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Abstract 

Non-coding RNAs (ncRNAs) are transcribed RNA molecules that do not encode 

proteins but regulate diverse biological processes. Dysregulation of ncRNAs is 

implicated in cancer, where chemical modifications such as N6-methyladenosine 

(m6A), N4-acetylcytidine (ac4C), and glycosylation critically influence their function. 

These modifications act as precise regulators of ncRNA activity, with disruptions linked 

to tumorigenesis and cancer progression. This article systematically reviews the roles 

of chemically modified ncRNAs—ribosomal RNA (rRNA), circular RNA (circRNA) and 

others—in cancer biology. It reveals how specific modifications drive oncogenesis, 

impact cancer diagnosis, and affect therapeutic responses, while also exploring their 

prognostic potential. This review highlights emerging connections between ncRNA 

epitranscriptomics and malignancy, offering novel insights into targeting RNA 

modifications for cancer therapy. 

Keywords: Non-coding RNA, Chemical modification, Cancer, Diagnosis, Therapy 
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Introduction 

Non-coding RNAs (ncRNAs) are functional RNA molecules genomically transcribed, 

and historically undervalued due to lack of potential for protein or peptide translation. 

They regulate messenger RNA (mRNA) stability/translation, RNA processing and 

modification, protein transport, and chromosome structure. Functionally they are 

classified as housekeeping ncRNAs (e.g., transfer RNA (tRNA), ribosomal RNA (rRNA), 

small nuclear RNA (snRNA), small nucleolar RNA (snoRNA)), and regulatory ones (e.g., 

long non-coding RNA (lncRNA), Piwi-interacting RNA (piRNA), microRNA (miRNA), 

small interfering RNA (siRNA), and circular RNA (circRNA))[1]. 

RNA chemical modifications, crucial for determining biological polymer functionality, 

expand diversity of RNA through post-transcriptional modifications (PTMs). It has 

uncovered over 170 distinct types of chemical modifications present on RNA 

molecules[2, 3]. These alterations influence RNA stability, distribution, activity, and are 

linked to diseases including cancer. As a complex genetic disorder resulting from the 

accumulation of mutations, cancer is characterized by dysregulated uncontrolled cell 

proliferation and gene expression. The cancer burden in China is increasing to over 4 

million new cases and approximately 3 million deaths[4]. ncRNAs play pivotal roles in 

cancer pathogenesis[5], and contribute to cancer progression by modulating gene 

expression via RNA modifications[6]. A comprehensive exploration of the roles and 

significance of ncRNA chemical modifications and associated signaling pathways in 

cancer holds promise for advancing cancer treatment strategies. 

ncRNA and cancer 

ncRNAs are significantly involved in either facilitating or inhibiting cancer progression 

across a wide range of cancer types[7]. The roles of several common types of ncRNAs 

in cancer are summarized in Table 1. 

snoRNA in cancer 

snoRNAs, small nucleolar ncRNAs (60-300 nucleotides), are abundant in eukaryotic 

nucleoli[8]. They play dual roles in cancer progression[9]. Tumor-suppressive snoRNAs 
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like SNORD50A/B has been shown to inhibit BS (BC) by binding K-RAS[10]. Similarly, 

SNORD113-1 inhibits tumorigenesis by regulating MAPK/ERK and TGF-β signaling 

pathways[11]. Conversely, oncogenic snoRNAs such as SNORD17 promote 

hepatocellular carcinoma (HCC) through a positive feedback loop involving nucleolar 

phosphoprotein 1 (NPM1) and human Myb-binding protein 1A (MYBBP1A) upon p53 

inactivation[12], and SNORA23 promotes tumor cell proliferation and invasion by 

upregulating the expression of spectrin repeat containing nuclear envelope 2 (SYNE2) 

[13]. Consequently, snoRNAs are implicated in tumorigenesis and may emerge as 

pivotal biomarkers for diagnosing and predicting the outcome of various cancers. 

rRNA in cancer 

rRNAs affect cancer progression through gene expression regulation[6], ribosome 

assembly modulation[14], and oncogenic protein translation (driving 

proliferation/transformation). Their roles as therapeutic targets and prognostic 

markers[15], highlight novel strategies for cancer diagnosis, treatment, and outcome 

prediction, offering innovative insights into cancer management. 

miRNA in cancer 

miRNAs, short RNAs (19-25 nucleotides), regulate gene expression and exhibit dual 

roles in cancer as oncogenes or tumor suppressors[16]. Foundational study revealed 

reduced miR-15/miR-16 expression in chronic lymphocytic leukemia (CLL)[17], while 

miR-31 promotes endometrial cancer (EC) by inhibition of the Hippo pathway[18]. The 

miR-34 family, regulated by tumor suppressor p53, controls cell growth, apoptosis, cell 

cycle[19]. Notably, miR-34a loss has been shown to promote colorectal cancer (CRC) 

and predict poor survival in CRC patients via activating the IL6-STAT3 signaling pathway 

[20]. Importantly, miR-34a may serve as the most promising miRNA drugs for cancer 

treatment[21], underscoring diagnostic and therapeutic value of miRNAs in cancer 

management. Hence, miRNAs broadly influence cancer progression by modulating cell 

growth, invasion/metastasis, angiogenesis, and cellular transformation[5, 22]. 

lncRNA in cancer 
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lncRNAs, transcripts exceeding 200 nucleotides[23], regulate cancer development by 

modulating proliferation, differentiation, and metastasis[24-27]. Oncogenic lncRNAs 

include prostate cancer antigen 3 (PCA3), elevated in prostate cancer (PCa) patients’ 

urine as an early diagnostic biomarker[28], and lncRNA programmed cell death ligand 

