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LOCAL EXISTENCE IN TIME OF SMALL SOLUTIONS TO THE
ELLIPTIC-HYPERBOLIC DAVEY-STEWARTSON SYSTEM IN
THE USUAL SOBOLEV SPACE

by NAKAO HAYASHI and HITOSHI HIRATA
(Received 9th January 1996)

We study the initial value problem to the Davey-Stewartson system for the elliptic-hyperbolic case in the
usual Sobolev space. We prove local existence and uniqueness H>? with a condition such that the L? norm of
the data is sufficiently small.
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1. Introduction
We study the initial-value problem for the Davey-Stewartson (DS) systems

i0u + cod2 u+ 8,u = ¢, |uffu+ cud, p, (x,t) e R’x R,
Eo+cdo=23,u’ u=ulxt), ¢=ox1), (1.1)
u(x, 0) = ¢(x),

where ¢, c; €R, ¢,,¢c, € C, u is a complex valued function and ¢ is a real-valued
function. The systems (1.1) for ¢, < 0 and ¢, > 0 were derived by Davey and Stewartson
[S} and model the evolution of two-dimensional long waves in a finite-depth liquid.
Djordjevic-Redekopp [6] showed that the parameter c¢; can become negative when
capillary effects are important. For detailed physical background, see [1, 2, 6]. When
(co, 1,0 63)=(1,-1,2,-1), (-1,-2,1,1) or (1,2, -1, 1) the system (1.1) is referred
to as the DSI, DSII defocusing and DSII focusing respectively in the inverse scattering
literature. Ghidaglia and Saut [8] classified (1.1) as elliptic-elliptic, elliptic-hyperbolic,
hyperbolic-elliptic and hyperbolic-hyperbolic according to the respective sign of
(co, ¢3) : (+,4+), (+, =), (=, +) and (—, —). For the elliptic-elliptic and hyperbolic-elliptic
cases, local and global properties of solutions were studied in [8] in the usual Sobolev
spaces L, H' and H’. In this paper we consider the elliptic-hyperbolic case. In this case,
after a rotation in the x;-x, plane and rescaling, the system (1.1) can be written as

idu + Au = c)lul*u + cyud,, ¢ + c3ud,, 0, ] 12
1.

3,8, @ = €3, [ul® + &3, lul’,
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where A = 3, + 8§2, ¢}, ..., cs are arbitrary constants. In order to solve the system of
equations, one has to assume that ¢(-) satisfies the radiation condition, namely, we
assume that for given functions ¢, and ¢,

lim o(x,t)=@,(x,,t) and lim @(x, t) = @,(x,, ). (1.3)
X3—+-+00 x)—>+00

Under the radiation condition (1.3), the system (1.2) can be written as

-+ A=yt da [0, e % O d
x2

(1.4)
o [ 8, 0K 33 OF d + A g, + i,
x)

with the initial condition u(x, 0) = ¢(x). Here d, = ¢, +c3cs+c¢,, dy = —cics, dy = —c5¢s,
d, = c,and ds = c;.

By using inverse scattering methods several results were obtained for the DSI system
d,=0,d,=dy,=1/2, and d,=ds;=1 in (1.4)). In [7] A. S. Fokas and L. Y. Sung
showed that if the initial function ¢ is in the Schwartz class and if 3, ¢,(t, x,) and
d.,9,(t, x,) are also in the Schwartz class with respect to the spatial variables and
continuous in ¢, then the DSI system has a unique solution global in ¢t which, for each
fixed ¢, belongs to the Schwartz class in the spatial variables. Furthermore it is known
that the DSI system has the localized-soliton-type exact solutions which are called
dromion (for the study of the dromion solutions, see, e.g., [11}, [17]).

