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Starting from the assumption that saturation of plasma turbulence driven by temperature-
gradient instabilities in fusion plasmas is achieved by a local energy cascade between
a long-wavelength outer scale, where energy is injected into the fluctuations, and a
small-wavelength dissipation scale, where fluctuation energy is thermalised by particle
collisions, we formulate a detailed phenomenological theory for the influence of perpen-
dicular flow shear on magnetised-plasma turbulence. Our theory introduces two distinct
regimes, called the weak-shear and strong-shear regimes, each with its own set of scal-
ing laws for the scale and amplitude of the fluctuations and for the level of turbulent
heat transport. We discover that the ratio of the typical radial and poloidal wavenum-
bers of the fluctuations (i.e. their aspect ratio) at the outer scale plays a central role in
determining the dependence of the turbulent transport on the imposed flow shear. Our
theoretical predictions are found to be in excellent agreement with numerical simulations
of two paradigmatic models of fusion-relevant plasma turbulence: (i) an electrostatic fluid
model of slab electron-scale turbulence, and (ii) Cyclone-base-case gyrokinetic ion-scale
turbulence. Additionally, our theory envisions a potential mechanism for the suppression
of electron-scale turbulence by perpendicular ion-scale flows based on the role of the
aforementioned aspect ratio of the electron-scale fluctuations.

Key words: fusion plasma, plasma nonlinear phenomena, plasma flows

1. Introduction

The quest for controlled fusion as a viable and sustainable energy source has
been a long-standing scientific and engineering challenge. The performance of
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magnetic-confinement-fusion devices, such as tokamaks, is often limited by the pres-
ence of turbulent fluctuations that lead to enhanced transport and energy losses.
Understanding and controlling turbulence in magnetised plasmas is therefore crucial
for the success of future fusion reactors. One important aspect that has attracted
considerable attention is the impact of sheared flows on the turbulence (Artun &
Tang 1992; Synakowski et al. 1997; Waltz, Dewar & Garbet 1998; Hobbs et al.
2001; Mantica et al. 2009; McKee et al. 2009; Casson et al. 2009; Roach et al.
2009; Highcock et al. 2010; Barnes et al. 2011; Field et al. 2011; Fedorczak et al.
2013; Ghim et al. 2014; Fox et al. 2017; Seiferling et al. 2019). Such sheared flows
can either be externally imposed on the turbulent fluctuations as part of the plasma
equilibrium, or be self-generated by the turbulence in the form of quasistatic large-
scale fluctuations known as zonal flows (Rogers, Dorland & Kotschenreuther 2000;
Diamond et al. 2005; Dif-Pradalier et al. 2010, 2015; Zhu et al. 2020a,b; Ivanov
et al. 2020, 2022). Sheared flows can modify the size and shape of the fluctuations,
and thus have a direct impact on the transport properties of the plasma.

Despite the absence of a rigorous theory of the saturation of turbulence in magne-
tised plasmas, it is still possible to develop phenomenological models that, at least in
some regimes, capture its essential features and allow us to make falsifiable, qualita-
tive, and sometimes even quantitative predictions for the dependence of important
turbulent properties, like the heat and particle diffusivity, on the relevant plasma
parameters. Such models are often reminiscent of the original theory of hydrody-
namic turbulence by Kolmogorov (1941), which posits a local energy cascade from
the outer (or injection) scale – where energy is injected into turbulent fluctuations
either by external forcing or by linear instabilities – through the inertial range, where
the nonlinear interactions dominate the dynamics and pass the energy injected at
large scales down to dissipative ones (Goldreich & Sridhar 1995; Schekochihin et al.
2009; Barnes et al. 2011; Nazarenko & Schekochihin 2011; Adkins et al. 2022, 2023);
the energy of the fluctuations is then thermalised at these small scales, heating the
plasma. The rate at which this cascade removes energy from the outer scale deter-
mines the overall turbulent amplitude and, when that is not externally imposed, the
outer scale itself; in turn, the fluctuation amplitude and outer scale determine the
transport. An imposed or self-generated sheared flow plays a nontrivial role in all of
this.

In this article, we consider the effects of an imposed perpendicular flow shear
on saturated electrostatic gyrokinetic (GK) turbulence. We first give a short recap
of some relevant features of the GK framework in § 2, and then, in § 3.1, remind
the reader of the standard results for saturation of such turbulence based on a local-
energy-cascade phenomenology. In § 3.2, we proceed to develop a phenomenological
theory of the effect of flow shear on the saturated turbulent state. The effect of
this shear is to suppress the turbulent fluctuations and, in turn, the turbulent heat
flux according to a certain scaling with the size of the shear. Depending on the
magnitude of the imposed flow shear in comparison with the ‘natural’ (i.e. that in
the absence of shear) rate of energy injection into the fluctuations, we distinguish
weak-shear (§ 3.2.1) and strong-shear (§ 3.2.2) regimes, each with its own scaling laws
for the dependence of the turbulent transport on the shear. To verify our theoretical
predictions, in § 4, we present numerical results from a simple electrostatic fluid
model of turbulence driven by the electron-temperature-gradient (ETG) instability
(§ 4.1) and from gyrokinetic simulations of turbulence driven by the ion-temperature-
gradient (ITG) instability (§ 4.2). Then, in § 5, we discuss the transport of momentum
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in the electrostatic fluid model, before finally summarising and discussing our results
in § 6.

2. Gyrokinetics

We consider turbulent fluctuations in magnetised plasmas that satisfy the GK
ordering k⊥ρs ∼ k‖L ∼ 1 and ω/�s ∼ ρs/L � 1, where k⊥ and k‖ are the typi-
cal perpendicular and parallel (to the mean magnetic field) wavenumbers, ρs and
�s are the Larmor radius and frequency of the charged particles of species s, ω
is the inverse time scale associated with the turbulent fluctuations, and L is the
length scale of variation of the plasma equilibrium. Under this ordering, we expand
the distribution function for each species into equilibrium and fluctuating parts
fs = Fs + δfs to obtain the GK equation that governs the dynamics of the fluctua-
tions.

1
With the additional assumption that the plasma beta βs ≡ 8πnsTs/B2 is small,

ns and Ts being the equilibrium density and temperature of species s, respectively,
we can neglect the fluctuations of the magnetic field, leading to(

∂

∂t
+ u · ∂

∂Rs

)(
hs − qs〈φ〉Rs

Ts
Fs

)
+ w‖b̂ · ∂hs

∂Rs
+ vds · ∂hs

∂Rs
+ vE · ∂

∂Rs
(Fs + hs)

=
∑

s′
〈Css′ 〉Rs (2.1)

where the perturbed distribution function of species s is

δfs(r, w) = hs(Rs, εs, μs) − qsφ(r)
Ts

Fs, (2.2)

Rs = r − b̂ × w/�s is the gyrocentre, w = v − u is the peculiar velocity, εs = msw2/2,
μs = msw2⊥/2B, φ is the perturbed electrostatic potential, Fs is the equilibrium
Maxwellian distribution with density ns and temperature Ts, u is the equilib-
rium plasma flow (same for all species, see Abel et al. 2013), the magnetic
drifts are vds = (b̂/2�s) × (2w2‖b̂ · ∇b̂ + w2⊥∇ ln B), the perturbed E × B drift is

vE = (c/B)b̂ × ∇〈φ〉Rs , b̂ is the unit vector parallel to the mean magnetic field, qs
is the charge of species s, Css′ is the linearised Fokker–Planck operator for collisions
between particles of species s and s′, and 〈. . . 〉Rs denotes the standard gyroaver-
age. A comprehensive derivation of the GK equations can be found from, e.g.
Abel et al. (2013) or Catto (2019). Note that the theoretical analysis presented in
§ 3 does not depend on a particular coordinate system, i.e. the precise choice of
radial, poloidal and parallel coordinates, labelled x, y and z, respectively, will be
irrelevant.

1Throughout this article, we use ‘GK’ to refer to what is commonly known as ‘local, δf gyrokinetics’. Here,
‘local’ specifies that we are integrating (2.1) in a domain of perpendicular size that is infinitesimal in comparison
with the length scale of the variation of the plasma equilibrium, and so the gradients associated with that equilibrium
are taken to be constant; ‘δf ’ means that we only consider the evolution of small-amplitude fluctuations over times
that are short compared with the transport (i.e. equilibrium-variation) time scale, with the equilibrium therefore
assumed constant in time.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000054
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.56, on 28 Jun 2025 at 20:54:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000054
https://www.cambridge.org/core


4 P.G. Ivanov and others

The nonlinear-advection and linear-drive terms in (2.1) are

vE · ∂hs

∂Rs
= c

B
b̂ · (∇x × ∇y)

{〈φ〉Rs, hs
}

, (2.3)

vE · ∂Fs

∂Rs
= − c

B
b̂ · (∇x × ∇y)

∂〈φ〉Rs

∂y
∂Fs

∂x
, (2.4)

respectively, where {f , g} = (∂xf )(∂yg) − (∂yf )(∂xg). The nonlinear term (2.3)
expresses the advection of the perturbed distribution function by the perturbed E × B
flow, while the linear term (2.4) represents the injection of free energy by the radial
gradients of the equilibrium (via the advection of that equilibrium by the perturbed
flows). The electrostatic GK equation is closed by the quasineutrality condition:∑

s

qs

∫
d3w δfs = 0, (2.5)

where the velocity integral is evaluated at fixed r.
Finally, fluctuations that evolve according to (2.1) can be shown to satisfy a free-

energy conservation law (Abel et al. 2013) of the form

dW
dt

= I − D, (2.6)

where the free-energy density W in a plasma of volume V is given by

W =
∑

s

∫
d3r
V

∫
d3w

Tsδf 2
s

2Fs
. (2.7)

The dissipation D in (2.6) arises due to particle collisions and is a sink of free energy.
Its precise form will not be needed here. The free-energy injection rate I depends on
the gradients of the equilibrium distribution Fs and can be written as

2

I = −
∑

s

[
ΓsTs

(
∂ ln ns

∂x
− 3

2

∂ ln Ts

∂x

)
+ Qs

∂ ln Ts

∂x

]
, (2.8)

where we have defined the flux of particles Γs and the heat (or energy) flux Qs due
to species s as

Γs ≡
∫

d3r
V

∫
d3w (vE · ∇x)δfs, (2.9)

Qs ≡
∫

d3r
V

∫
d3w (vE · ∇x)

msv2

2
δfs. (2.10)

In the most general case, I depends on both fluxes and can be estimated as

I ∼ ΓsTs

Lns

∼ Qs

LTs

, (2.11)

2Strictly speaking, (2.8) contains another injection term that is associated with the radial gradient of u. Here,
we assume that this can be neglected (see also footnote 5).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000054
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.56, on 28 Jun 2025 at 20:54:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000054
https://www.cambridge.org/core


Journal of Plasma Physics 5

where no additional orderings have been imposed on the density L−1
ns

≡ −∂x ln ns

and the temperature L−1
Ts

≡ −∂x ln Ts gradients, viz. Lns ∼ LTs ∼ L. In this work, we
consider only temperature-gradient-driven instabilities in cases where Γs = 0 and so
our main focus will be on Qs. Nevertheless, the arguments presented in § 3 are readily
generalisable to cases where the injection of energy is dominated by the particle flux
rather than the heat flux.

