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THE ENUMERATION OF NON-ISOMORPHIC 
2-CONNECTED PLANAR MAPS 

V. A. LISKOVETS AND T. R. S. WALSH 

Since Tutte initiated the systematic enumeration of planar maps [11], 
most of the literature on the subject has dealt with rooted maps (i.e., with 
maps whose automophism group has been trivialized by distinguishing a 
doubly-oriented edge). In particular, Tutte proved [11] that the number 
B'(n) of rooted planar 2-connected (i.e., non-separable) maps with n = 1 
edges is expressed by the formula 

B\n) = 
2.(3/7 - 3)! 

n\(2n - 1)!' 

Recently one of the authors developed a general technique for 
enumerating unrooted planar maps considered up to orientation-
preserving isomorphisms (see [6] and [8] ). This technique, which is based 
on combinatorial map theory, Burnside's lemma [3, p. 181] and the 
concept of a quotient map (see Section 1.4), was used to find, with little 
algebraic manipulation, simple counting formulae for the numbers of 
non-isomorphic planar maps of several types [7]. In this work we use it to 
solve the more difficult problem of counting the number B + (n) of 
non-isomorphic non-separable planar maps with n edges. It turns out 
rather unexpectedly that the expression obtained directly by this method 
may be greatly simplified and reduces to the following simple formula: 

*+C) - I B\n) + \ 2 4 > ( T W " 9t + 2)B'(t) 
\^t<n 

n + 1 

3 ^ - 4 
16 

odd, 

even, 

where <£ (/) is the Euler totient function. 
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In Section 1 we give a brief sketch of our enumerative method which is 
used in Section 3 to obtain an initial formula for B + (n). The derivation is 
based on some structural properties of non-separable planar maps, which 
are investigated in Section 2. Then in Section 4 we give an analytical proof 
of three combinatorial identities for counting rooted maps of a special 
kind. This enables us to obtain the formula shown above. 

It should be noted that N. Wormald [15] developed another enumerative 
method which in principle makes it possible to count planar maps of 
various types, including non-separable ones, up to all symmetries as well 
as up to orientation-preserving ones. But in the orientation-preserving 
case his formulae are far more complicated than ours. 

1. Main definitions and the enumerative scheme. For undefined 
concepts the reader is referred to [3], [2] and [10]. 

1.1. A (planar) map is a 2-cell imbedding of a connected graph (finite, 
undirected, loops and multiple edges allowed) in the sphere S + where the 
sign + indicates that the sphere has been assigned an orientation. In 
topological terms, a map is a finite cellular dissection of S +. The 
expression T = T(S + ; V, E, F) denotes a map V which has the sets of 
vertices K, of (open) edges E and of faces (that is, of open 2-cells) F. We 
suppose that E =£ 0. The vertices, edges and faces of a map are referred to 
as its elements (as in [2, p. 386] ), and its vertices and faces as its principal 
elements. Two elements are said to be incident if one of them lies on the 
boundary of the other. 

An isomorphism of two maps means an orientation-preserving homeo-
morphism of their surfaces which takes each element of one map into an 
element (of the same type) of the other map. In particular, any 
automorphism of a map induces an incidence-preserving bijection on the 
set of its elements. An automorphism is called trivial if it takes each 
element into itself. We do not make a distinction between automorphisms 
if they differ by a trivial automorphism. And the term "automorphism" 
will mean a non-trivial automorphism. 

We will need the following lemma, which is a well-known fact in 
combinatorial map theory ( [11], [5], [4] ). 

1.2. LEMMA. Each map automorphism is defined by its action on the darts 
(or edge-ends) and this action is a regular permutation (that is, it consists oj 
independent cycles of equal length). 

A dart of a map or graph can be considered as an ordered pair (e, v), 
where e is an edge, v is a vertex, and e is incident to v. Each edge, even a 
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loop, has 2 darts, and the dart (e, v) is considered to belong to e and to be 
incident to v. In a map the dart d = (e, v) will be said to be incident to the 
face incident to e and lying to the right of e as one traverses e away from 
d. 

An unlabelled map is an isomorphism class of maps. (It is worth noting 
that an unlabelled map has no specially distinguished elements or 
darts.) 

1.3. To root a map is to distinguish a dart as its root, and an 
isomorphism of maps which have roots is assumed to take a root into a 
root. A rooted map is an isomorphism class of maps which have roots. In a 
rooted map the vertex and the face incident to the root are called the 
root-vertex and the root-face, respectively. 

