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LOCAL EXISTENCE IN TIME OF SMALL SOLUTIONS TO THE
ELLIPTIC-HYPERBOLIC DAVEY-STEWARTSON SYSTEM IN

THE USUAL SOBOLEV SPACE
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We study the initial value problem to the Davey-Stewartson system for the elliptic-hyperbolic case in the
usual Sobolev space. We prove local existence and uniqueness H n with a condition such that the L? norm of
the data is sufficiently small.
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1. Introduction

We study the initial-value problem for the Davey-Stewartson (DS) systems

idtu + c0^, u + d2
xiu = c, \u\2u + c2u3xi cp, (x, t) e R2 x R,

, <p + c^cp = dxi \u\2, u = u(x, t), <p = q>(x, t), (1.1)

where c0> c3 e R, c,, c2 e C, u is a complex valued function and <p is a real-valued
function. The systems (1.1) for c0 < 0 and c3 > 0 were derived by Davey and Stewartson
[5] and model the evolution of two-dimensional long waves in a finite-depth liquid.
Djordjevic-Redekopp [6] showed that the parameter c3 can become negative when
capillary effects are important. For detailed physical background, see [1, 2, 6]. When
(co,c,,c2,c3) = (1 , -1 ,2 , -1) , ( -1 ,-2,1,1) or (-1,2,-1,1) the system (1.1) is referred
to as the DSI, DSII defocusing and DSII focusing respectively in the inverse scattering
literature. Ghidaglia and Saut [8] classified (1.1) as elliptic-elliptic, elliptic-hyperbolic,
hyperbolic-elliptic and hyperbolic-hyperbolic according to the respective sign of
(c0, c3) : (+, +), (+, - ) , (-, +) and (—, - ) . For the elliptic-elliptic and hyperbolic-elliptic
cases, local and global properties of solutions were studied in [8] in the usual Sobolev
spaces L2, Hl and H2. In this paper we consider the elliptic-hyperbolic case. In this case,
after a rotation in the xrx2 plane and rescaling, the system (1.1) can be written as

id.u + A u = dx \u\2u j q ^ ^ p ]
I (1-2)

3d ' d 2 dd\\2 \
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where A = 9^ + e£2, c ' , , . . . , c'5 are arbitrary constants. In order to solve the system of
equations, one has to assume that <p() satisfies the radiation condition, namely, we
assume that for given functions <p, and q>2

lim <p(x, t) = <j0|(xi, 0 and lim q>(x, t) = (p2(x2, t). (1.3)

Under the radiation condition (1.3), the system (1.2) can be written as

id,u + AM =dt \u\2u + d2u j dxi |u(x,, x!2,
1

2 dx'2t)\2 dx

(1-4)
+ d3u I dxi\u{x\,x2, t)\2dx\ + rf4u9Xl<p, + d5u3X2<p2

with the initial condition «(x, 0) = <$>{x). Here dx — c\ +c'2c's+c'ic'4, d2 = —c'2c'4, d3 = —c\c's,
d4 = c'2and<f5 — c'3.

By using inverse scattering methods several results were obtained for the DSI system
(d, = 0 , d2 = d3 = 1/2, and d4 = ds = 1 in (1.4)). In [7] A. S. Fokas and L. Y. Sung
showed that if the initial function <f> is in the Schwartz class and if 3Xl<j0,(t, x,) and
3X2<p2(t, x2) are also in the Schwartz class with respect to the spatial variables and
continuous in t, then the DSI system has a unique solution global in £ which, for each
fixed t, belongs to the Schwartz class in the spatial variables. Furthermore it is known
that the DSI system has the localized-soliton-type exact solutions which are called
dromion (for the study of the dromion solutions, see, e.g., [11], [17]).

