Mixing and asymptotic distribution modulo 1

RUSSELL LYONS†

Department of Mathematics, Stanford University, Stanford CA 94305, USA

(Received 16 October 1986)

Abstract. If μ is a probability measure which is invariant and ergodic with respect to the transformation $x \mapsto qx$ on the circle \mathbb{R}/\mathbb{Z} , then according to the ergodic theorem, $\{q^n x\}$ has the asymptotic distribution μ for μ -a.e. x. On the other hand, Weyl showed that when μ is Lebesgue measure, λ , and $\{m_j\}$ is an arbitrary sequence of integers increasing strictly to ∞ , the asymptotic distribution of $\{m_j x\}$ is λ for λ -a.e. x. Here, we investigate the asymptotic distributions of $\{m_j x\} \mu$ -a.e. for fairly arbitrary $\{m_j\}$ under some strong mixing conditions on μ . The result is a kind of stable ergodicity: the distributions are obtained from simple operations applied to μ . The ideas extend to the situation of a sequence of transformations $x \mapsto q_n x$ where invariance is not present. This gives us information about many Riesz products and Bernoulli convolutions. Finally, we apply the theory to resolve some questions about H-sets.

1. Introduction

Suppose that T is a continuous transformation on a compact metric space X. If μ is a T-invariant Borel probability measure on X, then the ergodic theorem says that for all $f \in L^1(\mu)$ and for μ -a.e. x, the limit as $n \to \infty$ of

$$\frac{1}{N}\sum_{n\leq N}f(T^nx)$$

exists. If we restrict our attention to $f \in C(X)$, or a countable dense subset thereof, we see that $\{T^n x\}_{n\geq 1}$ has an asymptotic distribution, call it σ_x , for μ -a.e. x: that is, for μ -a.e. x,

$$\frac{1}{N}\sum_{n\leq N} f(T^n x) \to \int_X f \, d\sigma_x \qquad \text{for all } f \in C(X). \tag{1}$$

We write $\{T^n x\} \sim \sigma_x \mu$ -a.e. Evidently, σ_x is T-invariant and integrating (1) with respect to μ shows that

$$\mu = \int_{X} \sigma_x \, d\mu(x) \tag{2}$$

in the weak sense. The measure μ is ergodic if and only if $\sigma_x = \mu$ a.e. The Bogoliouboff theory [12] shows that in any case σ_x is ergodic μ -a.e. The integral (2) is thus a convex combination of invariant measures in terms of ergodic measures (the extreme points).

[†] Partially supported by an AMS Research Fellowship.

We are interested in the case where T is the transformation $T_q: x \mapsto qx$ on the circle $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, $q \in \mathbb{Z}$, $|q| \ge 2$. The additional structure on the circle interacts with ergodic theory in many interesting ways. We intend to explore here the asymptotic distribution of $\{m_jx\}$ for sequences other than simply $m_j = q^j$. For example, Weyl [17, § 7] showed that when μ is Lebesgue measure, λ , and $\{m_j\}$ is an arbitrary sequence of integers increasing strictly to ∞ , then $\{m_jx\} \sim \lambda$ for λ -a.e. x. Now given an arbitrary sequence $\{m_j\}$ and measure μ , $\{m_jx\}$ need not possess an asymptotic distribution on a set of non-zero μ -measure. However, there always does exist [8] a subsequence $\{m'_j\}$ of $\{m_j\}$, which we denote simply by $\{m'_j\} \subset \{m_j\}$, such that even for any further subsequence $\{m''_j\} \subset \{m'_j\}$ and for μ -a.e. x, the sequence $\{m''_jx\}$ has an asymptotic distribution σ_x . Hence we shall restrict our attention to sequences $\{m_j\}$ already enjoying this property of stability: that is, we assume that there exists $\sigma: \mathbb{T} \to M(\mathbb{T})$ such that for all $\{m'_j\} \subset \{m_j\}$ and for μ -a.e. $x \{m'_jx\} \sim \sigma_x$. We remark that if $\{q^j\}$ itself is to have this property for a q-invariant μ , then it is necessary (though not sufficient) that μ be q-mixing:

or, equivalently,

$$\forall a, b \in \mathbb{Z} \ \hat{\mu}(aq^n + b) \rightarrow \hat{\mu}(a)\hat{\mu}(b),$$

where

$$\hat{\mu}(k) = \int_{\mathsf{T}} e(-kx) \ d\mu(x), \ e(x) = e^{2\pi i x}.$$

We shall impose an even stronger mixing condition on μ in order to determine σ_x for any (stable) $\{m_j\}$. Now σ_x is determined by its Fourier-Stieltjes coefficients, $\hat{\sigma}_x(r), r \in \mathbb{Z}$. By (1),

$$\frac{1}{J}\sum_{j\leq J} e(-rm'_j x) \to \hat{\sigma}_x(r) \qquad \mu\text{-a.e.}$$

for all $\{m'_i\} \subset \{m_i\}$, whence

$$\forall r \in \mathbb{Z} \ e(-rm_j x) \to \hat{\sigma}_x(r) \text{ weak}^* \text{ in } L^{\infty}(\mu).$$
(3)

(Here, we regard $L^{\infty}(\mu)$ as the dual of $L^{1}(\mu)$.) The problem is thus equivalent to determining the simultaneous weak^{*} limits of $e(-rm_{i}x)$ in $L^{\infty}(\mu)$.

If we integrate (3) and let Σ be the measure such that $\hat{\Sigma}(r) = \lim_{j \to \infty} \hat{\mu}(-rm_j x)$, then we obtain a formula analogous to (2):

$$\Sigma = \int_{\mathbb{T}} \sigma_x \, d\mu(x). \tag{3a}$$

Another way of viewing (3) and (3a) is given in [10].

The reader may find it easier to follow our proofs if he first works out the following set of examples, in which the most important phenomena are present. We take q = 3 and μ the Riesz product [5, p. 107]

$$\mu = \prod_{k\geq 0} (1 + \operatorname{Re} \{ \alpha e(3^k x) \}),$$

where $|\alpha| \le 1$. If $m_j = 3^j$, then $\sigma_x = \mu$ a.e. If $m_j = 3^{2j} + 3^j$, then $\sigma_x = \mu * \mu = \mu^2$ a.e. If $m_j = 3^j + 1$, then $\sigma_x = \mu * \delta(x)$ a.e., where $\delta(x)$ is the unit mass at x. If $m_j = 2 \cdot 3^j$, then σ_x is the measure such that $\hat{\sigma}_x(r) = \hat{\mu}(2r)$ a.e. If

$$m_j = \frac{3^{j-1}}{2} = 3^{j-1} + 3^{j-2} + \cdots + 3 + 1,$$

then σ_x is the measure such that

$$\hat{\sigma}_x(r) = \begin{cases} \hat{\omega}(r/2) & \text{if } r \text{ is even,} \\ 0 & \text{if } r \text{ is odd,} \end{cases}$$

where $\omega = \mu * \delta(-x)$.

2. The invariant case

For any integer q, we let T_q be the operator on $M(\mathbb{T})$ such that

$$(T_q\omega)(n) = \hat{\omega}(qn) \quad (n \in \mathbb{Z}, \omega \in M(\mathbb{T})).$$

If $q \neq 0$, we define T_a^{-1} by

$$(T_q^{-1}\omega)^{\hat{}}(n) = \begin{cases} \hat{\omega}(n/q) & \text{if } q \mid n, \\ 0 & \text{if } q \nmid n, \end{cases}$$

while if q = 0, we set $T_0^{-1}\omega = \hat{\omega}(0)\lambda$, where λ is Lebesgue measure. Thus for $q \neq 0$, $T_q \circ T_q^{-1} = id$. It is easily checked that

$$\omega * T_q^{-1} \omega' = T_q^{-1} [T_q \omega * \omega'].$$
(4)

The hypotheses of our first theorem below are immediately seen to be satisfied by Riesz products,

$$\mu = \prod_{k\geq 0} (1 + \operatorname{Re} \{ \alpha e(q^k x) \}), \quad |\alpha| \leq 1, \quad |q| \geq 3,$$

and it is not difficult to verify them for Bernoulli convolutions ([4, p. 182])

$$\mu = \underset{k \ge 1}{*} (p\delta(0) + (1-p)\delta(2^{-k})), \quad 0$$

(here, q = 2), for example. After the proof of the theorem, we shall discuss the hypotheses more thoroughly, including their mixing character.

THEOREM 1. Let μ be a q-invariant probability measure such that

$$\forall b \in \mathbb{Z} \lim_{n \to \infty} \sup_{a \in \mathbb{Z}} |\hat{\mu}(aq^n + b) - \hat{\mu}(a)\hat{\mu}(b)| = 0$$
(5)

and

given any sequence $\{e(m_j x)\}_{j\geq 1}$ which does not converge to 0 weak* in $L^{\infty}(\mu)$, there exists a subsequence $\{m'_j\} \subset \{m_j\}$ and integers b, a_j , n_j (6) such that $n_j \rightarrow \infty$ and

$$m_j'=a_jq^{n_j}+b.$$

Then if $|m_j| \rightarrow \infty$ is such that (3) holds, there exist integers r, b, an integer $l \ge 1$, and non-zero integers s_1, \ldots, s_l such that

$$\sigma_x = T_r^{-1} [\delta(bx) * T_{s_1} \mu * \cdots * T_{s_l} \mu] \qquad \mu\text{-a.e.}$$
(7)

Ξ.

We shall find it handy to use the equivalence of (6) to

if
$$\lim_{n \to \infty} \lim_{j \to \infty} d_n(m_j) = \infty$$
, then $e(m_j x) \to 0$ weak* in $L^{\infty}(\mu)$, (8)

where $d_n(m) = |m - q^n \mathbb{Z}|$, i.e., the distance from *m* to the multiples of q^n . It is straightforward to show that (6) implies (8). Conversely, suppose that (8) holds and let $e(m_j x) \neq 0$ weak* in $L^{\infty}(\mu)$. Then by compactness, there is a subsequence $\{e(m_j^n x)\}$ having a non-zero weak* limit. Let $\{m_j^m\} \subset \{m_j^n\}$ be such that for all $n \ge 1$, $\lim_{j\to\infty} d_n(m_j^m)$ exists. Then $e(m_j^m x) \neq 0$ and by (8), since $\lim_{j\to\infty} d_n(m_j^m)$ is increasing in *n*, for large enough *n*, say n > N, we have $\lim_{j\to\infty} d_n(m_j^m) = \tilde{b} < \infty$. This means that for n > N and for $j \ge J(n)$, we can write $m_j^m = \tilde{a}_j q^n + b$, where $b = \pm \tilde{b}$ and is fixed without loss of generality. In particular, $m_{J(n)}^m = \tilde{a}_{J(n)}q^n + b$ for n > N. Thus, $m'_k = m_{J(N+k)}^m$ defines the required sequence.

Proof. Let $|m_j| \to \infty$ be such that (3) holds. If $\sigma_x = \lambda \mu$ -a.e., then we take r = 0 in (7) and we are done. In the contrary case, there is an $r \neq 0$ such that $\hat{\sigma}_x(r) \neq 0$. By a diagonal procedure, we may find a subsequence $\{m'_j\}$ – which we shall take to be the whole sequence without loss of generality – such that for all $n \ge 1$ and all r, $\lim_{j\to\infty} d_n(rm_j)$ exists. Thus by (8), the set

$$E = \left\{ r: \lim_{n \to \infty} \lim_{j \to \infty} d_n(rm_j) < \infty \right\}$$

is not just {0}. We claim that $E = r_0 \mathbb{Z}$ for some $r_0 > 0$. It suffices to show that E is a subgroup of \mathbb{Z} . But if $r, s \in E$, then $d_n((r-s)m_j) \le d_n(rm_j) + d_n(sm_j)$, whence $r-s \in E$ and so E is indeed a subgroup. It follows that if r is not a multiple of r_0 , then $\hat{\sigma}_x(r) = 0$ μ -a.e., whence there exists ν_x such that $\sigma_x = T_{r_0}^{-1}\nu_x \mu$ -a.e.