It follows from Lemma 1.2 (the lemma in Section 1.2) that a rooted map 
has no (non-trivial) automorphisms. Moreover, an unlabelled map T 
generates In I a different rooted maps, where n is the number of edges and 
a is the order of the automorphism group of I\ 

1.4. As is well known [1] any non-trivial orientation-preserving 
homeomorphism of the sphere may be uniquely (up to conjugacy) 
represented as a geometrical rotation. And each non-trivial rotation of the 
sphere is uniquely defined by its oriented axis and its rotation angle, 
which is positive, commensurable with lit and less than 277. Therefore any 
automorphism of a map preserves exactly two elements, which we call 
axial. 

Let T = r ( £ + ; K, E, F) be a map and p be an automorphism of T. We 
define (as in [6], [7], [8] and [5] ) the quotient map 

A = T/p = = A(S+ /p; V\ E\ F') 

for T with respect to p as the orbit space [10, p. 244] of S+ /p and its 
induced map. It is clear that S+1p is the oriented sphere and E' = E/p 
and Ff = F/p are quotient sets. But for vertices (and also darts) a similar 
assertion is valid only when neither axial element is an edge. Otherwise (in 
which case p is of order 2), V is obtained from VI p by adding 1 or 2 
vertices of degree 1 which are images of the intersection points of the axis 
with 1 or 2 (open) edges of T. Such an additional vertex, as well as the edge 
and dart incident with it, are called singular. Thus, a quotient map is an 
ordinary map with s vertices of degree 1 distinguished as singular, where 0 
^ s S 2. 

With respect to T and p singular vertices of A and also the images of 
principal axial elements of T are called axial elements of the quotient map 
À. A quotient map will be called punctured if we want to emphasize its 
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axial elements. It is worth noting that in a punctured quotient map the 
axial elements are always principal (they may be singular vertices). 

We adopt the rule that no singular vertex can serve as a root of a rooted 
map. 

Geometrically, when T is drawn so that p is a rotation of the sphere [9] 
the map 17p is obtained in the following way. We cut out a sector 
bounded by two great semi-circles whose diameter is the axis and which 
form an angle of 2m11 (where / = lp is the order of p) and then paste these 
semi-circles together at corresponding points. 

Clearly when T is transformed to 17p the degrees of the principal axial 
elements are divided by lp and the degrees of the non-axial elements are 
unchanged. 

1.5. The natural transformation 

ILr->r/p 

has a uniquely defined inverse called a lifting. More precisely, for every 
/ > 1 every punctured map A (where / = 2 if A has singular vertices) may 
be uniquely lifted into a map denoted by X/(A) = T such that T has a 
corresponding rotation automorphism p of order / for which 17 p = 
A [8]. 

Given / > 1 and a puncture map A with two (principal) axial elements 
either of which may be a singular vertex (in which case / = 2), the lifting 
X/(A) = T may be geometrically constructed as follows. 

1) Fix two poles (i.e., opposite points) on the geometric sphere and 
draw A so that each of them coincides with an axial vertex or lies inside an 
axial edge or face (not the same element for both poles). 

2) Cut A along an arbitrarily chosen semi-circle whose ends are the 
poles (for the sake of simplicity we might draw A so that the cut intersects 
any non-axial face in a segment and any edge in a point) and then push 
back the sides of the cut, shrinking the cut sphere uniformly into a sector 
(or lune) of angle 27r/l. 

3) Take / copies of this "sector-map", some elements of which are 
broken by the cut, put them on a sphere (of the same diameter) one after 
another in cyclic order and paste the neighbouring sides together (the right 
side of the first sector with the left side of the second and so on), 
identifying the corresponding points. As may be easily seen, this results in 
a map on the sphere formed by all the unbroken elements of our / 
"sector-maps" and by the broken elements (including vertices lying on the 
cut) pasted together. 

4) The map thus constructed is the required T if A has no singular 
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vertices. Otherwise, T is obtained from it by replacing each axial vertex 
arising from a singular vertex of A and both edges incident to it by a single 
edge (this is possible because in this case / = 2, singular vertices are of 
degree 1 and no edge can be incident to 2 singular vertices). One can now 
naturally construct a rotation automorphism p of T such that 17p = A. 
All such automorphisms are the primitive elements of a cyclic group of 
order /. 

