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Abstract

Background. Psychotic-like experiences (PLEs) are considered a subclinical component of
psychosis continuum. Studies indicate that PLEs arise from multimodal factors, yet research
comprehensively examining these factors together remains scarce. Using a large youth sample,
we present the first model that simultaneously examines multimodal factors related to PLEs. Asa
secondary aim, we evaluate the model’s ability to explain psychosis in an external validation
cohort that included individuals experiencing psychosis.

Methods. After applying variable selection including generalized estimating equations, correl-
ation filtering, Least Absolute Shrinkage and Selection Operator model to 741 variables
(i.e., environmental factors, cognitive appraisals, clinical variables, cognitive functioning, and
structural brain connectome measures), obtained PLEs predictors (N = 27) and covariates
(i.e., age, sex, IQ) were included in the classification model based on Elastic Net algorithm for
predicting high/low PLEs in 396 healthy participants aged 1424 (Mg, = 19.72 + 2.5). We
externally validated PLE-related predictors in a clinical sample comprising first-episode psych-
osis patients (n = 19), their siblings (n = 20), and healthy controls (n = 19).

Results. Eleven factors, including environmental and cognitive appraisals, along with 16 struc-
tural network properties spanning frontal, temporal, occipital, and parietal regions, were
identified as important predictors of PLEs. The model’s performance was moderate in predicting
low versus high PLEs (accuracy = 75%, AUC = 0.750). Specificity was high (84.2%) in
distinguishing siblings from patients.

Conclusions. Multimodal features, including environmental burden, cognitive schemas, and
brain network alterations, predict PLEs and partially generalize to clinical psychosis. These
variables may reflect intermediate phenotypes across the psychosis spectrum, offering insights
into both vulnerability and resilience.

Introduction

Psychotic experiences, including hallucinations and delusions, are most commonly associated
with schizophrenia but are also reported across other psychiatric disorders (Bourgin et al.,
2020; Ian Kelleher, 2025). And, these experiences contribute to disability and are an obstacle to
productivity, particularly when onset occurs early in life (Gore et al., 2011). Attenuated
forms are also reported in the general population among individuals without clinical impair-
ment or clinical treatment needs, commonly referred to as psychotic-like experiences (PLEs)
(I. Kelleher & Cannon, 2011). PLEs are relatively common, with lifetime prevalence estimated
at 7-13% (Linscott & Van Os, 2013), and population surveys indicating that 11% of individuals
report at least one psychosis-screening item (Scott, Chant, Andrews, & McGrath, 2006).
Although many of these experiences are transient, longitudinal studies show that individuals
with PLEs are at risk of later developing psychotic or other psychiatric disorders (Fisher et al.,
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2013; Rimvall et al., 2020). Taken together, these findings suggest
that psychotic experiences are not confined to strict diagnostic
categories, and vary along a continuum from subclinical expres-
sions to clinical disorders. PLEs and clinical psychotic disorders
also show overlapping demographic features and risk factors,
consistent with the idea that they may share common etiological
processes despite differing in clinical severity (Linscott & Van Os,
2013; McGrath et al, 2015; Van Os, Linscott, Myin-Germeys,
Delespaul, & Krabbendam, 2009).

A recent fMRI twin study indicates that distinct dimensions of
PLEs may have different etiological bases: distress shows moderate
heritability, whereas frequency appears more strongly influenced
by environmental factors (Sahin-Cevik et al., 2025). These findings
highlight the importance of considering environmental exposures
when examining mechanisms underlying PLE frequency. Environ-
mental exposures such as traumatic life events (Beards et al., 2020;
Cosgrave et al., 2021) and discrimination (Veling et al., 2007) have
been shown to significantly influence progression along the psych-
osis spectrum, with risk increasing as these exposures accumulate
(Cougnard et al.,, 2007). Composite indices such as the Maudsley
Environmental Risk Score (Vassos et al., 2020) have been proposed
to improve risk prediction (Mas et al., 2020).

Cognitive schemas that shape how individuals perceive them-
selves and others have been also reported in psychosis vulnerability.
Increased negative self-evaluations have been associated with
heightened psychotic symptomology (Tiernan, Tracey, & Shannon,
2014). In the non-clinical samples, individuals scoring high on
paranoia have exhibited more negative self-schemas (Fowler
et al., 2006; Humphrey, Bucci, Varese, Degnan, & Berry, 2021),
and negative schemas have been shown to predict elevated levels of
delusional thinking (Oliver, O’Connor, Jose, McLachlan, & Peters,
2012). Furthermore, individuals seeking help for psychosis and
PLEs commonly exhibited negative beliefs about both themselves
and others (e.g., ‘others are hostile’) (Taylor et al., 2014). These
findings emphasize the importance of investigating PLEs in terms
of both clarifying the developmental pathways of psychotic dis-
orders and informing approaches to earlier recognition and pre-
ventive interventions in clinical settings.