We must now determine ν_x . Since $r_0 \in E$, we can, by replacing $\{m_j\}$ by a subsequence if necessary, suppose that there are integers a_j , n_j , b_0 such that $r_0m_j = a_jq^{n_j} + b_0$, $n_j \to \infty$, $q \not\mid a_j$, and also that $\{e(ra_jx)\}_j$ has a weak* limit in $L^{\infty}(\mu)$ for each r. Let $\hat{\Sigma}_1(r) = \lim_{j\to\infty} \hat{\mu}(ra_j)$. We claim that

$$\forall r \in \mathbb{Z} \ \hat{\nu}_x(r) = \hat{\Sigma}_1(r) \ e(-rb_0 x) \quad \mu\text{-a.e.}$$
(9)

Indeed, for all s, we have

$$\int_{T} \hat{\nu}_{x}(r) \ e(-sx) \ d\mu(x) = \int \hat{\sigma}_{x}(rr_{0}) \ e(-sx) \ d\mu(x)$$

=
$$\lim_{j \to \infty} \int e(-rr_{0}m_{j}x) \ e(-sx) \ d\mu(x) = \lim_{j \to \infty} \hat{\mu}(rr_{0}m_{j}+s)$$

=
$$\hat{\Sigma}_{1}(r)\hat{\mu}(rb_{0}+s) \quad (by (5))$$

=
$$\int \hat{\Sigma}_{1}(r) \ e(-rb_{0}x) \ e(-sx) \ d\mu(x).$$

From (9), it follows that $\nu_x = \delta(b_0 x) * \Sigma_1 \mu$ -a.e. and it remains to determine Σ_1 .

Since $\Sigma_1 \neq \lambda$ (otherwise, $\sigma_x = \lambda$ a.e.), we can argue as in the first paragraph to obtain $r_1 > 0$ such that $\Sigma_1 = T_{r_1}^{-1} \Sigma'_1$, where, taking a subsequence of $\{a_j\}$ if necessary as in the second paragraph, we can assume that

$$r_1 a_j = a_j^{(2)} q^{n'_j} + s'_1, n'_j \to \infty, \quad q \nmid a_j^{(2)} \quad \text{or} \quad a_j^{(2)} = 0,$$

and $\hat{\Sigma}'_1(r) = \hat{\mu}(rs'_1)\hat{\Sigma}_2(r)$, where $\hat{\Sigma}_2(r) = \lim_{j \to \infty} \hat{\mu}(ra_j^{(2)})$. Thus, $\Sigma_1 = T_{r_1}^{-1}[T_{s_i}\mu * \Sigma_2]$. Note that $s'_1 \neq 0$. We then proceed for Σ_2 as we did for Σ_1 , and so on. This process ends if and only if $a_j^{(l+1)} \equiv 0$ for some *l*. We claim the process must indeed end. Otherwise, for each *r*, $|\hat{\sigma}_x(r)|$ would be bounded by $[\sup_{n\neq 0} |\hat{\mu}(n)|]^l$ for each *l*; since $\sigma_x \neq \lambda$, it follows that $\sup_{n\neq 0} |\hat{\mu}(n)| = 1$. Thus there exists $\{N_j\}$ such that $|\hat{\mu}(N_j)| \rightarrow 1$. By (6), (5), and *q*-invariance, there is then a $b \neq 0$ such that $|\hat{\mu}(b)| = 1$. This, of course, implies that μ has finite support and that $\hat{\mu}$ is periodic, which contradicts (6).

We have thus obtained the expression

$$\sigma_{x} = T_{r_{0}}^{-1} [\delta(b_{0}x) * T_{r_{1}}^{-1} [T_{s_{1}}\mu * T_{r_{2}}^{-1} [T_{s_{2}}\mu * \cdots * T_{r_{1}}^{-1} T_{s_{1}}\mu]] \dots] \quad \mu\text{-a.e.}$$

Use of (4) *l* times yields (7) with $r = r_0 r_1 \cdots r_l$, $b = b_0 r_1 \cdots r_l$, $s_i = s'_i r_{i+1} r_{i+2} \cdots r_l$ for $1 \le i < l$, and $s_l = s'_l$.

Recall that if T is a measure-preserving transformation of a Lebesgue space (X, \mathcal{B}, μ) , then T (or μ) is called *exact* if the σ -field

$$\operatorname{Tail}(\mathscr{B}) \stackrel{\mathrm{def}}{=} \bigcap_{n \ge 0} T^{-n} \mathscr{B}$$

is trivial, i.e. consists only of sets of measure 0 or 1 [3, p. 289]. (This is the same as saying that Kolmogorov's 0-1 law holds.) There are several convenient equivalent conditions which depend on the following notions. If ξ is a partition of X, let $\mathscr{B}(\xi)$ denote the smallest complete sub- σ -field of \mathscr{B} containing those measurable sets which are unions of elements of ξ . We say that ξ is trivial if $\mathscr{B}(\xi)$ is trivial. Let Tail (ξ) denote the partition $\bigwedge_{n\geq 0}\bigvee_{k\geq n} T^{-k}\xi$. For a set A, let Tail (A) = $\bigcup_{n\geq 0} T^{-n}T^nA$. Thus, Tail (\mathscr{B}) = {Tail (A): $A \in \mathscr{B}$ }. It is not hard to demonstrate that the following conditions are equivalent (see [3, pp. 283-4], [15], or [16, Chap. VII]):

- (i) T is exact;
- (ii) for any finite partition ξ , Tail (ξ) is trivial;
- (iii) for every set A of positive measure, $\mu(Tail(A)) = 1$;
- (iv) if $\langle f, g \rangle$ denotes $\int f \bar{g} d\mu$, then

$$\forall g \in L^{2}(\mu) \lim_{n \to \infty} \sup_{\substack{f \in L^{2}(\mu) \\ \|f\|_{2} \le 1}} |\langle T^{n}f, g \rangle - \langle f, 1 \rangle \langle 1, g \rangle| = 0;$$
(10)

(v) T is K-mixing, i.e. if ξ is any finite partition, then

$$\forall r \ge 1 \quad \forall B \in \bigvee_{k \le r} T^{-k} \xi \quad \lim_{n \to \infty} \sup_{A \in \bigvee_{k \ge n} T^{-k} \xi} |\mu(A \cap B) - \mu(A)\mu(B)| = 0.$$
(11)

Furthermore, if ξ is some finite generating partition (i.e., $\mathscr{B}(\bigvee_{n\geq 0} T^{-n}\xi) = \mathscr{B}$) and Tail (ξ) is trivial or (11) holds, then T is exact.

In our case, the partition

$$\xi_{q} = \begin{cases} \left\{ \left[\frac{i}{q}, \frac{i+1}{q} \right] : 0 \le i < q \right\} & \text{if } q > 0, \\ \left\{ \left[\frac{1}{|q|+1} + \frac{i}{|q|}, \frac{1}{|q|+1} + \frac{i+1}{|q|} \right] : 0 \le i < |q| \right\} & \text{if } q < 0. \end{cases} \end{cases}$$

R. Lyons

is generating for $T = T_q$ since $\bigvee_{n\geq 0} T_q^{-n} \xi_q$ is the discrete partition $\{\{x\}: x \in T\}$. Evidently, our hypothesis (5) is a bit weaker than (10), i.e., than exactness. By using the partition ξ_q and (11), we immediately deduce the exactness of any Bernoulli convolution

$$\mu = \underset{k \ge 1}{*} [p_0 \,\delta(0) + p_1 \,\delta(q^{-k}) + \dots + p_{|q|-1} \,\delta((|q|-1)q^{-k})], \quad (12)$$

where $0 \le p_i \le 1$, $p_0 + p_1 + \cdots + p_{|q|-1} = 1$, and $p_i \ne 0$ for at least two *i*'s. (Note that when q < 0,

$$\mu = \delta\left(\frac{1}{|q|+1}\right) * \mu * \left(\underset{k \text{ odd}}{*} \delta((|q|-1)|q|^{-k})\right)$$
$$= \delta\left(\frac{1}{|q|+1}\right) * \left[\underset{k \text{ even}}{*} \sum_{i=0}^{|q|-1} p_i \delta(i|q|^{-k})\right] * \left[\underset{k \text{ odd}}{*} \sum_{i=0}^{|q|-1-i} \delta(i|q|^{-k})\right].$$

Also, (\mathbb{T}, μ, T_q) is metrically isomorphic to $(\mathbb{T}, \nu, T_{|q|})$ via the mapping

$$\sum_{k\geq 1}\varepsilon_k q^k\mapsto \sum_{k\geq 1}\varepsilon_k |q|^-$$

 $(0 \le \varepsilon_k < |q|)$, where $\nu = *_{k\ge 1} \sum_{i=0}^{|q|-1} p_i \delta(i|q|^{-k})$.) We remark that an approximation argument quickly shows that Riesz products satisfy (10) as well. A stronger result [11, 13] is that Riesz products are isomorphic to Bernoulli shifts.

The hypothesis (5) is also equivalent to the following kind of tameness [4, Chapter 6] of μ : if $e(a_nq^nx) \rightarrow \chi(x)$ weak* in $L^{\infty}(\mu)$, then χ is constant a.e. We leave this as an exercise.

We now turn to the hypothesis (6). Rather than being of a purely mixing character, it links an arbitrary sequence $\{m_j\}$ to the transformation T_q . It too can be thought of as a tameness condition, for if μ satisfies (5) and (6), then μ is 'weakly tame': if $e(m_j x) \rightarrow \chi(x)$ weak* in $L^{\infty}(\mu)$, then $\chi(x) = ce(nx)$ a.e. for some constant c and some integer n. In any case, it is obvious that Riesz products satisfy (6) and this is not hard to see for Bernoulli convolutions (12) with $p_0 p_1 \neq 0$. Indeed, we shall establish (6) assuming that $gcd\{i-i_0: p_i \neq 0\} = 1$, where i_0 is any subscript such that $p_{i_0} \neq 0$. First note that if $e(m_j x) \neq {}^{w*} 0$ in $L^{\infty}(\mu)$, then for some m,

$$\hat{\mu}(m_j+m)=\int e(-m_j x) e(-m x) d\mu(x) \neq 0.$$

By replacing the sequence $\{m_j\}$ with $\{m_j + m\}$, we may assume that m = 0. Now if $\hat{\mu}(m_j) \neq 0$, then

$$\prod_{k\geq 1}\left(\sum_{i}p_{i}\,e(-im_{j}q^{-k})\right)\neq 0 \quad \text{as } j\rightarrow\infty.$$

By taking a subsequence if necessary, we may assume that for all *i* and *k*, $\lim_{j\to\infty} e(-im_j q^{-k})$ and $\lim_{j\to\infty} \hat{\mu}(m_j)$ exist. It follows that

$$\infty > \lim_{j \to \infty} \sum_{k \ge 1} \left[1 - \left| \sum_{i} p_i e(-im_j q^{-k}) \right| \right] \ge \sum_{k \ge 1} \left[1 - \left| \sum_{i} p_i \lim_{j \to \infty} e(-im_j q^{-k}) \right| \right],$$

so that for some θ_k ,

$$\lim_{k\to\infty} e(\theta_k) \sum_i p_i \lim_{j\to\infty} e(-im_j q^{-k}) = 1.$$

Thus, for $p_i \neq 0$,

$$\lim_{k \to \infty} e(\theta_k) \lim_{i \to \infty} e(-im_j q^{-k}) = 1.$$

If $p_{i_0} \neq 0$, we then have $\lim_{k\to\infty} \lim_{j\to\infty} e(-(i-i_0)m_jq^{-k}) = 1$, so that the hypothesis $gcd\{i-i_0: p_i \neq 0\} = 1$ implies that $\lim_{k\to\infty} \lim_{j\to\infty} e(-m_jq^{-k}) = 1$, which is the same as $\lim_k \lim_j ||m_jq^{-k}|| = 0$, where $||x|| = |x-\mathbb{Z}|$. We have only to apply the following lemma to be able to conclude (8) and thus (6). (More precise information on sequences $\{m_j\}$ such that $\hat{\mu}(m_j) \to 0$ is given in [2] for certain μ .)