In order to state some known results and our results, we define some notation. We
let 3 = (9Xl, 3X2), a = (a,, a2), |a| = a, + a2 and a,, a2 e R U {0}. We define the weighted
Sobolev space as follows:

IT1 = [fe L2; ||(1 - £, - ^2)m/2(l + |x,|2 + |x2|2)'/2/|| < co},

tf"''(Rx,) = {/ g L\RXj); ||(1 - ^)m / 2(l + |x,|2)'/2/||L2(Rx;) < oo},

where || • || denotes the usual L2 norm. We denote the usual U norm by || • H,,. For
any Banach space E, LP(A; E) means the set of £-valued V functions on A, where
A = [0, T], A = R2 or A = Rx, and C([0, T]; E) means the set of £-valued continuous
functions on [0, T]. We write L"([0, T]; E) = LP

TE, Lp(RXl; E) = LXjE which makes the
notation simple. For example LPI(RX1; L

n([0, T]; Ln(RxJ)) can be denoted as Ux\U?V?r

We also write H'° = H' and Hj0(RX;) = H'(RXJ) = H'Xj for simplicity.
For the local existence of small solutions to (1.4), Linares and Ponce [16], Chihara

[4] and Hayashi [9] obtained the following results.

Proposition 1 [16, Theorem B]. We assume that QeH'nH66 = Ws, s > 12,
<p, = q>2 = 0 and ||$||wi2 + ||^|IH«.6 is sufficiently small. Then there exists a positive
constant T > 0 and a unique solution u of (1.4) such that u e C([0, T); Ws).
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Proposition 2 [4, Theorem 1.1]. We assume that <p € H', where s is a sufficiently
large integer, <p, = q>2 = 0 and \\(f>\\ < l/(2.y/max{|d2|, \d3\}e). Then there exists a positive
constant T > 0 and a unique solution u of (1.4) such that u e Cw([0, T\;
H')nC([0, T];H'~l), where Cw([0, T]; H') is the set of H' valued weak continuous
functions on [0, T\.

Proposition 3 [9, Theorem 1]. We assume that <p e Hs n H0-6 = Zt, 5 > 50 > 1,
d,^ e C(R; HXl), 3x?<p2 e C(R; HS

X2) and U\\Hh + I^IU*. « sufficiently small. Then
there exists a positive constant T > 0 and a unique solution u of (1.4) such that
u e C([0, 71; Z,).

Our purpose in this paper is to prove the local existence of small solution to (1.4)
in usual Sobolev spaces. We now state our result in this paper.

Theorem 1.1. We assume that (p e H', where s > 5/2, dXi cp^ e C(R; H'XI),
3X2<p2e C(R; HS

X2), and \\(j)\\L2 < l/y/max{\d2\, \d3\}. Then there exists a positive constant
T > 0 and a unique solution u of (1.4) such that u e C([0, 7^; H').

Theorem 1.1 is considered as an improvement of the previous papers by Chihara
[4] and Linares and Ponce [16]. We only prove Theorem 1.1 in the case of s = 5/2 since
in the case of s > 5/2, Theorem 1.1 can be proved in the same way. To obtain our
result we introduce the function space.

XT = {fe C([0, 71; L2); ||/||Xr < oo}, YT = {f e C([0. 71; L2); ||/||Kr < oo},

where

M<2 l«l=2 '

D% = -F-'l^p7, 9" = agag, and |a| = a, +a2.
The function space YT is the natural Sobolev space when we use the classical energy

method with the data cp e H5/2. The use of the function space XT suggests that we make
use of smoothing properties of solutions to the linear Schrodinger equation (see
Section 2). As mentioned in [16], it seems that the classical energy method is not
sufficient to yield an existence result. In this paper we use the two-dimensional version
of the smoothing effect of Kenig-Ponce-Vega type (see, e.g., [13]). We note that the
method used in this paper does not work to remove the decay condition on the data in
the hyperbolic-hyperbolic case which was assumed in [16, 9] to obtain local existence
results. A smallness assumption on the data can be removed in real analytic data [10],
however we do not know whether it can be removed or not in the usual Sobolev space.
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We conclude this section by giving our strategy of the proof of Theorem 1.1. We apply
the contraction mapping principle to the linear Schrodinger equation

