed form as follows:

h(x) =
∫ ∞

x

exp

(
−
∫ z

0

2μ(y)

σ 2(y)
dy

)
dz, x ∈ R. (1.28)

This is a positive decreasing function. By Itô’s formula, the process {h(X(t))}
is a martingale; hence we can apply Doob’s h-transform, which returns a new
stochastic transition kernel

P̂ (t,x,dy) := h(y)

h(x)
P (t,x,dy).

Let us consider a diffusion process X̂ = {X̂(t)} with this transition kernel. The
drift coefficient of X̂ is

μ̂(x) = lim
t→0

1

t

∫
(y − x)

h(y)

h(x)
P (t,x,dy)

= lim
t→0

1

t

∫
(y − x)

(
1 + h′(x)

h(x)
(y − x) + O((y − x)2)

)
P(t,x,dy)

= μ(x) + h′(x)

h(x)
σ 2(x), (1.29)
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and, since h′(x) < 0, μ̂(x) < μ(x). The diffusion coefficient does not change:
σ̂ 2(x) = σ 2(x).

If, for some c̃ > 3,

2μ(x)

σ 2(x)
≥ c̃

x
for all sufficiently large x,

then, under some mild additional condition,

−h′(x) ≥ c2h(x)/x for some c2 > 0,

and the set (−∞,0] is positive recurrent for the transformed chain {X̂(t)}.
Indeed, in this case

h(x) ≤
∫ ∞

x

exp

(
c3 −

∫ z

1

c̃

y
dy

)
dz = c4x

1−c̃,

hence the function

exp

(∫ x

0

2μ̂(y)

σ̂ 2(y)
dy

)
= exp

(∫ x

0

2μ(y)

σ 2(y)
dy +

∫ x

0
2
h′(y)

h(y)
dy

)
= h2(x)

h2(0)
exp

(∫ x

0

2μ(y)

σ 2(y)
dy

)
= −h2(x)

h′(x)

1

h2(0)

≤ xh(x)

c2
≤ c4xx1−c̃/c2

is integrable at infinity because c̃ > 3 and the condition (1.23) for positive
recurrence is met.

If, for some c̃ ∈ (1,3] and a function p(x) that is absolutely integrable at
infinity, we have

2μ(x)

σ 2(x)
= c̃

x
+ p(x),

then the diffusion process {X(t)} is transient by the criterion (1.25) and the
transformed process {X̂(t)} is null recurrent, because in this case

h′(x) ∼ − exp

(
c5 −

∫ x

1

c̃

y
dy

)
= −ec5x−c̃and

h(x) = −
∫ ∞

x

h′(z)dz ∼ c6x
1−c̃.

Thus the function

exp

(∫ x

0

2μ̂(y)

σ̂ 2(y)
dy

)
= −h2(x)

h′(x)
∼ c7x

2−c̃
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is not integrable at infinity because c̃ ∈ (1,3] and hence {X̂(t)} is not positive
recurrent, by (1.23), but it is still recurrent, by (1.24), because the function

exp

(
−
∫ x

0

2μ̂(y)

σ̂ 2(y)
dy

)
= − h′(x)

h2(x)
∼ xc̃−2

c7

is not integrable at infinity either.
Conversely, let us consider a recurrent diffusion process {X(t)} when τ =

τ(−∞,0] = min{t ≥ 0 : X(t) ≤ 0} is finite with probability 1. Consider
the process Y (t) := X(t ∧ τ), which is the original process stopped at the
time of leaving the positive half-line. Its harmonic function solves (1.27) with
h(0) = 1,

h(x) = 1 +
∫ x

0
exp

(
−
∫ z

0

2μ(y)

σ 2(y)
dy

)
dz, x ≥ 0. (1.30)

It is an increasing function tending to infinity as x → ∞, due to the recurrence
condition (1.24). By Itô’s formula, the process {h(Y (t))} is a martingale; hence
we can apply Doob’s h-transform, which returns a new stochastic transition
kernel

P̂Y (t,x,dy) := h(y)

h(x)
PY (t,x,dy).