LEMMA 2. $\lim_{k\to\infty} \overline{\lim}_{j\to\infty} d_k(m_j) = \infty \Leftrightarrow \overline{\lim}_{k\to\infty} \overline{\lim}_{j\to\infty} ||m_j q^{-k}|| > 0.$

Proof. Since $||m_jq^{-k}|| = |q|^{-k}d_k(m_j)$, the implication (\Leftarrow) is immediate. Conversely, suppose that $\lim_k \overline{\lim}_j d_k(m_j) = \infty$. Then for all N there is a k = k(N) such that $\overline{\lim}_j d_k(m_j) \ge N$. Let $\{j_l\}$ be a sequence such that for all l, $d_k(m_{j_l}) = N_1 \ge N$. Let n = n(N) be the least integer such that $|q|^n/2 \ge N_1$. Then $k \ge n$ and for all l, $d_n(m_{j_l}) = d_k(m_{j_l}) = N_1$ and $||m_{j_l}q^{-n}|| = |q|^{-n}d_n(m_{j_l}) = |q|^{-n}N_1 > 1/|2q|$. Since $n(N) \Rightarrow \infty$ as $N \to \infty$, it follows that $\overline{\lim}_k \overline{\lim}_l \|m_{j_l}q^{-k}\| \ge 1/|2q|$.

Suppose, on the other hand, that the Bernoulli convolution (12) satisfies $gcd\{i-i_0: p_i \neq 0\} = r_0 \neq 1, p_{i_0} \neq 0$. We may assume that $i_0 = \min\{i: p_i \neq 0\}$. Consider the measure

$$\mu * \delta\left(-\frac{i_0}{q-1}\right) = \underset{k\geq 1}{*} \left[\left(\sum_i p_i \,\delta(iq^{-k})\right) * \delta(-i_0 q^{-k}) \right]$$
$$= \underset{k\geq 1}{*} \left(\sum_i p_i \,\delta((i-i_0)q^{-k})\right) = T_{r_0}\nu,$$

where

$$\nu = \underset{k\geq 1}{*} \sum_{i} p_i \,\delta\left(\frac{i-i_0}{r_0} \, q^{-k}\right).$$

By definition of r_0 and what we've just proved, ν satisfies (6) and, of course, (5). Since Theorem 1 applies to ν , we claim that if (3) holds for μ , then there exist $t \in \mathbb{T}$, $r, b \in \mathbb{Z}, \ l \in \mathbb{N}^+, \ s_1, \ldots, \ s_l \in \mathbb{Z}^+$, and a function $\zeta : \mathbb{T} \to \mathbb{T}$ such that $T_{r_0} \circ \zeta = \text{id}$ and $\sigma_x = \delta(t) * T_r^{-1} [\delta(b\zeta(x)) * T_{s_1}\nu * \cdots * T_{s_l}\nu] \quad \mu\text{-a.e.}$ (13)

This follows from the following general observations.

First, if $\mu = \delta(t') * \nu$, $e(-rm_j x) \rightarrow \hat{\sigma}_{x,\nu}(r)$ weak* in $L^{\infty}(\nu)$, and $e(-rm_j x) \rightarrow \hat{\sigma}_{x,\mu}(r)$ weak* in $L^{\infty}(\mu)$, then let $\{m'_i\} \subset \{m_i\}$ be such that $m'_i t' \rightarrow t$. It is easy to see that

$$\sigma_{x,\mu} = \delta(t) * \sigma_{x-t',\nu} \quad \mu \text{-a.e.}$$

Second, if $\mu = T_{r_0}\nu$ ($r_0 \neq 0$), then using the same notation, we claim that

$$\sigma_{x,\mu} = T_{r_0} \sigma_{\zeta(x),\nu} \quad \mu \text{-a.e.}$$

for some function $\zeta: \mathbb{T} \to \mathbb{T}$ with $T_{r_0} \circ \zeta = \mathrm{id}$. For we have $\{m_j x\} \sim \sigma_{x,\nu}$ ν -a.e. without loss of generality; let $E = \{x: \{m_j x\} \sim \sigma_{x,\nu}\}$. Since $\nu E = 1$, we have $\mu T_{r_0} E = 1$. Let $\zeta: \mathbb{T} \to \mathbb{T}$ be any map such that $\zeta(x) \in E$ for $x \in T_{r_0} E$ and $T_{r_0} \circ \zeta = \mathrm{id}$. Then for μ -a.e. x, we have $\zeta(x) \in E$, so that $\{m_j \zeta(x)\} \sim \sigma_{\zeta(x),\nu}$, whence $\{m_j x\} = \{r_0 m_j \zeta(x)\} \sim T_{r_0} \sigma_{\zeta(x),\nu}$, as desired. R. Lyons

Now if ν is q-invariant and satisfies (5) and (6), suppose that $\mu = \delta(t') * T_{r_0}\nu$, $r_0 \neq 0$. With notation as above, we have

$$\sigma_{x,\mu} = \delta(t_1) * \sigma_{x-t',T_{r_0}\nu} = \delta(t_1) * T_{r_0}\sigma_{\zeta_1(x-t'),\nu} \quad \mu\text{-a.e.}$$

for some $t_1 \in \mathbb{T}$ and some ζ_1 with $T_{r_0} \circ \zeta_1 = \text{id. By } (7)$, we may then write

$$\sigma_{x,\mu} = \delta(t_1) * T_{r_0} [T_{r'}^{-1} [\delta(b'\zeta_1(x-t')) * T_{s_1'}\nu * \cdots * T_{s_1'}\nu]] \quad \mu\text{-a.e.}$$

= $\delta(t_1) * T_p T_r^{-1} [\delta(b'\zeta_1(x-t')) * T_{s_1'}\nu * \cdots * T_{s_1'}\nu] \quad \mu\text{-a.e.},$

where r and p are relatively prime. In this case, T_p and T_r^{-1} commute, so that

$$\sigma_{x,\mu} = \delta(t_1) * T_r^{-1} [\delta(pb'(\zeta(x) + t_2)) * T_{ps_1} \nu * \cdots * T_{ps_1} \nu] \quad \mu\text{-a.e.},$$

where t_2 is chosen as any (fixed) point such that $T_{r_0}t_2 = -t'$ and $\zeta(x) = \zeta_1(x-t') - t_2$; we then have $T_{r_0} \circ \zeta = id$. Therefore

$$\sigma_{\mathbf{x},\mu} = \delta(t) * T_r^{-1} [\delta(b\zeta(\mathbf{x})) * T_{\mathbf{s}_1} \nu * \cdots * T_{\mathbf{s}_l} \nu] \quad \mu\text{-a.e.},$$

where t is any point such that $T_r(t-t_1) = pb't_2$, b = pb' and $s_i = ps'_i$ $(1 \le i \le l)$. This gives (13).

Other examples of q-invariant measures satisfying (5) and (6) are given by generalized Riesz products: if P(x) is a trigonometric polynomial

$$P(x) = 1 + \operatorname{Re}\left\{\sum_{n=D_1}^{D_2} \alpha_n e(nx)\right\}$$

satisfying $P(x) \ge 0$, $0 < D_2/D_1 \le (|q|-1)/2$, and $\alpha_n = 0$ if q | n, then $\mu = \prod_{k \ge 0} P(q^k x)$ is seen to be q-invariant and to satisfy (5) and (6). In general, if ν is a q-invariant measure satisfying (5) and (6), then so is $\mu = T_{r_0}^{-1} \nu$ for any r_0 relatively prime to q.

We wonder whether hypothesis (6) can be eliminated from Theorem 1, subject to an appropriate modification of (7).

3. Products of transformations

In the non-invariant case, the following kind of phenomenon occurs. Suppose that

$$\mu = \prod_{k>0} \left(1 + \operatorname{Re} \left\{ \alpha_k \, e(q^k x) \right\} \right)$$

and $\alpha_k \rightarrow \alpha$; then $\{q^k x\} \sim \rho \mu$ -a.e., where $\rho = \prod_{k \ge 0} (1 + \operatorname{Re} \{\alpha e(q^k x)\})$. Although ρ may be singular to μ , nevertheless ρ is clearly closely related to μ . Once we give up invariance, our problem is almost as easy to treat for products of transformations $T_{q_n}T_{q_{n-1}} \cdots T_{q_1}$ as for iterates T_q^n . Thus, we proceed directly to this general case.

Given $|q_n| \ge 2$, $Q_n = q_1 q_2 \cdots q_n$, $Q_0 = 1$, let $\alpha(m)$ be the largest integer α such that $Q_{\alpha}|m$; put $\alpha(0) = 0$. We denote

$$\delta_n(m) = \left| \frac{m}{Q_{\alpha(m)}} - \frac{Q_{n+\alpha(m)}}{Q_{\alpha(m)}} \mathbb{Z} \right|;$$

thus $\delta_n(m) \neq 0$ if $mn \neq 0$.

THEOREM 3. Let μ be a probability measure, $|q_n| \ge 2$, $\sup_n |q_n| < \infty$, $Q_n = q_1 q_2 \cdots q_n$, $Q_0 = 1$. Suppose that

$$\forall b \in \mathbb{Z} \lim_{\substack{n \to \infty \\ p \in \mathbb{N}}} \sup_{\substack{a \in \mathbb{Z} \\ p \in \mathbb{N}}} \left| \hat{\mu}(aQ_{n+p} + bQ_p) - \hat{\mu}(aQ_{n+p})\hat{\mu}(bQ_p) \right| = 0,$$
(14)

if
$$\lim_{n \to \infty} \lim_{j \to \infty} \delta_n(m_j) = \infty$$
, then $e(m_j x) \stackrel{w^*}{\to} 0$ in $L^{\infty}(\mu)$, (15)

and

$$\overline{\lim_{n\to\infty}}|\hat{\mu}(n)| < 1.$$
(16)

605

Π

Then if $|m_j| \rightarrow \infty$ is such that (3) holds, there exist $r, b \in \mathbb{Z}, l \in \mathbb{N}^+$, and $s_1, \ldots, s_l \in \mathbb{Z}^*$ such that

$$\sigma_{x} = T_{r}^{-1} \left[\delta(bx) * \left(\begin{smallmatrix} l \\ * \\ i = 1 \end{smallmatrix} \right) T_{s_{i}} \nu_{i} \right) \right] \quad \mu\text{-a.e.},$$
(17)

where for each i, there is a sequence $n_i \uparrow \infty$ such that

$$\forall k \in \mathbb{Z} \quad \hat{\mu}(kQ_{n_j}) \to \hat{\nu}_i(k). \tag{18}$$

In other words, σ_x is obtained from the weak^{*} limit points of $\{T_{Q_n}\mu\}_{n\geq 0}$.

We shall first establish

LEMMA 4. Let $\sup |q_n| < \infty$ and $\{m_j\}$ be a sequence of integers such that for all $n \ge 1$ and all r, $\lim_{j\to\infty} \delta_n(rm_j)$ exists. Then

$$E = \left\{ r: \lim_{n \to \infty} \lim_{j \to \infty} \delta_n(rm_j) < \infty \right\}$$
(19)

is a subgroup of \mathbb{Z} .