1 (PD-L1), which accelerates lung adenocarcinoma (LUAD) by enhancing c-Myc 

transcriptional activity[29]. Furthermore, lncRNA KIMAT1 may represent a therapeutic 

target for KRAS-driven lung cancer (LC)[30]. Conversely, tumor-suppressive lncRNAs 

like BC069792 inhibit BC by sponging miR-658 and miR-4739 as a competitive 

endogenous RNA (ceRNA), upregulating KCNQ4, and suppressing AKT phosphorylation 

to block metastasis[31]. These findings underscore the pivotal function of lncRNAs in 

gene regulatory networks, indicating their promise as trustworthy diagnostic 

indicators or targets for cancer treatment[32]. 

siRNA in cancer 

siRNAs regulate eukaryotic genome expression and function by modulating 

endogenous genes and protecting the genome against invading nucleic acids[33]. Their 

primarily function is in RNA interference (RNAi), a highly specific regulation that 

governs gene expression in a base pairing manner[34]. They modulate tumor-related 

signaling pathways[34, 35], and offer targeted cancer therapy potential by silencing 

oncogenes with low doses, minimal side effects, highlighting their promise in precision 

oncology[36]. 

piRNA in cancer 

piRNAs (24-31 nucleotides) exert regulatory effects by interacting with Piwi 

proteins[37]. Oncogenic piR-823 enhances DNA methylation in multiple myeloma 

(MM)[38], while piRNA-14633 drives cervical cancer (CC) via the methyltransferase-

like protein 14 (METTL14)/CYP1B1 signaling axis[39]. Tumor-suppressive piR-39980 

targets ribonucleotide reductase subunit M2 (RRM2)[40], and piR-36712 

downregulation results in elevated selenoprotein W pseudogene 1 (SEPW1), which 

may inhibit p53, upregulating Slug to promote cell proliferation, invasion, and 
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migration[41]. Their dual roles, mediated through upstream events (e.g., methylation, 

gene silencing), underscore their impact on tumorigenesis. Their involvement in 

critical regulatory networks positions piRNAs as promising biomarkers for early cancer 

detection and therapeutic targets, offering potential for precision interventions in 

oncology. 

circRNA in cancer 

circRNAs, covalently closed loops formed via precursor mRNA (pre-mRNA) back-

splicing[42], influence cancer progression by modulating metastasis and 

invasiveness[43, 44]. For instance, hsa_circ_0003258 promotes PCa metastasis by 

upregulating Rho GTPase-activating protein 5 (ARHGAP5) expression, stabilizing 

histone deacetylase 4 (HDAC4) mRNA via insulin-like growth factor 2 mRNA-binding 

protein 3 (IGF2BP3) binding, activating of the ERK signaling pathway, and triggering 

epithelial-mesenchymal transition (EMT)[45]. Similarly, circSATB2 drives non-small cell 

lung cancer (NSCLC) progression via the miR-326/FSCN1 axis and facilitates exosome-

mediated intercellular communication, highlighting its diagnostic potential[46]. Their 

aberrant expression across various cancers positions them as promising biomarkers for 

early detection and therapeutic targets[47, 48].  

Chemical Modifications in ncRNAs 

RNA chemical modifications predominantly occur in ncRNAs, regulating gene 

expression. Aberrant modifications are linked to disease etiology, with distinct 

modifications diversely influencing RNA metabolism and function, underscoring their 

critical regulatory roles. 

N6-methyladenosine (m6A) 

N6-methyladenosine (m6A), the most prevalent and distinctive form of RNA 

methylation modification[6], involves reversible methyl group addition by “Writers” 

(methyltransferases), removal by “Erasers” (demethylases), and recognition by 

“Readers” (m6A-binding proteins) (Figure 1a), critically regulating RNA metabolism 

and function[49, 50]. This dynamic modification influences gene expression in 
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physiological and pathological conditions, including cancer[51]. For instance, 

methyltransferase-like protein 3 (METTL3)- mediated m6A facilitates miRNA 

maturation by guiding DiGeorge syndrome critical region 8 (DGCR8) to primary miRNA 

(pri-miRNA)[52]. Cigarette smoke condensate (CSC) may be a promoter of pri-miR-25 

maturation through METTL3-mediated m6A modification, activating the AKT-p70S6K 

signaling pathway and potentially promoting cancer development[53]. m6A also drives 

circRNA biogenesis and alters lncRNA stability[7]. However, m6A dysregulation may 

disrupt ncRNA stability, localization, and function, thereby affecting the regulation of 

gene expression and promoting the proliferation, invasion and metastasis of tumor 

cells[54]. Collectively, m6A epitranscriptomic regulation bridges RNA modification 

with disease etiology, highlighting its potential as a biomarker and intervention target. 

N6,2’-O-dimethyladenosine (m6Am) 

m6Am, the methylation of adenosine’s nitrogen at position 6[55], modulates the 

stability of ncRNAs (Figure 1b)[49], thereby influencing disease development[56]. 

Though research is limited, further studies may reveal novel therapeutic avenues, 

particularly in metabolic and immunotherapeutic applications. 

N1-methyladenosine (m1A) 

m1A, the N1-methylation of adenine, influences immune responses by promoting T-

cell expansion through tRNA modification (Figure 1c)[57]. Detected via methylated 

RNA immunoprecipitation sequencing (MeRIP-seq)[58], advancements in high-

throughput sequencing now enable precise localization and quantification of m1A 

modifications, revealing their roles in ncRNAs[58-60]. Further research could deepen 

understanding of its biological functions, offering insights into ncRNA mechanisms and 

therapeutic potential. 