Jx2

\v\2v + d2v f 3,,\v(xt, x'2, Ol2dx!2
J

+d3v I 3X1 \v(x\, x2, Ol2 dx\ + d4vdxi
Jxx

(t)

where 1/(0 = exp (itA) and (Sf) (t) = £ U(t — s)f(s) ds. In order to do it, we organize
the paper as follows. In Section 2 we give some estimates of 1/(0* and (Sf) (t) (Lemma
2.1) which imply the smoothing properties of solutions and Section 3 is devoted to
estimates of the nonlinear term (the right hand side of the above equation). Roughly
speaking, we will obtain, by making use of these estimates obtained in Section 3
(Lemma 3.5 - Lemma 3.8),

NlxT < C||*IU2 + CTMxr + C(dlt <*2)||*||2IMI*T.

where C(dx, d2) is a constant depending only on dx, d2 and will be determined in
Section 4. This inequality shows that the mapping M defined by u = Mv is the mapping
from XTiP = {/ e XT; \\f\\XT < p) into itself provided that ||*|| is sufficiently small.
The constant C(d,,d2) gives a condition on the size of ||*|| which yields our result
Theorem 1.1.

2. Linear Schrodinger equations

In this section we state smoothing properties of the inhomogeneous Schrodinger
equations

id,u + Au = / , (x, 0 € R2 x R, 1
(2.1)

)

We let U and S be 1/(0 = exp (itA) and (Sf) (t) = f0 U(t - s)f(s) ds as defined in
Section 1.

Following estimates were obtained by Strichartz [18], Kenig-Ponce-Vega [13, 14],
Bekiranov-Ogawa-Ponce [3] and Hirata [12] etc.

Lemma 2.1. For the linear operator U and S, we have following estimates.

IIU<t>\\LfL2 + \\Dl{2U4>\\Lf,L2TLli + ||Dy2
2t/*||L»L2Lli < Co\\4>\\2, (2.2)
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(2.3)

(2.4)

W\\L?I? < U\\L<TL>- (2-5)

Proof. We only prove the first inequality of (2.3), because the factor 1/2 is very
important in our theorem. For the proof of the other inequalities, see e.g., [3], [13].

We remark that

if /(x, i) = 0 for t < 0. Here, Txt is the Fourier transform with respect to whole
space-time variables (x, t). In fact, a simple calculation shows

JT-!(T + tf + g - .0)-'^,,/|(=0 = - i f U(-s)f(s) is,
J-oo

and then,

-i^;,!(T + «J + £ - '0)-'^,/ = / ' u(t - s)/(-, s) is - /* i/(-s)/(s) ds.
JO J-oo

This shows our claim (2.6). We apply Plancherel's equality to (2.6) to obtain

sup ||S/||L?Ll = sup \\F-X%(T + & + &- i0)-lFx,J\\L2Ll

x,eU ' ' i,€t ' 2

= sup HJF-'^T+{j+& - ior'^i^nw^]

= sup || f G(x, - x,; ^2> T) {Txiilf)(x,, {„ T) dx, ||L?L2.
xie* JR {J

Here

The residue calculus shows
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5 exp (iz(—T - £2)
1/2), if z > 0, T + £2 < 0,

{exp (-Z(T + ^2)
l/2), if z > 0, T + £2 > 0,

- 5 exp (-iz(-T - £2)
1/2), if z < 0, T + î 2 < 0,

that is, G is uniformly bounded with respect to z, T, ^2 by 1/2. Then we get

sup WTZUx + tf + g - iOr'^./lli.fij,
X|6R 2

< sup - x,; , X2 ,

This shows the desired result. •
The next lemma is a Holder type estimate of Leibniz rule for a fractional order

derivative.

Lemma 2.2. Let 0 < a < 1 and 1 < p < oo. Then

\\D%(Jg) -fD'xg - gD*J\\? <

p,p,, p2 € (1, oo) JMCA f/iaf 1/p = 1/p, + l/p2. Then

\\D'x(fg) -fD"xg ~ gKf\\P < C\\g\\Px \\D*J\\n.

For the proof of this lemma, see Appendix of [15, Theorem A.I].

3. The estimates for the nonlinear terms

In what follows, we use the following notation.