From a neurobiological perspective, psychosis has been concep-
tualized as a disorder of disrupted brain connectivity (Friston,
1998). Alterations in network organization appear early in the
illness course, and may precede clinical symptoms (Carletti et al.,
2012). Structural and functional deviations in brain topology have
also been reported in individuals with subclinical psychotic experi-
ences (Drakesmith et al., 2015; Sheffield, Kandala, Burgess, Harms,
& Barch, 2016). More recent work has identified widespread white
matter changes in people with PLEs, including young women
(Kjelkenes et al., 2025) and population-based samples (Schoorl
etal,, 2021), and atypical patterns of cortical gyrification have been
associated with subclinical psychosis phenotypes (Evermann,
Gaser, Besteher, Langbein, & Nenadi¢, 2020). Together, these find-
ings suggest that early brain developmental markers may contrib-
ute to PLEs expression outside the clinical range. Network
topology, in particular, has been proposed as a sensitive biomarker
(Drakesmith et al., 2015), with deviations more pronounced in
clinical than subclinical psychosis groups, but evident in both
compared to healthy controls (Van Dellen et al., 2016). These
insights provide a rationale for connectome-based approaches that
assess whole-network integration, local-network segregation, com-
munication between key nodes, and node clustering to capture
structural signatures of psychosis risk.
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Incorporating cumulative environmental risk, cognitive
appraisals, and brain network organization in PLE samples offers
a way to clarify mechanisms underlying the psychosis spectrum,
while avoiding biases from treatment effects and illness-related
complications. Although psychosis is recognized as heteroge-
neous, most studies have focused on single domains in isolation.
Recent studies have applied machine learning approaches to
identify neurobiological predictors of psychotic experiences (Ken-
ney et al., 2022; Ma et al., 2023) and schizophrenia (Wu et al.,
2022). However, integrative models that combine multiple modal-
ities and validate their predictive value across independent
cohorts remain limited. Identifying such predictors is important
for understanding pathways from subclinical experiences to clin-
ical disorder. In this study, we aimed to identify predictors that
differentiate individuals with high versus low PLEs and validated
these predictors in an independent external cohort consisting of
first-episode psychosis patients, their unaffected siblings, and
healthy controls. To achieve this, we applied a multimodal, data-
driven framework incorporating environmental exposures, cog-
nitive appraisals, clinical variables, cognitive functioning, and
structural connectome measures. This approach allowed us to
evaluate whether factors identified in a general population sample
could reliably distinguish groups along the psychosis continuum.
Through machine learning, we emphasized predictive accuracy
while also examining the interpretability of contributing features.
To our knowledge, this is the first study to jointly model envir-
onmental, cognitive, and neural factors in PLEs, and assess their
relevance across both subclinical and clinical populations.

Methods
Participants

Participants were drawn from an in-house study on the genetic and
environmental influences on brain development in healthy Turkish
twins and siblings, recruited via community outreach and educa-
tional institutions in Turkey. In total, 417 individuals took part in
the study: 363 twins, 6 triplets, and 48 siblings, with and without
psychotic-like experiences (PLEs).

For the external validation cohort, three groups of participants
were examined: first-episode psychosis (FEP) patients (N = 19),
their siblings (N = 20), and healthy controls (N = 19). FEP patients
were recruited from Ankara Bilkent City Hospital and diagnosed
with the Structured Clinical Interview for DSM-5 Disorders: Clin-
ician Version (SCID-5-CV). All were within 6 months of symptom
onset and aged 14-23. Siblings were included if they were
within 24 months of age of the proband.

Exclusion criteria across all groups included a history of neuro-
logical illness, intellectual disability, head injuries, or being a non-
native Turkish speaker (based on self-report). For healthy partici-
pants only, a personal history of psychiatric illness was also an
exclusion criterion. Additional exclusions were made for partici-
pants with missing T1-weighted (N = 5) and diffusion-weighted
images data (N = 9), or failed structural connectivity matrix recon-
struction, or more than 10 regions with a rank of zero (N =5). In the
PLE cohort, two individuals were excluded due to missing CAPE-42
scores. Demographic information is presented in Table 1.