3. Nonlinear saturation

Magnetised-plasma turbulence exhibits a broad range of different saturation mech-
anisms and so a universal theory of turbulent saturation under the influence of flow
shear is not feasible. Instead, here we focus on one particular type of saturated state,
viz. that for which the following two assumptions hold: (i) there is a scale separation
between the energy-injection scale (the outer scale), where linear instabilities inject
free energy into the fluctuations, and the dissipation scale, where fluctuations lose
energy to dissipative effects (viz., ultimately, particle collisions); and (ii) the transfer
of energy between these scales is realised by a local (in scale) energy cascade. This
allows us to define the inertial range as the range of scales between the outer and
dissipation scales where the local energy cascade takes place. Let us revisit the cur-
rent understanding of how such an energy cascade determines the properties of the
saturated turbulence.

3.1. Outer scale, free-energy cascade and turbulent heat flux
The form of the GK nonlinearity (2.3) implies that the nonlinear time τnl at

poloidal scale ky satisfies

τ−1
nl ∼ �sρ

2
s kxkyϕ, (3.1)

where ϕ is a measure of the characteristic amplitude of the normalised electrostatic
potential ϕ ≡ qsφ/Ts at scale ky and s is any reference particle species. In (3.1), the
radial scale kx is an implicit function of ky, viz. at each ky, the turbulent fluctuations
have a typical radial scale kx that depends on ky. With this in mind, (3.1) can also
be written as

τ−1
nl ∼A�sρ

2
s k2

yϕ, (3.2)

where we have defined the fluctuation aspect ratio at scale ky as A≡ kx/ky. This
aspect ratio will play a critical role in the theory of sheared turbulence laid out
in § 3.2. Note that the precise definition of ϕ is not important because the phe-
nomenological theory that is to follow predicts only scalings; nevertheless, to make
things specific, one possible such definition is

ϕ2 ≡
∫

|k′
y|>ky

dk′
y

∫ +∞

−∞
dk′

x

∫
dz
L‖

|ϕk′⊥ |2, (3.3)

where ϕk⊥ is the two-dimensional spatial Fourier transform of ϕ in x and y, i.e.
in the plane perpendicular to the equilibrium magnetic field, and L‖ is the parallel
size of the integration domain of (2.1) (assumed finite). By Parseval’s theorem, the
contributions to the free energy (2.7) at each scale are proportional to the squared
amplitude of the fluctuations and so, in view of (2.2) and (2.5), to ϕ2.
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If kx ∼ ky ∼ k⊥ (i.e. A∼ 1) is satisfied throughout the inertial range, (3.1) implies
that the free-energy flux ε through scale k⊥ satisfies

3

ε ∼ τ−1
nl nsTsϕ

2 ∝ k2⊥ϕ3, (3.4)

where d/dt ∼ τ−1
nl in the inertial range because the dynamics there is dominated by

the nonlinear effects. Assuming a local, constant-flux cascade, viz. that ε is constant
throughout the inertial range, and using (3.1), we conclude that

ϕ ∝ k−2/3
⊥ =⇒ τ−1

nl ∝ k4/3
⊥ (3.5)

in the inertial range. The assumption that A∼ 1 in the inertial range is motivated
by the fact that the nonlinearity in (2.1) is isotropic in the perpendicular plane.
However, this is not a sufficient condition for A∼ 1. For example, reduced mag-
netohydrodynamic (RMHD) turbulence, whose nonlinearity is also isotropic in the
plane perpendicular to the mean magnetic field, is known to have fluctuations that
are anisotropic in the perpendicular plane and whose anisotropy depends on the
scale, thus introducing a nontrivial scale-dependent factor into the RMHD version
of (3.1) (Boldyrev 2006; Boldyrev, Mason & Cattaneo 2009; Mallet et al. 2016;
Mallet & Schekochihin 2017; Schekochihin 2022). Nevertheless, assuming A∼ 1 in
the inertial range is not unreasonable and it agrees with our numerical observations
reported in § 4.

Assuming that the rate of energy injection is determined by the linear-instability
growth rate γk and that the latter satisfies γk ∝ ky,

4
the inertial-range nonlinear rate

(3.5) has a steeper dependence on ky than the injection rate. The outer scale will
then be the scale at which the rates of nonlinear mixing and linear injection balance
(Barnes et al. 2011; Adkins et al. 2022, 2023):(

τ o
nl

)−1 ∼ γ o. (3.6)

Here and in what follows, the superscript ‘o’ denotes quantities associated with
the outer scale. The inertial range is thus located at ky > ko

y, where the nonlinear
interactions dominate the linear injection rate (see figure 1).

3.1.1. Heat flux
Assuming that the heat flux Qs is dominated by contributions from the outer scale,
we can estimate it, in view of its definition (2.10), as follows:

Qs ∼ Qo
s ∼ nsTsvthsko

yρs
(
ϕo)2 . (3.7)

3In general, (2.6) implies that ε ∼ I . However, the free-energy flux need not equal the injection rate exactly.
One such example is the fluid model of ETG turbulence described in § 4.1, whose free-energy-injection mechanism
relies on finite collisional dissipation due to the nature of the linear instability and thus a certain order-unity fraction
of I is directly dissipated at the outer scale (Adkins et al. 2023).

4Note that, for every ky, there may be many unstable modes. For instance, in the ‘slab’ geometry, where
the linear modes are parametrised by the radial kx and parallel k‖ wavenumbers, there exists a broad spectrum of
unstable modes for any given ky. The relation γk ∝ ky does not refer to the growth rate of one particular mode
(in the slab case, that would be a mode with fixed kx and k‖), but rather to the growth rate of a mode that is
chosen by maximising the growth rate with respect to kx and k‖ at that particular ky. This relation is exact for
long-wavelength electrostatic instabilities with k⊥ρs � 1, where the outer scale of GK turbulence often resides. In
this limit, (2.1) asymptotes to the electrostatic drift-kinetic equation, and, in the slab geometry, γk ∝ ky follows from
the scale invariance of drift kinetics (Adkins et al. 2023).
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log ky

∝ ky

ky

ky

τ −1
nl ∝ 4/3

inertial range

o

γo

γk

FIGURE 1. An illustration of the relationship between the nonlinear mixing rate τ−1
nl , the energy-

injection rate γk and the location of the outer scale, where τ−1
nl ∼ γk. The scaling τ−1

nl ∝ k4/3
y is

a consequence of the local energy cascade and is thus valid only in the inertial range ky > ko
y

(see the discussion in § 3.1).

This is justified as long as the spectrum of the fluctuations decays sufficiently quickly
in the inertial range; specifically, we require the fluctuation amplitudes to decay
faster than k−1/2

⊥ , which is readily satisfied by (3.5). We also assume that the phase
relationship between ϕ and δfs does not introduce any nontrivial factors – tech-
nically, (3.7) is an upper bound for (2.10). Using (3.2) and (3.6), we can rewrite
(3.7) as

Qs

nsTsvths
∼
(

γ o

�s

)2 1

(ko
yρs)3(Ao)2

. (3.8)

Therefore, to determine Qs, we need to know the energy-injection rate γ o (or equiv-
alently τ o

nl), the poloidal wavenumber ko
y and the fluctuation aspect ratio Ao at the

outer scale. If γ o ∼ γko , where γko is the growth rate at the outer scale, then only
two of γ o, ko

y and Ao are independent. Thus, we require additional assumptions.
There are multiple ways to proceed.

In the absence of flow shear, Barnes et al. (2011) posit: (i) that the outer scale
is governed by the ‘critical balance’ of γ o and (τ o

nl)
−1 with the parallel-streaming

rate across the plasma connection length, ωo‖ ∼ vths/qR, where q and R are the
safety factor and major radius, respectively; (ii) that the outer-scale fluctuations are
isotropic, Ao ∼ 1; and (iii) that the energy-injection rate is given by a simple estimate
of the growth rate of temperature-gradient-driven instabilities, γ o ∼ ko

yρsvths/LTs .
Combined with (3.8), assumptions (i)–(iii) imply

Qs

nsTsvths
∼
(ρs

R

)2 ( R
LTs

)3
q. (3.9)

Note that Barnes et al. (2011) studied ion-scale turbulence, which amounts to setting
s = i in the above arguments.

A modification of these results, backed by experimental (Ghim et al. 2013) and
theoretical (Nies et al. 2024) evidence, is to replace assumption (ii) in the arguments
by Barnes et al. (2011) by a ‘grand critical balance’

γ o ∼ (τ o
nl)

−1 ∼ ωo‖ ∼ ωo
d,x (3.10)
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between all the aforementioned rates and the radial magnetic-drift frequency
ωo

d,x ∼ ko
xρsvths/R at the outer scale. This implies

Ao ∼ R
LTs

, (3.11)

which, together with (3.8), results in the following scaling for the heat flux:

Qs

nsTsvths
∼
(ρs

R

)2 R
LTs

q. (3.12)

In the rest of this paper, we consider the influence of mean flow shear on the
saturated state. We will not discuss the details of how the outer scale is determined
in the case of zero imposed flow shear, but assume that the system does indeed
have a well-defined zero-shear saturated state, that the outer-scale nonlinear rate is
governed by (3.2) and (3.6), and that (3.8) is a good estimate for the heat flux. Thus,
our arguments will hold regardless of whether the zero-shear outer scale is chosen à
la Barnes et al. (2011), through a grand critical balance, or otherwise.

3.2. Perpendicular flow shear
For the remainder of this article, we assume an equilibrium shear flow in the

direction perpendicular to the mean magnetic field and with a linear profile:
u = γExŷ, where γE is the shearing rate.

5
In the presence of such a flow, the GK

equation (2.1) is no longer homogeneous in x. For brevity, we henceforth drop the
species subscript from the heat flux Q.

To understand the effect of the flow shear on the fluctuations, it is instructive
to consider a patch of turbulence in which the magnetic field can be considered
locally constant and oriented along the z-direction; i.e. this patch is approximated
as a ‘slab’. One can then perform a coordinate transformation from the original
(laboratory) frame to the so-called shearing frame (Newton, Cowley & Loureiro
2010; Schekochihin, Highcock & Cowley 2012):

t′ = t, x′ = x, y′ = y − xγEt, z′ = z. (3.13)

The substitution of (3.13) into the GK equation (2.1) eliminates the radially inhomo-
geneous advection term u · ∇ at the cost of introducing an inhomogeneity in time
via the ∂x derivatives. Consequently, the laboratory-frame radial wavenumber kx of
a fluctuation advected by the mean flow, i.e. of a fluctuation with a given fixed
wavenumber k′ in the shearing frame, satisfies

kx = k′
x − k′

yγEt′. (3.14)

Crucially, the nonlinear interactions (2.3) and the linear drive (2.4) have the same
form in both the laboratory frame and the shearing frame; therefore, (3.14) captures

5In general, a pure perpendicular linear shear is not realistic: e.g. u is purely toroidal in axisymmetric devices
and hence has a component parallel to the mean magnetic field (Abel et al. 2013). For certain equilibria, the radial
gradient of the parallel component of the mean flow can act as a source of energy, resulting in the so-called parallel-
velocity-gradient (PVG) instability (Catto, Rosenbluth & Liu 1973; Newton et al. 2010; Schekochihin et al. 2012).
Here, we assume that there is no PVG instability (or at least that it is irrelevant for the saturated state, which is
reasonable if the shear is not too large; Highcock et al. 2010; Barnes et al. 2011) and ignore the shear in the parallel
velocity.
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completely the effects of flow shear in the shearing frame. Equation (3.14) tells us
that the shearing action of the perpendicular flow, which results in a ‘tilting’ of the
eddies (Fox et al. 2017), is equivalent to a ‘drift’ in Fourier space of the radial
wavenumber kx of the turbulent fluctuations.