In order to state some known results and our results, we define some notation. We
let 3=(9,,d,,), « = (), %), |a| =@, +a, and «;, a, € RU{0}. We define the weighted
Sobolev space as follows:

H™ ={f e L} 10 — & — &)™ + x> + [x,)*fIl < oo},

H™(R,) = {f € LPR,); I(1 — &)"*(1 + 1x1)"*f 2, < 00},

where || - | denotes the usual L? norm. We denote the usual L’ norm by | - [[,- For
any Banach space E, L’(4; E) means the set of E-valued L’ functions on A, where
A=[0,T], A=R>or A= R, and C([0, T); E) means the set of E-valued continuous
functions on [0, T]. We write L?([0, T); E) = L}E, L*(R,; E) = L} E which makes the
notation simple. For example L” (R, ; L**([0, T']; L”(R,,))) can be denoted as L} L7L}.
We also write H* = H’ and H*°(R,) = H'(R,)) = H;, for simplicity.

For the local existence of small solutions to (1.4), Linares and Ponce [16], Chihara
[4] and Hayashi [9] obtained the following results.

Proposition 1 [16, Theorem B). We assume that ¢ € NH® =W, s> 12,

@0, =9, =0 and |||y + |Plluss is sufficiently small. Then there exists a positive
constant T > 0 and a unique solution u of (1.4) such that u € C([0, T]; W,).
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Proposition 2 [4, Theorem 1.1}. We assume that ¢ € H*, where s is a sufficiently
large integer, @, = ¢, =0 and ||P|| < 1/(2\/max{|d,|, |d;|}e). Then there exists a positive
constant T >0 and a unique solution u of (1.4) such that ue C,([0,T];
)N C(0, T, H'™"), where C,([0, T); H*) is the set of H’ valued weak continuous
Sfunctions on [0, T].

Proposition 3 [9, Theorem 1]. We assume that ¢ € HHNH =Z;,6 > §, > 1,
3,9, € C(R; HS), 3,0, € CR; H.) and | ¢llyse + |@llos is sufficiently small. Then
there exists a positive constant T >0 and a unique solution u of (1.4) such that
u € C([0, T); Zy).

Our purpose in this paper is to prove the local existence of small solution to (1.4)
in usual Sobolev spaces. We now state our result in this paper.

Theorem 1.1. We assume that ¢ € H', where s>5/2, 9, ¢ € CR;H;)

3.,0,€ C(R; Hy,), and ||¢ll,2 < 1/\/max{|d,l, |ds|}. Then there exists a positive constant
T > 0 and a unique solution u of (1.4) such that u € C([0, T}); H°).

Theorem 1.1 is considered as an improvement of the previous papers by Chihara
[4] and Linares and Ponce [16]. We only prove Theorem 1.1 in the case of s = 5/2 since
in the case of s > 5/2, Theorem 1.1 can be proved in the same way. To obtain our
result we introduce the function space.

Xr={f€CU0, TY L*); IIflx, <00}, Yr=1{f € C(O, T} L); Iflly, < o0},

where

1Sty = 1SNy + 08, Flagonzsz, + 18, fllimizez »

172
1, = | 10 B+ 3 (000 s + 10001}

lal<2 lal=2

Dy =FGI°F, & =892, and |a| = o, + .

The function space Y; is the natural Sobolev space when we use the classical energy
method with the data ¢ € H*?. The use of the function space X, suggests that we make
use of smoothing properties of solutions to the linear Schrodinger equation (see
Section 2). As mentioned in [16], it seems that the classical energy method is not
sufficient to yield an existence result. In this paper we use the two-dimensional version
of the smoothing effect of Kenig-Ponce-Vega type (see, e.g., [13]). We note that the
method used in this paper does not work to remove the decay condition on the data in
the hyperbolic-hyperbolic case which was assumed in [16, 9] to obtain local existence
results. A smallness assumption on the data can be removed in real analytic data [10],
however we do not know whether it can be removed or not in the usual Sobolev space.
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We conclude this section by giving our strategy of the proof of Theorem 1.1. We apply
the contraction mapping principle to the linear Schrédinger equation

u(t) =U@)¢ —iS (dl lvf*v + dz”‘/w Oy, lv(xy, X3, 1 dx,

x2

+d,v ‘/‘” 0y, [u(x}, x5, 1) dx; + dd, o, + dsvaxz‘Pz) ®

x1

where U(t) = exp (itA) and (S)(t) = j; U(t — s5)f(s)ds. In order to do it, we organize
the paper as follows. In Section 2 we give some estimates of U(t)¢ and (Sf)(¢) (Lemma
2.1) which imply the smoothing properties of solutions and Section 3 is devoted to
estimates of the nonlinear term (the right hand side of the above equation). Roughly
speaking, we will obtain, by making use of these estimates obtained in Section 3
(Lemma 3.5 — Lemma 3.8),