Let us consider a diffusion process {Ŷ (t)} with this transition kernel. The drift
coefficient of {Ŷ (t)} is given in (1.29). Since the function h(x) is increasing,
μ̂(x) > μ(x). The increase in the drift is so strong that the process {Ŷ (t)} is
transient. Indeed, the function

exp

(
−
∫ x

0

2μ̂(y)

σ̂ 2(y)
dy

)
= exp

(
−
∫ x

0

2μ(y)

σ 2(y)
dy −

∫ x

0
2
h′(y)

h(y)
dy

)
= 1

h2(x)
exp

(
−
∫ x

0

2μ(y)

σ 2(y)
dy

)
= h′(x)

h2(x)
=
( −1

h(x)

)′

is integrable at infinity because h(x) → ∞ and, therefore, the condition (1.25)
for transience is met:∫ ∞

z

exp

(
−
∫ x

0

2μ̂(y)

σ̂ 2(y)
dy

)
dx = 1

h(z)
< ∞.

We follow up the idea of these calculations related to harmonic functions
and changes of measure for diffusion processes in our tail analysis of invariant
measures of Markov chains in Chapters 8 and 9.
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1.5.2 Green Function for Transient Diffusion

Let {X(t)} be a transient diffusion on R (or R+) with the following generator:

A = μ(x)
d

dx
+ σ 2(x)

2

d2

dx2
.

We consider a regular diffusion, in the sense of properties (i)–(iii) of [135,
Chapter VII.3]. For its transience it is sufficient to assume that the following
function,

U(x) :=
∫ ∞

x

exp

{
−
∫ v

0

2μ(y)

σ 2(y)
dy

}
dv, (1.31)

is finite for all x, see (1.25); this function solves the homogeneous equation

AU = 0. (1.32)

In this case X(t) → ∞ a.s. and we are interested in the continuous-time
analogue of the renewal (Green) function,

Hy(x,x + h] :=
∫ ∞

0
Py{X(t) ∈ (x,x + h]} dt, h > 0.

By Proposition 1.6 in Revuz and Yor [135, Chapter VII.1], the process

f (X(t)) − f (X(0)) −
∫ t

0
Af (X(s))ds

is a local martingale for a wide class of functions f . This suggests the
following method for computing the renewal measure of X(t). Fix x and h.
Suppose we can find a bounded function f (z) = fh,x(z) such that f (z) → 0
as z → ∞ and

Af (z) = −I{z ∈ (x,x + h]}. (1.33)

Then the optional stopping theorem, see e.g. [56, Section 4.7], and a.s.
convergence of X(t) → ∞ as t → ∞ give us the equality

f (y) = Eyf (X(0)) = Ey

[∫ ∞

0
I{X(t) ∈ (x,x + h]} dt

]
= Hy(x,x + h],

which allows us to analyse Hy .
So, we need to solve the ordinary differential equation (1.33). To this end,

consider

m(x) :=
∫ x

0

2dv

−U ′(v)σ 2(v)
=
∫ x

0

2

σ 2(v)
exp

{∫ v

0

2μ(y)

σ 2(y)
dy

}
dv

https://doi.org/10.1017/9781009554237.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009554237.002


1.5 Heuristics Coming from Diffusion Processes 33

and also

Gx(z) :=
{

U(z)m(z) + ∫ x

z
U(v)m(dv), z ≤ x,

U(z)m(x), z > x.