Proof. If $E = \{0\}$, there is nothing to prove. Otherwise, let $r, s \in E, r \neq s$. Since $\lim_{j\to\infty} \delta_n(rm_j)$ is constant for large *n*, we may write

$$\forall n \forall^{e} j \quad rm_{j} = a_{j,n}Q_{n+\alpha(rm_{j})} + bQ_{\alpha(rm_{j})}, \qquad (20)$$

where $\forall^{e} j'$ means 'for all but a finite number of j' (cf. [6]). Likewise, we may write

$$\forall n \; \forall^e j \quad sm_j = a'_{j,n} Q_{n+\alpha(sm_j)} + b' Q_{\alpha(sm_j)}. \tag{21}$$

Furthermore, by taking a subsequence of $\{m_j\}$ if necessary, we may assume that either $\forall j \alpha(rm_j) = \alpha(sm_j)$ or $\forall j \alpha(rm_j) > \alpha(sm_j)$, and that either $\alpha(rm_j) - \alpha(sm_j) \rightarrow \infty$ or $\{\alpha(rm_j) - \alpha(sm_j)\}$ is bounded.

Suppose first that $\alpha(rm_i) > \alpha(sm_i)$. Then $\alpha((r-s)m_i) = \alpha(sm_i)$ and

$$\forall n \forall^e j \quad (r-s)m_j = a_{j,n}'' Q_{n+\alpha(sm_j)} + b'' Q_{\alpha(sm_j)},$$

where b'' = -b' if $\alpha(rm_j) - \alpha(sm_j) \rightarrow \infty$ and $\forall j \ b'' = bQ_{\alpha(rm_j)}Q_{\alpha(sm_j)}^{-1} - b'$ if $\alpha(rm_j) - \alpha(sm_j)$ is bounded. Hence $r - s \in E$.

Now suppose that $\alpha(rm_j) = \alpha(sm_j)$. We claim that $b \neq b'$. For if b = b', then multiplying (20) by s, (21) by r, and subtracting, we obtain that

 $\forall n \forall^{e} j \quad Q_{n+\alpha(sm_{j})} | (r-s) b Q_{\alpha(sm_{j})}.$

This contradicts the fact that $r \neq s$ and $b \neq 0$. Since

$$\forall n \forall^e j \quad (r-s)m_j = (a_{j,n} - a'_{j,n})Q_{n+\alpha(sm_j)} + (b-b')Q_{\alpha(sm_j)},$$

$$t r - s \in F$$

it follows that $r - s \in E$.

The proof now proceeds essentially as for Theorem 1 and we restrict ourselves to its outline.

Proof of Theorem 3. We take $\sigma_x \neq \lambda$ and assume that $\lim_{j \to \infty} \delta_n(rm_j)$ exists for all n and r. Then the set E in (19) is equal to $r_0\mathbb{Z}$ for some $r_0 > 0$. By (15), there exists ν_x such that $\sigma_x = T_{\tau_0}^{-1}\nu_x \mu$ -a.e.

We may suppose that $r_0m_j = a_jQ_{n_j+\alpha(r_0m_j)} + s_0Q_{\alpha(r_0m_j)}$, that $n_j \to \infty$, that $\{e(ra_jQ_{n_j+\alpha(r_0m_j)}x)\}_j$ has a weak* limit in $L^{\infty}(\mu)$ for each r, and that $\{\alpha(r_0m_j)\}$ is either constant or tends to ∞ . If $\{\alpha(r_0m_j)\}$ is constant, let

$$\hat{\Sigma}_1(r) = \lim_{j \to \infty} \hat{\mu}(ra_j Q_{n_j + \alpha(r_0 m_j)}) \text{ and } b_0 = s_0 Q_{\alpha(r_0 m_j)};$$

otherwise, let $\hat{\Sigma}_1(r) = \lim_{j \to \infty} \hat{\mu}(rr_0 m_j)$ and $b_0 = 0$. Then $\nu_x = \delta(b_0 x) * \Sigma_1 \mu$ -a.e. by (14).

Define $m_j^{(1)} = r_0 m_j - b_0$; thus, $\hat{\Sigma}_1(r) = \lim_{j \to \infty} \hat{\mu}(rm_j^{(1)})$. We can argue as in the first paragraph to write $\Sigma_1 = T_{r_1}^{-1} \Sigma'_1$, where, without loss of generality, we may assume that

$$r_1 m_j^{(1)} = a_j^{(2)} Q_{n_j + \alpha(r_1 m_j^{(1)})} + s_1' Q_{\alpha(r_1 m_j^{(1)})}$$

and that $\Sigma'_1 = T_{s'_1}\nu_1 * \Sigma_2$, where $\hat{\nu}_1(r) = \lim_{j \to \infty} \hat{\mu}(rQ_{\alpha(r_1m_j^{(1)})})$. Note that $s'_1 \neq 0$. We then define

$$m_j^{(2)} = r_1 m_j^{(1)} - s_1' Q_{\alpha(r_1 m_j^{(1)})}$$

and proceed for Σ_2 as we did for Σ_1 , etc. This process ends since $\sigma_x \neq \lambda$ and (16) holds.

We thus obtain the expression

$$\sigma_x = T_{r_0}^{-1} [\delta(b_0 x) * T_{r_1}^{-1} [T_{s_1}^{-1} \nu_1 * T_{r_2}^{-1} [T_{s_2} \nu_2 * \cdots * T_{r_l}^{-1} T_{s_l} \nu_l]] \cdots] \quad \mu\text{-a.e.},$$

which is reduced to (17) by use of (4).

Remark. Even if (16) does not hold, we may still conclude that

$$\sigma_x = T_r^{-1} [\delta(bx) * T_s \nu * \Sigma] \quad \mu\text{-a.e.},$$

where ν has the form (18) and $\hat{\Sigma}(k) = \lim_{j \to 0} \hat{\mu}(kl_j)$ for some sequence $\{l_j\}$ (not necessarily tending to ∞).

The most obvious example of a measure satisfying the hypotheses of Theorem 3 is a Riesz product

$$\mu = \prod_{k\geq 0} \left(1 + \operatorname{Re} \left\{ \alpha_k \, e(Q_k x) \right\} \right)$$

with $|\alpha_k| \le 1$ arbitrary, $Q_k |Q_{k+1}, |Q_{k+1}/Q_k| \ge 3$, and $\sup_k |Q_{k+1}/Q_k| < \infty$. In this case, the measures ν_i of (17) are also Riesz products $\prod_{k\ge 0} (1 + \operatorname{Re} \{\beta_k e(P_k x)\})$, with each β_k a limit point of $\{\alpha_j\}$, $P_0 = 1$, $P_k |P_{k+1}$, and each P_{k+1}/P_k a limit point of $\{Q_{j+1}/Q_j\}$.

Consider next the measure

$$\mu = \underset{k\geq 1}{*} [p_{0,k} \,\delta(0) + p_{1,k} \,\delta(Q_k^{-1}) + \cdots + p_{|q_k|-1,k} \,\delta((|q_k|-1)Q_k^{-1})],$$

where

$$|q_k| \ge 2$$
, $\sup |q_k| < \infty$, $Q_k = q_1 q_2 \cdots q_k$, $p_{i,k} \ge 0$, and $\sum_{i=1}^{|q_k|-1} p_{i,k} = 1$.

We claim that μ satisfies (14), (15) and (16) if $gcd\{i-i_0: i \in I\}=1$ for some set Iand some $i_0 \in I$, where I satisfies the property that $\exists \varepsilon > 0 \exists K \forall k_0 \exists k \in [k_0, k_0 + K[$ $\forall i \in I \ p_{i,k} \ge \varepsilon$; here, we interpret $p_{i,k} = 0$ if $i \ge |q_k|$. (This is the case in particular for

$$\mu = \underset{k \ge 1}{*} \left[p_k \,\delta(0) + (1 - p_k) \,\delta(2^{-\kappa}) \right]$$

if
$$\exists \varepsilon > 0 \exists K \forall k_0 \exists k \in [k_0, k_0 + K[\min \{p_k, (1-p_k)\} \ge \varepsilon.$$

This example will be important later.) Now since μ is continuous, (14) is proved just as (5) is proved for ordinary invariant Bernoulli convolutions (12) (that is, by 'lifting' to a product measure). To prove (15), suppose that $\hat{\mu}(m_j)$ has a non-zero limit. By taking an appropriate subsequence of $\{m_j\}$, we may assume that all the limits encountered below exist. For certain $\theta_{k,j}$, we have

$$\infty > \lim_{j \to \infty} \sum_{k \ge 1} \left[1 - \left| \sum_{i=0}^{|q_k|^{-1}} p_{i,k} e(-im_j Q_k^{-1}) \right| \right] \\ = \lim_{j} \sum_{k \ge 1} \left[1 - \sum_i p_{i,k} e(-im_j Q_k^{-1}) e(\theta_{k,j}) \right] \\ = \lim_{j} \sum_{k \ge 1} \sum_i p_{i,k} [1 - e(-im_j Q_k^{-1}) e(\theta_{k,j})] \\ \ge \lim_{j} \sum_{k \ge 1} \sum_i p_{i,k+\alpha(m_j)} \operatorname{Re} \{1 - e(-im_j Q_{k+\alpha(m_j)}^{-1}) e(\theta_{k+\alpha(m_j),j})\}$$

Now for $j \ge 1$ and $l \ge 0$, $\exists k = k(l, j) \in [lK + \alpha(m_j), (l+1)K + \alpha(m_j)]$ such that $\forall i \in I$ $p_{i,k(l,j)} \ge \varepsilon$. Hence for $i \in I$,

$$\infty > \lim_{j} \sum_{l \ge 0} \varepsilon \operatorname{Re} \left\{ 1 - e(-im_{j}Q_{k(l,j)}^{-1}) e(\theta_{k(l,j),j}) \right\}$$

$$\geq \varepsilon \sum_{l \ge 0} \lim_{j} \operatorname{Re} \left\{ 1 - e(-im_{j}Q_{k(l,j)}^{-1}) e(\theta_{k(l,j),j}) \right\}.$$

Therefore for $i \in I$,

$$\lim_{l\to\infty}\lim_{j\to\infty}\operatorname{Re}\left\{1-e(-im_jQ_{k(l,j)}^{-1})\ e(\theta_{k(l,j),j})\right\}=0,$$

whence

$$\lim_{l} \lim_{j} e(-im_{j}Q_{k(l,j)}^{-1}) e(\theta_{k(l,j),j}) = 1.$$

The hypothesis $gcd(I - i_0) = 1$ implies finally that

$$\lim_{l} \lim_{i} e(m_{i}Q_{k(l,j)}^{-1}) = 1.$$
(22)

Now if (15) were not true, in other words, if $\lim_k \lim_j \delta_k(m_j) = \infty$, then for all N there would be a $k_0 = k_0(N)$ such that $N_1 = \lim_j \delta_{k_0}(m_j) \ge N$. Let $\delta_{k_0}(m_j) = N_1$ for $j \ge j_0 = j_0(N)$ and, for $j \ge j_0$, let $n_j = n_j(N)$ be the least integer such that $|Q_{n_j+\alpha(m_j)}Q_{\alpha(m_j)}^{-1}|/2 \ge N_1$. Since $n_j < 2 + \log_2 N_1$, we may choose an infinite sequence $\mathcal{J} = \mathcal{J}(N) \subset [j_0, \infty[$ such that n_j is equal to a fixed n for $j \in \mathcal{J}$. Let l = l(N) be the least integer such that $lK \ge n$ and consider any $j \in \mathcal{J}$. We have

$$\|m_{j}Q_{k(l,j)}^{-1}\| = |Q_{k(l,j)}^{-1}Q_{\alpha(m_{j})}|\delta_{k(l,j)-\alpha(m_{j})}(m_{j}).$$