If X is a set of elements of A, \/(X) will denote the set of elements of T 
lifted from them. 

1.6. Now we give a sketch of the enumerative scheme which we use (see 
[6] and [8] ). Let the symbol Wl = Tt(n) denote an arbitrary set of «-edged 
maps. We suppose that Wl consists of unlabelled maps, but when necessary 
the set of all rooted maps arising from them will be denoted by the same 
symbol, and this will be separately specified. Suppose a classification W of 
axes of (non-trivial) map automorphisms to be given which is complete for 
Wl\ that is, for any r G ffi and any automorphism p of T there exists a 
unique class co £ W, which is designated as co = T(T, p), to which the axis 
of p belongs. This class r = T(T, p) is called the type of p. Thus W is a 
certain partition of the (finite) set of axes of all the automorphisms of all 
the maps in Wl (or, more generally, of all the «-edged maps in some 
superset of Wl). We assume that W is a refinement of the partition of this 
set of axes into 3 classes: /, T and H, where an axis is in 7, T or H 
according as it passes through 0, 1 or 2 map edges, respectively, and thus 
we write 

where A, M and N are suitably chosen finite sets. 
Sometimes it is more convenient to define W in terms of quotient 

maps. 
Now let SSl^j = 3K<o,/(0 denote the set of all maps which are 

(unpunctured) quotient maps for maps from Tl with respect to 
automorphisms of type co e W and of order / > 1. Clearly for co = 7^ or 
Hv only / = 2 makes sense, so that in both cases we shall drop the 
subscript / and assume that Wj = 2)?r,2 and 9K//; = SOÎ//̂ -

By the definition of quotient maps, all maps in sIftw / have t edges, where 
/ satisfies the following relationships: 

It = n if co = I\, 
(1) It = n + 1 if co = Tp 

It = n + 2 if co = Hv. 
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Now we impose the following combinatorial restriction. 

1.7. Invariance condition. For each co and / and for each (unpunctured) 
map A from Wlœj(t) the number of ways to choose an axis such that the 
lifting on A of order / with respect to this axis gives rise to a map from Tl 
with the corresponding automorphisms of type r = co does not depend on 
A and depends only on co and / (or /). This number will be denoted by ^(co, 
/ ) = ^ ( ( 0 , t). 

Of course, ^(Hp, /) = 0 or 1: the axis is uniquely defined by the 
singular vertices. 

Now we may formulate the general result. 

1.8. THEOREM [6], [8]. Under the invariance condition the number M+(n) 
of non-isomorphic (unlabelled) maps in Wl = Tl(n) is expressed by the 
formula 

(2) nM+(n) = M\n) + 2 W) 2 * U 7 ) ^ / ( 7 ) 

^ J n + 2 \ w , In + 2 \ 
Z *\HV9 —r— I M'Uv I — — - I, n even, 

HV^W x z / \ L J 

where W = {/\, 7^, //„} /̂  a classification of map automorphism axes which 
is complete for Wl, <j> is the Euler function, and M\n) and M^ j(n/l) denote 
the numbers of rooted maps in yjl(n) and 2^w,/(«//) respectively (for œ = T^ 
or Hv the root is non-singular). 

2. Non-separable maps and their quotient maps. 

2.1. A map is called separable if its edge-set can be partitioned into two 
non-null subsets such that there is exactly one vertex incident with an edge 
in each subset; otherwise a map is called non-separable or 2-connected [11]. 
It is clear that a non-separable map has no loops or isthmuses (an isthmus 
is an edge both of whose darts belong to the same face) unless it is 
one-edged. In the latter case there are two different non-separable maps: 
the link-map and the loop-map. 

It is well known that any graph admits a unique decomposition into 
edge-disjoint 2-connected subgraphs called its blocks. This notion is 
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naturally extended to maps: the blocks of a map are its submaps 
corresponding to the blocks (including loops) of its underlying graph 
(1-skeleton). A vertex or a face of a map belongs to a block if it is incident 
to an edge of this block. It is referred to as internal for some block if it 
belongs only to this block; otherwise this principal element is said to be 
separating or external for all the blocks containing it. 