We have

d

dz
Gx(z) =

{
U ′(z)m(z), z ≤ x,

U ′(z)m(x), z > x

and

d2

dz2
Gx(z) =

{
U ′′(z)m(z) − 2/σ 2(z), z ≤ x,

U ′′(z)m(x), z > x,

where we consider the left second derivative at z = x, which, together with
(1.32), implies that

AGx(z) =
{

−1, z ≤ x,

0, z > x,

and hence the function

f (z) = Gh,x(z) := Gx+h(z) − Gx(z) (1.34)

solves (1.33).
Alternatively, one can notice that U(x) is the scale function, that m(x)

corresponds to the speed measure, and that (see [135, Chapter VII, Theorem
3.12])

AGx(z) = d

dm(z)

(
dGx(z)

−dU(z)

)
.

Thus, it follows from (1.34) that, for y < x,

Hy(x,x + h] = f (y) =
∫ x+h

x

U(v)m(dv) =
∫ x+h

x

2U(v)dv

−U ′(v)σ 2(v)
.

More formally one can obtain the last equality from Corollary 3.8 and Exercise
3.20 in [135, Chapter VII.3].

If the function W(v) := U(v)/U ′(v)σ 2(v) is long-tailed at infinity, see
Definition 1.26, then we get the following local renewal theorem for a process
X(t) starting at y:

Hy(x,x + h] ∼ 2U(x)

−U ′(x)σ 2(x)
h as x → ∞.

Assume that

2μ(x)

σ 2(x)
∼ r(x) as x → ∞, (1.35)
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for some differentiable function r(x) such that the quotient r ′(x)/r2(x) has
a limit at infinity. Hence, we can apply L’Hôpital’s rule and the equality
U ′′ = − rU ′ to obtain

lim
x→∞

U(x)

−U ′(x)/r(x)
= lim

x→∞
U ′(x)

−U ′′(x)/r(x) + U ′(x)r ′(x)/r2(x)

= 1

1 + limx→∞ r ′(x)/r2(x)
.

Therefore, for any fixed h > 0,

Hy(x,x + h] ∼ 2

σ 2(x)r(x)

1

1 + limy→∞ r ′(y)/r2(y)
h as x → ∞.

Example 1.46 If μ(x) ∼ μ/x and σ 2(x) → σ 2 > 0 as x → ∞ with 2μ > σ 2

then (1.35) is satisfied by r(x) = 2μ/σ 2x, r ′(x)/r2(x) → −σ 2/2μ, and we
obtain

Hy(x,x + h] ∼ 2h

2μ − σ 2
x as x → ∞.

Example 1.47 If μ(x) ∼ μ/xα , μ > 0, α ∈ (0,1), and σ 2(x) → σ 2 > 0 as
x → ∞ then (1.35) is satisfied by r(x) = 2μ/σ 2xα , r ′(x)/r2(x) → 0, and
we find that

Hy(x,x + h] ∼ h

μ
xα ∼ h

μ(x)
as x → ∞.

Note that this asymptotic behaviour of the renewal function does not depend
on the diffusion coefficient, as for a process with constant positive drift.

1.5.3 Bessel Processes

A Bessel process is an important example of a diffusion process with asymptot-
ically zero drift whose various probabilistic characteristics can be calculated in
closed form; this provides some intuition for what can be expected for Markov
chains. The simplest version of a Bessel process is defined as the Euclidean
norm ‖B(d)(t)‖ of a d-dimensional Brownian motion B(d)(t), and it solves the
stochastic differential equation

dX(t) = dY (t) + d − 1

2

dt

X(t)
= dY (t) + 2ν + 1

2

dt

X(t)
, (1.36)

where the process Y (t) is a one-dimensional Brownian motion. The parameter
ν = (d − 2)/2 is called the index of X. By the same stochastic differential
equation we define a Bessel process with an arbitrary index ν ∈ R. A Bessel
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process with a non-integer dimension naturally appears as the norm of a multi-
dimensional Brownian motion in a cone, and the dimension is determined by
the cone’s geometry; see Corollary 3 in [54] and its proof.