Now $k_0 \ge n$; for $k_0 \ge k \ge n$, we have $\delta_k(m_j) = N_1$, while for $k > k_0$, we have $\delta_k(m_j) \ge N_1$. Since $k(l, j) - \alpha(m_j) \ge lK \ge n$, it follows that

$$||m_{j}Q_{k(l,j)}^{-1}|| \geq |Q_{n+\alpha(m_{j})}^{-1}Q_{\alpha(m_{j})}N_{1}||Q_{n+\alpha(m_{j})}Q_{k(l,j)}^{-1}|.$$

By choice of *n*, the first term on the right is greater than 1/(2q), where $q = \sup_k |q_k|$. In addition, since

$$k(l,j) - n - \alpha(m_j) < 2K + (l-1)K - n < 2K,$$

the second term on the right is at least q^{-2K+2} . Therefore $||m_j Q_{k(l,j)}^{-1}|| > q^{-2K+1}/2$. Since this is true for $j \in \mathcal{J}$ and since $l(N) \to \infty$ as $N \to \infty$, it follows that

$$\lim_{l} \lim_{i} \|m_{j}Q_{k(l,j)}^{-1}\| \ge \frac{1}{2}q^{-2K+1}$$

R. Lyons

which contradicts (22). This proves (15). Finally, to establish (16), we will show that for $n \neq 0$,

$$|\hat{\mu}(n)| \le 1 - 4\varepsilon q^{-2\kappa}.$$
(23)

Given $n \neq 0$, let $k = \alpha(n) + 1$. Then $nQ_k^{-1} = N + rq_k^{-1}$ for some integers N and r, $0 < r < |q_k|$. Since $gcd(I - i_0) = 1$, there is some $i_1 \in I$ such that $(i_1 - i_0)nQ_k^{-1} \notin \mathbb{Z}$, whence $||(i_1 - i_0)nQ_k^{-1}|| \ge |q_k|^{-1}$. Furthermore, for some $l \in [k, k + K[, p_{i_0, l} \ge \varepsilon]$ and $p_{i_1, l} \ge \varepsilon$. We have

$$\begin{aligned} |\hat{\mu}(n)| &\leq \left| \sum_{i=0}^{|q_{l}|-1} p_{i,l} e(-inQ_{l}^{-1}) \right| \\ &= \left| \sum_{i=0}^{|q_{l}|-1} p_{i,l} e(-(i-i_{0})nQ_{l}^{-1}) \right| \\ &\leq |p_{i_{0},l} + p_{i_{1},l} e(-(i_{1}-i_{0})nQ_{l}^{-1})| + 1 - p_{i_{0},l} - p_{i_{1},l} \end{aligned}$$

Now for real x, y and θ , we have

$$|x + y e(\theta)| = [(x + y)^2 - 4xy \sin^2 \pi \theta]^{1/2} \le [(x + y)^2 - 16xy \|\theta\|^2]^{1/2}$$

$$\le (x + y) - 8 \frac{xy}{x + y} \|\theta\|^2.$$

Therefore

$$|\hat{\mu}(n)| \leq 1 - 8 \frac{p_{i_0,l} p_{i_1,l}}{p_{i_0,l} + p_{i_1,l}} ||(i_1 - i_0) n Q_l^{-1}||^2.$$

Our choice of l ensures (23).

ı.

Theorem 3 admits a ready, if somewhat ungainly, extension to the case of unbounded q_n .

THEOREM 5. Let μ be a probability measure, $|q_n| \ge 2$, $Q_n = q_1 q_2 \cdots q_n$, and $Q_0 = 1$. Suppose that

$$\forall U \in \mathbb{N} \quad \forall b_0, \dots, b_U \in \mathbb{Z}$$

$$\lim_{n \to \infty} \sup_{\substack{a \in \mathbb{Z} \\ p \in \mathbb{N}}} \left| \hat{\mu} \left(aQ_{n+p} + \sum_{u=0}^{U} b_u Q_{u+p} \right) - \hat{\mu} (aQ_{n+p}) \hat{\mu} \left(\sum_{u=0}^{U} b_u Q_{u+p} \right) \right| = 0, \quad (24)$$

if $e(m_i x) \neq 0$ weak* in $L^{\infty}(\mu)$, then there exist $\{m'_i\} \subset \{m_i\}, U$,

$$n_j \in \mathbb{N}, a_j, b_0, \dots, b_U \in \mathbb{Z}$$
 such that $n_j \to \infty$ and
 $m'_j = a_j Q_{n_j + \alpha(m'_j)} + \sum_{u=0}^U b_u Q_{u + \alpha(m'_j)},$
(25)

and

$$\overline{\lim_{n \to \infty}} |\hat{\mu}(n)| < 1.$$
(26)

If $|m_j| \to \infty$ is such that (3) holds, then there exist $r, b \in \mathbb{Z}$ and $l \in \mathbb{N}^+$ such that

$$\sigma_{x} = T_{r}^{-1} \left[\delta(bx) * \begin{pmatrix} l \\ * \\ i=1 \end{pmatrix} \right] \mu \text{-a.e.}, \qquad (27)$$

where for each i, there is a sequence $n_i \uparrow \infty$, $U \in \mathbb{N}$, and $b_0, \ldots, b_U \in \mathbb{Z}$ such that

$$\forall k \in \mathbb{Z} \quad \hat{\mu} \left(k \sum_{u=0}^{U} b_u Q_{u+n_j} \right) \rightarrow \hat{\nu}_i(k).$$
(28)

The proof is exactly parallel; we shall only remark that the analogue of Lemma 4 is the following:

LEMMA 6. Let $\{m_j\}$ be a sequence of integers such that for all $r \in \mathbb{Z}$, either $\{rm_j\}$ is of the form

$$rm_j = a_j Q_{n_j + \alpha(rm_j)} + \sum_{u=0}^{U} b_u Q_{u + \alpha(rm_j)} \quad (n_j \to \infty),$$

or $\{rm_j\}$ has no subsequence of this form. Then the set E of $r \in \mathbb{Z}$ with $\{rm_j\}$ of the above form is a subgroup of \mathbb{Z} .

As an application, we consider any Riesz product

$$\mu = \prod_{k\geq 0} \left(1 + \operatorname{Re} \left\{ \alpha_k \, e(Q_k x) \right\} \right)$$

with $Q_k | Q_{k+1}$ and $|Q_{k+1}/Q_k| \ge 3$. The hypotheses (24)-(26) are evidently satisfied and it remains to identify the measures ν_i of (28). Fix integers U, b_0, \ldots, b_U , and $n_j \uparrow \infty$, let $B_j = \sum_{u=0}^{U} b_u Q_{u+n_j}$, and assume that ν is the weak* limit of $T_{B_j}\mu$. Clearly, we may assume that $\sum_{u=0}^{U} b_u Q_{u+n_j} \ne 0$ for $U' \le U$ and all j. Furthermore, we may assume that for all $k \ge 0$, $\{Q_{k+n_j}Q_{n_j}^{-1}\}_j$ has a finite or infinite limit and that $\{\alpha_{k+n_j}\}_j$ has a limit. There are two possibilities: either for all $k \ge 1$, $\lim_{j\to\infty} Q_{k+n_j}Q_{n_j}^{-1}$ is finite or not. The former case is easily handled: $\nu = T_s\nu'$, where

$$s = \lim_{j \to \infty} B_j Q_{n_j}^{-1}, \ \nu' = \prod_{k \ge 0} (1 + \operatorname{Re} \left\{ \tilde{\alpha}_k \ e(P_k x) \right\}),$$
$$P_k = \lim_{j \to \infty} Q_{k+n_j} Q_{n_j}^{-1}, \quad \text{and} \quad \tilde{\alpha}_k = \lim_{j \to \infty} \alpha_{k+n_j}.$$

On the other hand, we claim that in the latter case, the spectrum of ν is finite (which is enough for our purposes in § 5). Let k_0 be the smallest integer such that $\lim_{j\to\infty} Q_{k_0+n_j} Q_{n_j}^{-1}$ is infinite. Set $n_0 = \lim_{j\to\infty} |Q_{k_0-1+n_j} Q_{n_j}^{-1}|$ and define $B'_j = \sum_{u=0}^{\min(k_0-1,U)} b_u Q_{u+n_j}$, $B''_j = B_j - B'_j$. If $\hat{\nu}(n) \neq 0$, then for sufficiently large j, $\hat{\mu}(nB_j) \neq 0$, which means that nB_i has the representation

$$nB_j = \sum_{u>0} \varepsilon_u^{(j)} Q_{u+n_j}, \quad \varepsilon_u^{(j)} = 0, \pm 1.$$

Since $Q_{k_0+n_j}$ divides nB''_j and $\sum_{u \ge k_0} \varepsilon_u^{(j)} Q_{u+n_j}$, it follows that for sufficiently large *j*, $nB'_j = \sum_{u=0}^{k_0-1} \varepsilon_u^{(j)} Q_{u+n_j}$. Hence

$$|nQ_{n_j}| \le |nB_j'| \le \sum_{u=0}^{k_0-1} |Q_{u+n_j}| < (3/2) |Q_{k_0-1+n_j}|, \text{ whence } |n| < (3/2) n_0.$$

That is, the spectrum of ν is contained in the finite set $]-(3/2)n_0$, $(3/2)n_0[$, as desired.

4. Perturbed Riesz products

The above ideas can be used to analyze the asymptotic distribution of sequences relative to Riesz products based on a set of perturbed frequencies. The simplest

example is

$$\mu = \prod_{k\geq 0} (1 + \operatorname{Re} \{ \alpha_k \, e[(q^k + d)x] \},$$

with $\alpha_k \rightarrow \alpha$. Set

$$\rho_t = \prod_{k>0} \left(1 + \operatorname{Re} \left\{ \alpha \ e(dt) \ e(q^k x) \right\} \right)$$

for $t \in \mathbb{T}$. Then if (3) holds, we can write

$$\sigma_t = T_r^{-1}[\delta(bt) * T_{s_1}\rho_t * \cdots * T_{s_l}\rho_t] \quad \mu\text{-a.e.}$$

In fact, we shall treat the following more general case. Let

$$\mu = \prod_{k \ge 0} (1 + \operatorname{Re} \{ \alpha_k \, e[(Q_k + d_k)x] \}), \tag{29}$$

where $|\alpha_k| \leq 1$, $Q_k | Q_{k+1}$, $|Q_{k+1}/Q_k| \geq 3$, and $|d_k|$ is bounded. Set $\mu' = \prod_{k\geq 0} (1 + \operatorname{Re} \{\alpha_k e(Q_k x)\})$. The fundamental observation is that $e(m_j t) \neq 0$ weak* in $L^{\infty}(\mu)$ if and only if $e(m_j t) \neq 0$ weak* in $L^{\infty}(\mu')$. Indeed, $e(m_j t) \neq 0$ weak* in $L^{\infty}(\mu)$ iff there are a subsequence $\{m'_j\} \subset \{m_j\}$, a sequence $\{u_j\}$ tending to ∞ and $\varepsilon_{u,j} = 0, \pm 1$ such that

$$m'_{j} = \sum_{u \ge u_{j}} \varepsilon_{u,j} (Q_{u} + d_{u}) + O(1)$$
(30)

and

$$\liminf_{\substack{j \to \infty \\ \text{blar}, q}} \left| \prod_{u \ge u_j} \left(\frac{1}{2} \alpha_u \right)^{(\varepsilon_{u,j})} \right| > 0, \tag{31}$$

where we denote, for complex z,

$$z^{(\varepsilon)} = \begin{cases} z & \text{if } \varepsilon = 1, \\ \bar{z} & \text{if } \varepsilon = -1, \\ 1 & \text{if } \varepsilon = 0. \end{cases}$$

But by (31), $\sum_{u \ge u_j} |\varepsilon_{u,j}| = O(1)$, whence (30) is equivalent (under (31)) to $m'_j = \sum_{u \ge u_j} \varepsilon_{u,j} Q_u + O(1)$; i.e. (30) is then independent of $\{d_k\}$. This establishes our claim.