The study was approved by the ethics committees of Ankara
University Medical Faculty and Bilkent University. All participants
provided written informed consent; for those under 18, consent was
provided by a parent or legal guardian.
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Table 1. Demographic characteristics of the sample

Psychotic-like experiences sample (N = 396)

Sample characteristics Minimum Maximum

Age, mean (SD) 19.72 (2.5) 14 24
Sex

Females, n (%) 249 (62.9)

Males, n (%) 147 (37.1)
Zygosity

Monozygotic, n (%) 141 (35.61)

Dizygotic, n (%) 211 (53.28)

Triplets, n (%) 6 (1.52)

Sibling, n (%) 38 (9.6)
IQ, mean (SD)? 102.10 (13.50) 70 154
Psychotic-like experiences group,

n (%)°

High psychotic-like experiences 196 (49.5)

Low psychotic-like experiences 200 (50.5)

External validation cohort (N = 58)

Patients (n =19) Minimum Maximum

Age, mean (SD) 20 (3.16) 15 25
Sex

Females, n (%) 7 (36.8)

Males, n (%) 12 (63.2)
1Q, mean (SD)° 79.33 (17.44) 56 108

Siblings (n =20) Minimum Maximum

Age, mean (SD) 18.40 (3.76) 13 25
Sex

Females, n (%) 10 (50)

Males, n (%) 10 (50)
IQ, mean (SD)? 90.40 (14.29) 63 128

Healthy controls ~ Minimum Maximum

(n=19)
Age, mean (SD) 19.11 (2.40) 14 24
Sex
Females, n (%) 7 (36.8)
Males, n (%) 12 (63.2)
1Q, mean (SD)? 104.74 (15.35) 70 135

Abbreviation: SD, standard deviation.

“Block Design and Matrix Reasoning subtests of the Wechsler Abbreviated Scale of
Intelligence, Second Edition (WASI-II) was used to obtain IQ scores.

PParticipants were divided into high and low PLE groups based on the median score of CAPE-
42 total score. Scores above the median were placed in the high PLEs group, while scores at or
below the median were placed in the low PLE group.

Clinical and subclinical measures

The community assessment of psychic experiences-42 (CAPE-42)
Psychotic-like experiences (PLEs) were assessed using the CAPE-
42, a self-report questionnaire assessing the frequency and distress
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associated with PLEs in the general population (Konings, Bak,
Hanssen, Van Os, & Krabbendam, 2006; Mark & Toulopoulou,
20165 Stefanis et al., 2002). It consists of 42 items that evaluate
positive, negative, and depressive dimensions of experience.

We utilized the total CAPE-42 frequency score, which was
obtained by summing the frequency ratings across all the items.
Participants were then dichotomized into low and high PLEs
groups based on the median of the total frequency score. Scores
above the median were placed in the high PLEs group, while scores
at or below the median were placed in the low PLEs group.

Environmental and protective measures

The environmental assessments included paternal age, obstetric
and delivery complications, winter birth in the Northern Hemi-
sphere, ethnicity, urbanicity, parental social class, lifetime cannabis
usage, tobacco usage, alcohol consumption, childhood trauma,
discrimination, hearing impairment, threatening life events, infor-
mal social control, participants’ relationship status, religion status,
and social cohesion and trust (Section 1 in Supplementary). We also
included the Maudsley Environmental Risk Score (ERS), a cumu-
lative index of six validated environmental risk factors: ethnic
minority status, urbanicity, paternal age, obstetric complications,
cannabis use, and childhood adversity (Vassos et al., 2020). When
individual variables were part of the composite ERS (e.g., childhood
trauma), only the variable which has a higher odds ratio from
generalized estimating equations was included to avoid redundancy
and ensure a parsimonious predictor set for the model.

Cognitive and cognitive self-schema measures

Estimated general function and fluency

The quick measure of Block Design and Matrix Reasoning subtests
of the revised Wechsler Abbreviated Intelligence Scale, Second
Edition (WASI-II), was used as a proxy of general intelligence
(Wechsler, 2011). The Perceptual Reasoning Index composite
score was used to measure non-verbal and fluid reasoning. Verbal
fluency was assessed through the verbal fluency task (Section 2 in
Supplementary).

Brief core schema scales (BCSS)

BCSS is a 24-item self-report questionnaire and was used to assess
the participants’ own schemata for one’s self and others (Fowler
et al., 2006). Appraisals of self include negative-self (6 items, e.g., ‘I
am worthless’) and positive-self (6 items, e.g., Tam valuable’), while
appraisals of others include negative others (6 items, e.g., ‘Others
are hostile’) and positive others (6 items, e.g., ‘Others are truthful’).
The items were rated dichotomously (Yes/No), followed by a degree
of belief conviction consisting of a Likert scale from 0 to 4 (‘believe it
slightly’ to ‘believe it totally’) for endorsed items. Scores for each
domain were calculated by summing the items.

Family history of psychiatric disorders

Family Interview for Genetic Studies (FIGS) is a self-report question-
naire (Maxwell, 1992). It was used to assess the presence or absence of
psychiatric disorders among participants’ first-degree relatives.