Two blocks of any map may share at most one (external) vertex and, by 
duality, at most one face. If they share both an external vertex v and an 
external face/ ( in which case the two blocks are called adjacent) then v 
a n d / m u s t be incident. Thus the concept of the block-cutpoint tree of a 
connected graph [3, p. 37] can also be extended to maps, where a cutpoint 
is now called a separator and is an incident face-vertex pair shared by 
more than one block and is adjacent in the tree to all the blocks which 
share it. The end-vertices of the tree all correspond to blocks of the map, 
called its end-blocks. Clearly this tree must have a centre and not a 
bi-centre. 

2.2. Definition. A series map or s-map is a separable map whose 
block-separator tree is a chain. The end-blocks of this chain are called 
extremal and the other blocks are called internal. 

We need the following three properties of s-maps. 

(1) If B is a block of a map T and if it contains a separating vertex v 
then B is adjacent to at least one block containing v with which it shares 
an external face / incident to v. The same wi th / and v reversed is valid. 
Therefore in a series map T each extremal block contains a unique 
separating vertex and a unique separating face and each non-extremal 
block contains at most two such vertices and faces. For the same reason at 
least one of the two separating elements of an extremal block is shared by 
only two blocks. 

(2) Property (1) defines the general construction of i'-maps. Namely we 
take any non-separable map B and distinguish a vertex v and a face 
incident to v. Then we take any map A which is either an ^-map or a 
non-separable map and again distinguish a vertex and a face incident to it, 
which in the case of an s-map belong to one of the extremal blocks and not 
both are separating. Then we paste B and A together, identifying the 
distinguished faces with each other and similarly the distinguished vertices 
(topologically this is done by cutting small circular holes inside the 
distinguished faces which touch the boundaries only in the distinguished 
vertices and then pasting both maps together by the boundaries of the 
holes). 
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(3) This third party property is as follows. If v is a vertex of degree 1 
belonging to an s-map, then v belongs to a block B which is a link-map 
and is one of the extremal blocks (in fact B is a link-map and contains no 
internal faces and only one external face), for if B shared this face and its 
other vertex with two blocks Bx and B2, then B, B\ and B2 would be 
pairwise adjacent, which would contradict the definition of an s-map. The 
same (with the roles of faces and vertices exchanged) is valid for a 1-gonal 
face; that is, a face bounded by a loop. 

2.3. PROPOSITION. Let Y be any map other than a link-map or a loop-map 
and let A be the quotient map of Y with respect to any (non-trivial) 
automorphism pofY. Then Y is non-separable if and only z/A is of one of the 
following two forms'. 

1) A is a {punctured) non-separable map with an arbitrary pair oj 
(principal) axial elements other than a vertex v and a face incident to 
v; 

2) A is a (punctured) s-map one of whose axial elements is an internal 
element of one of its extremal blocks and the other axial element is an 
internal element of the other extremal block. 

The "only if" part of this proposition will follow from Lemmas 2.4 and 
2.5 and the "if" part from Lemma 2.6. 

2.4. LEMMA. If Y is non-separable then every end-block of A (if A is 
separable) has an internal axial element. 

Proof. Suppose that an end-block of A has no internal axial element. 
Then A can be drawn so that a cut whose ends are the axial elements does 
not intersect with any internal element of that end-block. Then when the 
geometrical lifting is performed, copies of that end-block are end-blocks 
of T. 

2.5. LEMMA. If Y is non-separable then the axial elements of A are not 
incident with each other. 

Proof. If the axial elements are a vertex and a face incident to each 
other, the geometrical lifting of A can be performed using a cut which 
intersects no non-axial elements. Therefore the axial vertex if A is lifted to 
a separating vertex of Y if it is non-singular, and corresponds to an 
isthmus of Y otherwise. 

2.6. The "only if" part of Proposition 2.3 follows from Lemmas 2.4 and 
2.5 since the only separable maps in which every end-block has an internal 
axial element are s-maps. The converse is contained in the following: 
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LEMMA. IfT is separable and the axial elements are not incident, then A is 
separable and has an end-block with no internal axial element. 