3

J=i
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(t>) = dx \v\2v, f2(v) = d2v I dxi |u(x,, x!2)\
2 dx"2,

and Mv) = d3vf° dxi\v{*x, x2) |2 dx"x.
Jx\

By a direct calculation we have

where

and

l 5) dxi - 23^» Rc(»3xl 5)

gt{v) =AdXxv f° \3Xlv\2 + Reived) dx!2

+ 6v[°Re(dX]vcixl-v)dx2,

%^ f ° Re(vdXl v
Jx2

) dx!2

i;) = Id, (#Xiv jRe{vdxiv)dx\ -

Id, (gfr) + v £ R e « 5 ) dxf^j,

xidxiv f° Re(v3Xiv)dx1, +dxivf° \3xiv\2

D) - v(\dxiv\2

569
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g2(v) = 4dxiv f \3xiv\2

Jx\

6v

Jx,
Re(t,3X2D) dx!x

By applying Lemma 2.1 to these identities, we obtain the following estimates.

Lemma 3.1. We have

+Ci(\\D
l
x[

2gl(v)\\LW + +

and

Lemma 3.2. Le/ / , ^, /i 6e complex valued functions on R2, and p , , . . . , p6 e (1, oo)
1/2 = 1/p, + l/p2 + l/p3, 1/2 = l/p4 + l/p5 + l/p6. Then, we have

WD^ff [°ghdAw

(3.1)

\\Dx?(f £

(3.2)
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where

<zy = a-%)l/2-
Proof. Lemma 3.2 is obtained by Lemma 2.2. •

Lemma 3.3.

(3.4)
v)\\LW < CT\\v\\\T,

and

\\Dl
x{

23xldX2F(v)\\LW + \\Dx»dxldxlF(v)\\oTi> < C T M ^ . (3.5)

Proof. Lemma 3.3 is obtained by Lemma 3.2. •

Lemma 3.4.

\\v f°

< (27'||I;||Lo?LZ||ail;||Lo?I.J + I K O ) ! ! 2 ) ! ! ^ ! ! ^ ^ , (3.6)

||i; f°Re(vdX2v)dx'2\\L>xiL2TL2i

< (2T\\v\\L~L>\\3tv\\L?Li + UO^KvW^L^. (3.7)

Proof. The proof of (3.7) is obtained in the same way as in (3.6), so we only
consider (3.6). First, we note that

by Holder's inequality. Since

j x I
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taking L°° norm on [0, T\ of the both hand sides, we have

ifLl, $ 2||3l»||L2L2i HBIIL*!.!, + \\v(O)\\Li• (3-9)

Taking L1 norm of (3.9) with respect to x2-variable, we have

^LfLl, -
(3.10)

Combining (3.8) and (3.10), we obtain (3.6). •

By using Lemma 3.3 and Lemma 3.4 in the right hand side of Lemma 3.1, we obtain
the following lemma.

Lemma 3.5. We have

(3.11)
< CT\\v\\\T i2\d\TMM\\ MWmtfnfyh

and

\\dLSF(v)\\L~L2L2
II x2 \ /\\LX1LTLX,

3^ +(2|iJ|T||i;||I.?tf lia.wlL-tf + I^IIIKO)^)!!^!!

Lemma 3.6. We have

f \Im(D]/^xlF(v), D i J X i O l dt < H I I ^ I I I I ^
Jo (3.13)
+ (4T\\v\\LfL2\\d,V\\L?L> + 2|d2|b(0)l|2|l^1t)||Loo4L2])||^1U||LooL2L22>

f |
(3.14)

f |Im(Dif 3,, 3I 2f (»). Dif 3,,3,2u)|

+ f |Im(Dif 3 a F ( 0 ) Di f 3 3 u ) | A ( 3 1 5 )

7o
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Proof. We only consider (3.13), since the other estimates are very similar. From
integration by parts and the Schwartz inequality we easily see that the left hand side of
(3.13) is bounded from above by

x2

Jx2

We apply Lemma 3.3 and Lemma 3.4 to the above to obtain (3.13). •

In a similar way as the proof of Lemma 3.6 (3.13) we have the following lemma.