Neuroimaging

Structural connectome construction
Detailed information is provided in Section 3 in Supplementary.
Briefly, for each individual, a structural brain connectome was
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reconstructed using diffusion-weighted and T1-weighted MRI
data. Cortical parcellation was performed on T1-weighted images
using FreeSurfer (FreeSurfer 7.1.0, http://surfer.nmr.mgh.harvard.
edu/). Diffusion-weighted images were preprocessed with the FSL
tool (FSL 6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) to correct for
susceptibility distortions, eddy currents, and motion artifacts
(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). Con-
nectivity Analysis Toolbox (CATO v2.5, http://www.dutchconnec
tomelab.nl/CATO) was integral in integrating these steps and
facilitating the creation of a 114 x 114 connectivity matrix, where
nodes represented brain regions, while edges quantified white
matter fiber tracts (de Lange, Helwegen, & van den Heuvel,
2023). Next, the Brain Connectivity Toolbox in MATLAB
R2020A (http://www.brain-connectivity-toolbox.net) was used to
compute key graph theoretical metrics, including global efficiency,
density, reflecting whole-brain network integration; local effi-
ciency, betweenness centrality, and clustering coefficient, highlight-
ing localized structural network characteristics (Rubinov & Sporns,
2010) (Supplementary Table S1).

Statistical analyses

In the main dataset, the outcome is a binary variable based on the
median CAPE-42 frequency score (<73 = low, > 73 = high). This
enables comparability with the categorical structure of the external
validation cohorts (patients, siblings, and controls) and aligns with
previous epidemiological and machine learning studies utilizing
binary outcomes (Dominguez, Wichers, Lieb, Wittchen, & Van Os,
2011; Haroon et al., 2018; Kramer et al., 2023; Tandon et al., 2012).

In the external validation, the classification outcome was
defined according to clinical and familial status, which was defined
as patient-sibling or patient-healthy. For the evaluation of the
developed model on external sets, the predicted positive class
(coded as 1) comprised patients with first-episode psychosis
(FEP), while the predicted negative class (coded as 0) comprised
their unaffected siblings in the first external dataset, and demo-
graphically matched controls (HC) in the second.

For zygosity, monozygotic twins and triplets were retained as
separate groups, while dizygotic twins, and non-twin siblings were
combined, given their comparable degree of genetic relatedness.

Group differences in PLEs across these categories were tested
with Chi-square while differences in age and sex between study
groups were assessed using appropriate statistical tests (Section 4 in
Supplementary).

All demographic analyses were done using IBM SPSS Statistics
(Version 25), using a significant threshold of p < 0.05.

To address the issue of having more variables (N = 741) than
observations (N = 396), we conducted univariate Generalized Esti-
mating Equation (GEE) models to identify significant associations
with PLEs, clustering families within pairs to account for family
effects. Our focus was not on modeling these effects. This approach
mitigated overfitting and multicollinearity, allowing for a more
manageable set of variables for the machine-learning phase. In
the GEE analysis, we used an exchangeable correlation structure,
as there was no logical order among sibling pairs and the data did
not follow a time series. GEE results were reported as odds ratios
with a 95% confidence interval, with a significance level set at 0.05.
Following this, a correlation filter was applied to eliminate highly
collinear variables for the elastic model.

Machine learning
In this study, we simultaneously examined the relationship between
variables using machine learning (ML) methods. Elastic net
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modeling was used since it was designed to enhance the performance
of the classic regression methods when there are many predictor
variables (Rosenstrom et al., 2018). It reduces multicollinearity and
overfitting of the model through regularization (Zou & Hastie, 2005).
The following preprocessing procedures were performed to prepare
the data prior to ML. First, dummy variable coding was performed
for categorical variables with more than two categories. Second,
participants with missing values among the selected variables were
excluded to consider complete cases. Third, the dataset was ran-
domly divided into a training set comprising 70% of the data and a
test set comprising the remaining 30% using a hold-out approach.
This method involves randomly splitting the data into training and
testing sets. The model was developed during the training phase and
evaluated using an unseen test set, with particular attention given to
preserving the prevalence in both sets during the random split. Lastly,
z-standardization was applied to the training set to obtain standard-
ized coefficients for the ML models and ensure comparability across
variables. Based on the characteristics of the training set, the test set
was also standardized to ensure consistency and prevent data leak-
age. Following the preprocessing steps, the Least Absolute Shrinkage
and Selection Operator (LASSO) model was used on the train set.
The primary purpose of LASSO regression is variable selection,
achieved by setting the weights of unimportant variables to zero.
Variables with non-zero coefficients were retained for the model
(Tibshirani, 2011). Subsequently, to classify two classes of PLEs by
using the most predictive variables identified in the training set, a
classification model was developed using the Elastic Net algorithm,
which combines LASSO and Ridge methods to optimize variable
weights rather than solely focus on selection. Thus, LASSO identified
important variables, while the Elastic Net established the final clas-
sification model. Technical implementation details are reported in
Section 5 in Supplementary.

