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Problem Corner
Solutions are invited to the following problems. They should be

addressed to Chris Starr c/o The Mathematical Association, Charnwood
Building, Holywell Park, Loughborough University Science and Enterprise
Park, Leicestershire, LE11 3AQ (e-mail: czqstarr@gmail.com) and should
arrive not later than 10th July 2026.

Proposals for problems are equally welcome. They should also be sent
to Chris Starr at the above address or e-mail and should be accompanied by
solutions and any relevant background information.

109.I (Michael Fox)
The opposite sides of the convex plane hexagon  are parallel

and equal in length. The circle passing through points ,  and , and the
circle passing through points and ,  and  meet at .

ABCDEF
A B C

C D E N

(a) Prove that the circle passing through ,  and  also passes through ;E F A N
(b) Find a fourth circle that passes through three other vertices of the

hexagon that also passes through .N

109.J (Stan Dolan)
For any positive integer , let  be the set of non-negative integers of

the form  for some integer . Let  be the least positive integer of
.

n S (n)
n − x2 x a (n)

S (n)
As an example,  and . Note that

divides one of the other elements of .
S (9) = {0,  5,  8,  9} a (9) = 5 a (9)

S (9)
Find all  such that  divides no other element of .n a (9) S (9)

109.K (Albert Natian)
An ant finds itself at a vertex of an -dimensional hypercube. Every

time the ant is at a vertex of the hypercube, it randomly chooses, with
probability , one of the  edges emanating from that vertex. It then walks
along that edge and takes one second to reach the next vertex.

n

1
n

Starting from a vertex, how long, on average, will it take the ant to
return to that vertex?

109.L (George Stoica)
Let , . Find all continuous functions

 such that  for all .
a, b, α, β > 0 a ≠ b

f : (0, ∞) → (0, ∞) f (x) = αf (ax) = βf (bx) x > 0
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Solutions and comments on 109.A, 109.B, 109.C, 109.D (March 2025)

109.A (Stan Dolan)
Show that for , the Fibonacci sequence modulo  is cyclic with

period . For example, the first 12 Fibonacci numbers modulo 4 are
1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0  .

k ≥ 1 2k

3.2k − 1

…

Solution:
The most common method of solution to this attractive problem was to

use a Fibonacci identity and then establish the result by induction. The
following is based on the solution offered by Z. Retkes.

Using the “addition formula” , where  is
the -th Fibonacci number, we may derive the following two formulas:

Fm + n = Fm − 1Fn + FmFn + 1 Fn
n

F2n = F2
n + 1 − F2

n − 1, (1)

F2n + 1 = F2
n + F2

n + 1. (2)
We may use these to establish that

 and F3.2k − 1 ≡ 0 (mod (2k)) F3.2k − 1 − 1 ≡ 1 (mod (2k))
as follows:
(a)  :F3.2k − 1 ≡ 0 (mod (2k))

If , then . Assuming the result is true for
, we find, using (1):
k = 2 F6 = 8 ≡ 0 (mod (22))

n = k

F3.2k = F2.(3.2k − 1) = F2
3.2k − 1 + 1 − F2

3.2k − 1 − 1 = (F3.2k − 1 + F3.2k − 1 − 1)2 − F2
3.2k − 1 − 1

= F2
3.2k − 1 + 2F3.2k − 1F3.2k − 1 − 1 ≡ 0(mod(2k +1)).

The statement (a) is therefore true by induction

(b)  :F3.2k − 1 ≡ 1 (mod (2k))
If , then . Assuming the result is true for

, we find, using (2), and the result from part (a):
k = 2 F5 = 5 ≡ 1 (mod (22))

n = k

F3.2k − 1 = F2.(3.2k − 1 − 1) + 1 = F2
3.2k − 1 − 1 + F2

3.2k − 1 ≡ 1 (mod (2k + 1)) .
If we now let  in the addition formula and apply both results,
we have:

m = 3.2k − 1

Fn+ 3.2k − 1 = F3.2k − 1 − 1Fn + F3.2k − 1Fn+ 1 ≡ 1.Fn + 0.Fn+ 1 ≡ Fn(mod(2k)).
Therefore, the sequence modulo  is cyclic with period .2k 3.2k − 1

G. Howlett investigated further and came up with the conjecture that,
for every , there exists a  and an integer  such that the
period of the Fibonacci sequence modulo  is given by  for all

.