In other words, X is a diffusion process with drift (2ν+1)/2x and diffusion
coefficient 1. The intrinsic property of a Bessel process is that its drift is
singular at the origin, which makes it impossible to apply the results of the
last subsection.

The drift of the squared Bessel process X2(t) at any state equals 2ν +2, and
this gives rise to the following classification; see e.g. [21, Appendix 1.21].

• If ν > 0 then the process {X(t)} is transient and there is a unique strong
solution to equation (1.36). The case where the index ν = 0 corresponds to

the process
√

B2
1 + B2

2 , which is null recurrent but the origin is never visited;
hence there is again a unique strong solution to the equation (1.36).

• If −1 ≤ ν < 0 then the hitting time of the origin from any state x > 0 is
finite with probability 1 and has infinite mean. In the case −1 < ν < 0,
the origin is a repelling (instantaneously reflecting) state for X, so there is a
weak solution to (1.36) which is not unique. In the case where the index is
−1, the origin is an absorbing state.

• If ν < −1 then the hitting time of the origin from any state x > 0 has finite
mean x2/|2ν + 2| and the origin is an absorbing state for {X(t)}, so there is
no weak solution to (1.36).

In the first case, where ν ≥ 0, the transition density of {X(t)} is well known,
see e.g. [21, Appendix 1.21], and is given by the equalities

pt (x,y) = 1

t

yν+1

xν
e−(x2+y2)/2t Iν(xy/t),

pt (0,y) = y2ν+1

2ν tν+1�(ν + 1)
e−y2/2t, (1.37)

where Iν(z) is a modified Bessel function. The same formula is still valid for
ν ∈ (−1,0) if we reflect the process {X(t)} each time it reaches the origin.

In the positive recurrent case ν < −1 or in the null recurrent case
ν ∈ (−1,0), if we kill the process at 0 then the transition probability density
function of {X(t)} is

pt (x,y) = 1

t

yν+1

xν
e−(x2+y2)/2t I|ν|(xy/t).

If ν ≥ 0 or ν ∈ (−1,0) and the process {X(t)} is reflected each time it
reaches the origin, the probability density function of X(t) given X(0) = 0 is
given by
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pt(x) = pt (0,x) = 1

2ν�(ν + 1)

x2ν+1

tν+1
e−x2/2t . (1.38)

In both cases the probability density function of X2(t)/t is

1

2ν+1�(ν + 1)
xνe−x/2,

which is a Gamma density function with mean 2(ν + 1) and variance 4(ν + 1).
In the transient case ν > 0 we can write down the Green function h0 of

{X(t)} in closed form by integrating (1.38):

h0(y) =
∫ ∞

0
pt (0,y)dt = y2ν+1

2ν�(ν + 1)

∫ ∞

0

1

tν+1
e−y2/2t dt = y

ν
,

which indicates the asymptotic behaviour of the renewal measure that we can
expect for transient Markov chains with drift of order c/x at infinity; see
Section 4.8 for results in this area.

It follows from the representation of the α-potential density Gα of X in [21,
Appendix 1.21] that, for all x ≥ 0,

hx(y) =
∫ ∞

0
pt (x,y)dt = 1

ν

y2ν+1

max(x,y)2ν
,

which implies that the first hitting time τ[0,y] of the compact set [0,y] is finite
with probability

Px{τ[0,y] < ∞} = Px{X(t) = y for some t}
= hx(y)

hy(y)
=
(y

x

)2ν

for x > y; (1.39)

this kind of result for transient Markov chains is discussed in Chapter 3.
For any ν, the function h(x) = x−2ν is harmonic for {X(t)} as it solves the

equation (1

2

d2

dx2
+ 2ν + 1

2x

d

dx

)
h(x) = 0.