Let us consider introducing flow shear into a system that, in its absence, would
reach a saturated state by establishing a local energy cascade. As discussed in § 3.1,
the transport properties (e.g. the radial heat flux Q) of such a system are dominated
by the fluctuations at the outer scale. The lifetime of these fluctuations is given by
the outer-scale nonlinear time, which, according to (3.6), is τ o

nl(0) ∼ γ o(0)−1, where
we will use the notation γ o(γE) to denote the dependence of outer-scale quantities on
the flow shear, so γ o(0) is the outer-scale injection rate in the absence of it. We shall
distinguish two different regimes of sheared turbulence: a weak-shear regime with
γE < γ o(0) and a strong-shear regime with γE > γ o(0). This distinction is motivated
by the so-called ‘quench’ rule (Waltz, Kerbel & Milovich 1994, 1998; Kobayashi &
Rogers 2012; Ivanov et al. 2020), according to which flow shear is able to suppress
the energy injection associated with some linearly unstable modes only if the shearing
rate is comparable to the growth rate of those modes. If this is true, the flow shear
should be unable to stifle energy injection at the outer scale if γE < γ o(0) and so
the outer-scale injection rate should remain independent of γE in the weak-shear
regime, i.e. γ o(γE) ≈ γ o(0). In contrast, in the strong-shear regime, we expect that
the injection rate will be modified by the presence of the flow shear.

Let us analyse the physics of both regimes, starting with the weak-shear one.

3.2.1. Weak-shear regime
Let us consider more carefully the influence of flow shear on the outer scale in
the case γE < γ o(0). As just discussed, in this regime, the outer-scale-injection and
nonlinear-mixing rates should remain approximately the same as those at γE = 0, viz.

τ o
nl(γE)−1 ∼ γ o(γE) ∼ γ o(0) ∼ τ o

nl(0)−1. (3.15)

Assuming that the injection rate γ o is determined by the linear growth rate at the
outer scale

6
and that the latter is (at least approximately) only a function of ky,

7
we

conclude that the poloidal wavenumber of the outer-scale eddies is also set by its
value at γE = 0 and independent of γE in the weak-shear regime, viz.

ko
y(γE) ∼ ko

y(0). (3.16)

However, the assumption that γk is only a weak function of kx means that one
cannot make a similar statement about the radial wavenumber ko

x(γE). Indeed,

6Strictly speaking, linear modes in the presence of flow shear are often only transiently growing, so γ o(γE)
should be interpreted as the transient growth rate at early times (Highcock et al. 2011; Schekochihin et al. 2012). We
also note that a shear in the equilibrium magnetic field can introduce nontrivial effects, e.g. travelling exponentially
growing modes (Newton et al. 2010) or non-exponentially growing Floquet modes (Cooper 1988; Waelbroeck &
Chen 1991), which can have a significant impact on the saturation, e.g. they may lead to a bistable saturated
state (Christen et al. 2022). Our analysis depends only on the injection rate being a function solely of the poloidal
wavenumber, while the precise relationship between the injection rate and the linear growth rate is outside of the
scope of the current work.

7This assumption can be made weaker: we will only need γk to be approximately independent of kx for
kx < ky.
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approximating the lifetime of the outer-scale fluctuations as equal to the nonlin-
ear mixing time τ o

nl, the wavenumber drift (3.14), together with (3.15) and (3.16),
suggests that

ko
x(γE) ∼ ko

x(0) + ko
y(0)τ o

nl(0)γE

∼ ko
x(0)

[
1 + γE

Ao(0)γ o(0)

]
, (3.17)

where Ao(0) = ko
x(0)/ko

y(0) is the fluctuation aspect ratio at the outer scale at γE = 0.
Therefore,

ko
x(γE)

ko
x(0)

∼ Ao(γE)

Ao(0)
∼ 1 + γE

γc
, (3.18)

where we have introduced the critical shearing rate

γc ≡Ao(0)γ o(0). (3.19)

Then, (3.8) implies that the radial turbulent heat flux satisfies

Q(γE)

Q(0)
∼
[ Ao(0)

Ao(γE)

]2

∼ 1

(1 + γE/γc)2
, (3.20)

where Q(0) is the heat flux at γE = 0. Note that at no step leading to (3.20) did
we use any formulae from § 3.1 that relied on isotropy, which would otherwise have
restricted us to Ao ∼ 1. Expressions (3.19) and (3.20) predict that the transport prop-
erties in the weak-shear regime are determined by the ratio of the radial and poloidal
wavenumbers of the outer-scale eddies, Ao(0) = ko

x(0)/ko
y(0). If the unsheared fluctu-

ations have Ao(0) ∼ 1, then (3.19) implies that γc ∼ γ o(0). As the weak-shear regime
is characterised by γE < γ o(0), (3.18) implies that Ao(γE) ∼Ao(0) ∼ 1 and thus
Q(γE) ∼ Q(0) throughout the weak-shear regime. In other words, if the unsheared
turbulence has Ao(0) ∼ 1 at the outer scale, shearing it with any γE < γ o(0) will not
reduce the turbulent transport by more than an order-unity amount – an unsurprising
outcome.

However, due to the nature of the underlying linear instabilities, it is, in fact,
often the case that the outer-scale eddies in temperature-gradient-driven turbulence
are radially elongated. Such eddies, often called ‘streamers’, are a well-documented
feature of this type of turbulence, especially in its electron-scale variety (Drake,
Guzdar & Hassam 1988; Jenko et al. 2000; Dorland et al. 2000; Jenko 2006; Roach
et al. 2009; Colyer et al. 2017). A turbulent state dominated by streamers satisfies
Ao(0) � 1 and so γc � γ o(0). In this case, (3.18) implies that the outer-scale aspect
ratio increases linearly with the flow shear due to the tilting of the eddies, viz.

Ao(γE) ∼Ao(0) + γE

γ o(0)
. (3.21)

Furthermore, (3.20) predicts that the heat flux will be suppressed if γc � γE � γ o(0).
In particular, for intermediate values of the shearing rate that satisfy γc � γE �
γ o(0), (3.21) becomes

Ao(γE) ∼ γE

γ o(0)
, (3.22)
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and so, by (3.20),

Q(γE) ∝ γ −2
E . (3.23)

If the shear is increased further, (3.21) implies that, at the transition from the
weak- to the strong-shear regime, where γE ∼ γ o(0), the outer-scale aspect ratio is
Ao(γE) ∼ 1, and so, by (3.20), the heat flux has been reduced by a large factor:

Q[γ o(0)]

Q(0)
∼ [Ao(0)

]2 � 1. (3.24)

A cautious reader may have spotted a potential clash between having Ao(0) � 1
at the outer scale and the theory of the energy cascade laid out in § 3.1: there,
we assumed that the fluctuations in the inertial range had A∼ 1, yet the inertial
range must connect to the outer scale, where now, A� 1. There are two possible
resolutions to this problem: (i) the scaling arguments presented in § 3.1 are, in fact,
unchanged if the inertial range inherits the aspect ratio at the outer scale, i.e. if kx/ky
is a scale-independent, even if numerically small, number below the outer scale; or
(ii) there exists a transition region below the outer scale, wherein the dependence
of kx on ky is faster than linear so that kx gradually increases to match ky at some
smaller scale, below which the scalings from § 3.1 become valid. Our numerical
results, presented in § 4.1, are consistent with option (ii). In Appendix A, we develop
a simple theory for the transition region.

Finally, let us mention that, while here we shall consider only cases where
A� 1, this is not necessarily satisfied in all instances of fusion-relevant turbulence.
For example, the large-temperature-gradient environment of the pedestal has been
shown numerically to give rise to poloidally elongated turbulent fluctuations with
A� 1 (Parisi et al. 2020, 2022). As discussed in § 3.1.1, the ‘grand critical balance’
(3.10) leads to poloidally elongated eddies at large temperature gradients, as per
(3.11). Recent numerical and analytical work by Nies et al. (2024) suggests that such
behaviour may indeed be consistent with strongly driven ion-temperature-gradient
turbulence in axisymmetric toroidal geometry. Here, leaving the reader cognisant of
these recent developments, we shall nevertheless focus on the case A� 1.

3.2.2. Strong-shear regime
In the strong-shear regime, defined by γE > γ o(0), the flow shear is strong enough
to affect energy injection at the outer scale. In particular, it is no longer possible to
excite fluctuations at wavenumbers where the growth rate is γk � γE (Waltz et al.
1994, 1998). To compensate for this, the outer scale must adjust to match the shear-
ing rate. Thus, we propose that, for γE � γ o(0), the outer scale will be governed by
the balance of nonlinear, injection and shearing rates:

τ o
nl(γE)−1 ∼ γ o(γE) ∼ γE, (3.25)

as illustrated in figure 2. As always, the lifetime of turbulent eddies at the outer
scale is set by the nonlinear time; (3.14) then implies that Ao(γE) ∼ 1 throughout the
strong-shear regime. Assuming that the linear growth rate is γk ∝ ky, we expect that

ko
y ∝ γE. (3.26)
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inertial range

(0)

(0)

( )

γ ( )
γ

shear-suppressed
eddies

log ky

kyτ −1
nl ∝ 4/3

ky
o

o

o

ky
o γE

γE
∝ kyγk

FIGURE 2. A qualitative illustration, analogous to figure 1, of the effect of strong flow shear
γE � γ o(0), leading to the time scale balance (3.25) determining the outer scale. In this regime,
γ o(γE) ∼ γE .

This is intuitively clear: stronger flow shear pushes turbulence towards smaller (and
thus faster) scales since the larger (and slower) eddies are more strongly affected by
the shear. Consequently, (3.8), together with (3.25) and (3.26), implies

Q(γE) ∝ γ −1
E (3.27)

in the strong-shear regime γE > γ o(0).
The outer-scale balance (3.25), and thus the scaling (3.27), cannot be satisfied for

arbitrarily large values of flow shear because the linear growth rate γk is bounded
by some γmax, normally found at much larger wavenumbers than those associated
with the dominant energy injection.

8
For γE � γmax, the system is no longer able to

sustain the turbulent fluctuations because the shearing rate γE cannot be matched
by the rate of energy injection at any scale. Therefore, we expect a sharp cut-off in
the fluctuations’ amplitude, and thus in the heat flux, as γE becomes comparable to
γmax. Figure 3 summarises the expected dependence of the heat flux on γE in both
regimes.