lully, < Cllllgsr + CTlvll, + C(d,, d)liPI*lIv)lx,,

where C(d,,d,) is a constant depending only on d,,d, and will be determined in
Section 4. This inequality shows that the mapping M defined by u = Mv is the mapping
from X;,={fe€ Xz;|Iflx, <p} into itself provided that ||| is sufficiently small.
The constant C(d,, d,) gives a condition on the size of ||¢|| which yields our result
Theorem 1.1.

2. Linear Schridinger equations

In this section we state smoothing properties of the inhomogeneous Schrodinger
equations

Du+Au=f, (x, e R? xR,
] 2.0

(0, X) = ¢(x).
We let U and S be U(t) = exp(itA) and (S)(t) = f, U(t — 5)f(s)ds as defined in
Section 1.

Following estimates were obtained by Strichartz [18], Kenig-Ponce-Vega [13, 14],
Bekiranov-Ogawa-Ponce [3] and Hirata [12] etc.

Lemma 2.1. For the linear operator U and S, we have following estimates.

IU@l 2 + IDYUll o212 + IDLUSN 221z, < Colldlly, 22
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%“f “L}“ L2l
lia, Sf"Li‘,’L2 2 = (2.3)
B WA )

% "f"z,;,z.’rz.il s
"axzsf"l.i‘;l-’,Li, < 12 (24)
G "sz.f"l.!,.Lz»

llellu;’u =< ”f"L.".Lz- (2.5)

Proof. We only prove the first inequality of (2.3), because the factor 1/2 is very
important in our theorem. For the proof of the other inequalities, sce e. g [3], [13].
We remark that

Sf = —iFaG+ &+ & -0 F . f (2.6)

if f(x,t)=0 for t <0. Here, F,, is the Fourier transform with respect to whole
space-time variables (x, t). In fact, a simple calculation shows

FaG+ 8+ 8 —i0)7'F, flo = —i f U(=5)f(s)ds,

—00

and then,

t
—iF L+ G+ -i0)'F . f = / Ut —s)f(-,s)ds — f U(=s)f(s) ds.
0 ~00
This shows our claim (2.6). We apply Plancherel’s equality to (2.6) to obtain

sup [ISfll.2.2, = sup IFméi(c+ &+ & - io)-l]-;.tf"leL,z,z

x)eR xR

= sup IFR &+ &+ & —i0)'F, Faulezez

xeR

= sup || G(xl = %; &, D (R, ) (30, &5, D dX "Lzz}

xjeR
Here

L[ Gexp(is)
6z &ar ) 2l G+ + &) -

5 d&:.

The residue calculus shows
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Lexp (iz(—1 — £)'), if z>0,7+& <0,
G, o |IEPCHEFED iz 0048>0,
—iexp(—iz(-t— &)'?), ifz<0,7+& <0,
—lexp (z(x + &), if z<0,74+& >0,

that is, G is uniformly bounded with respect to z, 7, £, by 1/2. Then we get

sup [ F71&(c + & + & — i0) 7 B fll 2z,

xjeR

<sup [ 1600 = %1 &0 ) () G 32, Dl 54
R 2

x1eR

1
<5 [ 10D €30 iz
R 2

1
=5 [ 176 Mg
=% "f"l_,‘,, LA,
This shows the desired result. O

The next lemma is a Holder type estimate of Leibniz rule for a fractional order
derivative.

Lemma 2.2. LetO <a < landl < p <oo. Then
ID%(fg) — fD%g — gD f1l, < Cligllo 1 DX SN,
Let p, py, p, € (1,00) such that 1/p = 1/p, + 1/p,. Then
I1D3(fg) — fD3g — gD fll, < Cligll,, IDZf I,

For the proof of this lemma, see Appendix of [15, Theorem A.1].

3. The estimates for the nonlinear terms

In what follows, we use the following notation.