By Itô’s formula, the process {h(X(t))} is a local martingale. Let y > 0. If
ν > 0 then h(x) is bounded on [y,∞) and if ν < 0 then it is bounded on [0,y].
So, in either case we can apply the optional stopping time theorem (see e.g.
[56, Section 4.7]) for martingales and conclude that, for ν > 0 and x > y,

h(x) = h(y)Px{X(t) = y for some t} + h(∞)Px{X(t) �= y for all t}
= h(y)Px{τ[0,y] < ∞},

which agrees with (1.39).
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If ν ≤ −1, which corresponds to the origin being an absorbing state, then,
for x < y,

h(x) = h(y)Px{X(t) = y for some t} + h(0)Px{X(t) �= y for all t}
= h(y)Px

{
sup
t≥0

X(t) ≥ y
}
,

which implies that

Px

{
sup
t≥0

X(t) ≥ y
}

= h(x)

h(y)
=
(x

y

)2|ν|
.

For recurrent Markov chains, the tail distribution of the trajectory supremum
until the time of the first entry to a neighborhood of the origin is described in
Theorem 8.26.

In conclusion, let us establish a link to Markov chains by sampling the
process {X(t)} at integer time epochs and getting a Markov chain Xn := X(n)

in this way; in the null recurrent case we assume a reflecting boundary
condition. This Markov chain is of Lamperti type with mean drift m1(x) and
second moment of jumps m2(x) satisfying the relations

m1(x) ∼ ν + 1/2

x
=:

c

x
and m2(x) → 1 as x → ∞. (1.40)

Indeed, it follows from (1.37) that

ExX(1) =
∫ ∞

0

yν+2

xν
e−(x2+y2)/2Iν(xy)dy

= e−x2/2

xν

∫ ∞

0
yν+2e−y2/2Iν(xy)dy

= e−x2/2

xν

�(ν + 3/2)
x
2 �(ν + 1)

ex2/42ν/2M−ν/2−1,ν/2(x
2/2),

where M·(·) is the Whittaker function; see [74, Formula 6.643(2)]. As x → ∞,

M−ν/2−1,ν/2(x
2/2) = �(ν + 1)

�(ν + 3/2)
ex2/4(x2/2)ν/2+1

(
1 + 2ν + 1

2x2
+ O(1/x4)

)
,

which gives

ExX(1) = x
(

1 + 2ν + 1

2x2
+ O(1/x4)

)
as x → ∞;

this in turn yields the first relation in (1.40). In a similar way we conclude that
the asymptotic behaviour of the higher moments of jumps, for any fixed j ≥ 1,
is given by

ExX
2j (1) = x2j + 2j (ν + j)x2j−2 + O(x2j−4) as x → ∞. (1.41)

https://doi.org/10.1017/9781009554237.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009554237.002


38 Introduction

Choosing j = 1 and using the formula for the first moment of X(1), one
obtains the second convergence in (1.40).

If the Bessel process {X(t)} is transient or null recurrent, that is, if ν > −1,
then it follows from the distribution property of the Bessel process {X(t)}
discussed above that, for all n, X2

n/n has a �-distribution with mean 2(ν + 1)

and variance 4(ν + 1). In Sections 4.5 and 4.6 we discuss the convergence of
X2

n/n to a �-distribution for a general transient or null recurrent Markov chain
with asymptotic drift of order c/x.

1.6 General Approach and Plan of the Book

One of the most popular examples of Markov chains with asymptotically zero
drift is a driftless random walk conditioned to stay positive. This process is an
h-transform of a random walk killed at leaving R

+. If the second moment
of the original random walk is finite then the transformed process has a
drift of order 1/x, that is, xm1(x) → c1 > 0. But the second moment of the
transformed process is finite if and only if the third moment of the original walk
is finite; see the calculations in Section 11.1. Therefore, Lamperti’s criterion
for transience is not always applicable to this type of chain.

This observation motivates us to look for appropriate conditions for tran-
sience, null recurrence, and positive recurrence in terms of the truncated
moments and tail probabilities of the jumps ξ(x). For any s > 0 we denote
the s-truncation of the kth moment of the jump at state x by

m
[s]
k (x) := E{ξk(x); |ξ(x)| ≤ s}.