m > 1 kmin > 0 c
mk c.mk − 1

k > kmin
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Moreover, when  is odd or a power of 2, then . As an
example, if we write the Fibonacci sequence modulo 3, the terms are
1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, … which has a period of 8, so we
have , , period , so . Other examples
of values of  are (5, 1, 20), (7, 1 16), (9, 1 24), (10, 3, 15). It
would be interesting to see if anyone can develop this further.

m kmin = 1

kmin = 1 m = 31 = 8 × 30 = 8 c = 8
(m, kmin, c)

Correct solutions were received from: D. Buckland, M. G. Elliott. M. Golushka,
M. Hennings, G. Howlett, A. Jha, J. A. Mundie, Z. Retkes and the proposer, S.
Dolan.

109.B (Seán Stewart)
Prove that

∑
∞

n = 1

1
22n sech2 ( π

2n + 1) =
4
π2

− cosech2 (π
2 ) .

Solution:
The following solution, based on that by a 6th former D. Buckland,

caught my eye:

It is known that . If we take logs of each side we get:
sin x

x
= ∏

∞

n = 1
cos

x
2n

ln (sin x) − ln x = ∑
∞

n = 1

ln (cos
x
2n) .

If we then differentiate both sides twice we obtain:

− cosec2 x +
1
x2

= − ∑
∞

n = 1

1
2n sec2 ( x

2n) .

Of course, care must be taken to justify each of these steps, but
J. Santmeyer found this formula in [1]. 

Replacing  with  givesx ix

∑
∞

n = 1

1
22n sech2 ( x

2n) =
1
x2

− cosech2 x.

Finally, replacing  with  achieves the desired result.x 1
2π

Reference
1. M. R. Spiegel, Mathematical Handbook p. 582, Schaum's Outline

Series, McGraw-Hill Book Company (1968).

Correct solutions were received from D. Buckland, N. Curwen, M. G. Elliott. M.
Hennings, G. Howlett,  R. Mortini and R. Rupp, J. A. Mundie, Z. Retkes, J.
Santmyer and the proposer, S. Stewart.
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109.C (Narendra Bhandari)
Prove:

∫
1

0 ∫
1

0

(1 + xy) log x (log y)2

(2x − 2) (1 − y) (1 − xy)2
 dx dy = ζ (2) + ζ (3) .

Solution:
The proposer, N. Bhandari established this result by using double

integration, but the other solvers used infinite series approaches, such as this
neat solution offered by M. Hennings.

1
(1 − xy)2

= ∑
∞

n = 0

(n + 1) (xy)n       Note that

1 + xy
(1 − xy)2

= ∑
∞

n = 0

(2n + 1) (xy)n

1 + xy
(1 − x) (1 − y) (1 − xy)2

= ∑
∞

r,s,n = 0

(2n + 1) xr + nys + n

with all these series being valid for . Since0 < x, y < 1

∫
1

0
xk ln x dx = −

1
(k + 1)2

 and  ∫
1

0
xk (ln x)2 dx =

2
(k + 1)3

for any , we deduce thatk > 0

∫
1

0 ∫
1

0

(1 + xy) lnx(lny)2

2(x − 1)(1 − y)(1 − xy)2
dx dy

= −
1
2 ∫

1

0 ∫
1

0
∑
∞

r,s,n= 0

(2n + 1)xr +nys +n lnx(lny)2dx dy

= ∑
∞

r,s,n= 0

(2n + 1)
(r + n + 1)2(s + n + 1)3

.

Since  for all  and all ,
the Monotone Convergence Theorem justifies this identity, provided that the
infinitesum converges. Thus

xr + nys + n ln x (ln y)2 ≤ 0 0 < x, y < 1 r, s, n ≥ 0

∫
1

0 ∫
1

0

(1 + xy) ln x (ln y)2

2 (x − 1) (1 − y) (1 − xy)2
dx dy

= ∑
∞

R,S = 1
∑

min(R,S) − 1

n = 0

2n + 1
R2S3

= ∑
∞

R,S = 1

(min (R, S))2

R2S3

= ∑
∞

S = 1
( ∑S

R = 1

R2

R2S3
+ ∑

∞

R = S + 1

S2

R2S3)
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= ∑
∞

S = 1

1
S2

+ ∑
∞

S = 1
∑
∞

R = S + 1

1
R2S

= ζ (2) + ∑
∞

R = 2
∑

R − 1

S = 1

1
R2S

= ζ (2) + ∑
∞

R = 2

HR − 1

R2
= ζ (2) + ∑

∞

R = 1

HR

(R + 1)2
. (1)