5-methylcytosine (m5C) 

m5C, the methylation at the fifth carbon of cytosine, represents a crucial RNA 

epigenetic modification regulating gene expression by influencing RNA stability and 

nuclear export (Figure 1d)[61]. In tRNAs, m5C enhances translation efficiency through 
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optimized codon-anticodon pairing on tRNAs and mRNAs[62]. Moreover, m5C is 

essential for cell functions like stress responses and metabolic processes[63]. m5C 

alterations in ncRNAs can affect tumor progression[62-64], suggesting their potential 

clinical value. 

N4-acetylcytidine (ac4C) 

ac4C, the acetylation of cytosine's fourth nitrogen, ensures translation accuracy and 

was initially identified in tRNAs[65, 66]. It also exists in rRNAs and mRNAs, affecting 

RNA stability and function (Figure 1e)[67-69]. Linked to diseases like cancer, ac4C 

abnormalities in ncRNAs highlight their potential as diagnostic biomarkers and 

therapeutic targets. 

N7-methylguanosine (m7G) 

m7G, the methylation at guanosine’s 7th nitrogen, occurs in RNAs like mRNA and tRNA, 

regulating post-transcriptional processing, stability, translation, degradation, and 

interactions with RNA-binding proteins (RBPs) (Figure 1f)[70-73]. Additionally, tools 

like m7GDisAI have been established to identify potential disease-related m7G loci[74], 

aiding research into its roles in RNA biology and potential therapeutic applications.  

2'-O-methylation (2'-O-Me, Nm) 

Nm modification involves methylating RNA ribose’s 2'-hydroxyl group, stabilizing 

piRNAs, maintaining tRNA function, protecting mRNAs from decapping 

exoribonuclease (DXO) degradation, and ensuring rRNA biogenesis(Figure 1g)[75]. Like 

m6A, Nm modification is increasingly studied for its diverse functions and regulatory 

mechanisms in ncRNAs[76], underscoring its biological importance and potential as a 

therapeutic target. 

Pseudouridine (Ψ) 

Pseudouridine (Ψ), termed the "fifth nucleoside" of RNA, is formed by pseudouridine 

synthases (PUSs) through a β-glycosidic bond linking uracil’s C-5 to ribose’s C-1, 

creating a structural isomer of uridine[77, 78]. Abundant in ncRNAs like tRNAs and 

snRNAs, Ψ modifications are involved in cellular activities and contribute to 
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pathological conditions[79, 80]. For example, PUS10 regulates nuclear miRNA 

processing and cytoplasmic tRNA pseudouridylation[79], while PUS7 overexpression 

correlates with poor prognosis in patients with glioblastoma (GBM) by enhancing 

tyrosine kinase 2 (TYK2) translation efficiency of via tRNA pseudouridylation(Figure 1h), 

thereby promoting glioblastoma stem cell (GSC) growth[81]. The dyskerin 

pseudouridine synthase 1 (DKC1) gene encodes a dyskerin protein with PUS activity, 

which binds to and catalyzes the uridine isomerization of target RNAs to Ψ. Cancer 

progression and poor prognosis are linked to the overexpression of DKC1, which has 

been detected in a range of cancer types[6, 82]. However, the specific function of Ψ-

modified ncRNAs in cancer biology is yet to be fully understood. 

Glycosylation 

Glycosylation, the enzymatic addition of sugar residues to proteins or lipids in the 

endoplasmic reticulum and Golgi apparatus, is closely linked to cancer progression by 

influencing tumor growth, invasiveness, and immune evasion(Figure 1i)[83]. 

Traditionally associated with proteins and lipids, this paradigm was challenged when 

Flynn et al. discovered glycosylated small non-coding RNAs (sncRNAs) produced via the 

classic protein N-glycosylation pathway. These glycosylated sncRNAs, found on cell 

surfaces,  interact with Siglec receptors to regulate immune responses[84]. 

Glycosylation also modifies Ψ in tRNA anticodons, critical for post-embryonic growth 

by maintaining codon translation and protein stability[85]. In situ imaging reveals 

dynamic glycosylated RNA levels during disease and physiological processes: they 

increase during pro-inflammatory monocyte/macrophage-vascular endothelial cell 

interactions and  decrease during immune differentiation and BC metastasis[86]. 

Cell-surface glycosylated RNAs are recognized by endothelial P-selectin, implicating 

them in neutrophil-mediated inflammation and tumor development[87]. These 

findings underscore glycosylation’s expanded role beyond classical substrates, 

highlighting its regulatory functions in RNA biology, immune modulation, and disease 

mechanisms. Glycosylated RNAs may serve as novel biomarkers or therapeutic targets 
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in cancer and inflammatory disorders, though further research is needed to unravel 

their precise molecular roles and clinical potential.  

The Role of Chemically Modified ncRNAs in Cancer 

Cancer incidence, notably lung, colorectal, and liver cancers, has risen in China with 

high mortality rates. RNA chemical modifications exert a great influence on cancer 

(Table 2), with aberrant RNA modifications potentially promoting cancer cell growth 

and self-renewal. Targeting these RNA chemical alterations may offer novel strategies 

for cancer treatment. 

Chemically modified ncRNAs in cancer occurrence and development 

RNA modifications play critical roles in the development of cancer through diverse 

mechanisms. For instance, Li et al. highlighted the impact of m6A modification in 

super-enhancer RNA (seRNA) on histone modification and oncogene expression in 

pancreatic ductal adenocarcinoma (PDAC)[88]. Additionally, the upregulation of 

lncRNA LCAT3, facilitated by m6A modification, promotes the growth, migration as well 

as invasiveness of LC cell via LCAT3-FUBP1-cMYC axis, leading to a poor prognosis[89]. 