F) =) /),
=1
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where

i) = diolo,  f(0) = dyo f 3., IoCxy, )1 ds,
and i) =do [ 8,0t .

By a direct calculation we have

r & f(v) =4, (g,(v) +2v /O Re(vd}, ) dx'z),
&, f(v) = 2d, (Zﬁzv /w Re(vd,, p) dx} — 29,,vRe(vd,, D)
- vRe(3,,v - 3,5 + vd,, 3, 5)), 1))

3,,9,,/,(v) = 2d2(8,l 3y, f Re(vd, ) dx), + 3,0 f |3, vI* + Re(vd: 7) dx;
x3 x2

— 8,,vRe(vd,, 7)) — v(13,,vI* + Re(vd, a))),

where
g,(v) =43, v F 18,,vI* + Re(vdZ ) dx; + 282, v F Re(vd,, v) dx)
x2 x2
+ 6vf Re(d,,v- 8, ) dx),
x2
and

&, f,(v) = 24, (8,2‘,0 f Re(vd,, ) dx} — 23, vRe(vd,,b)
—vRe(d, v- 8,0+ 9, 3, t'))) ,
2(0) = 24, (gzw) +o [ Ree) dx.), 12)

8,8, fy(v) = 2d, (a,, 8,0 /Q Re(vd,,) dx, + 3, v /Q 1,,0* + Re(vd, 7) d¥,
x) X1

— 3,,0Re(vd,,) — v(J9,,0* + Re(ua},,a))),
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where

g,(v) =43,,v /W 19,,01* + Re(vdZ,5) dx) + 22,0 /m Re(vd,,v) dx)
x1

+6v‘/¢Re(8xzv~8§2i))dx’,.
xy

By applying Lemma 2.1 to these identities, we obtain the following estimates.

Lemma 3.1. We have

12, SFOlgiz, < 1allv [ Re0B,5) b1y 00

X2

+CI("Dzzgl(v)"L‘TL2 + "D:':{zail.ﬁ(v)"ﬂrﬂ + |]D,"<28,2qf,(v) "L!'.Lz)v
and

12, SFOiguzas, < Il [ Re(wd,0)dxiluy ns

X1

+Cl("D:lz;292(v)"L!rL2 + ||D,"£23,2‘2ﬁ(v)||L|TLz + ||Dl423§2ﬁ(v)||1.‘r1_2)-

Lemma 3.2. Let f, g, h be complex valued functions on R%, and p,, ..., ps € (1,00)
such that 1/2 =1/p, +1/p, +1/ps,1/2 = 1/p, + 1/ps + 1/ps. Then, we have

1D (f f oh dxz) u

CUIDY SNz, un Igllez, oz IBll2, o2
+1 SNz, 12 (g ez, .o 1DS7RI + Bl 2, 1 DYDY, o
< .
CUIDA Mgl 2, 1o Al 2, 10

12 172
"‘"f"z},,z,ﬂ',("9"1_,2,,1‘,‘?I "Dx{ h"Li,Lfg + ||h||1.,2‘,l,,;"I "Dx{ g"L,qu:’l )}

1D (f /W gh d:ez) l
x2

CUNUD,) S Ilglosez, IBlimez + 1 Nigein Igllozsom Bl pn s
=1d ||(Dx,)l/2f"L£'l L "g"";’. L2 “h"l.,;"l L (3.2)
+||f||L;1L5; ||9||L§{L,’; "h“Lﬁng},

and
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where

(D) =(1-3)"

Proof. Lemma 3.2 is obtained by Lemma 2.2.

Lemma 3.3.
||D,|:{2.‘I|(”)||L‘TL2 + ||Dl{23§,ﬁ(v)||:_',u
+ 1D, fi()luy.2 < CTlol,
1D g, llz1 iz + 1D, fi ()l 2
+ IDY28, )l < CTlol,.
and

1DY23,,8, F()ll.1.2 + 1DY28,, 8, F@)l1 2 < CTloll,.

Proof. Lemma 3.3 is obtained by Lemma 3.2.
Lemma 3.4.

[lv /w Re(vd},v) dx] ey r2e2,

X

< (2T||U”L‘;°L2"axv||z.‘;°1,2 + ll”(0)||2)||aizvlll_g§1}rl.§,.