4. Numerical results

To test the validity of the theory presented in § 3.2, we consider two different mod-
els of turbulence. The first (§ 4.1) is a two-fluid model that captures the dynamics
of electrostatic fluctuations of density and electron temperature in a straight mag-
netic field. This turbulence is driven by the collisional slab ETG (sETG) instability
(Adkins et al. 2022) on scales between the ion and electron gyroradii. While this
model is extremely simple, even simplistic, the benefit of using it is that its satura-
tion mechanism has already been investigated in great detail and has been shown to
conform to the picture of a local energy cascade outlined in § 3.1 (Adkins, Ivanov
& Schekochihin 2023). Therefore, it is a prime candidate for confirming the validity
of the theory laid out in this paper. For our second set of simulations (§ 4.2), we
employ the GK code GENE (Jenko et al. 2000; Jenko 2000) to perform gyrokinetic
flux-tube simulations of ITG-driven turbulence. This is a much more realistic model

8The existence of such γmax can be proven rigorously in some cases, e.g. ion-temperature-gradient-driven
turbulence with adiabatic electrons (Helander & Plunk 2022).
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log γE

log Q

Q(0)

γmax

Q ∝ (1 + γE γc )−2

γc γo (0)

∝ [ (0)]2

(i) (ii)

(a)

log γE

log Q

Q(0)

γmax

Q ∝ γ −1
E

γc ∼ γo (0)

(i) (ii)

(b)

Q ∝ γ −1
E

o

/

FIGURE 3. A qualitative diagram of the heat flux Q as a function of the flow shear γE in the
case of (a) Ao(0) � 1 and (b) Ao(0) ∼ 1. In each case, there are two distinct regimes. (i) For
γE < γ o(0), we have the weak-shear regime (§ 3.2.1), where, in the Ao(0) � 1 case, we find
Q(γE) ∝ (1 + γE/γc)−2 [see (3.20)]. In contrast, if Ao(0) ∼ 1, the flow shear is unable to affect
significantly the fluctuations at the outer scale and, consequently, the heat flux is approximately
independent of γE . (ii) For γ o(0) < γE < γmax, the system is in the strong-shear regime (§ 3.2.2),
where the outer-scale injection rate is determined by the flow shear, viz. γ o(γE) ∼ γE . Here,
Ao(γE) ∼ 1 at the outer scale, regardless of Ao(0), and Q(γE) ∝ γ −1

E . Finally, the fluctuations,
and hence the heat flux, are completely suppressed at γE � γmax.

of plasma turbulence, and the ‘Cyclone base case’ used here is a setup that has been
extensively studied in the literature (Lin et al. 1999; Dimits et al. 2000; Barnes et al.
2009; Highcock et al. 2012; Peeters et al. 2016; Li et al. 2021; C. J. et al. et al., 2021;
Volčokas et al. 2022; Hoffmann, Frei & Ricci 2023; Lippert, Rath & Peeters 2023;
Tirkas et al. 2023 constitute a small sample) – it is thus a natural testbed for any
theory aspiring to tokamak relevance.

4.1. Fluid ETG turbulence
In this section, we report numerical simulations in a triply periodic domain of size

Lx, Ly and L‖ in x, y and z, respectively, of the following collisional slab ETG model
(Adkins et al. 2023):

d
dt

δne

ne
+ ∂u‖e

∂z
= 0, (4.1)

νei

c1

u‖e

vthe
= −vthe

2

∂

∂z

[
δne

ne
− ϕ +

(
1 + c2

c1

)
δTe

Te

]
, (4.2)

d
dt

δTe

Te
− c3v2

the

3νei

∂2

∂z2

δTe

Te
+ 2

3

(
1 + c2

c1

)
∂u‖e

∂z
= −ρevthe

2LT

∂ϕ

∂y
, (4.3)

where the ‘convective derivative’

d
dt

= ∂

∂t
+ γEx

∂

∂y
+ ρevthe

2

(
ẑ × ∇ϕ

) · ∇ + ν⊥ρ4
e ∇4⊥ (4.4)

includes the mean flow shear, the nonlinear advection by the perturbed E × B drift
and hyperviscous dissipation. Appendix B describes some important details of the
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numerical implementation of the flow-shearing term γEx∂y. The electron density is
related to the electrostatic potential ϕ ≡ eφ/Te by quasineutrality (2.5) combined
with the assumption of adiabatic ions:

δne

ne
= −ZTe

Ti
ϕ, (4.5)

where Z = qi/e, qi being the ion charge. The numerical coefficients c1, c2 and c3 arise
from the physics of collisions and depend on Z: e.g. for Z = 1, c1 ≈ 1.94, c2 ≈ 1.39
and c3 ≈ 3.16, in agreement with Braginskii (1965). We used Z = 1 and Ti = Te for
all simulations reported here. Finally, the electron heat flux (2.10) can be expressed
using the Fourier amplitudes of the fluctuations as follows:

Q = 3

2
neTevthe

∑
k

ikyρeϕ
∗
k
δTe,k

Te
. (4.6)

Together, (4.1)–(4.3) and (4.5) form an asymptotic model derived in an electro-
static, collisional limit of GK in a straight and uniform magnetic field with b̂ = ẑ
(Adkins et al. 2023). They describe the electrostatic dynamics of fluctuations on
perpendicular and parallel scales that satisfy

k‖LT ∼ √
σ , k⊥ρ⊥ ∼ 1, ρ⊥ ≡ ρe

σ

LT

λei
, (4.7)

where L−1
T ≡ −∂ ln Te/∂x is the electron-temperature gradient, λei is the electron-

ion mean free path and σ is a formal scaling parameter that is arbitrary provided it
satisfies βe � σ � 1. The fact that this parameter is arbitrary is a consequence of the
scale invariance of the model (Adkins et al. 2023). This implies a particular scaling
of the heat flux with the square of the normalised parallel system size, viz.

Q ∝
(

L‖
√

σ

LT

)2

. (4.8)

Similarly, any intrinsic time scales in (4.1)–(4.3) (e.g. the outer-scale injection rate
γ o) can be shown to be proportional to the inverse square of the normalised par-
allel box size. The numerical results for the (electron) heat flux Q and any relevant
rate γ (e.g. γE, γk, γ o, etc.) can, therefore, be presented in terms of the following
normalised quantities:

Q̂ ≡
(

LT

L‖
√

σ

)2 Q
(ρ⊥/ρe)QgBe

, (4.9)

γ̂ ≡
(

LT

L‖
√

σ

)−2
γ

ω⊥
, (4.10)

where QgBe = neTevthe(ρe/LT )2 is the gyro-Bohm heat flux and

ω⊥ = ρevthe/2ρ⊥LT (4.11)

is the value of the electron drift frequency at kyρ⊥ = 1. A direct consequence of
the scale invariance of (4.1)–(4.3) is that Q̂ must be independent of LT and the
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L⊥/ρ⊥ L‖
√

σ/LT n⊥ n‖ ν⊥ρ4
e /ω⊥ρ4⊥ γ̂max

Sim1 100 50 341 31 5 × 10−4 6.3 × 102

Sim2 100 50 683 43 1 × 10−4 1.1 × 103

Sim3 70 40 191 31 5 × 10−4 4.1 × 102

Sim4 40 30 191 31 5 × 10−5 4.9 × 102

TABLE 1. A summary of the simulation parameters used in § 4.1. The simulation domain is
taken to be ‘square’ with Lx = Ly = L⊥ and nx = ny = n⊥, where nx, ny and n‖ are the number
of resolved (i.e. after dealiasing – see Appendix B) Fourier modes in the x, y and z coordinates,
respectively. The last column shows the maximum growth rate γmax normalised according

to (4.10).

perpendicular box size (in any direction, provided Lx and Ly are sufficiently large);
therefore, it is a function of γ̂E only. Note that all of the aforementioned scalings are
valid only when the hyperviscous cut-off is far from the outer scale, i.e. when ν⊥ is
small enough and so does not upset the scale invariance of the outer-scale quantities.

In the absence of flow shear, the nonlinear saturated state of (4.1)–(4.3) has
been investigated extensively and exhibits a critically balanced local energy cascade
(Adkins et al. 2023). Therefore, (4.1)–(4.3) with γE �= 0 should give rise to the kind
of turbulence that is described by the theory laid out in § 3. Here, we show data
from four sets of simulations where we varied γE while keeping all other parameters
fixed, as detailed in table 1.

Figure 4(a) shows the dependence of Q̂ on γ̂E for these simulations. The agreement
with figure 3 is evident. The predicted scaling of the heat flux in the weak-shear
regime (3.20) holds very well up to γ̂E ≈ 100. This is followed by a swift transition
to the strong-shear scaling (3.27). Recall that the theory of § 3.2.1 predicts that the
transition between the two regimes should occur at γE ∼ γ o(0), where the energy-
injection rate at the outer scale γ o(0) is approximately the linear-instability growth
rate γk at the outer scale. Using the outer-scale estimates presented in figure 4(b), we
find that ko

y(0)ρ⊥ ≈ 0.3. Solving the linear dispersion relation for (4.1)–(4.3) for Sim1
at kx = 0, kyρ⊥ = 0.35 and substituting k‖LT/

√
σ = 2π/50 for the box-sized mode

in the parallel direction, we obtain an approximation of the normalised outer-scale
injection rate of γ̂ o(0) ∼ γ̂k ≈ 70, consistent with the numerically observed transition
at γ̂E ≈ 100.

9

Figure 4(b) shows that ko
x(γE) and ko

y(γE) are consistent with the behaviour of
the outer scale predicted in § 3.2. As γE is increased, ko

y stays roughly constant
until ko

x catches up with it, whereafter the system transitions into the strong-shear
regime where ko

x and ko
y remain comparable and both increase linearly with γE,

as predicted in § 3.2.2. This behaviour persists until ko
y reaches (approximately) the

poloidal wavenumber at which the linear growth rate is maximal. For γE larger
than γmax, the turbulence is completely suppressed. This behaviour is also visually

9Given the discussion in footnote 4, we must mention that this k‖ maximises the growth rate at the given
ky. The reader might also wonder why we consider kx = 0 given that the outer-scale radial wavenumber is not
zero. Since kx enters the linear dispersion relation only via the hyperviscous dissipation, the growth rate is virtually
independent of kx at these scales.
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Q ∝ (1+ γE γ/ c )−2

Q ∝ γ −2
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Q ∝ γ −1
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(b) Outer-scale wavenumbers
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x ( )ρ⊥γ̂E

k o
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FIGURE 4. (a) Time-averaged, saturated radial turbulent heat flux, normalised to its value at
zero flow shear, as a function of normalised flow shear γ̂E [normalised per (4.10)] for the sets of
simulations detailed in table 1. The data from all four sets overlay due to the scale invariance of
(4.1)–(4.3). The black dashed and dash-dotted lines show the theoretical predictions (3.20) and
(3.27), respectively, where, for the former, the curve is plotted using γ̂c ≈ 39, found by fitting
to the data presented here. The vertical black dotted line marks the approximate shearing rate
γ̂E ≈ 100 where the system transitions from the weak- to the strong-shear regime. The values
of γE ≈ γmax are shown using vertical dotted lines of the same colour as the data points for
each respective set of simulations. (b) Outer-scale wavenumbers ko

x(γE) and ko
y(γE), defined as

those that maximise (4.12) and (4.13), respectively, for the Sim1 set of simulations. The dashed
line indicates a linear dependence on the flow shear, k ∝ γE . The left vertical dotted line is the
same as in panel (a) and marks the location γE ≈ 100 where the system transitions from the
weak- to the strong-shear regime. In the former, ko

y is (approximately) pinned to ko
y(0), but ko

x
increases linearly with γE . In the strong-shear regime, ko

x ∼ ko
y ∝ γE . The right vertical dotted

line indicates the value of flow shear that is equal to the largest growth rate γmax, where the outer
scale ko

y reaches, at least approximately, the scale of the most unstable mode ky,maxρ⊥ ≈ 3.7.
Note that, at low γE , (4.12) is sometimes maximised at kx = 0. In those cases, represented by
the hollow triangles, we have set ko

xρ⊥ to the box scale 2πρ⊥/Lx ≈ 0.063.

confirmed by figure 5, where we show real-space snapshots from simulations with
different flow shear.