Conversely, circGPR137B is identified as a cytoplasmic sponge for miR-4739, which in 

turn upregulates fat mass and obesity-associated protein (FTO)’ expression. The 

demethylation of circGPR137B by FTO, which targets m6A, has been found to inhibit 

cell growth, thereby suppressing HCC metastasis[90]. METTL3 hypomethylation, 

induced by CSC via the transcription factor NFIC, enhances m6A methylation of pri-

miR-25, accelerating its maturation via NF-κB activating protein (NKAP)-Drosha-DGCR8 

complexes to activate oncogenic AKT signaling in the initiation and progression of 

PDAC[53]. Yang et al. also found that METTL14, by forming a complex with Wilms’ 

tumor 1-associated protein (WTAP), mediates m6A modification of lncRNA XIST, 

leading to its degradation by YTH structural domain family proteins 2 (YTHDF2) and 

subsequently inhibiting CRC proliferation and metastasis[91]. Moreover, m5C 

methyltransferases drive oncogenesis by catalyzing m5C modifications of target 

RNAs[92, 93]. In gastric cancer (GC), m5C modification of lncRNA NR_033928 is 
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associated with its upregulation in cells and tissues, affecting cell growth and 

apoptosis[94]. The specific disruption of circE7 in CC cells has been demonstrated to 

lead to decreased E7 protein levels and inhibited cancer cell growth[43]. The deletion 

of methyltransferase-like protein-1 (METTL1) and WD repeat domain 4 protein (WDR4) 

impairs m7G modification of tRNA, reducing the growth, colony formation, and 

invasiveness of LC cells[95]. Additionally, METTL1 was found to influence the stability 

and maturation of let-7e by m7G modification at the G11 site, thereby inhibiting LC 

progression[70]. SNORD88C was identified as an oncogenic snoRNA that mediates Nm 

modification of 28S rRNA, affecting the translation of stearoyl-CoA desaturase1 (SCD1) 

and inhibiting cellular autophagy, thereby promoting the metastasis of NSCLC[96]. 

Similarly, lncRNA ZFAS1 recruits NOP58 to mediate SNORD12C/78-dependent Nm 

modification, stabilizing rRNA and regulating downstream genes to control cancer cell 

proliferation and apoptosis[97]. These findings underscore RNA modifications as 

central regulators of oncogenic pathways, offering potential therapeutic targets. The 

interplay between RNA modifications, non-coding RNAs, and protein complexes 

highlights their multifaceted roles in cancer biology, emphasizing the need for further 

research to translate these insights into clinical strategies. 

Chemically modified ncRNAs in cancer diagnosis and prognosis 

RNA modifications offer promising avenues for addressing limitations in current cancer 

biomarkers, which often lack specificity and sensitivity[98, 99]. In CRC, SNORA56-

driven pseudouridylation (Ψ) of 28S rRNA promotes cell proliferation and correlates 

with poorer 5-year survival, suggesting it as a prognostic biomarker[100]. Similarly, 

circ1662[101] and m6A-modified lncRNA RP11[102]—upregulated by zinc-finger E-box 

binding protein 1 (ZEB1)—emerge as diagnostic and prognostic markers for CRC 

metastasis, while m6A-altered circNSUN2 is linked to liver metastasis[103]. In HCC, 

m6A-modified miRNAs show superior diagnostic accuracy over traditional biomarker 

like AFP for early detection[104], and SNORA24-directed Ψ modifications influence 

translational fidelity[105], suggesting utility in predicting therapeutic responses. 
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Furthermore, a comprehensive analysis of m6A-associated lncRNAs in HCC has shed 

light on their potential mechanisms in regulating the immune microenvironment, 

offering new insights into their role and prognostic value in the disease[106]. In the 

context of ovarian cancer (OC), the expression of ALKBH5 has been associated with 

resistance to platinum-based chemotherapy[107], suggesting that m6A modification 

and its regulators may serve as potential biomarkers for the diagnosis of cancer. 

Current studies emphasize RNA modifications’ dual roles as disease drivers and 

biomarkers, urging further research to standardize detection methods. Integrating 

these modifications into existing diagnostic frameworks could enhance early detection, 

and improve outcomes across diverse cancers. 

Chemically modified ncRNAs in cancer therapy 

Aberrant RNA modifications are emerging as promising therapeutic targets in cancer, 

with inhibitors and immunotherapies showing preclinical efficacy[108-110]. The 

METTL3 inhibitor STM2457 suppresses growth, invasiveness, and migration of 

intrahepatic cholangiocarcinoma (ICC) cells, and induces apoptosis and triggers cell 

cycle arrest, thereby significantly suppressing ICC progression and exhibiting superior 

anti-tumor effects[111]. FTO has been identified as a significant contributor to cancer 

cell growth and evasion of immune responses[112-114]. The utilization of small 

molecule FTO inhibitors, such as CS1 and CS2, has shown promising anti-cancer 

properties by directly interacting with FTO's catalytic site. These inhibitors effectively 

suppress the demethylating function of FTO, hinder its binding to target mRNAs, and 

show significant inhibitory effects on various cancers like breast and pancreatic 

cancers[115]. Moreover, FTO promotes tumor cell glycolytic metabolism through 

epitranscriptomic regulation, leading to T cell suppression and induced tumor immune 

evasion. Combination of PD-L1 blockade and the FTO inhibitor Dac51 has 

demonstrated enhanced tumor growth inhibition and accelerated activation of CD8+ T 

cells, resulting in improved tumor cell eradication[112]. Additionally, in T-cell acute 

lymphoblastic leukemia (T-ALL), the IGF2BP2 inhibitor JX5 disrupts NOTCH1 receptor’s 
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mRNA stability, overcoming chemoresistance[116]. Furthermore, the overexpression 

of YTH structural domain family proteins 1 (YTHDF1) in CRC has been correlated with 