Our next observation is that an analogue of mixing occurs. Let $U \ge 0$, a_j , $b_0, \ldots, b_U \in \mathbb{Z}$, $p_j \in \mathbb{N}$, and $n_j \to \infty$. Write $B_j = \sum_{u=0}^U b_u Q_{u+p_j}$ and assume that the following weak* limits exist in $L^{\infty}(\mu)$:

$$h(t) = \lim e(-(a_j Q_{n_j+p_j} + B_j)t),$$

$$f(t) = \lim e(-a_j Q_{n_j+p_j}t), \quad g(t) = \lim e(-B_j t).$$

Then

$$h = f \cdot g. \tag{32}$$

To prove this, we may, by taking a subsequence if necessary, assume that the above weak* limits also exist in $L^{\infty}(\mu')$; denote them by \tilde{h} , \tilde{f} , and \tilde{g} respectively. We may also assume that the limits to appear below exist. It is clear that $\tilde{h} = \tilde{f} \cdot \tilde{g}$. If $\tilde{h} \neq 0$, then $\tilde{f} \neq 0$ and $\tilde{g} \neq 0$, whence we may write

$$a_{j}Q_{n_{j}+p_{j}} = \sum_{u \ge n_{j}} \varepsilon_{u,j}Q_{u+p_{j}},$$
$$B_{j} = \sum_{u=0}^{U'} \varepsilon'_{u,j}Q_{u+p_{j}},$$
$$\varepsilon_{u,j}, \varepsilon'_{u,j} \in \{0, \pm 1\},$$
$$\sum_{u \ge n_{j}} |\varepsilon_{u,j}| = O(1).$$

Therefore

$$a_j Q_{n_j+p_j} + B_j = \sum_{u \ge n_j} \varepsilon_{u,j} (Q_{u+p_j} + d_{u+p_j}) + C_j,$$

where

$$C_j = \sum_{u=0}^{U'} \varepsilon'_{u,j} (Q_{u+p_j} + d_{u+p_j}) - \sum_{u \ge n_j} \varepsilon_{u,j} d_{u+p_j} - \sum_{u=0}^{U'} \varepsilon'_{u,j} d_{u+p_j}$$

Noting that \tilde{f} is a constant and that the last two sums in C_j are bounded, we see that $h = \tilde{f}G$, where

$$G(t) = w^* - \lim e(-C_j t) \quad \text{in } L^{\infty}(\mu).$$

But evaluation of G gives

$$G(t) = g(t) \ e(Dt),$$

where $D = \lim \sum_{u \ge n_j} \varepsilon_{u,j} d_{u+p_j}$. Therefore $h = \tilde{f}g \ e(Dt) = fg$. On the other hand, if $\tilde{h} = 0$, then since \tilde{f} is a constant, either \tilde{f} or \tilde{g} is 0. Therefore h = 0 and f or g is 0, whence (32) again holds.

We are now in a position to imitate our preceding proofs in order to determine σ_t of (3). If $\sigma_t \neq \lambda \mu$ -a.e., then there is an $r \neq 0$ such that $\hat{\sigma}_t(r) \neq 0 \mu$ -a.e., whence $e(-rm_j t) \neq 0$ weak* in $L^{\infty}(\mu')$. The subgroup E described in Lemma 6 therefore has a least positive element, r_0 ; let $\sigma_t = T_{r_0}^{-1} \nu_t \mu$ -a.e.

We may suppose that

$$r_0 m_j = a_j Q_{n_j + \alpha(r_0 m_j)} + \sum_{u=0}^{U} b_u Q_{u + \alpha(r_0 m_j)},$$

 $n_j \to \infty$, and $\{\alpha(r_0m_j)\}$ is either constant or tends to ∞ . If $\alpha(r_0m_j)$ is constant, set $b' = \sum_{u=0}^{U} b_u Q_{u+\alpha(r_0m_j)}$; otherwise, set b' = 0. Put $m'_j = r_0m_j - b'$. Application of (32) to the sequence $\{rr_0m_j\}$ shows that

$$\hat{\nu}_t(r) = \hat{\Sigma}_{1,t}(r) \ e(-rb't)$$
 μ -a.e.,

where $e(-rm'_j t) \rightarrow \hat{\Sigma}_{1,t}(r)$ weak* in $L^{\infty}(\mu)$. Thus $\nu_t = \delta(b't) * \Sigma_{1,t}$.

We may argue as above to write $\Sigma_{1,t} = T_{r_1}^{-1} \Sigma_{1,t}'$ and, without loss of generality,

$$r_1 m'_j = a'_j Q_{n'_j + \alpha(r_1 m'_j)} + \sum_{u=0}^{U'} b'_u Q_{u + \alpha(r_1 m'_j)}$$

 $n'_{j} \rightarrow \infty$. We now have $\alpha(r_{1}m'_{j}) \rightarrow \infty$. By (32), $\Sigma'_{1,t} = \nu'_{1,t} * \Sigma_{2,t}$, where $\hat{\nu}'_{1,t}(r)$ is the weak* limit in $L^{\infty}(\mu)$ of $e(-r \sum_{u=0}^{U'} b'_{u}Q_{u+\alpha(r_{1}m'_{j})}t)$ and

$$\widehat{\Sigma}_{2,t}(r) = w^* - \lim e(-ra_j'Q_{n_j'+\alpha(r_1m_j')}t).$$

We proceed for $\Sigma_{2,t}$ as for $\Sigma_{1,t}$: we have $\Sigma_{2,t} = T_{r_2}^{-1}(\nu'_{2,t} * \Sigma_{3,t})$, and so on. Since $\overline{\lim} |\hat{\mu}(n)| \le \frac{1}{2} < 1$, this process ends in a finite number of steps. As before, we conclude that

$$\sigma_t = T_r^{-1} \left[\delta(bt) * \begin{pmatrix} l \\ * \\ i=1 \end{pmatrix} \right] \mu \text{-a.e.}, \qquad (33)$$

where each $\nu_{i,t}$ is a measure ω_t of the form

$$\forall k \in \mathbb{Z} \quad e\left(-k \sum_{u=0}^{U} b_u Q_{u+n_j} t\right) \to \hat{\omega}_i(k) \text{ weak}^* \text{ in } L^{\infty}(\mu), \quad n_j \to \infty.$$
(34)

We now identify such measures ω_i . We base this on the result for μ' . We may assume that $\sum_{u=0}^{U'} b_u Q_{u+n_j} \neq 0$ for all $U' \leq U$ and all *j*. Let $B_j = \sum_{u=0}^{U} b_u Q_{u+n_j}$ and assume that for all $k \geq 0$, $\{Q_{k+n_j}\hat{Q}_{n_j}^{-1}\}_j$ has a finite or infinite limit, P_k , and that $\{\alpha_{k+n_j}\}_j$ and $\{d_{k+n_j}\}_j$ have limits, call then $\tilde{\alpha}_k$ and \tilde{d}_k , respectively. If for some $k \geq 1$, P_k is infinite, then we know that $e(-kB_jt) \rightarrow 0$ weak* in $L^{\infty}(\mu')$ for all but a finite number of k; the same is true in $L^{\infty}(\mu)$, so that the spectrum of ω_i is contained in a finite set (independent of t). On the other hand, if P_k is finite for all k, then $\omega_i = T_s \omega'_i$, where $s = \lim_{j \to \infty} B_j Q_{n_j}^{-1}$ and $e(-rQ_{n_j}t) \rightarrow \hat{\omega}'_i(r)$ weak* in $L^{\infty}(\mu)$. We claim that $\omega'_i = \rho_i \mu$ -a.e., where

$$\rho_t = \prod_{k \ge 0} (1 + \operatorname{Re} \left\{ \tilde{\alpha}_k \, e(\tilde{d}_k t) \, e(P_k x) \right\}). \tag{35}$$

For if we define

$$\rho' = \prod_{k\geq 0} (1 + \operatorname{Re} \left\{ \tilde{\alpha}_k \, e(P_k x) \right\}),$$

then $e(-rQ_{n_j}t) \rightarrow \hat{\rho}'(r)$ weak* in $L^{\infty}(\mu')$. Thus, if $\hat{\omega}'_t(r) = 0$ μ -a.e., we have $\hat{\rho}'(r) = 0$, which implies that $\hat{\rho}_t(r) = 0$ for all t. On the other hand, if $\hat{\omega}'_t(r) \neq 0$, then $\hat{\rho}'(r) \neq 0$, so that we can write $r = \sum_{k\geq 0} \varepsilon_k P_k$, $\varepsilon_k = 0, \pm 1$. Therefore, interpreting limits as weak* in $L^{\infty}(\mu)$, we have

$$\hat{\omega}_{i}'(r) = \lim_{j \to \infty} e\left(-\sum_{k \ge 0} \varepsilon_{k} P_{k} Q_{n_{j}} t\right)$$

$$= \lim_{j \to \infty} e\left(-\sum_{k \ge 0} \varepsilon_{k} Q_{k+n_{j}} t\right)$$

$$= [\lim_{j \to \infty} e\left(-\sum \varepsilon_{k} (Q_{k+n_{j}} + d_{k+n_{j}}) t\right] e\left(\sum \varepsilon_{k} \tilde{d}_{k} t\right)$$

$$= \left[\prod_{k \ge 0} \frac{1}{2} \tilde{\alpha}_{k}^{(\varepsilon_{k})}\right] e\left(\sum \varepsilon_{k} \tilde{d}_{k} t\right) = \prod_{k \ge 0} \left[\frac{1}{2} \tilde{\alpha}_{k} e(\tilde{d}_{k} t)\right]^{(\varepsilon_{k})}$$

$$= \hat{\rho}_{i}(r).$$

This shows that $\hat{\omega}_t'(r) = \hat{\rho}_t(r)$ for all r, whence the claim.

We sum up our results: either σ_i is a (non-negative) trigonometric polynomial multiplying λ ,

$$\sigma_t(x) = \left[1 + \operatorname{Re} \sum_{n=1}^N \beta_n e(r_n t) e(nx)\right] \lambda(x),$$

or σ_t has the form

$$\sigma_t = T_r^{-1} \bigg[\delta(bt) * \bigg(\frac{l}{\underset{i=1}{*}} T_{s_i} \rho_{i,t} \bigg) \bigg],$$

where each $\rho_{i,t}$ is of the form given in (35).

5. H-sets

We turn now to some applications of the preceding theory. For their proper context, we refer the reader to [7; 9; 18, Chaps. IX, XII; and 1, Chaps. XII, XIV]. In the 1920s, Rajchman introduced the following generalization of Cantor's middle-thirds sets.

Definition. A Borel set $E \subset \mathbb{T}$ is called an *H*-set if there exist a sequence $\{m_j\}_{j=1}^{\infty} \subset \mathbb{N}$ tending to ∞ and a non-empty open set $I \subset \mathbb{T}$ such that for every $x \in E$ and all $j, m_i x \notin I$.

Cantor's middle-thirds set is the set $\{x: \forall j \ge 0 \ 3^{j}x \notin]\frac{1}{3}, \frac{2}{3}[\}$. The connection of *H*-sets to our preceding discussion is given by the following observation.

PROPOSITION 7. Let $\mu \in M(\mathbb{T})$ be such that whenever (3) holds for a sequence $m_j \to \infty$, supp $\sigma_x = \mathbb{T} \ \mu$ -a.e. Then $\mu E = 0$ for all H-sets E.

Proof. Let E be an H-set. Let $m_j \to \infty$ and I be a non-empty open set such that $m_j x \notin I$ for $x \in E$. By choosing a subsequence of $\{m_j\}$ if necessary, we may assume that there is a σ_x such that (3) holds and that $\{m_j x\} \sim \sigma_x \mu$ -a.e. If $x \in E$, then clearly supp $\sigma_x \subset \mathbb{T} \setminus I$, whence supp $\sigma_x \notin \mathbb{T}$. The hypothesis implies, then, that $\mu(E) = 0$.