Proof. We first show that there exists a unique block B of T invariant 
under p. Consider the automorphism p' of the block-separator tree T of T 
induced by p. Since T is separable, T has at least one "separator-vertex" 
(i.e., one representing a separator of T); and since the axial elements of T 
under p are not incident, p' can fix no separator-vertex of T: otherwise the 
corresponding incident face and vertex of T would be axial. Therefore p' 
fixes exactly one element of T: its centre, which must correspond not to a 
separator but to a block of T. Thus B is the unique block of T fixed by 

P. 
Aside from Z?, none of the blocks of T can have an internal axial 

element; so we can cut out a sector both sides of which do not intersect 
any block except B. Such a sector will include part of B and one entire 
block from each orbit of blocks under p' not containing B. So A will have 
at least one block B' obtained from B and one block obtained from each 
orbit not containing B. Thus A is separable and must therefore have at 
least two end-blocks. Of all the blocks of A, only B' can have an internal 
axial element; so at least one of the endblocks of A has no internal axial 
element. This completes the proof of the lemma and of Proposition 2.3. 

3. An initial formula for the number of non-separable maps. 

3.1. Now we apply the general enumerative scheme of Theorem 1.8 to 
non-separable maps using Proposition 2.3. Let 93 = 93(«) denote the set of 
non-separable maps with n edges. An appropriate classification W = WB 

of the axes of map automorphisms is 

WB = {h, hfr Ta, H}a>h^h 

which we will show to be complete for 93 and to satisfy invariance 
condition 1.7. Here 70 corresponds to those automorphisms with respect to 
which the quotient maps are non-separable, and Iab, Ta and H to those 
with respect to which the quotient maps are s-maps whose extremal blocks 
have, respectively, a and b non-singular edges, a non-singular edges and 
one singular edge, and one singular edge apiece. By Proposition 2.3 this 
classification exhausts all possible cases; i.e., WB is complete for 93. 

As was shown in [11], in a non-separable map with / > 1 edges each 
vertex is incident to each face at most once. Therefore any vertex is 
incident with exactly as many faces as edges. Summing over all vertices we 
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obtain 2i incident vertex-face pairs (this is valid for t = 1 too). But there 

are I ~ ) pairs of different principal elements in all because by the 

Euler formula ( \V\ — \E\ -f \F\ = 2) in a map with t edges there are t + 2 
principal elements. Thus if A G %5IOJ then it has t = nil edges and admits 

( 2 J ~~ 2t different axes which lead to non-separable liftings. In other 

words, the invariance condition holds for 70
 a n d 

CV)-**(/(), l)= ( 2 ) -2t, t = nil 

For the case of Iab, by Proposition 2.3 the axial elements of a quotient 
map are arbitrary internal principal elements of distinct extremal blocks. 
Such a block with a edges contains a internal principal elements: from the 
total number a + 2 we must subtract one separating vertex and one 
separating face (see 2.2). Therefore 

maj, I) = ab. 

Similarly, 

*(Ta, 2) = a, 

* ( / / , 2) = 1. 

Hence the invariance condition holds for all cases. 
Let (£(#, b; t) denote the set of /-edged s-maps whose extremal blocks 

have a and b edges. Then 

93 w = e(a,ft-A 
r 

93 ru = (£* I a, 1; — - — I if AI is odd, and 

n + 2 
93// = ©**(1, 1; —-—) if « is even, 

where S* and (£** are the same sets of s-maps as 6 but with one and two 
vertices of degree 1 distinguished as singular. Let C\a, b\ /), C'*(a, 1; /) 
and C**(l, 1; t) be the corresponding numbers of rooted maps, B\n) be 
the number of rooted maps in 93(/i) and B+(n) be the number of 
non-isomorphic maps in 93(w). Note that 93/0/ = 93(«//). Substituting all 
these expressions into the general formula (2) we obtain the following 
result. 
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3.2 THEOREM. 

(3) 2nB + (n) = B'(n) + ^ 2 4>[" ) (t2 - t + 2)B'(t) 2 •(?) 
t\n V t / 

\^t<n 

+ 2 <M~) 2 abC(a9b\ 
t\n ^( ' l^b^a 

t) 

\<t<n a + b^t 

+ > aZI 

2J aC*I a, 1; —-— I, n odd, 
,^i V 2 / 

Ci*I 1,1; —-— I, n even. 