CRC metastasis, implying that YTHDF1-m6A-ARHGEF2 may be a promising target for 

therapeutic intervention[117]. Studies have also highlighted the role of ac4C 

modification by N-acetyltransferase 10 (NAT10) in promoting the development of CC, 

with immunotherapy targeting NAT10 showing synergistic effect with PD-L1 

blockade[67]. C57, a PUS7 inhibitor, can effectively inhibit cell growth of GSC, and 

prolong the survival of mice with glioblastoma burden[81] (Figure 2). Moreover, the 

demethylation of m1A by α-ketoglutarate-dependent dioxygenase human AlkB 

homolog 3 (ALKBH3) has been identified crucial for the nucleosome formation of the 

promyelocytic leukemia (PML) protein, offering a novel therapeutic approach[118]. 

The METTL1/WDR4 complex, a key regulator of m7G modification, has been 

connected to various types of cancers and presents itself as a promising candidate for 

cancer therapy[119]. Also, the identification of altered patterns of rRNA 

pseudouridylation in BC suggests the potential use of pseudouridyl-modified rRNA 

sites for developing therapeutic strategies targeting BC[120]. Moreover, studies 

indicate that the high expression of YBX1 in OC cells can recognize the m5C 

modification on CHD3 mRNA, and YBX1 inhibitor SU056 can reverse the platinum 

resistance in animal models, suggesting that inhibition of YBX1 may be a potential 

strategy to overcome platinum resistance in OC[121]. Lastly, the miRNA mimics 

demonstrate significant potential in the clinical trials for cancer therapy; however, they 

encounter challenges related to stability and off-target effects. The new generation of 

molecular mimics enhances the stability of RNA oligonucleotides and minimizes the 

off-target effects, thereby facilitating their clinical application[122]. 

Chemically modified ncRNAs present significant potential as therapeutic targets; 

however, several practical challenges hinder the development of therapies based on 

these modifications. One promising strategy is exosome-mediated delivery, which 

leverages the natural capacity of exosomes to transport miRNAs and evade 
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phagocytosis. Nonetheless, issues such as the immunogenicity associated with 

allogeneic exosomes, along with challenges related to large-scale production and high 

manufacturing costs, must be addressed. Furthermore, the pharmacokinetic 

properties of ncRNAs pose limitations on their clinical application. Although chemical 

modifications can enhance RNA stability and bioavailability, further optimization of 

their metabolism and distribution in vivo is necessary[123]. Additionally, synthetic 

nanoparticles, including lipid nanoparticles, have demonstrated potential in delivery 

of ncRNAs; however, their effectiveness in targeting specific cells while minimizing off-

target effects remains a concern[124, 125]. In terms of stability, chemical modifications, 

such as Nm modification, have proven effective in enhancing the stability of ncRNAs 

and reducing their immunogenicity[122]. Nevertheless, additional research is required 

to optimize these modifications and ensure their safety and efficacy in clinical 

applications[123]. Regarding potential side effects, the off-target effects of ncRNAs 

and their capacity to activate the immune system are significant issues[126]. Although 

advancements have been made in mitigating immunogenicity through chemical 

modifications, the long-term implications of these modifications on the immune 

system are not yet fully understood. 

Conclusions and future prospects 

Recent research have shown that ncRNAs are essential in regulating factors involved 

in chemical modifications through various mechanisms, while these factors, in turn, 

influence the biogenesis, stability, and functions of ncRNAs through site-specific 

modifications[66]. Researches on RNA modifications in ncRNAs have led to significant 

advancements, ranging from the identification of ncRNAs, the discovery of novel 

chemical modifications to advances in techniques for measuring chemical 

modifications (e.g. single-nucleotide-resolution mapping and nanopore sequencing)[6, 

83, 127, 128]. Each of these methods possesses distinct advantages and disadvantages, 

as well as varying sensitivity levels, which can result in inconsistent findings. For 

example, certain techniques may be unable to identify specific types of chemical 
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modifications or may exhibit differing levels of accuracy in quantifying the extent of 

these modifications. Although ncRNA modifications are involved in other diseases[129, 

130] (Figure 3), we focus on their regulatory patterns and clinical relevance in cancer. 

These modifications exhibit significant heterogeneity across cancer types, with distinct 

differences in function, distribution, and clinical significance[131, 132]. The genetic 

background of various cancer types, such as FTO amplification and mutations in 

isocitrate dehydrogenase 1 (IDH1), along with the characteristics of the tumor 

microenvironment, including factors like hypoxia and immune cell infiltration, play a 

crucial role in influencing the expression and functionality of ncRNAs. This influence is 

mediated by the dynamic modulation of RNA chemical modifications, which 

subsequently contributes to tumor heterogeneity[6]. These discoveries have laid a 

solid foundation in biology and have underscored the significance of ncRNAs in cancer 

research. 