Now

∑
∞

n = 1

Hnt
n = −

ln (1 − t)
1 − t

 |t| < 1

and hence

∑
∞

n= 1

Hn

(n + 1)2
= ∫

1

0

ln t ln(1 − t)
1 − t

dt = ∫
1

0

ln t ln(1 − t)
t

dt =
1
2 ∫

1

0

(ln t)2

1 − t
dt

=
1
2 ∑

∞

n= 0
∫

1

0
tn(ln t)2dt = ∑

∞

n = 0

1
(n + 1)3

= ζ (3)

and upon substituting into (1) we achieve the desired result.

J. Santmeyer went further to establish the following:

Ia = ∫
 1

y= 0 ∫
 1

x = 0

(1 + axy) ln(x) ln2(y)
(2x − 2)(1 − y)(1 − xy)2

=
1 + a

2
[ζ (2) + ζ (3)] + (1 − a)ζ (4).

I leave the details for the interested reader.

Correct solutions were received from: D, Buckland, M. G. Elliott, M. Hennings, J. A.
Mundie, J. Santmeyer, S. Stewart and the proposer, N. Bhandari.

109.D (Dorin Marghidanu)
Prove that if , , , … , , , , , … , , with

, and , then
x1 x2 x3 xn > 0 p1 p2 p3 pn > 0

p1 + p2 + p3 +  … + pn = 1 n, r ∈ �
x1 + x2 +  …  + xn

n

≤ r
(p1x1 + p2x2 +… +pnxn)r + (p2x1 + p3x2 +… +p1xn)r +… +(pnx1 + p1x2 +… +pn− 1xn)r

n

≤ r
xr

1 + xr
2 +  …  + xr

n

n
.

Solution:
This problem was dealt with very neatly by A. Plaza as follows:

Since , the arithmetic mean of
,

is , so the first inequality is established by the
power mean inequality.

p1 + p2 + p3 +  …  + pn = 1
p1x1 + p2x2 +  …  + pnxn p2x1 + p3x2 +  …  p1xn,  …  , pnx1 + p1x2 +  …  + pn− 1xn

1
n (x1 + x2 +  …  + xn)
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For the second inequality, note that the function ,  is
convex, so using Jensen's inequality:

f : x → xr r ∈ �

(p1x1 + p2x2 +  …  + pnxn)r ≤ p1x
r
1 + p2x

r
2 +  …  + pnx

r
n

(p2x1 + p3x2 +  …  + p1xn)r ≤ p2x
r
1 + p3x

r
2 +  …  + p1x

r
n

…
…

(pnx1 + p1x2 +  …  + pn − 1xn)r ≤ pnx
r
1 + p1x

r
2 +  …  + pn − 1x

r
n.

Summing these inequalities and using , the
second inequality is established.

p1 + p2 + p3 +  …  + pn = 1

Correct solutions were received from: P. De, N. Curwen, S. Dolan, M. G. Elliott, M.
Hennings, G. Howlett, A. Plaza, S. Riccarelli, and the proposer, D. Marghidanu.

The following solutions were received after the publication date: 108.I, 108.J,
108.K, 108.L (M. G. Elliott), 108.I (C. Jones), 108.K, 108.L (S. Riccarelli).

On a final note, I would like to thank Gerry Leversha for giving me the
opportunity to be the Editor of Problem Corner and also for his support in getting me
started in the role. I would also thank Bill Richardson for his advice and expert
typesetting. I wish them all the best in their retirement.

10.1017/mag.2025.10153 ©  The Authors, 2025 C. STARR
Published by Cambridge University Press on behalf of The Mathematical Association

A Correction

The Author of Note 109.14 ‘Extensions of a Geometric Inequality’,
which appeared in the March 2025 Gazette, has pointed out two errors
which were overlooked.

The corrected versions are as follows:

• On page 157, the final equation should be

IA1 × IA2 × IA3 × IA4 = 2r3 ( 4R2 + r2 − r)
• The 11th line on page 158, should be

4r4

sin A1 sin A2
= 4r4 ×

2R2

r2 + r 4R2 + r2
= 2r3 4R2 + r2

We apologise to Dr Yun for these errors.
10.1017/mag.2025.10154 ©  The Authors, 2025
Published by Cambridge University Press on behalf of The Mathematical Association
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