3.3. In this section we express C*and C** in terms of C. 
1) We begin with the case C*(<2, 1; n) for Û > 1. Each map in (£(#, 1; «) 

has a unique vertex or face of degree 1. Consequently by Lemma 1.2 it has 
no automorphisms and admits In different rootings. We may partition the 
set (£(#, 1; n) into pairs, in which unlabelled maps in a given pair differ 
only in that one has a link-map and the other has a loop-map as the 
extremal 1-edged block, and both have the same incidence structure. Each 
pair contributes An to C'(a, 1; n). Only the first map in any pair may be 
turned into a map from (£*(#, 1; n) by declaring the vertex of degree 1 to 
be singular. In general such a map obtained by declaring one or two 
vertices to be singular is called derived (for the corresponding map without 
singular vertices). Any map in (£*(#, 1; n) admits In — 1 rootings (it can be 
rooted in every dart except for the singular one). As our derived maps 
exhaust (£*(<z, 1; A?) we have 

In - 1 
(4) C*(a, 1; n) = — C(a, 1; n), n > a > 1. 

An 

2) Now let a = 1. There are three types of maps in ©(1,1; n) which differ 
only in the pair of extremal blocks; two link-maps, a link-map and a 
loop-map, or two loop-maps. These maps are said to be ii-, io-, or oo-maps, 
respectively. Two maps of different types in K(l, 1; n) are called related if 
they differ only by their extremal blocks and have the same incidence 
structure; i.e., one may be obtained from the other by replacing one or 
both its extremal blocks which was a link-map by a loop-map or 
vice-versa. 
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If T is an //-map it either has no automorphisms or has a unique 
automorphism which transposes the extremal "link-blocks" and is of order 
2. Both cases require separate considerations. 

a) Let T be an unlabelled //-map without automorphisms. Then F has 
two different related /o-maps T\ and 1^ which are obtained from it by 
replacing one or the other extremal link-map by a loop-map. Moreover, T 
has one related oo-map F0. Each of these maps has no automorphisms and 
admits In rootings. Hence T and its related maps contribute Sn to C(l, 1; 
n). Similarly there are two derived maps with one singular vertex for T, 
only one such map for each of Tx and T2 and no derived map for r0 . Each 
of these 4 derived maps admits 2n — 1 rootings. So they contribute 4(2n 
— 1) to C*(l, 1; n). Finally for V there exists a (unique) derived map with 
two singular vertices and it contributes In — 2 to C**(l, 1; /?), and for T\, 
T2 and TQ there exist no derived maps. 

As a result we have the following proportions of the numbers of rooted 
maps which arise from an //-map without automorphisms and from its 
related maps, and have 0, 1, or 2 singular vertices, respectively (all 
numbers have been divided by 2): 

(5) 4n:2(2n - \):(n - 1). 

b) Let T be an //-map with a unique automorphism of order 2. Now T 
has one related oo-map F0 and only one related z'o-map T\ since its 
extremal blocks are indistinguishable. T admits \ • 2n = n different 
rootings and the same is valid for r0 , but Y\ has no automorphisms and 
admits 2n rootings. All together they contribute n + n + 2n = An to C'(l, 
1; n). By the same argument there is a unique derived map with one 
singular vertex for T and it has no automorphisms. The same holds for Fj, 
while r 0 has no derived maps. All together both derived maps contribute 
2(2« — 1) to C*(l, 1; n). Again only T has a (unique) derived map with 
two singular vertices which admits \{2n — 2) = n — 1 rootings since 
declaring both vertices of degree 1 to be singular preserves the symmetry. 
Thus we have the same proportions (5) of the contributions. 

When T runs through all //-maps with n edges, it and its related maps 
run through Ê(l, 1; n) without repetitions and their derived maps run 
through (5 *(1, 1; n) and (£**(1, 1; n). Hence the same proportions (5) hold 
for the numbers of rooted maps in these three sets. This proves the 
following relationships. 

(6) C'*(l, 1; n) = n~ C(l, 1; «), 
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(7) C**(l, 1; n) = 
An 

C(l, 1; n). 

Substituting expressions (4), (6) and (7) into (3) we obtain (after simple 
manipulations) the following result. 

3.4. PROPOSITION. 

(8) B + {n) = — [B\n) + - - / + 2)B\t) 2 •(!)«= 
t\n V t ' 

+ 2 «M-l 2 abC(a,b;t)] 
t\n ^ l ' a>b>\ 

b^t 

— — - Zi aC [a, 1 —z— I, « 
4(n 4- 1) fl^2 ^ 2 ' 

l<a<« a + b^t 

1 

2(w + 1) 

orfrf, 

1 8(A7 + 2) V>l>—hn 1 / n + 2^ 
CI 1, 1; —r— I, A eveft. 