Despite advancements in the field, several critical questions remain regarding the 

influence of ncRNA modifications on cancer. (1) It is essential to investigate how 

enzymes that facilitate chemical modifications select their RNA substrates and 

whether this selection is dependent on RNA sequence. (2) The dual roles of certain 

enzymes, such as METTL3, which may act as either oncogenes or tumor suppressors 

in cancer development[133], require further clarification regarding the specific 

mechanisms that govern these opposing roles. (3) The potential interactions between 

different ncRNA modifications and their effects are necessary to be explored. (4) Given 

that alterations in the overall modification status can affect the role of numerous genes, 

there is an urgent need to develop more effective strategies for the detection of 

chemically modified ncRNAs. (5) The dynamic and low-abundance nature of RNA 

modifications present significant challenges to achieving quantitative accuracy, 

highlighting the necessity for standardized, high-throughput methodologies that can 

detect a wide array of chemically modified ncRNAs with spatiotemporal precision. (6) 

Discrepancies in research findings may arise from differences in experimental designs, 
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methodologies, and models; for instance, variations in miRNA immunogenicity across 

studies complicate the prediction of immune responses and underscore the need for 

preclinical screening with human cells[134]. (7) The measurement of ncRNA 

modifications is technically challenging, requiring precise methods to detect and 

quantify specific chemical alterations. To enhance the accuracy of ncRNA modification 

profiling, several potential solutions have been proposed. Recent studies suggest that 

the integration of multiple high-throughput sequencing techniques could significantly 

improve the precision of ncRNA modification analysis. Additionally, the development 

of more sensitive and specific antibodies targeting modified ncRNAs may further 

enhance the accuracy of both detection and quantification. (8) Off-target effects 

represent a considerable concern, often resulting from sequence similarities or 

excessive dosing, which can lead to unintended interactions with non-target 

RNAs[135]. On the one hand, off-target gene silencing can result from unintended 

binding, leading to inadvertent silencing or activation of genes, which may obscure 

experimental outcomes. On the other hand, extensive off-target activity has the 

potential to disrupt critical genes or non-coding regions, potentially inducing apoptosis 

or causing genomic instability. To mitigate these challenges, several strategies may be 

employed. Firstly, the incorporation of locking nucleic acid (LNA) and unlocked nucleic 

acid (UNA) modifications can enhance the specificity of guide strand selection, thereby 

reducing the likelihood of off-target effects. Secondly, the development of efficient 

targeted delivery systems can facilitate the precise delivery of therapeutic agents to 

intended cells or tissues, thereby minimizing their distribution and impact on non-

target sites. Lastly, the application of high-throughput sequencing and other advanced 

technologies can enable a comprehensive evaluation of potential off-target effects 

associated with therapeutic agents, allowing for the timely exclusion of drug 

candidates that pose significant off-target risks and ensuring that only those with high 

safety and efficacy profiles progress to clinical trials. (9) Challenges related to delivery, 

such as achieving efficient and specific targeting of cells while minimizing effects on 

https://doi.org/10.1017/erm.2025.10007 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2025.10007


Accepted Manuscript 

 18

non-target cells and avoiding activation of the innate immune system, further hinder 

the clinical translation of these findings. 

In conclusion, exploring ncRNA modifications in cancer is an emerging research 

domain, offering the possibility to uncover a multitude of differentially expressed 

ncRNAs that could serve as early diagnostic biomarkers. This work not only aims to 

reveal the interaction mechanisms underlying between chemically modified ncRNAs 

and cancer development but also holds promise for the creation of innovative cancer 

therapies. Future research endeavors should focus on the establishment of 

standardized methodologies for the quantification of chemical modifications, thereby 

facilitating the comparability of data across various studies. Additionally, longitudinal 

studies are essential to evaluate the persistence and safety of chemically modified 

ncRNAs in the context of cancer treatment. Furthermore, the implementation of 

clinical trials is imperative to assess the efficacy of these ncRNAs and to compile data 

pertinent to their medical application. Pursuing these research trajectories will 

contribute to the transition of ncRNA therapies from the laboratory to the clinic, with 

the potential to improve cancer treatment outcomes. 
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Figure 1. Chemical modifications of RNAs and their main functions. (a) m6A 

modification regulates the stability, translation, alternative splicing and nuclear export 

of RNAs mediated by writers, including METTL3-methyltransferase-like 14 (METTL14), 

methyltransferase-like 16 (METTL16), Zinc Finger CCHC-Type Containing 4 (ZCCHC4), 

erasers FTO and α-ketoglutarate-dependent dioxygenasehuman AlkB homolog 5 

(ALKBH5), and reader proteins YTH structural domain family proteins 1-3 (YTHDF1-3) 

and YTH structural domain-containing proteins 1-2 (YTHDC1-2). (b) m6Am 

modification regulates the stability of RNAs mediated by writers, including METTL3-

METTL14 and erasers FTO. (c) m1A modification regulates the decay of RNAs mediated 

by writers, including tRNA methyltransferase 6 (TRMT6) and tRNA methyltransferase 

61A (TRMT61A), erasers ALKBH3 and reader proteins YTHDF2/3. (d) m5C modification 

regulates the nuclear export of RNAs mediated by writers NOL1/NOP2/SUN domain 

family member (NSUN) 2/6 and reader proteins Aly/REF export factor (ALYREF). 5hmC 

is formed from 5mC by oxidation of ten-eleven translocation (TET) proteins, regulating 

the stability, translation, alternative splicing and nuclear export of RNAs. (e) ac4C 

modification regulates the stability and translation of RNAs mediated by writers N-
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acetyltransferase 10 (NAT10). (f) m7G modification regulates the stability of RNAs 

mediated by writers methyltransferase-like protein-1 (METTL1). (g) Nm regulates the 

stability of RNAs mediated by writers, including FtsJ homolog 3 (FTSJ3), rRNA 2'-O-

methyltransferase fibrillarin (FBL) and tRNA methyltransferase (Trm) 7/13/56/J. (h) Ψ 

modification regulates the processing and translation of RNAs mediated by writers, 

including DKC1, PUS, probable tRNA pseudouridine synthase 1 (TRUB1) and RNA 

pseudouridylate synthase domain containing 4 (RPUSD4). (i) Glycosylated RNAs act as 

ligands in immunoregulation under the regulation of glycosltransferases (GTFs). 
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Figure 2. Regulatory agents in chemically modified RNAs. (a) The METTL3 inhibitor 