"v/@Re(vaizv) dxlzllL,‘nL?rLiz

x2

=< (ZT"v"L?,?B "a:v"u;’l} + "U(O)"z)uailv"L;‘;LzTL,’,,.

571

(3-3)

(3.4)

(3.5)

(3.6)

3.7

Proof. The proof of (3.7) is obtained in the same way as in (3.6), so we only

consider (3.6). First, we note that

2
llo / Re(vd,0) dxilly 2.3, < 1012y pomyz 185, 0Mugei2s,
x)

by Hélder’s inequality. Since

d
Il = f 2 N0 de+ 0Oy,
(1}
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taking L™ norm on [0, T] of the both hand sides, we have

Nol2eyz < 208032, Nolliziz, + (O, -
Taking L' norm of (3.9) with respect to x,-variable, we have

2 2
1912y piz, < 2000032100132 + 19O

< 2T 13,0l oy W0l o1z + (I

Combining (3.8) and (3.10), we obtain (3.6).

(3.9)

(3.10)

O

By using Lemma 3.3 and Lemma 3.4 in the right hand side of Lemma 3.1, we obtain

the following lemma.
Lemma 3.5. We have
I 32. SF(v) ||L§7L2,L§,
< CTvlly, + QI Tllvll o2 18,0l o2 + | DO, 0llLor2 2,

and

||ai2 SF()Il LEL2L?,

< CTloll}, + Qlds | Toll 213,00 212 + 151100 B, 0l 2.z

Lemma 3.6. We have

/ " \Im(DI2, F(s), DY@, dt < CTloll, lully,
+ (T Wollg 2180l gss + 20l IXOINE, 0llo1 12 W, ullorz s
/., " \Em(DYE, F(v), D222, 4\ dt < CTloll, lul,
+ ATl 180 0z + 25 IO, Ol o103 18 il sz

and

T
/o \Im(D}/*3,,3,,F(v), D,*9,,3,,u)| dt

T
+ /o Im(D!%3,, 3, F(v), DY/%3,,3,,u)] dt

3
< CTljvliy, llully, -
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Proof. We only consider (3.13), since the other estimates are very similar. From
integration by parts and the Schwartz inequality we easily see that the left hand side of
(3.13) is bounded from above by

2(||D;':28,2(|ﬁ(v)||L11L2 + Illezaﬁ,fS(v)llurLz + "D,lv{zgl(v)"L!rLz)"Dlﬂaz ullu;u

X X

+ 20010 [ 2Re(R, D)5 Do ulyu

X2

< 2(||D1{23§,f1(v)||:.',u + "D:I‘{Zailf:!(v)"z.‘,u + IIlezgl(v)Ilu,Lz)IlD'”az “"Lg?l}

X X

+ 2{d,|ljv f 2 Re(ua?ql-’) dxolizy 2 L D, a’z‘lu“’-:’}rl‘h .
x2

X1 ™T
We apply Lemma 3.3 and Lemma 3.4 to the above to obtain (3.13). a

In a similar way as the proof of Lemma 3.6 (3.13) we have the following lemma.

Lemma 3.7. We have
T
) / (& F(o), #4)] dt < CTlloll, lully,- (3.16)
lal<2 /0
Proof. By a simple calculation we have

Im(&, Fv), &,u) =Im(&, f,(v), &,u) + d, Im(g, (v), &, u) + Im(3;, £3(v), &, )

3.17)
+2d,Im (v f’v Re(vd, D) dx}, &, u).
Similarly, we have
Im(@, F(v), &,u) =Im(@, £,(v), &,u) + d; Im(g;(v), &,1) + Im(@, £,(0), &,u)
(3.18)

+ 2d,Im (v /w Re(v3},0) dx}, aﬁzu).