We established in [7] and [9] that hyperlacunary Riesz products,

$$\mu = \prod_{k\geq 0} (1 + \operatorname{Re} \{ \alpha_k \, e(n_k x) \}), \, n_{k+1}/n_k \to \infty, \, |\alpha_k| \leq 1,$$

annihilate all *H*-sets; if we choose $\alpha_k \neq 0$, then these are examples of measures whose Fourier-Stieltjes coefficients do not vanish at infinity but which annihilate all *H*-sets nevertheless. This disproved a conjecture of Rajchman. New counter-examples are given by the following theorem.

THEOREM 8. Let μ satisfy the hypotheses of Theorem 1. Then μ annihilates all H-sets if and only if supp $\mu = T$.

Note that if $\mu \neq \lambda$, then by q-invariance, $\hat{\mu}$ does not vanish at ∞ .

Proof. The following facts are easily verified: if ω , ω' are positive measures with supp $\omega = \mathbb{T}$ and $r \in \mathbb{Z}$, then supp $T_r \omega = \text{supp } T_r^{-1} \omega = \text{supp } (\omega * \omega') = \mathbb{T}$. Therefore the measures σ_x of (7) have full support if μ does, and consequently μ annihilates all H-sets.

The converse is trivial. Indeed, if μ is any q-invariant measure whose support misses a non-empty open set I, then by q-invariance, $\sup \mu$ also misses $T_q^{-j}I$ for all $j \ge 0$. That is, μ is supported on the H-set $\{x: \forall j \mid q^j x \notin I\}$.

The following extension would be very interesting.

QUESTION. If μ is a q-invariant q-mixing probability measure of full support, does μ annihilate all H-sets?

Of course, Theorems 3 and 5 and the discussion of § 4 permit the statement of several theorems similar to Theorem 8. We shall restrict ourselves to the two main classes of examples, Riesz products and Bernoulli convolutions.

THEOREM 9. Let μ be a Riesz product as in (29) (thus, $Q_k | Q_{k+1}, |d_k| = O(1)$). Then μ annihilates all H-sets.

Proof. § 4 shows that σ_t is a trigonometric polynomial, which certainly has full support, or is formed from Riesz products. But it is well-known that Riesz products

have full support. (The proof is simple: if

$$\rho = \prod_{k \ge 0} (1 + \operatorname{Re} \{\beta_k e(l_k t)\}),$$

define

$$P_{K} = \prod_{k=0}^{K} (1 + \operatorname{Re} \{\beta_{k} e(l_{k}t)\}) \text{ and } \rho_{K} = \prod_{k>K} (1 + \operatorname{Re} \{\beta_{k} e(l_{k}t)\}).$$

Thus $\rho = P_K \cdot \rho_K$. If $\rho(I) = 0$ for some open set *I*, then $\rho_K(I) = 0$ since P_K has at most finitely many zeros and ρ_K is continuous. But since $\rho_K \rightarrow \lambda$ weak^{*}, it follows that $\lambda I = 0$.)

The same ideas apply to generalized Riesz products, of course. It would be very interesting to know whether all Riesz products annihilate all *H*-sets. Indeed, this question was the original motivation for the present work.

THEOREM 10. Let μ be a Bernoulli convolution

$$\mu = \underset{k\geq 1}{*} \sum_{i=0}^{|q_k|-1} p_{i,k} \,\delta(iQ_k^{-1}),$$

where $|q_k| \ge 2$, $\sup |q_k| < \infty$,

$$Q_k = q_1 q_2 \cdots q_k, \sum_{i=0}^{q_k-1} p_{i,k} = 1,$$

and for all $|q| \ge 2$ and all $i \in [0, |q|-1]$,

$$\liminf_{k\to\infty} \{p_{i,k}: q_k = q\} > 0.$$

Then μ annihilates all H-sets.

Proof. It was shown that Theorem 3 is applicable; we only have to show that the weak* limit points of $\{T_{Q_n}\mu\}$ have full support. Let $T_{Q_{n_j}}\mu \rightarrow \nu$ weak*. We may assume the existence of the following limits for all $k \ge 1$:

$$\tilde{q}_k = \lim_{j \to \infty} q_{n_j + k}, \qquad \tilde{p}_{i,k} = \lim_{j \to \infty} p_{i,n_j + k} \quad (0 \le i \le |\tilde{q}_k| - 1).$$

If $\tilde{Q}_k = \tilde{q}_1 \cdots \tilde{q}_k$, we see that

$$\nu = \underset{k\geq 1}{\ast} \sum_{i=0}^{|\tilde{q}_k|-1} \tilde{p}_{i,k} \,\delta(i\tilde{Q}_k^{-1}).$$

Since $\tilde{p}_{i,k} > 0$ by hypothesis, supp $\nu = \mathbb{T}$.

It turns out that the converse of Proposition 7 holds as well. We first establish the following lemma.

LEMMA 11 [7]. Let μ be a positive measure on a measurable space X without atoms of infinite measure. Let E_n be measurable sets, $\mathbf{1}_n$ the characteristic functions of E_n , and

$$E = \left\{ t: \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_n(t) = 1 \right\}$$

be the set of points lying in almost all the E_n . Then

$$\mu E \leq \sup_{\{n_k\}} \mu \left(\bigcap_{k=1}^{\infty} E_{n_k} \right),$$

614

П

where $\{n_k\}$ runs over all sequences with $n_k \to \infty$. In particular, if $\mu(\bigcap_{k=1}^{\infty} E_{n_k}) = 0$ for all $\{n_k\}$, then $\mu E = 0$.

Proof. By restricting μ to a subset of E of finite measure, if necessary, it suffices to assume that μ is a probability measure concentrated on E. It follows that

$$1 = \int_X \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \mathbf{1}_n(t) \ d\mu(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \mu E_n.$$

Given $\varepsilon > 0$, there exists, therefore, a sequence $n_k \to \infty$ such that $\mu E_{n_k} > 1 - \varepsilon 2^{-k}$. Since $\mu(\bigcap_{k=1}^{\infty} E_{n_k}) > 1 - \varepsilon$, the lemma follows.

Definition [7]. A Borel set $E \subset \mathbb{T}$ is called an *asymptotic H-set* if there exists a sequence $m_j \to \infty$ and a non-empty open set $I \subset \mathbb{T}$ such that for $x \in E$,

$$\lim_{j\to\infty}\frac{1}{J}\operatorname{card}\left\{j\leq J\colon m_j x\notin I\right\}=1.$$

COROLLARY 12 [7]. A measure annihilates all asymptotic H-sets [resp., those based on any subsequence of $\{m_j\}$ and I] if and only if it annihilates all H-sets [resp., those based on any subsequence of $\{m_j\}$ and I].

Proof. This follows immediately from Lemma 11 applied to the sets

$$E_j = \{x: m_j x \notin I\}.$$

We are now able to give the following version of Proposition 7 and its converse.

THEOREM 13. Let $\mu \in M(\mathbb{T})$ and $m_j \to \infty$ be such that (3) holds. Then supp $\sigma_x = \mathbb{T}$ μ -a.e. if and only if μ annihilates all H-sets based on any subsequence of $\{m_j\}$.

Proof. One direction was shown in the proof of Proposition 7. For the other, suppose that supp $\sigma_x \neq \mathbb{T}$ on a set of positive $|\mu|$ -measure. We may assume that $\{m_j x\} \sim \sigma_x \mu$ -a.e. Then there is a set F' of positive measure and an $\eta > 0$ such that supp σ_x misses some arc of length η for every $x \in F'$, whence there is a set F of positive measure and a fixed arc I' of length $\eta/2$ such that supp $\sigma_x \cap I' = \emptyset$ for all $x \in F$. Let I be a non-empty open arc whose closure is contained in the interior of I'. Then

$$\lim_{J\to\infty}\frac{1}{J}\operatorname{card}\left(j\leq J\colon m_jx\in I\right)=0\quad\text{for }x\in F,$$

whence F is an asymptotic H-set based on $\{m_j\}$. By Corollary 12, there is a subsequence $\{m'_j\}$ of $\{m_j\}$ such that the H-set $\{x: \forall j \ m'_j x \notin I\}$ has positive $|\mu|$ -measure.

Consider now the Cantor-Lebesgue measure

$$\mu = \underset{k \ge 1}{*} \left[\frac{1}{2} \delta(0) + \frac{1}{2} \delta(2 \cdot 3^{-k}) \right]$$

supported on the Cantor middle-thirds set. (We have chosen an invariant μ for simplicity, not for any essential reason.) One expects intuitively that the only *H*-sets not annihilated by μ are those based on sequences sufficiently similar to $\{3^{j}\}$. This is true:

THEOREM 14. Let

$$\mu = \underset{k \ge 1}{*} \left[\frac{1}{2} \delta(0) + \frac{1}{2} \delta(2 \cdot 3^{-k}) \right]$$

be the Cantor-Lebesgue measure. If E is an H-set of positive μ -measure corresponding to a sequence $\{m_j\}$, then every subsequence $\{m'_j\}$ of $\{m_j\}$ has a further subsequence $\{m''_j\}$ of the form

$$rm_i'' = s3^{n_j} + b \quad (r, s \in \mathbb{N}^+, b \in \mathbb{Z}, n_i \to \infty).$$
(36)

Conversely, if $\{m_j\}$ is of the form (36), then there is an H-set of positive μ -measure corresponding to a subsequence of $\{m_j\}$.

Proof. If $E \subset \{x: \forall j \ m_j x \notin I\}$ is an *H*-set of positive measure and $\{m'_j\} \subset \{m_j\}$, then $\{x: \forall j \ m'_j x \notin I\}$ is also of positive measure since it contains *E*. Thus, to prove the first half of the theorem, it suffices to prove only that $\{m_j\}$ has a subsequence $\{m''_j\}$ of the form (36).

Now let $\{m_j''\}$ be a subsequence of $\{m_j\}$ such that $e(-km_j'''x) \rightarrow \hat{\sigma}_x(k)$ weak* in $L^{\infty}(\mu)$. By (13), we know that

$$\sigma_x = T_r^{-1} \left[\delta(b\zeta(x)) * \left(\underset{i=1}{\overset{l}{*}} T_{s_i} \nu \right) \right] \quad \mu\text{-a.e.},$$

where

$$\nu = \underset{k \ge 1}{*} \left[\frac{1}{2} \delta(0) + \frac{1}{2} \delta(3^{-k}) \right],$$

with l=1 if and only if $\{m_j''\}$ has a further subsequence $\{m_j''\}$ of the form (36). Thus, by Theorem 13, the present theorem reduces to showing that $l \neq 1$ if and only if supp $\sigma_x = \mathbb{T} \mu$ -a.e.

Suppose first that l = 1. Then supp $T_{s_1}\nu = \{s_1x : x \in \text{supp }\nu\}$. Since supp ν is a nowhere dense set, so is supp $T_{s_1}\nu$, and so, therefore, is supp σ_x .