STM2457 inhibits cell growth, invasiveness, migration, and enhances cell apoptosis in 

intrahepatic cholangiocarcinoma (ICC). The FTO inhibitors CS1 and CS2 attenuate 

leukemia stem/initiating cell growth, self-renewal and immune evasion in multiple 

types of cancers. Combination of PD-L1 blockade and the FTO inhibitor Dac51 inhibits 

cell growth in in melanoma and lung cancer. The IGF2BP2 inhibitor JX5 suppresses the 

expansion of T-cell acute lymphoblastic leukemia (T-ALL). (b) HOXC8 activates NAT10 

and induces the ac4C modification of FOXP1 mRNA, thereby enhancing the 

immunosuppressive properties of tumor-infiltrating regulatory T cells (Tregs). NAT10 

knockdown contributes to the effectiveness of PD-L1 blockade efficacy, thereby 

suppressing cervical cancer (CC) progression. (c) The PUS7 inhibitor C17 inhibits cell 

growth and tumor progression in glioblastoma.
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Figure 3. Chemically modified ncRNAs in diseases. (a) PUS7 facilitates the Nm 

modification of tRNA, which in turn regulates the TYK2-STAT1 signaling pathway in 

glioblastoma stem cell (GSC). (b) SNORD24 mediates the Ψ modification of 18S rRNA, 

affecting the structural functionality of ribosomes. FTO is responsible for the 

demethylation of m6A in circGPR137B, thereby inhibiting cell proliferation, while 

NOP2 mediates the m5C modification of PVT1, which promotes cell proliferation in 

hepatocellular carcinoma (HCC). (c) SNORA56 mediates the Ψ modification of 28S 

rRNA, thereby regulating the translation of the catalytic subunit of glutamate cysteine 

ligase (GCLC) and promoting cell proliferation. ZFAS1 recruits SNORD12C and SNORD78 

through synergistic recruitment with NOP58, leading to the elevation of the Nm 

modification of rRNA and the promotion of cell proliferation. METTL14 downregulates 

m6A modification of lncRNA XIST, thereby facilitating cell proliferation, while METTL3 

mediates m6A modification of lncRNA RP11 and circ1662, both of which enhance cell 

migration. Furthermore, YTHDC1 mediates m6A modification of circNSUN2, promoting 

liver metastasis of colorectal cancer (CRC). (d) snoRNA and DKC1 mediate the Ψ 
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modification of rRNA, which affects ribosomal function in breast cancer (BC). (e) 

SNORD88C and SCD1 mediate the Nm modification of 28S rRNA, promoting cell 

proliferation in non-small cell lung cancer (NSCLC). METTL3 also mediates m6A 

modification of LCAT3, contributing cell proliferation, while METTL1 and the WD 

repeat domain 4 protein (WDR4) mediate m7G modification of tRNA, which promotes 

cell proliferation in lung adenocarcinoma (LUAD). Conversely, METTL1 mediates m7G 

modification of let-7e, inhibiting cell migration in lung cancer (LC). (f) METTL3 mediates 

m6A modification of miR-25-3p, promoting cell migration. The complex 

CFL1/METTL3/YTHDC2/MLL1 mediates m6A modification of super-enhancer RNA 

(seRNA), which promotes oncogene transcription in pancreatic ductal 

adenocarcinoma (PDAC). (g) NSUN2 mediates m5C modification of NR_033928, 

promoting cell growth in gastric cancer (GC). (h) METTL3 mediates m5C modification 

of circE7, inhibiting cell growth in cervical cancer (CC). (i) NSUN2 mediates m5C 

modification of NMR, promoting cell migration in esophageal squamous cell carcinoma 

(ESCC). (j) METTL3 mediates m6A modification of circRIMS2, which is implicated in 

synaptic and memory impairments associated with Alzheimer's disease (AD). (k) PUS7 

mediates the Ψ modification of tRFs to inhibit the synthesis of aberrant proteins, 

thereby improving hematopoietic function and protecting against leukemic 

progression.
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Table 1.  Common types of ncRNAs and their roles in cancer 

ncRNAs Cancer Role in cancer 
Cancer-related mechanisms  

and/or functions of ncRNAs 

Reference 

Housekeeping 

ncRNAs 

snoRNA 

SNORD50A/B BC Tumor suppressor 
Inhibits tumor growth via suppressing the binding of FTase 

to K-Ras 

[10] 

SNORD17 HCC Oncogene 
Promotes cell proliferation, cell cycle progression and 

inhibits apoptosis 

[12] 

SNORA23 PDAC Oncogene 
Promotes cell proliferation and invasion via upregulating 

SYNE2 

[13] 

SNORD113-1 HCC Tumor suppressor 
Inhibits tumorigenesis via phosphorylation of ERK1/2 and 

SMAD2/3 

[11] 

rRNA / CRC Oncogene 
Promotes ribosome assembly via hCINAP and tumor 

proliferation 

[14] 