Because of the data-driven approach of the study, no hypothesis
test was conducted regarding model performances; however, 95%
confidence intervals were provided along with the model’s AUC
values; intervals excluding 0.50 were interpreted as evidence of
meaningful classification.

Results
Psychotic-like experiences sample

Statistical analysis

PLE distributions did not differ across zygosity (X p = .99), and no
significant group differences were found for age (Mann—Whitney U,
p = .85) or sex (X7, p = .43; see Supplementary Tables $2-S3).

GEE models were first applied to identify variables significantly
associated with PLEs. Out of 741, the analysis identified 37 signifi-
cant predictors (p < 0.05). Insignificant age, sex, and PRI composite
score variables were kept as covariates, resulting in 40 explanatory
variables in this step. The ERS emerged as a stronger predictor than
physical neglect, emotional neglect, and total score for childhood
trauma variables, leading to the exclusion of these childhood
trauma-specific measures in favor of ERS in further analyses (
Supplementary Table S4).

Spearman correlations revealed that several eloc and cc regions
were highly correlated (rho >0.70; Supplementary Table S5). We
excluded highly correlated cc, yielding 34 explanatory variables for
further analysis.

Machine learning
LASSO regression was employed to conduct a multivariate evalu-
ation, identifying the most important variables selected during the
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initial GEE analysis. Of the 396 participants retained for the GEE
analysis, 20 were excluded in this step because of missing data on
selected predictors, resulting in 376 complete cases. Furthermore,
dummy coding was applied to parental social class, the only cat-
egorical variable with more than two levels among the selected
predictors. Thirty-five z-standardized variables were finally
included in this step. A detailed explanation is provided in
Section 6.3 in Supplementary. A visual summary of the analysis
steps is provided in Figure 1.

Variable selection using LASSO was conducted on the training
set as explained above. Following this, LASSO identified 27 key
explanatory variables (Section 6.4 in Supplementary).

The variable importance plot (Figure 2) reflects the standardized
coefficients for predictors contributing to the classification of PLEs,
ranked in descending order, while SHAP (SHapley Additive
exPlanations) explainer method illustrates how each predictor
influences the low and high PLE classes (see Section 6.5 and
Figure S1 in Supplementary).

Dataset
(396x741)

Univariate Analysis
Variables with p<0.05, according to the marginal models, are selected (37 variables).

Age, gender and PRI score are also selected. 40 variables are determined.
T T T T T T T T T T T T T T T T T T S S S eSS sssmmmmmes 1
1 Correlation Filter
! Elimination is performed among highly comelated variables.
| Step2 Six variables are eliminated.
1
1
e 1
Dummy variable coding for categorical variables

Dataset
(376x35)

Step 4 P
A

LASSO model for variable selection :
alpha=1, lambda=0.015 :

30 independent variables are remained. 1
1

Elastic Net model for classification 1
alpha=0.1, lambda=0.11

A

Figure 1. Overview of data processing and model development steps. This flowchart shows the full pipeline used in the study, starting with the initial dataset and progression
through univariate filtering, correlation-based variable elimination, and dummy coding for categorical data. The dataset was split into a training set (70%) and a test set (30%), with
z-standardization applied using training set characteristics. Feature selection was performed using the LASSO model (o= 1, A = 0.015), and classification was completed using the
Elastic Net algorithm (a = 0.1, A = 0.11). The final model’s performance was evaluated on the test set. Abbreviation: PRI = perceptual reasoning index.
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Variable Importance Plot

negative-self -
negative-others
bcen (nos-weighted) in right lateraloccipital 1

ERSA

threatening life experiences 4

eloc (nos-weighted) in left fusiform 14

cc (nos-weighted) in left middletemporal 1 -

bcen (fa-weighted) in left superiorparietal 3 4
positive-self
male -

social cohesion and trust -

bcen (nos-weighted) in right superiorfrontal 24

informal social control 4

eloc (nos-weighted) in right lateralorbitofrontal 2

eloc (nos-weighted) in left inferiortemporal 1

bcen (nos-weighted) in right pericalcarine_1 -

Variable

discrimination -

bcen (nos-weighted) in right rostralmiddlefrontal 1 4
cc (fa-weighted) in left pericalcarine 14