The outer-scale wavenumbers shown in figure 4 are defined as those that maximise
the (steady-state) poloidally and radially averaged heat fluxes, defined respectively as

〈Q〉y(kx) ≡ 3

2
neTevthe

∑
ky,k‖

ikyρeϕ
∗
k
δTe,k

Te
, (4.12)

〈Q〉x(ky) ≡ 3

2
neTevthe

∑
kx,k‖

ikyρeϕ
∗
k
δTe,k

Te
, (4.13)

where ϕk and δTe,k are the three-dimensional Fourier amplitudes of the fields. The
ratio of the heat flux at the transition to that at zero flow shear is found to be
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FIGURE 5. Snapshots of ϕ (top row) and δTe/Te (bottom row) in the (x, y) plane for Sim1 sim-
ulations with four different values of γE , as specified above each column. For each snapshot, the
amplitudes are normalised to lie in the range [−1, 1], with the values in this interval correspond-
ing to colours between dark blue and dark red, respectively. The second column corresponds to
the weak-shear regime (i) from figure 3(a), where the flow shear is too weak to influence the
saturated state significantly. The third column also corresponds to the weak-shear regime, with
ko

y(γE) pinned to ko
y(0) but with ko

x(γE) increased by the influence of the flow shear, which here
clearly manifests itself as the tilting of the eddies. In this case, the structures have a similar size
in y to those in the first- and second-row panels, but a shorter length scale in x due to being
sheared. The last column shows the saturated state in the strong-shear regime (ii) of figure 3(a),
where the flow shear has manifestly pushed the outer scale to much shorter wavelengths.

approximately Q(0)/Q(γ̂E = 100) ≈ 13, which, according to (3.20), would require
Ao(0) ≈ 0.4, consistent with ko

x/ko
y ≈ 0.3, as seen in figure 4 at low values of flow

shear. Given the remarkably good fit for Q as a function of γE, the small discrepancy
is likely due to our estimates of ko

x and ko
y via (4.12) and (4.13) being an imperfect

measure of the outer scale. For instance, (4.12) fails to produce a nonzero estimate
for kx if γE is too low or zero. Note that the scale invariance of the fluid system
implies that the streamer aspect ratio Ao(0) of (4.1)–(4.3) is not a function of any
of the parameters of the system; i.e. it is just an order-unity (albeit measurably, and
consequentially, smaller than unity) constant, so it is not possible to perform a scan
in Ao(0).

For values of γE comparable to, or larger than, the maximum growth rate γmax,
the turbulence is strongly suppressed, as expected. However, this occurs in a surpris-
ing and nontrivial way – turbulence becomes radially localised into disjoint turbulent
patches (see figure 6). This localisation is reminiscent of the formation of coherent
structures called ‘ferdinons’ in sheared ITG turbulence (van Wyk et al. 2016, 2017;
Ivanov et al. 2020). Despite their qualitative similarities, the localised ETG structures
reported here differ in a number of ways from the ITG ferdinons observed in similar
fluid simulations by Ivanov et al. (2020): the former are three-dimensional structures
(i.e. require a nonzero k‖) that drift radially in the absence of magnetic drifts, while
the latter exist in two dimensions and depend on the poloidal magnetic drift for their
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FIGURE 6. Radial localisation of turbulent perturbations at very large values of flow shear.
Taken from a Sim4 simulation with γ̂E = 540, which is just over the largest growth rate
γ̂max ≈ 493. The simulation has achieved a steady state with time-averaged normalised heat flux
Q̂(γE)/Q̂(0) ≈ 4 × 10−7, which is why it is not visible in figure 4.

radial motion. The radial localisation of sheared turbulence through the formation
of coherent structures appears to be a universal phenomenon, whose detailed inves-
tigation is the subject of our ongoing work that falls outside the scope of this paper.
Here, we note that, apart from the poloidally localised structures shown in figure 6
and reported by van Wyk et al. (2016) and Ivanov et al. (2020), solitary travelling
structures that are localised only radially and consist of a single poloidal harmonic
(i.e. a single ky) have been seen in various models of sheared plasma turbulence
(Pringle, Mcmillan & Teaca 2017; McMillan et al. 2009, 2018; Zhou et al. 2019,
2020). We find no such structures and it remains an open question exactly what is
the determining factor for their appearance.

4.2. Gyrokinetic ITG turbulence
We now explore the validity of our theory for plasma turbulence in axisymmetric

toroidal geometry. Using the GK code GENE, we performed numerical flux-tube
simulations of ITG-driven turbulence with modified adiabatic electrons (Hammett
et al. 1993) in a Cyclone-base-case (CBC) (Lin et al. 1999; Dimits et al. 2000) geom-
etry with normalised magnetic shear ŝ = 0.796, safety factor q = 1.4 and inverse
aspect ratio ε = 0.18. We focus on two values of the ion-temperature gradient,
R/LTi = 10 and R/LTi = 14, box sizes corresponding to the smallest wavenumbers
kx,minρi = 1.6 × 10−2 and ky,minρi = 6.25 × 10−3, nx = 288 radial modes, ny = 256
poloidal modes for R/LTi = 10 and ny = 512 for R/LTi = 14, nz = 16 parallel grid
points, and velocity-space resolution nv = 32 (parallel velocity), nμ = 8 (magnetic
moment). We performed scans of the equilibrium perpendicular flow shear γE, with
parallel flow shear turned off. Note that the temperature gradients that we consider
are significantly above the nominal CBC value of R/LTi = 6.92. This is done to
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FIGURE 7. (a) Time-averaged, saturated-state, radial turbulent heat flux, normalised to its value
at γE = 0 and (b) outer-scale poloidal wavenumber ko

yρi as a function of the flow shear for two
different values of the ion-temperature gradient (see § 4.2 for other relevant numerical param-
eters). The black dashed line corresponds to the trend Q ∝ γ −1

E , while the blue and red dashed
lines are linear fits for ko

y as a function of γE for each temperature gradient. The vertical dotted
lines correspond to 1.5γmax for each of the simulations. The flow shear is normalised to a/cs,
where a is the minor radius and cs is the ion sound speed.

ensure that the system is strongly driven and far from any marginal states where
other physics, e.g. zonal flows, could be setting the saturated fluctuation levels.

10

Figure 7 shows the dependence of the heat flux and poloidal outer-scale wavenum-
ber on the shearing rate. The strong-shear scaling Q ∝ γ −1

E (3.27) is followed
reasonably well for both values of the ion-temperature gradient. Also, the depen-
dence of ko

y on γE is approximately linear, as expected from (3.26). Note that (3.26)
is only an asymptotic scaling and for γE close to γ o(0), we have ko

y(γE) − ko
y(0) ∝ γE.

To calculate ko
y for figure 7(b), we used the GK equivalent of (4.13), i.e. we

approximated ko
y by the ky that has the largest contribution to the heat flux.

According to the theory presented in § 3.2.2, the strong-shear regime should end at
γE ∼ γmax. Indeed, for both values of R/LTi , the Q ∝ γ −1

E dependence lasts roughly
up to γE/γmax ≈ 1.5, after which the heat flux is sharply suppressed. Note the
absence of the weak-shear scaling (3.20) – this is expected because the unsheared
(γE = 0) ITG turbulence in this case has Ao(0) ∼ 1. Consequently, the heat flux is
(approximately) constant in the weak-shear regime and the dependence of Q on γE
resembles figure 3(b).

10Indeed, the assumption that saturation at the outer scale is determined by a balance between linear and
nonlinear rates (see § 3.1) is likely incorrect for ion-scale turbulence below the Dimits threshold (Dimits et al. 2000),
where the fluctuations are regulated by strong long-lived zonal flows (Rogers et al. 2000; Diamond et al. 2005; Zhu
et al. 2020a,b; Ivanov et al. 2020). Investigating the influence of equilibrium flow shear on the Dimits state is outside
of the scope of this paper.
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FIGURE 8. Radial turbulent heat flux versus time for R/LTi = 14 and four different values of γE ,
as labelled in the title of each panel. The blue lines are time traces from simulations initialised
with small-amplitude noise, while the red ones represent simulations restarted from a saturated
γE = 0 run.

4.2.1. Bistability of high-shear states
At large values of flow shear γE > γmax, i.e. beyond the strong-shear regime, we
find that the system can saturate at (at least) two different levels of heat trans-
port. Figure 8 shows the time traces of the turbulent heat flux for R/LTi = 14 and
four different values of γE, where, for each value of the flow shear, the simula-
tions were initialised either with small-amplitude noise or with data from a saturated
γE = 0 simulation. For aγE/cs � 1, the saturated state is found to be independent
of the initial conditions. In contrast, a simulation with aγE/cs = 1.3 initialised with
a small-amplitude noise (corresponding to the rightmost point in figure 7) saturates
with a time-averaged radial heat flux that is nearly two orders of magnitude smaller
than that obtained by restarting it from an already saturated high-amplitude state.
Similar bistability in gyrokinetic turbulence with mean flow shear has been reported
by Christen et al. (2022). The physics of this phenomenon, as observed in the sim-
ulations presented in figure 8, falls outside of the range of validity of the theory
presented in § 3 because, at least in the case investigated here, it happens only at
γE > γmax, where the assumption of a balance between the rates of shearing and
energy injection (3.25) is not expected to hold.

Finally, we note that the appearance of coherent structures (whether of the
poloidally localised kind or not, see the discussion at the end of § 4.1) can natu-
rally lead to nonunique saturation. Indeed, if the saturated state is a collection of
localised structures, then volume-averaged turbulent quantities, like the heat flux, are
proportional to the number of structures in the simulation domain (van Wyk et al.
2016). If these structures happen to be well localised and noninteracting (or only
weakly interacting), then their number in the simulation domain is not necessarily
uniquely determined, but can be a function of the initial conditions and/or of the per-
pendicular box size. The turbulent fluctuations in the low-transport saturated state
displayed in figure 9 show signs of spatial localisation (as opposed to those in the
high-transport state), even if not quite as obviously as they do in the ETG turbulence
shown in figure 6.