Regulatory 

ncRNAs 

miRNA 

miR15/16 CLL Tumor suppressor miR15/16 genes are deleted or down-regulated [17] 

miR-31 EC Oncogene 
Promotes cell proliferation and invasion via inhibiting Hippo 

pathway; predicts poor prognosis 

[18] 

miR-34 CRC Tumor suppressor 
Inhibits tumorigenesis via losing miR-34 and activating the 

IL6-STAT3 pathway 

[20] 

lncRNA 

PCA3 PC Oncogene 
Promotes cell proliferation and invasion through AR 

signaling pathway 

[28] 

PD-L1-lnc LUAD Oncogene Promotes cell proliferation and invasion; inhibits apoptosis [29] 

lncRNA BC069792 BC Tumor suppressor Inhibits cell proliferation and migration [31] 

KIMAT1 NSCLC Oncogene Promotes cell proliferation and invasion [30] 
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siRNA / / Tumor suppressor Inhibits tumor progression [36] 

piRNA 

piRNA-14633 CC Oncogene 
Promotes cell proliferation, migration, and invasion via the 

METTL14/CYP1B1 signaling axis 

[39] 

piR-36712 BC Tumor suppressor 
Inhibits cell proliferation, invasion and migration via binding 

with SEPW1P RNA 

[41] 

piR-823 MM Oncogene Maintains stemness of MM cells by upregulating DNMT3B [38] 

piR-39980 Fibrosarcoma Tumor suppressor Inhibits cell proliferation via interacting with RRM2 [40] 

circRNA 
hsa_circ_0003258 PC Oncogene Promotes cell migration and EMT [45] 

circSATB2 NSCLC Oncogene Promotes cell proliferation, migration, and invasion [46] 

BC, Breast Cancer; CC, Cervical Cancer; CLL, Chronic Lymphocytic Leukemia; CRC, Colorectal Cancer; EC, Endometrial Carcinoma; HCC, Hepatocellular Carcinoma; LUAD, Lung 

Adenocarcinoma; MM, Multiple Myeloma; NSCLC, Non-Small Cell Lung Cancer; PC, Prostate Cancer; PDAC, Pancreatic Ductal Carcinoma. 
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Table 2. Chemically modified ncRNAs in cancer 

RNA modifications Cancer ncRNAs Regulators Role References 

Ψ 

GBM tRNA PUS7 
Regulates the TYK2-STAT1 pathway, promotes cell growth, and 

predicts poor prognosis 

[81] 

HCC 18S rRNA RAS 
SNORA24 mediates modifications that affect translation 

accuracy 

[105] 

CRC 28S rRNA GCLC 
SNORA56 mediates modifications that inhibit ferroptosis, and 

promote cell proliferation 

[100] 

BC r RNA DKC1 
Being associated with tumorigenesis, affects the function of 

ribosome and the synthesis of protein  

[120] 

Nm 

NSCLC 28S rRNA SCD1 
SNORD88C mediates modifications that promote cell 

proliferation, invasive metastasis and inhibit autophagy 

[96] 

CRC r RNA NOP58 

ZFAS1 targets and recruits NOP58, while SNORD12C and 

SNORD78 mediate modifications that promote cell 

proliferation, migration and inhibit apoptosis 

[97] 

m7G 
LUAD tRNA METTL1, WDR4 

Promotes cell proliferation, migration, invasion ,and predicts 

poor prognosis 

[95] 

LC let-7e METTL1 Inhibits cell migration [70] 

m6A 

 

PDAC seRNA CFL1, METTL3, YTHDC2, MLL1 
Enhances chromatin accessibility and promotes oncogene 

transcription 

[88] 

LUAD LCAT3 METTL3, FUBP1 
Promotes cell proliferation, migration and invasion and is 

associated with poor prognosis 

[89] 

HCC circGPR137B FTO 
Inhibits cell proliferation, invasion, hepatocellular carcinoma 

infiltration and lung metastasis 

[90] 
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PDAC miR-25-3p METTL3 
Activate PHLPP2-AKT pathway to promote cell migration and 

invasion 

[53] 

 

CRC lncRNA XIST METTL14, WTAP, YTHDF2 Inhibits cell proliferation, migration and invasion [91] 

CRC lncRNA RP11 METTL3 Promotes cell migration, invasion and EMT [102] 

CRC circNSUN2 YTHDC1 Associated with poor prognosis and promotes liver metastasis [103] 

CRC circ1662 METTL3 
Promotes CRC cell invasion and migration by accelerating 

nuclear translocation of YAP1 

[101] 

m5C 

GC NR_033928 NSUN2, GLS 
Promotes cell growth; inhibits apoptosis; predicts poor 

prognosis 

[94] 

CC circE7 METTL3 Being associated with polysome and inhibits cell growth [43] 

HCC PVT1 NOP2  
Promotes carcinogenesis, cell proliferation and stem cell-like 

properties 

[92] 

ESCC NMR NSUN2, BPTF 
Promotes the metastasis and invasion of ESCC and enhances 

the resistance to cisplatin 

[93] 

BC, Breast Cancer; CC, Cervical Cancer; CLL, Chronic Lymphocytic Leukemia; CRC, Colorectal Cancer; EC, Endometrial Carcinoma; ESCC, Esophageal Squamous Cell Carcinoma; 

GBM, Glioblastoma; GC, Gastric Cancer; HCC, Hepatocellular Carcinoma; LC, Lung Cancer; LUAD, Lung Adenocarcinoma; NSCLC, Non-Small Cell Lung Cancer; PC, Prostate 

Cancer; PDAC, Pancreatic Ductal Carcinoma. 
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