Conversely, suppose that l > 1. We shall show that supp $(T_{s_1}\nu * T_{s_2}\nu) = \mathbb{T}$. Since ν is 3-invariant, we may assume that $3 \nmid s_1 s_2$. Now

$$T_s \nu = \underset{k \ge 1}{*} \left[\frac{1}{2} \delta(0) + \frac{1}{2} \delta(s 3^{-k}) \right],$$

so that

$$\rho \stackrel{\text{def}}{=} T_{s_1}\nu * T_{s_2}\nu = \underset{k \ge 1}{*} \left[\frac{1}{4}\delta(0) + \frac{1}{4}\delta(s_13^{-k}) + \frac{1}{4}\delta(s_23^{-k}) + \frac{1}{4}\delta((s_1 + s_2)3^{-k}) \right] = \xi_K * \omega_K$$

for any $K \ge 1$, where ξ_K is the discrete measure formed by the convolution of the first K terms and ω_K is the probability measure formed by the remainder. Now supp $\rho = \mathbb{T} \Leftrightarrow \rho I > 0$ for every arc I of the form

$$I = [A - (|s_1| + |s_2|)3^{-K}, A + (|s_1| + |s_2|)3^{-K}],$$
$$A = \sum_{k=1}^{K} a_k 3^{-k}, \quad a_k \in \{0, 1, 2\}, \quad K \ge 1.$$

Given such an arc, we can choose ε_K , $\varepsilon'_K \in \{0, 1\}$ such that

$$\varepsilon_K s_1 + \varepsilon'_K s_2 \equiv a_K \pmod{3}$$

since $3 \not\mid s_1 s_2$. We may then choose ε_{K-1} , $\varepsilon'_{K-1} \in \{0, 1\}$ such that

$$(\varepsilon_{K-1}s_1 + \varepsilon'_{K-1}s_2)3 + (\varepsilon_Ks_1 + \varepsilon'_Ks_2) \equiv a_{K-1}3 + a_K \pmod{3^2},$$

and so on, until we have chosen ε_k , $\varepsilon'_k \in \{0, 1\}$ $(1 \le k \le K)$ such that

$$\sum_{k=1}^{K} (\varepsilon_k s_1 + \varepsilon'_k s_2) 3^{K-k} \equiv \sum_{k=1}^{K} a_k 3^{K-k} \pmod{3^K},$$

which is the same as

$$\sum_{k=1}^{K} (\varepsilon_k s_1 + \varepsilon'_k s_2) 3^{-k} \equiv A \pmod{1}.$$

Therefore $\xi_K(\{A\}) \ge (1/4)^K$; since supp $\omega_K \subset [-(|s_1| + |s_2|)3^{-K}, (|s_1| + |s_2|)3^{-K}]$, it follows that $\rho I \ge 4^{-K}$.

We now present a similar example which will be useful in a moment.

LEMMA 15. Let

$$\pi = \underset{\substack{k \ge 1 \\ k \notin \mathcal{N}}}{*} \left[\frac{1}{2} \delta(0) + \frac{1}{2} \delta(2^{-k}) \right],$$

where $\mathcal{N} = \{n_j\}_{j\geq 1}$ is a sequence such that $n_{j+1} - n_j \rightarrow \infty$. If $\{m_j\}$ is a sequence which corresponds to an H-set of positive π -measure, then there is a subsequence $\{m'_j\}$ of the form

$$rm'_{i} = s2^{n'_{i}-1} + b$$
 $(r, s \in \mathbb{N}^{+}, b \in \mathbb{Z}, n'_{i} \in \mathcal{N}).$

Proof. We may assume that $e(-km_jx) \rightarrow \hat{\sigma}_x(k)$ weak* in $L^{\infty}(\pi)$. If we interpret π as containing the terms $1 \cdot \delta(0) + 0 \cdot \delta(2^{-k})$ for $k \in \mathcal{N}$, then Theorem 3 is applicable by the discussion which followed that theorem. Thus,

$$\sigma_x = T_r^{-1} \left[\delta(bx) * \left(\frac{l}{\underset{i=1}{*}} T_{s_i} \nu_i \right) \right] \quad \pi\text{-a.e.},$$

where each ν_i is a weak^{*} limit point of $\{T_{2^k}\pi\}$. Suppose that $T_{2^{k_j}}\pi \to \nu$ weak^{*}. If $|k_j - \mathcal{N}|$ is unbounded, then it is easy to see that $\nu = \lambda$. If $|k_j - \mathcal{N}|$ is bounded, then without loss of generality, $k_j = n'_j + d$, where $n'_j \in \mathcal{N}$. If $d \ge 0$, then $\nu = \lambda$; if d < 0, then

$$P = \underset{\substack{k \ge 1 \\ k \ne -d}}{*} \left[\frac{1}{2} \delta(0) + \frac{1}{2} \delta(2^{-k}) \right]$$

Since every ν_i is of this form and $\sup \sigma_x \neq \mathbb{T}$ for a set of positive π -measure, it follows that l = 1 and that for some $\{m'_j\} \subset \{m_j\}$, $rm'_j = s2^{k_j} + b$ with $k_j = n'_j + d$, $n'_j \in \mathcal{N}$, and $d \leq -1$. Therefore $(r2^{-d-1})m'_j = s2^{n'_j-1} + (b2^{-d-1})$, which is the desired form.

The following generalization of *H*-sets was introduced by Pjatecki¹-Šapiro [14; 18, Chap. XII, § 11; 1, Chap. XIV, § 15; 9]. Definition. Let $m \in \mathbb{Z}^+$. If

$$V = (v^{(1)}, \ldots, v^{(m)}) \in \mathbb{Z}^m, \Lambda = (l_1, \ldots, l_m) \in \mathbb{Z}^m$$

and $x \in \mathbb{T}$, we write $V \cdot \Lambda = \sum_{i=1}^{m} v^{(i)} l_i$ and $Vx = (v^{(1)}x, \ldots, v^{(m)}x)$. A sequence $\{V_k\}_1^{\infty} \subset (\mathbb{Z}^+)^m$ of *m*-tuples of positive integers is called *quasi-independent* if for each fixed $\Lambda \in \mathbb{Z}^m$, Λ not the 0-vector, we have $|V_k \cdot \Lambda| \to \infty$ as $k \to \infty$. A Borel set $E \subset \mathbb{T}$ is called an $H^{(m)}$ -set if there exist a quasi-independent sequence $\{V_k\} \subset (\mathbb{Z}^+)^m$ and a non-empty open set $I \subset \mathbb{T}^m$ such that for all $x \in E$ and all k, $V_k x \notin I$.

R. Lyons

In [7] and [9], we asked whether for each $m \ge 1$, there is a measure supported on an $H^{(m+1)}$ -set which annihilates all $H^{(m)}$ -sets, in other words, whether $H^{(m+1)}$ is 'much larger' than $H^{(m)}$. Here we show that the answer is 'yes' for m = 1.

THEOREM 16. Let π be the measure in Lemma 15,

$$\rho = \underset{j \ge 1}{*} \left[\frac{1}{3} \delta(0) + \frac{1}{3} \delta(2^{-n_{2j-1}}) + \frac{1}{3} \delta(2^{-n_{2j}}) \right], \text{ and } \mu = \pi * \rho$$

Then μ is supported on an $H^{(2)}$ -set and annihilates all H-sets.

Proof. Indeed, μ is supported on the 'canonical' $H^{(2)}$ -set

$$\{x: \forall j \ (2^{n_{2j-1}-1}x, 2^{n_{2j}-1}x) \notin]\frac{1}{2}, 1[\times]\frac{1}{2}, 1[\}.$$

Suppose that E were an H-set corresponding to a sequence $\{m_j\}$ with $\mu E > 0$. Since $\mu E = \int_T \pi(E-t) d\rho(t)$, it would follow that $\pi(E-t) > 0$ for some t. But E-t is an H-set corresponding to a subsequence $\{m'_j\} \subset \{m_j\}$ (if $\{m'_j\}$ is chosen so that $\{m'_jt\}$ is almost constant, then $\{m'_jx\}$ is not dense for $x \in E-t$). Lemma 15 shows that for a further subsequence $\{m''_j\} \subset \{m'_j\}$, we have

$$rm''_i = s2^{n'_j-1} + b$$
 with $n'_i \in \mathcal{N}$.

Let $e(-km''_{j}x) \rightarrow \hat{\sigma}_{x}(k)$ and $e(-k2^{n'_{j}-1}x) \rightarrow \hat{\tau}_{x}(k)$ weak* in $L^{\infty}(\mu)$. It is not hard to calculate that

$$\tau_{x} = \left[\frac{2}{3}\delta(0) + \frac{1}{3}\delta(2^{-1})\right] * \left[\underset{k \ge 2}{*} \left(\frac{1}{2}\delta(0) + \frac{1}{2}\delta(2^{-k})\right) \right] \quad \mu\text{-a.e.}$$

(This can also be calculated by convolving the weak^{*} limits in $L^{\infty}(\pi)$ and $L^{\infty}(\rho)$; see [10].) Of course, supp $\tau_x = \mathbb{T}$; since $\sigma_x = T_r^{-1}[\delta(bx) * T_s \tau_x]$, we also have supp $\sigma_x = \mathbb{T}$, which completes the proof by contradicting Theorem 13.

Acknowledgements. This research was conducted largely while the author was at the Université de Paris (Orsay), to whom I am grateful for their hospitality. I would also like to thank Jean-François Méla, Martine Queffelec, Bernard Host, and François Parreau for encouraging me to present my work in their seminar at the Université de Paris (Villetaneuse).

REFERENCES

- [1] Nina K. Bari. A Treatise on Trigonometric Series. Translated from the Russian by M. F. Mullins. Volumes I, II. New York: Macmillan, 1964.
- [2] J. R. Blum & Bernard Epstein. On the Fourier-Stieltjes coefficients of Cantor-type distributions. Israel J. Math. 17 (1974), 35-45.
- [3] I. P. Cornfeld, S. V. Fomin & Ya. G. Sinai. Ergodic Theory. Translated from the Russian by A. B. Sossinskii. New York: Springer, 1982.
- [4] Colin C. Graham & O. Carruth McGehee. Essays in Commutative Harmonic Analysis. New York: Springer, 1979.
- [5] Yitzhak Katznelson. An Introduction to Harmonic Analysis. Second corrected edition. New York: Dover, 1976.
- [6] Russell Lyons. Measure-theoretic quantifiers and Haar measure. Proc. Amer. Math. Soc. 86 (1982), 67-70; Erratum, Proc. Amer. Math. Soc. 91 (1984), 329-330.
- [7] Russell Lyons. A Characterization of Measures whose Fourier-Stieltjes Transforms Vanish at Infinity. Dissertation, The University of Michigan, 1983.

- [8] Russell Lyons, Fourier-Stieltjes coefficients and asymptotic distribution modulo 1. Ann. of Math. 122 (1985), 155-170.
- [9] Russell Lyons. The size of some classes of thin sets. Studia Math., 86 (1987), 59-78.
- [10] Russell Lyons. The local structure of some measure-algebra homomorphisms. Preprint (1988).
- [11] Yves Meyer. Les produits de Riesz sont des Bernoulli-shifts. (d'après Yitzhak Katznelson et Benjamin Weiss), unpublished.
- [12] John C. Oxtoby. Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116-136.
- [13] B. Petit. Schémas de Bernoulli et g-mesures. C. R. Acad. Sc. Paris 280, série A (1975), 17-20.
- [14] I. I. Pjatecki^Y-Šapiro. On the problem of uniqueness of expansion of a function in a trigonometric series, (in Russian). *Moscov. Gos. Univ. Uč. Zap.* 155, Mat. 5 (1952), 54-72. Supplement to the work 'On the problem ...,' (in Russian), *Moscov. Gos. Univ. Uč. Zap.* 165, Mat. 7 (1954), 79-97.
- [15] V. A. Rokhlin. Exact endomorphisms of a Lebesgue space. Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499-530 (Russian); English transl., Amer. Math. Soc. Transl. (2) 39 (1964), 1-36.
- [16] Meir Smorodinsky. Ergodic Theory, Entropy. Berlin-Heidelberg-New York: Springer, 1971.
- [17] Hermann Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77 (1916), 313-352. Also in 'Gesammelte Abhandlungen', vol. 1, pp. 563-599, Berlin: Springer, 1968.
- [18] Antoni Zygmund. Trigonometric Series. Second edition, reprinted. Volumes I, II. Cambridge: Cambridge University Press, 1979.