5. Momentum transport

We have thus far focused on the influence of imposed flow shear on the turbu-
lent heat transport. In sheared systems, another important quantity of interest is the
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FIGURE 9. Snapshots of the electrostatic potential in the perpendicular plane from the (a) sat-
urated high-transport and (b) low-transport states with R/LTi = 14 and aγE/cs = 1.3, whose
heat-flux time traces are shown in blue and red, respectively, in the bottom right panel of figure 8.
The perpendicular coordinates are normalised to the ion sound radius ρs. Note that the aspect
ratio of the panels corresponds to that of the simulation domain.

turbulent transport of momentum, which is crucial for driving and maintaining equi-
librium differential rotation in fusion experiments. Such rotation is typically achieved
using neutral beams that deposit both energy and momentum into the plasma. The
profiles of temperature and equilibrium flow are then determined by the turbulent
heat diffusivity and turbulent viscosity, which are usually larger than their collisional
counterparts. The simplifying choice of a purely perpendicular flow made in § 3.2
means that we are unable to describe all of the relevant physics: e.g. we are missing
the effect of the parallel-velocity-gradient instability, which can be the main driver
of transport at high γE (Highcock et al. 2010; Barnes et al. 2011).

5
Nevertheless, the

theory derived in § 3.2 makes numerically falsifiable predictions for the momentum
transport of turbulence with imposed flow shear. Let us investigate them here.

Consider the fluid ETG model described in § 4.1, wherein we have imposed a
mean flow in the poloidal y direction that varies along the radial x direction. This
flow then allows the plasma to have nonzero radial transport of poloidal momentum,
defined, similarly to (2.10), as

Π ≡
∑

s

ms

∫
d3r
V

∫
d3w (vE · ∇x)(w · ∇y)δfs. (5.1)
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It can be shown (see Appendix C) that, in the fluid model described in § 4.1, (5.1)
becomes

Π = −neTeρ
2
e

2

∫
d3r
V

∂ϕ

∂y
∂

∂x

[(
1 + ZTe

Ti

)
ϕ − δTe

Te

]
. (5.2)

As expected, Π is written as the sum of the Reynolds stress of the E × B flow and
a diamagnetic stress (Smolyakov, Diamond & Medvedev 2000; Ivanov et al. 2020;
Sarazin et al. 2021). Note that Π itself is of no relevance to the dynamics of the
fluctuations as it does not enter (4.1)–(4.3) at all, unlike Q, which is responsible for
the injection of energy, as per (2.7).

Just like we did for the heat flux Q in § 3.1.1, we can estimate Π as

Π ∼ neTeko
x,tiltk

o
yρ

2
e (ϕo)2, (5.3)

where

ko
x,tilt(γE) ≡ ko

x(γE) − ko
x(0) ∼ ko

y(γE)τ o
nl(γE)γE . (5.4)

Using ko
x,tilt instead of ko

x in (5.3) is necessary because, in the absence of flow shear,
the GK equation (2.1) obeys the symmetry

(x, y, z) �→ (−x, y, −z), w‖ �→ −w‖, φ �→ −φ, hs �→ −hs, (5.5)

under which Π �→ −Π and so the time-averaged Π must vanish if γE = 0 (Parra
et al. 2011b; Sugama et al. 2011; Fox et al. 2017). Thus, only the part of kx associated
with the eddy tilting contributes to the momentum flux.

11

Using (3.2) and (3.6), we write (5.3) as

Π

neTe
∼ γEγ o

�2
e

1

(ko
xρe)2

∼ γEγ o

�2
e

1

(Aoko
yρe)2

. (5.6)

In the weak-shear regime (§ 3.2.1), where γE < γ o(0), the linear and nonlinear times
at the outer scale are given by (3.15), and the fluctuation aspect ratio at the outer
scale satisfies (3.18), we find

Π(γE)

Π(0)
∝ γE

(1 + γE/γc)2
. (5.7)

Note that if Ao(0) ∼ 1, i.e. if the turbulence is isotropic in the absence of flow
shear, then γc ∼ γ o(0) and Π is (approximately) proportional to γE in the weak-
shear regime, unlike Q, which would be constant in this case (see figure 3b). In the

11A careful reader may spot another issue, which is also resolved by using kx,tilt instead of kx. Recall the
discussion after (3.7), where we justified estimating Q via its value at the outer scale by arguing that the contributions
from smaller scales decay with increasing ky. If we were to estimate naïvely the contribution Π (ky) to Π from scale

ky in the inertial range as Π (ky) ∝ kxkyϕ
2, the inertial-range spectrum (3.5) would imply Π (ky) ∝ k2/3

y , leading
one to believe that the integral (5.1) is dominated by the small-scale end of the inertial range rather than by
the outer scale. This argument is, however, incorrect. In the inertial range, as ky increases, the nonlinear time
decreases according to (3.5), limiting the effect of the flow shear and thus decreasing Π (ky). To capture this, the

correct estimate is Π(ky) ∝ kx,tiltkyϕ
2, where kx,tilt ∼ kyτnlγE ∝ k−1/3

y in the inertial range. This then leads to

Π (ky) ∝ k−2/3
y and so Π is dominated by the contributions are the outer scale.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000054
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.56, on 28 Jun 2025 at 20:54:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000054
https://www.cambridge.org/core


Journal of Plasma Physics 23

γc γo (0) γmax

∝ γE

(1 + γE /γc)2

∼ const

∝ Ao (0)

log γE

log Π

Π

Π

FIGURE 10. A qualitative diagram of the momentum flux Π versus flow shear γE in the fluid
ETG model (see figure 4 for a similar diagram for the heat flux Q). The indicated ratio between
the plateau in the strong-shear regime and the peak of Π at γE = γc formally holds when
Ao(0) � 1.

strong-shear regime (§ 3.2.2), where γE > γ o(0), the fluctuations satisfy Ao(γE) ∼ 1,
and (3.25) and (3.26) hold, we find

Π(γE) ∝ γ 0
E , (5.8)

i.e. the momentum flux is independent of the imposed flow shear (see figure 10).
Crucially, in both regimes,

Π

Q
∝ γE. (5.9)

This can also be seen directly from (3.8) and (5.6), which imply

Πvthe

Q
∼ γE

γ o ko
yρe, (5.10)

and so (5.9) follows immediately if γ o ∝ ko
y, as we have assumed throughout § 3.2.

If we define the normalised turbulent viscosity ν and diffusivity χ as

ν ≡ Π

nemeγE
, χ ≡ Q

neTeL−1
T

, (5.11)

then the turbulent Prandtl number is

Pr = ν

χ
= Π

Q

v2
the

2γELT
. (5.12)

According to (5.9), this is independent of γE. This prediction is consistent with
previous GK studies of turbulent transport in sheared turbulence (Highcock et al.
2010; Barnes et al. 2011).

Figure 11(a) shows the values of turbulent heat and momentum flux from the
Sim1 and Sim2 sets of simulations, detailed in table 1. There is good agreement
with the weak-shear scaling (5.7). According to (5.7), Π should peak in the weak-
shear regime at γE = γc =Ao(0)γ o(0). For the Sim1 and Sim2 simulations, whose
data are presented in figure 11, the transition to the strong-shear regime happens
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FIGURE 11. (a) Radial flux of poloidal momentum in the fluid ETG model (5.2) as a function of
γE from simulation sets Sim1 and Sim2 (see table 1). The black dashed line is the best-fit line
of the form (5.7) to the data up to γE/ω⊥ = 0.04 (denoted by the vertical dotted line), where
the system transitions from the weak- to the strong-shear regime (see also figure 4). (b) Prandtl
number, defined as (5.12) for the same simulations as in panel (a).

at γ o(0)/ω⊥ ≈ 0.04, where ω⊥ is given by (4.11) (see also figure 4). As discussed
in § 4.1, we find that, numerically, Ao(0) ≈ 0.4, which gives γc/ω⊥ ≈ 0.016, consis-
tent with the observed peak in Π at γE/ω⊥ ≈ 0.01. However, the prediction that Π
should be constant in the strong-shear regime is not observed, likely due to finite-
hyperviscosity effects and the finite extent of the inertial range. Our theory does
not take into account the finite value of hyperviscosity necessary to achieve a sat-
urated state numerically. Since Π is a higher-order Fourier-space moment of the
fluctuation spectrum than Q, it is more sensitive to the spectrum at high k, where
hyperviscous effects matter. These effects become more important as γE increases
and the inertial range shortens (see also figure 12 in Appendix A). As figure 11(a)
shows, the simulations with lower hyperviscosity (Sim2) have a weaker dependence
of Π on γE in the strong-shear regime, consistent with the hypothesis that the hyper-
viscous cut-off is responsible for the discrepancy with the theoretical prediction (5.8).
Figure 11(b) shows that the numerically measured Prandtl number is weakly depen-
dent on γE, varying only by approximately a factor of two over a range for γE of
nearly three orders of magnitude, before decreasing at large γE where hyperviscous
effects become important.

The nonmonotonic weak-shear dependence (5.7), which has a local maximum
at γE = γc, implies that, for the same value of Π , two distinct values of γE, and
so of Q, are possible. This suggests that sheared anisotropic turbulence may be
prone to transport bifurcations similar to those discussed by Highcock et al. (2010,
2011) and Parra et al. (2011a). Of course, our oversimplified model of electron-scale
turbulence cannot be applied directly to any experimental studies. Nevertheless, our
theory suggests that if experimentally relevant turbulence is dominated by streamers,
transport bifurcations might exist.
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6. Summary and discussion

Starting from the standard picture of turbulent saturation via a local energy cas-
cade (§ 3.1), we have developed a theory for the effect of mean perpendicular flow
shear on temperature-gradient-driven turbulence in fusion plasmas. As argued in
§ 3.2, it is meaningful to distinguish two different regimes depending on the ratio
of the shearing rate γE to the rate γ o(0) of energy injection in the corresponding
system with zero flow shear.

In the weak-shear regime, defined by γE < γ o(0), the poloidal outer scale and
the energy-injection rate remain approximately the same as when γE = 0, but the
radial outer scale decreases with increasing γE (3.18) due to the tilting of turbulent
eddies by the shear. The extent to which the flow shear is able to suppress the
turbulent transport in this regime is linked to the aspect ratio of the outer-scale
fluctuations at zero flow shear, Ao(0) = ko

x(0)/ko
y(0). We find that turbulence with

Ao(0) ∼ 1 is largely unaffected by flow shear unless the shear is comparable to, or
larger than, γ o(0). In contrast, heat transport in streamer-dominated turbulence with
Ao(0) � 1, which is often encountered in fusion-relevant contexts, is shown to be
strongly suppressed by flow shear even at γE � γ o(0) as long as γE � γc, where the
critical shearing rate γc (3.19) is smaller than γ o(0) by a factor of Ao(0). This reflects
the intuitive notion that radially elongated fluctuations should be more susceptible
to sheared poloidal flows.