4. Enumeration of series maps. The aim of this section is to prove the 
following three identities. 

4.1. PROPOSITION. For n — 2, 

(9) C(l, 1; n) = 2n(3n - 5) B\n - 1); 

(10) 2 aC(ûr, 1; n) Hh 2C(1, 1; w) = An2B\n); 
a^2 

(11) 2 tf/>C(tf, 6; /?) = 4A2(/7 - 1 )£'("), 

where for n = 1 

(12) * '(") 
2.(3« - 3)! 
n\(2n - 1)! 

is the number of rooted n-edged non-separable maps. 
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4.2. Proof. 1) An initial s-map is a rooted s-map such that the root 
belongs to one of the two extremal blocks and is not incident to the 
external face of that block. We first count initial s-maps. 

An initial s-map Y may be constructed as follows. Take any rooted 
non-separable map B and choose any incident face-vertex pair other than 
the pair "root-face, root-vertex". Take any rooted non-separable map or 
initial series map Tj and choose the pair "root-face, root-vertex". Identify 
these two pairs by property (2) of Section 2.2. It is clear that for any initial 
map T the maps B and T\ are uniquely defined. If B has n\ edges it has 2n\ 
darts and, since it is a block, exactly 2«j — 1 incident face-vertex pairs 
other than the pair "root-face, root-vertex". So if we let/(«i) = B'(nx) and 
f(xh x2, . . . , xk) be the number of initial s-maps with k ^ 2 blocks, where 
the /-th block has nl edges and the root is in the first block, then 

(13) f(nh n2,..., nk) = (2nx - 1) B'{nx)f{n2, . . . , nk) = . . . 

= (In, - \)(2n2 - 1 ) . . . ( 2 ^ _ , - \)B\nx)B\n2) . . . B'(nk). 

Therefore the number of initial s-maps with a + b -f c edges in which the 
extremal blocks have a and b edges and the root belongs to the block with 
a edges is 

A: — 1 

(14) (la - \)B\a)B\b) 2 I I (2w, - 1)%)-
n2 +. . . + Wfc_i =c i = 2 

If we let 

oo 

P(x) = 2 B'(n)x\ 

then 
CO 

2 (In - X)B'(n)xn = 2xp'(x) - J8(JC), 

where ft'(x) means dfi(x)/dx, and the sum in (14) is the coefficient of xc in 
[1 -(2xp'(x) - /?(*) ) ] _ 1 . It was shown in [11] that 

(15) p(x) = 2t - 3/2, 

where t = x(\ — / ) - 2 so that 

(16) x = t(\ - i)2. 

Hence 
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and so 

(18) [1 - (2xP(x) - ftx))]-1 = (1 - / ) " 2 . 

By Lagrange's inversion formula [14], 

oo c 

(1 - t)~2 = 1 + 2 — " coef^-i [2(1 - 0~ ( 2 c + 3 )]. 

But 

2(1 - 0" (2c+3) V ^ ' 2(3. + 1)! 
.fo (2c + 2)! c ! ' 

3c 4- 1 
in which the coefficient of xc is — - — B'(c -f 1). Hence (14) is 

equal to 

(la - l)B'(a)B'(b)^^ B\c + 1). 

The number of rooted s-maps, not necessarily initial, with a + b + c 
edges in which the extremal blocks have a and b edges and the root 
belongs to the block with a edges is 

(19) 2aB'(a)B\b) C * 1 B\c + 1 ) : 

the only difference with initial maps is that we not exclude the pair 
"root-face, root-vertex" in B. 

2) Let r be an unrooted ^-map with a -f b + c edges in which the 
extremal blocks have a and Z? edges. 

If r has no non-trivial automorphisms then it admits 2(a + b+ c) 
distinct rootings. Of these, the number with the root in an internal block is 
2c, and the number with the root in an extremal block having a edges is 2a 
ii a =£ b, and 4a if a = b. 

If r has a non-trivial automorphism, then a = b and T admits la + c 
distinct rootings. Of these, the number with the root in an internal block is 
c and the number with the root in an extremal block with a edges is la. 