We consider the last terms of the right hand sides of (3.17) and (3.18). By virtue of
the self adjointness of D)?, we have

Im (v /q Re(vd}, 7) dx5, 3,2,,u)

=Im (%}—zv./« Re(vd’, v) dxy, DY, u) —Im (a,,v/w Re(vd 0) dx}, &, u)

*) x2 x2

- Im(v /Q Re(d,, 03 D) dxy, &, u),

x2
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Im (v /G Re(vd},0) dx;, aizu)

=Im (;’;;2 v f Re(vd?,0) dx], D}é’aﬁzu) —Im (8,2v f Re(vd?,0) dx;, aizu)
x) x)

X2

—Im (v /w Re(d,,v32,0) dxj, 8§1u).
x

Hence we have by the Schwartz inequality

[Im (v /m Re(vd}, ) dx}, &, u)l

< 10Dy (v [ Rewdt, i) | @3.19)

and

+ 12 ul (u(a,, ) f Re(v 5)dx | + [Iv f Re(d, v?.5) dxzn),

and

[Im (v f Re(vd},0) dx}, 8§zu)|

< DY u| | DI (v f Re(va:,a)dx'.)u (3.20)
+ 1,0 (16,0 [ Retwpaxit + 1o [ Re(a, 00 dxin)

Integrating (3.19) and (3.20) in time variable t and using Lemma 3.3, we obtain

[Im (v /« Re(v3},0) dx}, &, u) ll: + [[Im (v f Re(vd;,0) dx), 3,2‘1“) ey
X2 T x (3.21)
< CTllully, llvll,

We have by (3.15), (3.16), (3.21) and Lemma 3.2
IIm(3}, F(v), &, Wl + IIm(3%, F(v), 3§,u)||u, < CTllully, lIvll3, (3:22)

A similar calculation shows

Itm(3,,3,, F(v), 8,8, )ll.;. < CTllully, vl (3.23)
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and the estimate

> IIm@F(), #u)ll, < CTlully, vl (3:24)

lai=<1

is obtained by Sobolev’s and Hélder’s inequalities. From (3.23)-(3.24) the lemma
follows. a

We next consider the term
G(v; (P) = dl‘vaxl(pl + dSvaxz(pZ'
By a simple calculation we have

&, G(v; @) = dy(&,v- 8,0, + v, @) + 20,0 &, ¢,) + dsF, v+ 0,0,
aizG(v; (p) = d4aizv - axl (pl + dS(aizv ) axz(p2 + vaizth + zaxzv ) aiz (pZ)’

and
a!| axz G(v; (p) = d4(ax| axzv : 8X1 (pl + va§| (pl) + ds(ax, axzv . 8Xz(p2 + vaiz(pZ)'
By these identities we obtain the following lemma.
Lemma 3.8. We have

18, SG(w; @Mlgezez, < CoTlvlly,,
”aiZSG(U; (p)"Lf;L.z,.L,z‘I =< C¢T“')"Y-’-r

T
> [ im26v: 03, DIEFUNdE < C, Tl iy,
lal<2

T
and ) / [Im(D}*&G(v; @), DY} Fu)ldt < C,Tllvly, lully,,
lal<2 Y0

where
Co = C("ax,‘Pn ”Hgfl + llaxzfpz "”Zz)'

Proof. By Lemma 2.1 we find that the left hand sides of the first two inequalities
are estimated from above by

CIHD:I:{za:ZuG(”; ‘P)"L‘,Ll» and Cl"Dlﬂaz G(v; (P)"L',.LI-

X2 "x3

https://doi.org/10.1017/50013091500024020 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500024020

576 NAKAO HAYASHI AND HITOSHI HIRATA

The Schwartz inequality shows that the left hand sides of the last two inequalities are
estimated from above by

CY ID?#G(v; @)l rzlully,, and C ) IDY2*G(v; @)l 2 ully,.-

lal<2 lal<2
Therefore we have the lemma by Lemma 2.2 and Sobolev’s inequality. O

In a similar way as in the proofs of Lemma 3.5-Lemma 3.8, we have the following
lemma.