bcen (nos-weighted) in left precuneus 14

middle parental class

cc (fa-weighted) in right insula 1 -

cc (nos-weighted) in left entorhinal 1 -
bcen (fa-weighted) in left superiorfrontal 14
PRI Composite Score

age-

eloc (fa-weighted) in left precuneus 2
positive-others

low parental class -

eloc (nos-weighted) in right inferiortemporal 1 -

Category

Brain Measures
Cognitive Appraisals
Environmental Predictors

D Sex

oA

30 60 90
Importance

Figure 2. Variable importance plot for predicting psychotic-like experiences. The plot displays all the selected variables ordered based on their standardized coefficients, indicating
their variable loading to predict psychotic-like experiences. Note: Variables are colored based on their categories: environmental predictors (green), cognitive appraisals (purple),
brain measures (pink), and sex (blue). Abbreviations: bcen, betweenness centrality; cc, clustering coefficient; eloc, local efficiency; ERS, environmental risk score for psychosis; FA,

fractional anisotropy; NOS, number of streamlines; PRI, perceptual reasoning index.

Negative-self and negative-others schemas emerged as the
strongest contributors. Among environmental features, ERS
showed the highest contribution, followed by threatening life
experiences, social cohesion and trust, informal social control,
discrimination, and parental social class (low and middle) variables.
Positive-self and positive-others variables were also retained, albeit
with lower weightings.

Among the structural network topology measures, betweenness
centrality, local efficiency, and clustering coefficient, representing
nodal network properties, were important PLEs’ predictors.
FA-weighted network properties showed a clear asymmetry
between the hemispheres, with a stronger predictive contribution
from the left hemisphere (five regions), compared to the right
hemisphere (one region).

Evaluation of the model performance

As shown in Table 2, the model had an accuracy of 75.2%, correctly
identifying 36 out of 55 high-PLE individuals (sensitivity = 0.655)
and 49 out of 58 low-PLE individuals (specificity = 0.845). The
positive predictive value was 0.80, highlighting the model’s mod-
erate ability to correctly identify individuals with high PLEs, while
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the negative predictive value was 0.721, indicating the model had
reasonable classification of low-PLE cases (72.1%). The model’s
overall discriminatory power (AUC = 0.750) was moderate in
distinguishing between high and low PLEs.

External validation cohort

First-episode of psychosis (FEP), their siblings, and healthy control
(HC) groups were used to assess whether the important predictors
identified for PLEs could effectively distinguish these groups. After
excluding individuals with missing values on key predictors or
covariates, the final validation sample in this step included
16 FEP patients, 19 siblings, and 18 HCs. The Shapiro-Wilk tests
confirmed normality of age distribution among FEP and HC
groups (W = 0.95, p = 0.15). The groups did not differ in age
(t(26) =0.127, p =0.90) and sex (X*(1) = 0.83, p=0.77). Descriptive
statistics are provided in Supplementary Tables S7 and S8.

Patient—sibling (genetic high risk) dataset
The performance results for distinguishing the FEP patients from
their healthy siblings are presented in Table 3.
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Table 2. Confusion matrix and performance metrics of high—low psychotic-like
experiences

Metric
Class”

Confusion matrix® Predicted class High Low  Total
High 36(TP) 9(FP) 45
Low 19 (FN) 49 (TN) 68
Total 55 58 113

Performance metrics Value

Accuracy 0.752

Sensitivity 0.655

Specificity 0.845

Positive predictive value 0.800

Negative predictive value 0.721

F1 0.720

AUC (95% C.1.) 0.750 (0.671-0.829)

Abbreviations: AUC, area under the receiver operating characteristic curve; Cl, confidence
interval.

#The confusion matrix summarizes the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) to perform a clear evaluation of model performance.
PLow class included participants with CAPE-42 frequency scores equal or lower than the
median (low PLEs) while high class included those with scores above the median (high PLEs).

Table 3. Confusion matrix and performance metrics of patient-sibling

Metric
Class®

Confusion matrix Predicted class Patient Sibling Total
Patient 7(TP) 3 (FP) 10
Sibling 9 (FN) 16 (TN) 25
Total 16 19 35

Performance metrics Value

Accuracy 0.657

Sensitivity 0.434

Specificity 0.842

Positive predictive value 0.700

Negative predictive value 0.640

F1 0.539

AUC (95% C.1.) 0.640 (0.489-0.791)

Abbreviations: AUC, area under the receiver operating characteristic curve; Cl, confidence
interval; FN, false negative; FP, false positive; TN, true negative; TP, true positive.
?Patient class included FEP patients while siblings class included healthy siblings.

The model correctly classified 7 instances out of 16 patients and
16 instances out of 19 siblings. It misclassified 3 siblings as patients
and 9 patients as siblings.