At γE > γ o(0), the system is in the strong-shear regime, where the outer scale
is determined by the balance among the shearing, energy-injection and nonlinear
mixing rates (3.25), and the outer-scale perpendicular wavenumbers grows propor-
tionally to γE. Turbulence in the strong-shear regime is found always to have ko

x ∼ ko
y,

even if it was dominated by streamers at γE = 0. This is due to the shear-induced
tilting of the turbulent fluctuations, which forces them to have Ao(γE) ∼ 1 in this
regime.

Our theoretical predictions for the dependence of the radial turbulent heat flux
on the rate of perpendicular flow shear, (3.20) and (3.27), are confirmed to hold
over a range of four orders of magnitude for the flow shear in idealised fluid ETG
simulations (§ 4.1). Additionally, GK flux-tube simulations of ITG turbulence have
demonstrated that our theory applies to more realistic models of plasma turbu-
lence as well (§ 4.2). These two models are paradigmatic cases of turbulence with
Ao(0) � 1 and Ao(0) ∼ 1, respectively.

In addition to the heat-flux scalings, in § 5, we use our theory to predict the
dependence of momentum flux on flow shear in the fluid ETG simulations. While
not directly applicable to more realistic numerical simulations due to the restric-
tion of purely perpendicular flow shear, our results suggest that streamer-dominated
turbulent transport might exhibit transport bifurcations.

There exists a body of work on the suppression of turbulence by flow shear
that is based on ‘decorrelation theories’ (Shaing, Crume & Houlberg 1990; Biglari,
Diamond & Terry 1990; Zhang & Mahajan 1992, 1993; Hatch et al. 2018) stemming
from Dupree (1972) or the equivalent derivation by Zhang & Mahajan (1993). There
are some parallels that can be drawn between these theories and our approach: e.g.
the definition of the normalised flow shear W by Zhang & Mahajan (1992) and
Hatch et al. (2018) includes the crucial influence of the fluctuation aspect ratio and
can be mapped to γE/Ao(γE)γ o(0) in our notation. However, the derivation of our
theory, as presented in § 3.2, is not related to these decorrelation theories and pro-
duces different scalings for the dependence of the heat flux on γE. For example, the
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functional dependence (3.20), borne out by the numerical results presented in § 4.1,
is not reproduced by these theories. While the decorrelation theory by Zhang &
Mahajan (1992) has been claimed to be applicable to some GK simulations (Hatch
et al. 2018), we are (at this stage) unable to draw any conclusions about the more
general applicability either of decorrelation theories or of the theory presented in
§ 3.2.

One possible application of the theory of sheared streamer-dominated turbulence
described in § 3.2.1 is in the description of multiscale interactions in magnetised-
plasma turbulence. Gyrokinetic theory and numerical analysis point to the existence
of linear instabilities and turbulent fluctuations at two disparate perpendicular scales,
viz. the gyroradii of the main ion species ρi and of the electrons ρe, often referred
to as the ‘ion’ and ‘electron’ (perpendicular) scales, respectively. By virtue of the
difference in the ion and electron masses, these two scales are well separated, viz.
ρe/ρi ∼ √

me/mi � 1. Furthermore, the GK ordering implies that the growth rate
of electron-scale instabilities satisfies γe ∼ vthe/L, while that of the ion-scale instabil-
ities is γi ∼ vthi/L, where L is some appropriate measure of the size of the device.
Therefore, the fluctuations at these two spatial scales also occur on well-separated
time scales: γi/γe ∼ √

me/mi � 1. Nevertheless, numerically expensive GK simu-
lations with enough resolution to span both ion and electron scales have shown
that ion-scale turbulence can suppress electron-scale fluctuations (Candy et al. 2007;
Waltz, Candy & Fahey 2007; Maeyama et al. 2015; Howard et al., 2016a) and
experimental results in support of this hypothesis have been reported (Howard et al.
2016b).

One possible mechanism for this suppression is that the turbulent ion-scale E × B
flows shear away the electron-scale perturbations. However, if we assume that the
electron-scale fluctuations satisfy Ae ∼ 1, this could not happen: the time scale
associated with the ion-scale E × B shear is γi, while the growth rate of the electron-
scale instabilities is γe � γi, so, by the quench rule, γi is too small to suppress the
electron-scale turbulence.

12

The theory of weakly sheared turbulence proposed in § 3.2.1 offers a possible
alternative explanation. Simulations of electron-scale turbulence indicate that turbu-
lence at those scales is dominated by radially elongated streamers, and, according
to our theory, the ion-scale E × B shear will be relevant for shearing these stream-
ers if they have Ae � 1. In particular, if ky,eρe ∼ 1 but kx,eρi ∼ 1, i.e. if the ETG
streamers have a radial size comparable to the scale of ion fluctuations, then the
critical shear rate γc,e for ETG turbulence (3.19) would be of the order of the ion-
scale fluctuating E × B shear. Such an ordering would put the ion-scale shearing
rate in the weak-shear regime for the ETG streamers, where (3.20) holds, with γE
now representing the value of the flow shear that electron-scale fluctuations experi-
ence from the ion-scale ones. Therefore, the influence of this flow shear would be
non-negligible, despite the naïve argument that might lead one to presume other-
wise. Numerical experiments have indeed shown that the inclusion of ion-scale zonal
flows (flux-surface-constant, poloidal E × B shear flows) in ETG simulations can
drastically reduce the levels of electron-scale turbulence and transport, even though
the ion-scale zonal-flow shear is much smaller than the growth rate of electron-scale

12Note that there are other mechanisms that could be responsible for such suppression, e.g. the parallel
variation of the ion-scale E × B flow (Hardman et al. 2019, 2020), or ITG turbulence giving rise to shearing flows
of small enough radial scale to influence the ETG eddies (Holland & Diamond 2004).
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instabilities (Waltz et al. 2007). Whether this mechanism for ITG suppression of
electron-scale fluctuations is indeed realised in multiscale plasma turbulence appears
to be a promising subject for future work.
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Appendix A. Isotropisation of streamer-dominated turbulence in the inertial range
Here, we develop the theory of the transition range between a streamer-dominated

outer scale with Ao � 1 and an inertial range with A∼ 1, in the weak-shear regime,
as promised in § 3.2.1. To be more specific, the transition range is a poloidal-
scale range ko

y(γE) � ky � kT
y , wherein the fluctuations’ aspect ratio increases from

A(ko
y) � 1 at the outer scale to A(kT

y ) ∼ 1 at the end of the transition range, located
at a new scale ky ∼ kT

y . Note that, by definition, free-energy injection by the linear
instability is negligible at all scales below the outer scale.

First, let us show that radial wavenumbers below the outer scale cannot be deter-
mined by the tilting of the eddies by the flow shear, i.e. that kx must be determined
by nonlinear effects (with a boundary condition kx = ko

x at the outer scale). Consider
the simpler case of Ao(0) � 1 turbulence in the presence of a flow shear of inter-
mediate strength γc � γE � γ o(0). In this case, the radial wavenumber at the outer
scale is given by (3.17):

ko
x(γE) ∼ ko

y(0)τ o
nl(0)γE. (A1)

Now, suppose that (A1) holds beyond the outer scale, viz. that

kx ∼ kyτnlγE (A2)
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for ky > ko
y. Combining (A2) with the definition of the nonlinear time (3.1) and

assuming that the free-energy flux (3.4) is constant below the outer scale, we find
that, for the scales where (A2) holds,

τ−1
nl ∝ γ

2/5
E k4/5

y ∝ k4/5
y . (A3)

However, beyond the outer scale, the nonlinear mixing rate must increase faster with
ky than the injection rate γk ∝ ky, which (A3) does not. Therefore, the assumption
that (A2) holds beyond the outer scale contradicts the very definition of the outer
scale that we adopted in § 3.1.

Instead, let us suppose that, due to nonlinear mixing beyond the outer scale,
the radial wavenumbers corresponding to the poloidal wavenumbers in the range
ko

y(γE) � ky � kT
y satisfy

kx

ko
x

∼
(

ky

ko
y

)1+λ

. (A4)

The parameter λ is a measure of the tendency of the nonlinear mixing to ‘isotropise’
(or ‘anisotropise’ if λ < 0) the turbulent fluctuations with increasing ky.

13
This can

also be expressed as

A(ky)

Ao ∼
(

ky

ko
y

)λ

. (A5)

If λ > 0, the transition region ends at A(kT
y ) ∼ 1, so (A5) gives us

kT
y ∼ ko

y

(Ao)1/λ
� ko

y . (A6)

Inside the transition region, the expression for the nonlinear time (3.2) and the
assumption of constant free-energy flux (3.4) jointly imply

ϕ

ϕo ∼
(

ky

ko
y

)−2/3 − λ/3

. (A7)

Therefore, the ky spectrum in the transition range must be steeper than the inertial-
range spectrum (3.5). Using (A4), we can recast (A7) in terms of the radial
wavenumbers:

ϕ

ϕo ∼
(

kx

ko
x

)−2/3 + λ/3(1+λ)

, (A8)

which is shallower than the inertial-range spectrum (3.5).

13Notice that, as discussed in § 3.2.1, one possibility is that the outer-scale aspect ratio Ao(0) is inherited by
the inertial-range cascade in the sense that A in the inertial range is independent of ky, i.e. it is scale invariant. In
the analysis above, this corresponds to λ = 0. In this case, the transition range is, in fact, the entire inertial range,
A is scale-invariant by (A5), and the spectra (A7) and (A8) agree with (3.5).
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FIGURE 12. Panels (a)–(d) show the spectra (A9)–(A12), as indicated in the legend at the bot-
tom, for the four simulations shown in figure 5. All panels show an inertial-range spectrum that
agrees with the predicted ∝ k−7/3

⊥ scaling, shown as a black dashed line. In panel (a), where
γE = 0 and the transition range is widest, we also show the predicted transition-range scalings
in the case λ = 2 of the spectrum with kx and ky in blue and red dashed lines, respectively, with
the exponents labelled accordingly.

We do not know how to determine λ theoretically, but we can confirm numeri-
cally that the above arguments are sound and that λ > 0. In figure 12, we show the
spectra of ϕ and δTe/Te from the ETG fluid model discussed in § 4.1 for the four
Sim1 simulations with varying flow shear presented in figure 5. As a proxy for the
dependence of ϕ and δTe/Te on kx and ky, we are using the following averages:

〈|ϕ|2〉x(ky) ≡
∑
kx,k‖

|ϕk|2, (A9)

〈|ϕ|2〉y(kx) ≡
∑
ky,k‖

|ϕk|2, (A10)

〈∣∣∣∣δTe

Te

∣∣∣∣
2
〉

x

(ky) ≡
∑
kx,k‖

∣∣∣∣δTe,k

Te

∣∣∣∣
2

, (A11)

〈∣∣∣∣δTe

Te

∣∣∣∣
2
〉

y

(kx) ≡
∑
ky,k‖

∣∣∣∣δTe,k

Te

∣∣∣∣
2

. (A12)

Note that (A9)–(A12) differ from (3.3) by a factor of kx or ky. Thus, the expected
scalings that follow from (A7) and (A8) are

〈|ϕ|2〉x ∼
〈∣∣∣∣δTe

Te

∣∣∣∣
2
〉

x

∝ k−7/3 − 2λ/3
y , (A13)

〈|ϕ|2〉y ∼
〈∣∣∣∣δTe

Te

∣∣∣∣
2
〉

y

∝ k−7/3 + 2λ/3(1+λ)
x . (A14)

Figure 12(a) shows that the fluid-ETG spectra obtained from solving (4.1)–(4.3)
with γE = 0 are roughly consistent with λ = 2. Increasing the value of the flow shear
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reduces the aspect ratio, as expected, and flattens the ky spectrum to approximately
match the kx one. Unfortunately, because the aspect ratio Ao(0) cannot be varied in
the fluid model, we are unable to vary the size of the transition range and its small
span in wavenumbers limits our ability to measure λ numerically and to verify the
transition-range theory laid out above with any greater accuracy. Nevertheless, our
numerical results are consistent with it.