Lemma 3.9. We assume that v(x, 0) = w(x, 0). Then we have
183, SCF() + G(v; ¢) = FW) ~ G(w; oDl uzmr .z,
+ 182, S(F () + G(v; 9) — FW) — GW; 0)lpzmizsz
< CT(llv — wlx, + 13,(v — W)ll L2012) (Cp + lol%, + Wik, + 18,01l o2 + WO, Wil oo p2),
T T
Z( f Im(DY?3*(F(v) — F(w)), DY*&u)| dt + / IIm(D}Y28*(F (v) — F(w)), D)/ &u)| dt)
Jal=2 0 0

< CT(llo — wily, + 18,0 = Wllogr2) (0l + 1wl + 130l erz + NBWlr2) il

Z[ 2 Im(&(F(v) — F()), 8w) dt < CTllv — wly (lloll}, + Iwliz) lully,.,

lal<2

3 ( [ " {Im(DL(G(s; 9) — GOws @), D) de
lai<2 \ YO

T
+ f IIm(D2(G(v; @) — G(w; @), D25 u)| d:)
< C,Tlo - wily lulls,»

and

> [ Mm@ (6w: 9) — G ), Fudlde < C, Tl = wil, .

la| <2

4. Proof of Theorem 1

We define the sequence {u,},cnu0) as follows:

luo=U¢,

Uy = thy — IS(F(h_1) + Gl s @) “
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where F and G are the same as defined in Section 3. We first remark u, € X; for some
p > 0 by virtue of the first estimate in Lemma 2.1. From now on we will prove that
{u,},en is @ Cauchy sequence in X, for some time T, where

X1, ={f € X5 Iflyy < 07208, fligizsz, < p/4 18, Slugizez, < P/4)

We assume that u(t) € X;, for all 0 <j<n—1. By Lemma 3.5 and Lemma 3.8, we
have

18, 4,z < Col DY, Il + CT oy I3,
+14,1(2T |u,_, "L‘;’LZ"ax“n-l ||L';°L2 + ||¢||2)"3,3<, Uyl Lo L (4.2)

X2 T

+ C,Tlu, 13,
and

”aizurn”Li‘;’L?rL?,l = COIIDZZB,Z‘ZQSII + CT|u,_, "3}'1
+1d,|(2T llu,_, ||L‘;°L2||3;“n—x||L°T°L2 + ”¢"2)"aizun—l "Lg;LZTLi, 4.3)
+ C, Tty 113,

Here u,_, satisfies the differential equality

{ iU, = —Au, | + F(u,.;) + G(u,_,; ®),
u,_,(0) = ¢,

where we define u_, = 0. So, by virtue of the usual Sobolev inequalities, we have
18,u,_, "L‘;’LZ < Ay, ||1,°T°1_z + ”F(un—Z)IIL‘.;."Lz + "G(“n-z)"u’;l}
< [|Au,_, "L?l} + |dl|"un—2”i‘.’;’Lﬁ
+ ’d2|||“n—2”z.‘;°1,:71_§, lIa,, lun—2|2"L.°’.°L,z,| L,
+ |dy|llu,_, ||1,;.°L,°,;’L§l ||axz|“n-z|2||L;°L§,L,‘(,
+ |d4|||“n—z "L?;LZ o, "L;?L:‘I’ + |d5|||un—2"1.;°L2 "(Pz "L‘;’L;’g

3
< l|Au,_, ||L‘;.°L1 + Cllu,-, ||u;yl + C¢||“n—2||L;.°L2-

Applying this estimate to (4.2) and (4.3), we have
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083, ol 2.,
< Gollpllgse + CTllu,_, ”3’7 +C,Tllu,, ||:;',-
+ 1Ayl T Nty o2 (1At o2 + Cllthy_allzeesn) + ISIDNE, s o2z,
< Coll@llsn + 1ol SN N, o 01212, (4.4)
+ Co Tl gy (Nt 13 + (ki e+ Nt W NS, s o212
< Gollpllusn +Lp1do 101 + C, TG0 +1pGp +10%)
= Collplluse +5p1d1101° + & C, TP’ (12 + p°)
and
183 ullzmr2.2
< Collpllsn + CTllup iy + Co Tty I3,
+ 1d51(2T llu,_, ||L;°L2(||Aun-|“u;°u + C”“n—z";f;m) + "45"2)”8;3:1“::-1 "Lg;’l_zTLi.
< Coll@llsn + 1ds IS, s lLor2 22 (4.5)
+ Co Tl ey (181 Wy + (ke gy + Htha I8t ligor2.02.)
< Collpllusn +Lplds|I01° + C, T pGp +1pGp +10™)
= Coll@llusn +Lp1ds)1° + & C, TP*(12 + p°).
Now, by the assumptions on ¢, we can define a small positive constant é such that

max(|d,|, |d;DIlgli* < 1 — 83. For this 6, we put p such that Cyll¢|lys» < dp and T such

that LC,Tp*(12+ p°) < 6. Under these conditions, we see that

'lai,“n"L;‘,’L?,Liz <p/4, and ”aizun"Lg‘;L%.L,z‘l < p/4. (4.6)