In either case, the ratio of the number of rooted i'-maps with the root in 
an internal block to the number of rooted s-maps with the root in an 
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extremal block having a edges is c/a if a ¥* b, and c/(2a) if a = b. Hence, 
from (19), the number of rooted s-maps with a + b + c edges whose 
extremal blocks and a and b edges and whose root lies in an internal block 
is 

(20) B\a)W(b) C- (3c + 1) B\c + 1) • { \ |[ ^ J 

3) To find the number C'(fl, ft; w) we add (19) to (20), but if a ^ b we 
also add (19) with a and Z) interchanged, since the root may also belong to 
the extremal block with b edges. We get 

wt ^ wiu\ 3c + l
 M 4- n f 2 c + 2tf + 2è if tf^ Z> 

v 7 v y 2 I c + 2a if a = />, 

and putting c = n — a — b, we obtain the equation 

3(n - a - b) + \ 
C(a, b\n) = n • 

v21) 2 fliîa ¥= b 
B\a)B\b)B\n - a - b + 1) • \ i if fl = ft. 

Setting a = b = 1 in (21) we get (9) directly. 
Also, 

2 flCfa, 1; n) 

n-\ 

+ 2C'(1, 1; «) 

2 • 2n 
= — — 2 AS'(Û)[3(W - a)- 2] B\n - a) 

2 0 = 1 

« - i « - 1 

= 6n 2 aB'(a)(n - a) B\n - a) - An 2 Û£'(Û) # ' (" ~ *) 
a=\ a=\ 

= 6w • coefx» [xj8'(*) ]2 - 4n • coefx* [JCJ8'(*) £(*) ]. 

Using (15), (16) and (17) and simplifying we see that this is equal to 

n • coQÎxn [8/2(l - / ) ] . 

By Lagrange's formula, this is 

8 • coef,*-i [(2/ - 3/2)(l - t)~2n], 

which simplifies to (10). 
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Finally, 

2 abC'(a, b\ n) 
a^b^l 
a + b^n 

= n- 2 aB>(a) bW(b) - 3 ( " " * ^ *> + * 

• £'(w - a ~ 6 + 1) 

a, b^\ 
a + b-â-n 

n • coefy i (xp'(x)y 2 3xP\x) - 2/3(x) 

2 

= n • coefy.-, i [4/3(l - t2) ] = n • coef> [4/2] (by (16) ). 

By Lagrange's formula, the coefficient of xn in r is 

2 . 2 (3n - 3 \ 
- • coef^ 2 [ (1 - t)~2n] = - I 1 = (« - 1) £'("), 
« n \ n — 2 / 

which yields (11). 

5. The result. Simplifying (8) with the aid of expressions (9), (10) and 
(11) we get the final result. 

5.1. THEOREM. The number B^{n) of non-isomorphic {up to orientation-
preserving isomorphisms) non-separable planar maps with n = 1 edges is 
expressed by the following formula: 

(22) B+(n) = i - [B'(n) + \ 2 <f> ( 7 ) (9t2 - 9t + 2) 5'(0 ] 
2n 2 t\n \t J 

n + 1 _./« "• - . 
odd, 4 

Jw - 4 
16 \2 

ev^ft, 

where B\n) = 2 • (3« — 3)!/«!(2# — 1)! is the number of rooted 
non-separable n-edgedplanar maps. 

The values of B'(n) and B+{n) for 1 ^ « ^ 20 are given in the table in 
figure 1. 
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The values of B^(n) for n ^ 10 were independently checked by 
generating the maps by computer [12]. 

5.2. Remark. Identities (9), (10) and (11) seem very surprising and it 
would be interesting to find direct combinatorial interpretations of them. 
It is especially intriguing that B+(n) proved to be expressed in terms of 
the values of B'(t), t ^ n, alone by such a simple formula as (22), even 
though the general scheme leads to using the auxiliary function C{a, b\ n). 
Is there a more direct proof of (22)? 

The results obtained here and in [6], [7], [8] have been used to count 
other sets of non-isomorphic planar maps including 3-connected maps 
[13]. 

n B'(w) B + (n) 

1 2 2 
2 1 1 
3 2 2 
4 6 3 
5 22 6 
6 91 16 
7 408 42 
8 1938 151 
9 9614 596 
10 49335 2605 

11 260130 12098 

12 1402440 59166 

13 7702632 297684 

14 42975796 1538590 

15 243035536 8109078 

16 1390594458 43476751 

17 8038677054 236474942 

18 46892282815 1302680941 

19 275750636070 7256842362 

20 1633292229030 40832979283 

FIGURE 1 
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