The overall accuracy was 65.7%, with a sensitivity of 0.434 and a
specificity of 0.842. The positive predictive value was 0.70, while the
negative predictive value was 0.64. The AUC value of 0.640 reflected
the model’s modest discriminative ability, particularly with rela-
tively better performance in identifying siblings.
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Patient-healthy controls dataset

The model had a weak performance with a poor accuracy of 0.412
and AUC levels of 0.590 (95% CI: 0.420—0.760) in distinguishing
between FEP patients and healthy controls (Supplementary
Table S9).

Discussion

The primary goal of this study was to clarify the multimodal
mechanism underlying psychotic-like experiences (PLEs) by inte-
grating environmental exposures, cognitive appraisals, clinical
measures, cognitive functioning, and structural connectome top-
ology. Through a structured analytical pipeline- combining uni-
variate screening, correlation filtering, and LASSO for feature
selection- we reduced 741 candidate variables to 30 predictors,
which were then applied to the Elastic Net for classification.

A secondary aim was to test the generalizability of these pre-
dictors in an external cohort of first episode of psychosis patients,
their siblings, and healthy controls. Although trained on a non-
clinical sample, the model demonstrated discriminative ability,
albeit modest in identifying patients and relatively stronger per-
formance in distinguishing siblings from patients. Including an
independent clinical cohort enabled us to explore whether the
model’s findings generalize beyond non-clinical samples. The
external validation supports the potential for translating insights
from subclinical PLEs to clinically relevant distinctions.

Our findings suggest that PLEs may reflect the convergence of
maladaptive cognitive appraisals, cumulative environmental bur-
dens, and disrupted brain network architecture. Among environ-
mental predictors, the environmental risk score emerged as the
strongest predictor — surpassing individual environmental variables
— by capturing the aggregate effect of multiple environmental
adversities. This supports the view that psychosis risk is associated
more with cumulative environmental load (Cougnard et al., 2007;
Stepniak et al.,, 2014) and highlighting the need to study these
exposures collectively rather than as isolated predictors (Vassos
et al,, 2020).

Negative-self and negative-others were the strongest predictors
of PLEs, consistent with prior work linking maladaptive self-
perceptions and interpersonal evaluations to psychotic symptoms
(Jaya, Ascone, & Lincoln, 2017; Kesting & Lincoln, 2013; Taylor
et al,, 2014). Similarly, a casual discovery analysis in the same but
smaller cohort showed that negative self-schemas exert a direct
influence on psychosis-proneness, suggesting that such cognitive
structures may act as vulnerability markers by shaping the impact
of environmental stressors (Sahin-Ilikoglu et al., 2025).

While threatening life events (e.g., a serious injury), discrim-
ination, and informal social control (e.g., collective intervention
to discourage deviant behaviors) were risk factors, social cohe-
sion and trust, and positive schemas acted as protective factors.
These findings suggest that social contexts may not be merely a
backdrop for risk but play an important role in modulating
whether subclinical risk remains benign or progresses toward
clinical expression.

Our findings revealed a distinct pattern of brain network alter-
ations associated with PLEs, particularly in betweenness centrality.
Increased centrality was observed in some cortical hubs like the
superior frontal gyrus, precuneus, and reduced centrality in peri-
calcarine cortex — contrasting with schizophrenia, where wide-
spread reductions in centrality are typical (Van Den Heuvel,
Mandl, Stam, Kahn, & Hulshoff Pol, 2010; Zhang et al., 2012).
Our findings may reflect early-stage reorganization, while some
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hubs become more central, others are downregulated. Such shifts
may reflect compensatory adaptations or transitional stages
(Drakesmith et al., 2015) in the network topology that emerge
before the more generalized connectivity disruptions seen in clin-
ical psychosis.

The left-lateralized network contributions to PLEs align with
findings of disrupted hemispheric asymmetry in schizophrenia
(Ribolsi, Daskalakis, Siracusano, & Koch, 2014; Ribolsi et al.,
2009), suggesting early white matter hemispheric imbalances as a
neurodevelopmental vulnerability.

The model’s ability to distinguish individuals with high versus
low PLEs reflects the value of integrating cognitive appraisals,
environmental exposures, and structural brain connectome fea-
tures. With an AUC of 0.75 and a specificity of 84.5%, the model
showed a moderate ability to identify low-risk individuals based on
multidimensional risk profiles. It also indicates that the well-
established psychosis-related factors in the literature are also crucial
for PLEs, reinforcing the view that PLEs lie on a continuum with
psychotic disorders.