Next, to estimate D/?3*u, we note that (4.1) is equivalent to

iduy+Auy =0, uy(0) = ¢, @.7
and
idu, + Au, = F(u,_) + G(u,,), u,(0) = ¢. 4.8)

Applying D.?3,, to both sides of (4.7) and (4.8), multiplying both sides of the
resulting equations by D)’ i(t) and D28 i,(t), respectively, integrating over R’

X3 Xy

and taking the imaginary part, we obtain

d
n 1D &, u (I = 0, (4.9)

https://doi.org/10.1017/50013091500024020 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500024020

ELLIPTIC-HYPERBOLIC DS SYSTEM 579

and

2 D23, 0 OIF = 21D, (Fltyr(0) + Gty O, DY @) (410)

Integrating (4.9) and (4.10) in and using Lemma 3.6, we find that

ID;? 8, uollier2 = D73, S11%, @11)

Xy x)
and

IDY?8} upll ez <UD, SI + 2C T lltyy I, Nty |l

+ (8T llu,-, ||L°T°L2 13,4, "L‘;'LZ + 4ld,| ||¢||2||31, Up—y ||L:L§.L§,)"ai, un"L:LZTL,%Z (4.12)
+ Co Tl Iy, unlly, -

In the same way as in the proofs of (4.11) and (4.12) we have
IIDlﬁzaizuolli;o,_z = D2, ¢17, (4.13)

172 2 2 3
"Dxé a)zrzun"l,;?l} =< "Dléza§1¢" + 2C’Iw"un—l "}'Tllun"YT

+ BT Nty lser2 19ctty—s llser + A NS0, et lagorz oz M aloprziz,  (414)
+ Co Tty ly, Nty

D28, U0l 7ser2 + D10, B, Up e 2 = D38, 3., HN* + D23, 8, 011%, 4.15)

2
and

172 2 1/2 2
"Dx{ axl axzun "Lg?l} + "Dx; axl axzun "L;_"Lz

(4.16)
< ID}?3,,0,,¢1> + 1DY?3,,8,, 011> + CTllu,_, I3, Ity lly, + Co Tlithylly, ity ll .-
Integration by parts shows that
ID?8, u,lI* < \DY3%,u, || D}y, By, unl @17
< el D3 u,lI* + r |1DY23,,0,,u. 1%,
and
ID;?8% u,li* < 1 D}3% u, || DY23,, 3, un “.18)

2 1/2 2
5 EHDL{Zailun" +4le"Dx{ axl axzun" *
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where ¢ > 0 is determined later. By the usual energy method and Lemma 3.7 we have

Yo 1Fu i < D NFGN + CT(0 + p*)lltylyy. (4.19)

lal=<2 lat<2
From (4.11)—(4.19) and the Schwartz inequality it follows that

lualiey < Clldlisn + £ Co T4 + p*) + 5 (8 + TP’ (4 + p?)
+ L4+ (d,| + 1d;Dlipl*p”.

Hence, if necessary, we retake p and T such that

15 +eTp(d+p) <4,
Clillzsn < 360%,
lCc, T4+ p%) <6,

we find that
p
flually, < 5 (4.20)

Moreover, for uy(t) = U(t)¢ we have the following estimate by Lemma 2.1
ltollx, < Collpllysn < 8p < p/4. 4.21)

The induction argument and (4.6), (4.20), (4.21) show that {u,} is a well-defined
sequence in Xy ,.

Using Lemma 3.9 instead of Lemmas 3.5-3.8, a similar calculation shows {u,} is a
Cauchy sequence which implies Theorem 1.1. a
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