Another reason for considering truncated moments comes from the case where
the drift function decays more slowly than 1/x, say as 1/xβ with β between
0 and 1. In that case it is not practical to assume the boundedness or even the
existence of a full second moment of jumps, whereas an appropriate restriction
on the growth of a truncated second moment is a rational approach; see e.g.
Section 5.1.

In Chapter 2 we introduce a classification of Markov chains with asymp-
totically zero drift, which relies on the relation between m

[s(x)]
1 and m

[s(x)]
2 .

Additional assumptions are expressed in terms of truncated moments of higher
order and the tail probabilities of jumps. Another, more important, contrast
with previous results on recurrence and transience is the fact that we do not
use concrete Lyapunov test functions (such as x2, loga x or x2 log x log log x).
Instead, we construct an abstract Lyapunov function that is motivated by
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the harmonic function of a diffusion process with drift m1(x) and diffusion
coefficient m2(x); see Section 1.5 above.

The asymptotic behaviour of transient Markov chains and the tail analysis
of recurrent Markov chains is discussed in Chapters 3–6 and 8–9 respectively.
In Chapter 7, motivated by the exponential change-of-measure approach
suggested by Cramér in the 1920s for the study of large deviations of sums
of independent random variables in the context of risk processes, we suggest
the following general strategy for the study of positive recurrent Markov chains
with asymptotically zero drift.

• First, apply an appropriate Doob’s h-transform to a process {Xn} killed at its
time of entry to the half-line (−∞,x̂ ] for some x̂ ∈ R, in order to change
the sign of the drift from negative to positive so that we get a transition
kernel that generates a transient embedded Markov chain. With necessity an
appropriate change of measure is generated by a subexponential function,
either regularly varying or Weibullian-type at infinity.

• Second, apply the limit results to the transient Markov chain that is obtained.
• Third, apply an inverse change of measure that makes it possible to identify

the tail and local asymptotics of both the stationary and pre-stationary
distributions of the original positive recurrent Markov chain.

In Chapter 10 we show that our approach also works for Markov chains with
asymptotically negative drift bounded away from zero. We consider Markov
chains that are asymptotically homogeneous in space, that is, Markov chains
with jumps satisfying ξ(x) ⇒ ξ as x → ∞. This means that far from the
origin one can approximate {Xn} by a random walk, which makes it natural to
apply an exponential change of measure in a similar way to how this is done for
sums of independent random variables. We study the tail asymptotic behaviour
of the stationary and pre-stationary distributions of {Xn} in the case where
the limiting random variable ξ has negative mean and satisfies the Cramér
condition. It turns out that the tail behaviour of these distributions depends on
the rate of convergence of ξ(x) to ξ .

In Chapter 11 we consider some important applications of our results.
Processes with asymptotically zero drift appear naturally in various stochastic
models such as random billiards, see Menshikov et al. [125], and random
polymers, see Alexander [5], Alexander and Zygouras [6], and De Coninck
et al. [41]).

Such chains appear when we study critical and near-critical branching
processes. In critical branching processes one typically observes a linearly
growing second moment of jumps, but, on considering the square root of the
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process, one obtains bounded second moments and a drift that decreases to
zero. Thus we can apply our theorems to this transformation. As a result we
get limit theorems for population-size-dependent processes with migration of
particles. To the best of our knowledge, there is no paper in the literature in
which a combination of size dependence and migration has been considered.

We have also found that processes with asymptotically zero drift can be
used in the study of risk processes with a reserve-dependent premium rate.
More precisely, we have derived upper and lower bounds for ruin probabilities
in the case when the premium rate approaches from above – as the risk reserve
grows – the critical value for a model with constant rate.

Besides these two main examples we consider also random walks condi-
tioned to stay positive and reflected random walks.
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