Appendix B. Numerical implementation of the fluid model
The numerical results presented in § 4.1 are obtained by solving (4.1)–(4.3) in the

shearing frame

t′ = t, x′ = x, y′ = y − xγEt, z′ = z, (B1)

instead of the laboratory frame (x, y, z). By using a pseudo-spectral algorithm and
solving for the evolution of Fourier modes in (x′, y′, z′), we impose triply peri-
odic boundary conditions in the shearing frame. The linear terms in the equations
are integrated using an implicit Crank–Nicolson method, while the nonlinear ones
are integrated explicitly using the Adams–Bashforth three-step method. This code
is a modification of that developed and used by Ivanov et al. (2020); Ivanov,
Schekochihin & Dorland (2022) and Adkins et al. (2023).

Our approach for dealing with the time-dependent radial derivatives arising from
(B1) differs from the usual spectral remapping scheme that was first proposed
by Hammett et al. (2006) for the GK code GS2 and that forms the basis of the
implementation of equilibrium flow shear in many modern gyrokinetics codes, e.g.
stella (Barnes, Parra & Landreman 2019; St-Onge, Barnes & Parra 2022), GKW
(Peeters et al. 2009) and GENE (Told 2012), the latter being used for the numeri-
cal simulations presented in § 4.2. While this remapping algorithm is fairly robust,
the approximations that it makes can, in some cases, lead to unphysical results
(McMillan, Ball & Brunner 2019). Even though steps can be taken to improve the
algorithm (McMillan et al. 2019; Christen, Barnes & Parra 2021), the simplicity of
(4.1)–(4.3) allows us to take a different, both simpler and more robust, approach. We
consider a fixed (k′

x, k′
y) grid of shearing-frame wavenumbers, which corresponds to

continuously drifting laboratory-frame radial wavenumbers kx = k′
x − γEk′

yt that are
periodic (in time) on the interval −Kx � kx �Kx, where Kx ≡ πNx/Lx, Lx is the
radial box size and Nx is the ‘padded’ number of radial wavenumbers. By ensur-
ing that Nx � �3nx/2�, where nx is the number of resolved radial wavenumbers, we
eliminate aliasing issues in the pseudo-spectral method by zeroing out all modes with
|kx| > kx,max ≡ πnx/Lx – this is the standard ‘2/3 rule’ (Orszag 1971). For example,
the simulations in the Sim2 set (see table 1) have nx = 683 and Nx = 1024.

This scheme leads to a minor complication that is not encountered if one uses
the remapping algorithm instead. To understand this, consider that, even in the
presence of flow shear, the fluctuation amplitudes peak near kx = 0 and are sup-
pressed at large |kx| because the dissipation terms (whether physical or numerical)
are determined by the laboratory-frame wavenumber kx, not by the shearing-frame
one k′

x. Thus, the appropriate choice for a Galerkin truncation, required by any
pseudo-spectral algorithm, should be based on the laboratory-frame wavenumbers.
This laboratory-frame truncation, along with the necessary zero padding for dealias-
ing, is illustrated in figure 13(a) in the case of zero flow shear. However, for γE �= 0,
we wish to solve the equations in terms of k′

x rather than kx. To do this, we assign a
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FIGURE 13. (a) Typical fluctuation amplitudes of sheared turbulence with ky = q for some fixed
q (note that the spectrum does not peak at kx = 0 if γE �= 0) as a function of the laboratory-frame
radial wavenumber kx. The shaded regions indicate the zero padding needed for dealiasing.
The vertical solid and vertical dashed lines denote ±Kx and ±kx,max, respectively. Two radial
wavenumbers, k1 and k2, are shown, together with k3 = k1 + k2 into which they couple nonlin-
early. (b) The same fluctuation amplitudes as in panel (a), but now transformed to the shearing
frame using (B2), while keeping the padded region fixed to the outer 1/3 of the wavenumbers in
the shearing frame. (c) Same as in panel (b) but with kx made periodic on [−kx,max, kx,max] and
computed via (B3) instead. The fluctuation amplitudes with ky = 2q are shown in red. Here, k1
and k2 are the same two modes as in panel (a) that couple nonlinearly into k3 (shown in red as
the corresponding poloidal wavenumber is ky = 2q). However, in this version of dealiasing, their
sum falls into the dealiased region. (d) The correct way to represent the fluctuations in the shear-
ing frame using (B2) and zeroing out modes with |kx| > kx,max. We are showing the same two
wavenumbers k1 and k2 as before. They couple nonlinearly to modes with (kx, ky) = (k3, 2q),
whose fluctuation amplitudes and dealiased regions are shown in red. In panels (c) and (d), to
illustrate the correspondence between modes with ky = q and ky = 2q, we have used the exact
same function of kx to represent fluctuation amplitudes at both poloidal wavenumbers.

laboratory-frame kx to each k′
x using

kx = k′
x − γEk′

yt + 2πNxm
Lx

, (B2)

where m is an integer chosen so that −Kx � kx �Kx. Figure 13(b) shows that using
(B2) naïvely can (depending on how much kx has drifted) bring physically meaning-
ful small-|kx| modes into the region where the amplitudes are zeroed out to avoid
aliasing. Effectively, this naïve method offsets the interval of resolved laboratory-
frame modes so that, for any given ky �= 0, it is no longer centred around kx = 0.
Therefore, this approach does not work. One alternative is to consider instead kx
that drifts periodically as

kx = k′
x − γEk′

yt + 2πnxm
Lx

, (B3)
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where now m is chosen so that −kx,max � kx � kx,max, i.e. the radial wavenum-
bers drift periodically only within the physically resolved interval [−kx,max, kx,max],
instead of the larger ‘padded’ interval [−Kx, Kx]. However, this method is not suit-
able for calculating the nonlinear terms: as figure 13(c) shows, it removes physically
meaningful nonlinear couplings. Similarly, one can also show that it also introduces
aliasing-like couplings between physically unrelated modes (e.g. one can choose
modes with k1, k2 > 0 that are nonlinearly coupled to k1 + k2 − 2πnx/Lx < 0). The
correct approach, which employs (B2) and dealiasing based on |kx|, is demonstrated
in figure 13(d). This requires keeping track of the laboratory-frame kx and zeroing
out modes based on it. Fortunately, this is straightforward to do and the additional
overhead of having to compute the inverse of the linear response, required for the
implicit Crank–Nicolson method, is negligible for the simple fluid model.

Note that continuously drifting wavenumbers have one extra advantage over the
remapping algorithm. A mode that has been sheared so much that it re-emerges at
the other side of the resolved wavenumber interval has necessarily passed through the
dealiased region. Thus, its amplitude is zero and so cannot introduce any spurious
fluctuations.

This algorithm is effectively the same as that used by Lithwick (2007) (and
attributed by him to Gordon Ogilvie) for simulations of hydrodynamic sheared flows.

Appendix C. Momentum flux in the fluid ETG model
We want to compute the radial flux of poloidal momentum,

Π ≡
∑

s

ms

∫
d3r
V

∫
d3w (vE · ∇x)(w · ∇y)δfs, (C1)

in the fluid ETG model used in § 4.1 and § 5. The details of the derivation of the
model can be found in Appendix B of Adkins et al. (2023). Here, we require only a
few facts about the limit in which this derivation was carried out.

First, the ion gyroradius is large, viz. k⊥ρi � 1, which allows us to neglect hi in
the ion distribution function δfi given by (2.2), so

δfi ≈ −Zeφ
Ti

Fi. (C2)

This implies that the ion contribution to (C1) vanishes:∫
d3r
V

∫
d3w (vE · ∇x)(w · ∇y)δfi ∝

∫
d3r
V

∂φ

∂y
φ = 0. (C3)

Second, the electron distribution function is expressed as

δfe = ϕFe + he, (C4)

where ϕ = eφ/Te and he is gyroangle independent at fixed Re = r − ẑ × w/�e. Since
the radial E × B velocity is

vE · ∇x = −1

2
ρevthe

∂ϕ

∂y
, (C5)
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(C1) becomes

Π = −1

2
ρemevthe

∫
d3r
V

∫
d3w

∂ϕ

∂y
(w · ∇y)he, (C6)

where the contribution from the ϕFe part of (C4) has vanished. Evaluating (C6) is a
standard GK calculation, which we outline now.

Noting that the perpendicular part of w is

w⊥ = w⊥( cos θ x̂ − sin θ ŷ), (C7)

where θ is the gyroangle, and that

ẑ × w⊥ = −∂w⊥
∂θ

, (C8)

we find ∫
d3w w⊥he=

∫
d3w ẑ × ∂w⊥

∂θ
he=−

∫
d3w ẑ × w⊥

∂he

∂θ
. (C9)

As he is independent of θ at fixed Re, the last partial derivative in (C9) (which is
evaluated at fixed r) becomes

∂he

∂θ
= ∂

∂θ

(
− ẑ × w

�e

)
· ∂he

∂Re
= −w⊥

�e
· ∂he

∂Re
. (C10)

Substituting (C10) into (C9), dotting by ∇y, and making use of

1

2π

∫ 2π

0
dθ wiwj = w2⊥

2
(δij − ẑiẑj) + w2‖ẑiẑj, (C11)

we find ∫
d3w (w · ∇y)he =

∫
d3w

w2⊥
2�e

∂he

∂x
. (C12)

Then, using vthe/�e = −ρe and (C12), (C6) reduces to

Π = ρ2
e me

4

∫
d3r
V

∫
d3w

∂ϕ

∂y
w2⊥

∂he

∂x
. (C13)

Finally, to lowest order in k⊥ρe � 1, he is given by (Adkins et al. 2023)

he =
[

δne

ne
− ϕ + δTe

Te

(
w2

v2
the

− 3

2

)]
Fe, (C14)

where the density perturbation is given by (4.5). Therefore, (C13) becomes

Π = −neTeρ
2
e

2

∫
d3r
V

∂ϕ

∂y
∂

∂x

[(
1 + ZTe

Ti

)
ϕ − δTe

Te

]
(C15)

to lowest order in k⊥ρe � 1, which is exactly (5.2).
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