The model demonstrated a modest discriminative ability in
distinguishing unaffected siblings from FEP patients, with high
specificity (0.842) but lower sensitivity (0.434). This asymmetry
may suggest that some of the predictors, while not always align-
ing with overt clinical presentations, are more consistently pre-
sent in siblings. These patterns may indicate a broader
vulnerability to psychopathology across the continuum rather
than pinpointing a clinical state. Additionally, their presence in
unaffected siblings may reflect underlying resilience traits. Thus,
the same variables predicting PLEs might serve dual roles: high-
lighting shared susceptibility across at-risk individuals while also
capturing protective mechanisms that enable some to remain
unaffected despite genetic or environmental vulnerabilities.
Therefore, siblings may have intact cognitive appraisal patterns,
social buffering, or preserved network structures that decrease
the symptom emergence and support mental health stability.
Supporting this, a recent study using classical twin modeling
within the same cohort has indicated that PLE frequency shows
environmental influences, whereas distress reflects moderate
heritability ($ahin-Cevik et al., 2025). Although genetic influ-
ence cannot be ruled out, our findings emphasize the weight of
environmental exposures and protective factors in PLE fre-
quency. Overall, we suggest that PLE-based models could help
identify both risk markers and resilience factors, which may be
valuable for early detection and preventive strategies. Further,
studies with larger samples, such as the Adolescent Brain Cog-
nitive Development (ABCD) study, could confirm this observa-
tion (Karcher & Barch, 2021).

Several limitations warrant consideration. First, we dichotom-
ized total CAPE-42 frequency scores at the median in the main
dataset. Although this helped compare low and high PLEs, dichot-
omizing continuous variables may lower statistical power and
oversimplify symptom severity variation, potentially affecting the
strength or accuracy of observed associations.

Second, recruiting participants such as twins, triplets, and
siblings may limit generalizability, and even though twin pairs
were treated as clusters to account for their similarity, it could
have contributed to differences in model performance when
applied to more genetically diverse cohorts, such as FEP patients,
their siblings, and healthy controls as it was done here. Third,
adding polygenic risk score (PRS) for schizophrenia into our
models, or selecting participants with PLEs and high PRS could
have led to different outcomes. Fourth, as the study aimed to
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develop predictive models rather than variance decomposition,
classical twin modeling was not applied. Future work could adopt
twin modeling to better disentangle genetic and environmental
contributions to PLEs.

Fifth, some variables — including substance use, trauma expos-
ure, and family psychiatric history — relied on self-reported data,
making them susceptible to recall bias, underreporting, and sub-
jective interpretation.

Sixth, our general intelligence measure did not incorporate a
verbal subtest, and it may not fully approximate general intelligence
as in dyad-based approaches that combine verbal and performance
domains (Girard, Axelrod, Patel, & Crawford, 2015).

Seventh, model performance was the weakest in distinguishing
patients from healthy controls. One possible explanation is that
predictors derived from PLEs in non-clinical samples may be more
sensitive to variation within healthy populations than to differences
that define patient-control status, thus making it more challenging
for the model to detect clear boundaries between these groups.
Additionally, our dataset lacked state-dependent clinical features
such as current symptom severity or medication use, which may
have further influenced the model performance. Nevertheless, the
model demonstrated high specificity when distinguishing patients
from their unmedicated siblings, which suggests that the discrim-
inative patterns it captured may extend beyond medication effects
and could reflect more stable, familial or trait-level markers. Eighth,
the unexpected protective effect of low parental class is challenging
to interpret, but may reflect resilience processes such as shift-and-
persist (Chen, Lin, Zhao, & Chi, 2025). Ninth, while our study
emphasizes the significance of negative-self, it does not clarify
cognitive-emotional processes underlying these associations. Fur-
ther research should address these gaps. Tenth, the small sample
sizes in external validation cohort may have further limited statis-
tical power (Figueroa, Zeng-Treitler, Kandula, & Ngo, 2012; Jo
et al., 2020).

Finally, model performance was evaluated using a single train-
test split, which may be sensitive to data partitioning. Nonetheless,
the inclusion of an independent external validation cohort
strengthens the generalizability of our findings. Future studies
could enhance robustness through repeated cross-validation or
bootstrapping.

Conclusion

The current study demonstrates that PLEs are associated with both
resilience and vulnerability markers across cognitive, environmen-
tal, and neurobiological domains. Considering these factors
together provides a better perspective on the mechanism under-
lying variation along the psychosis spectrum. Predictors identified
in a non-clinical sample partially generalized to clinical cohorts can
suggest that PLE-based models capture not only markers of risk but
also indicators of resilience that help explain why some individuals
remain unaffected despite familial vulnerability. Clinically, these
findings support preventive approaches to strengthen resilience
and address modifiable vulnerabilities in at-risk populations.
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found at http://doi.org/10.1017/S0033291725102201.
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