Lemma 3.7. We have

«)| it < CT||»||^||tt||^. (3.16)

Proof. By a simple calculation we have

Im(£, F(»), 3J,«) =Im(^, /, (v), % u) + d2 hn(gy (»). % u) + I m ^ , /,(»), ^ «)

( r , , \ (317)
+ 2d2 Im ( v / Re(i^, D) dx'2, ^ , u ) .

Similarly, we have

Mv), S^u) + d3 hn(g2(v), #X2u) + Im(^/2(»), a^u)

(3-18)
3 Im f » y Rciv^v) dx\, ^2«J.

We consider the last terms of the right hand sides of (3.17) and (3.18). By virtue of
the self adjointness of Dx

/2, we have

J^v£ Re«5)dx!2, Dx'^u) - Im (dXxv
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and

= Im { - H e / RefvdjLDWx'i, DifaLu I - Im ( 9x,u / RefoffLvWx',, dtM
\Dx2 Jx, / \ Jxt J

- Im ( v j Re(ax2u3X2D) dx'2, ^ u ) .
\ Jxi /

Hence we have by the Schwartz inequality

r \Re(^,D)dx;, 9:,u IIx, y

.e(v#xiv)dx£\\\ (3.19)

+ ii^ii^iia, tOjT

and

(3.20)

Integrating (3.19) and (3.20) in time variable t and using Lemma 3.3, we obtain

||Im (v f R e ^ J ) ^ , £,«W + Him (v f°Reiv^d^, a^uVi.
V »̂2 / V ' ' i / (3-21)

< CT||u||yT||j;||3y7..

We have by (3.15), (3.16), (3.21) and Lemma 3.2

||Im(3!|IF(t0, ^ . u ) ! ^ + | |Im(^F(»), ^ u ) | | t J . < CTIIHII^OBII^. (3.22)

A similar calculation shows

||Im(3xl3X2F(v), 3X,3I2«)||4 < CT||u||Kr ||t;||
3
yT, (3.23)
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and the estimate

£ ^ (3.24)

is obtained by Sobolev's and Holder's inequalities. From (3.23)-(3.24) the lemma
follows. •

We next consider the term

G(v; <p) = d4t>9X]<p, + dsvdX2q>2.

By a simple calculation we have

#XiG{v\ <p) = d ^ v • 3xi(jp, + v$xi<px + 2dXiv• ^,<p,) + d5ditv• dxiq>2,

aii2G(v; <p) = d&v • 3X> ? , + dsi&v • 3X2<p2 + vdi2cp2 + 2dX2v • %<p2),

and

dX]3X2G(v; <p) = d4(dX{dX2v • 9Xl<p, + » ^ l V l ) + d$(dXldX2v • dX2<p2 + v^(p2).

By these identities we obtain the following lemma.

Lemma 3.8. We have

i(2a"G0>; q>). Dl*?u)\dt <

T f \1m{D]£dPG(v; <p), Dl£?u)\dt < C9T\\V\\YT\\U\\YT,and

where

Proof. By Lemma 2.1 we find that the left hand sides of the first two inequalities
are estimated from above by

C, \\DxyxiG(v, <p)h*r*. and C, \\D^X2G{v; <p)\\LW.
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The Schwartz inequality shows that the left hand sides of the last two inequalities are
estimated from above by

, and

Therefore we have the lemma by Lemma 2.2 and Sobolev's inequality. •

In a similar way as in the proofs of Lemma 3.5-Lemma 3.8, we have the following
lemma.

Lemma 3.9. We assume that v(x, 0) = w(x, 0). Then we have

||ai,S(F(») + G(o; q>) - F(w) - G(w; (p))\\Lf^TL\t

+ | |^S(F(») + G(v; <p) - F(w) - G(w; (p))]]^^^

< CT(\\v - w\\Xr + Il3,(w - w) | | L ? t , ) (C, + \\V\\2
XT + \\W\\2

XT + \\dtv\\Lfi? + Il3,w||1?1?),

W f |Im(Dif 3«(F(i;) - F(w)), Dl
x[

23fu)\ dt + f |Im(D^y(F(i;) - F(w)), D%<Tu)\ dt)
1.1=2 V O JO /

< CT(H» - w||yr

[o

J2 ( f
|«|<2 V •'O

2 f f 9) - G(W; <p% Dl»7u)\ dt

and

Hm(3"(G(i;; q>) - G(w; cp)), Sfu)\ dt < C9T\\v

4. Proof of Theorem 1

We define the sequence {un}BeNu{0) as follows:

(4.1)
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where F and G are the same as defined in Section 3. We first remark «<, e XT for some
p > 0 by virtue of the first estimate in Lemma 2.1. From now on we will prove that
{"nJneN is a Cauchy sequence in XTp for some time T, where

XT,P = {fe XT; \\f\\YT < p/2, H ^ / H , - ^ < p/4, | | £ 2 / | | t » 4 t i | < p/4}.

We assume that u;(t) e A"rp for all 0 <j < n - 1. By Lemma 3.5 and Lemma 3.8, we
have

\KK\\^L\LI, < CollD^^II + CT||Mn_,||3rT

+ |d2l(2T||un_1||Lo?L2||9,un_1||t»i.2 + ll^ll2)!!^.^.,!!!.-^^ (4.2)

and

H + CT\\un_x\\\T

+ ll^ll2)!!^"^,!!,.-^^ (4.3)

Here un_, satisfies the differential equality

i3,tV, = -Aun_, + F(un_2) + G(un_2; q>),

where we define u_, = 0. So, by virtue of the usual Sobolev inequalities, we have

2)||LooL: + ||G(«n_2)||LooL2

_2|li?tf

I^IIIM-IIIL-L-LJ, II9*, K-2\2\\L?LI,L12

< l|Aun_,||L»L2 + C||un_2||
3oow, + C9||iin_2||L»L2.

Applying this estimate to (4.2) and (4.3), we have
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CT\\un_t fYT + ^

ii11_I|| t-I, + C||un_2||looH,)+ H0ll2)ll^,«n-illL~4^

Iii_I||£-L2l»i (4.4)

and

CT\\un,x \\\T + C9T\\un_y||
3
rT

(4.5)

+{P\d3\U\\2 +^CvTp\n + p').

Now, by the assumptions on (j>, we can define a small positive constant 5 such that
max(|d2|, |d3|)||0||2 < 1 - 8<5. For this 5, we put p such that C0||(/>||H5/2 < 8p and T such
that Jj CpTp2(12 + p3) < <5. Under these conditions, we see that

iK^nhf^Ll <P/4, and l l ^ u j l ^ ^ , < p/4. (4.6)

Next, to estimate D^tfu, we note that (4.1) is equivalent to

i3tUo + AMO = 0, uo(O) = <f>, (4.7)

and

iaiti. + Att. = jr(ii1_I) + G(M»_,). «.(O) = 0. (4.8)

Applying Dif^,, to both sides of (4.7) and (4.8), multiplying both sides of the
resulting equations by D^a2., Uo(t) and D^d^JiJt), respectively, integrating over R2,
and taking the imaginary part, we obtain

^ = 0, (4.9)

https://doi.org/10.1017/S0013091500024020 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024020


ELLIPTIC-HYPERBOLIC DS SYSTEM 579

and

Integrating (4.9) and (4.10) in and using Lemma 3.6, we find that

WDlfZMl?* = PiWll2. (4.1D

and

(4.12)

In the same way as in the proofs of (4.11) and (4.12) we have

II2. (4-13)

(4.14)

]/X3*ML?L> + ilDjf a^uoifc-tf = WDlfa^ttf + Difa^w2, (4.15)

and

(4.16)

X2^n2 + iiDy2
2axlaX20ii2 + c r i i u ^ i i ^ H u j i ^ + c,riiu11_Iiilvii«11ii^..

Integration by parts shows that

(4.17)
< f i | | / ) ^ U l l | |

2 + J L | | D ^ a J l l a j r i i i , i i 2 ,

and

\\DlJ2%un\\2 < | H > i f ^ l n | | | | i ( x i x 2 n | |
(4.18)

3 J | 2
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where e > 0 is determined later. By the usual energy method and Lemma 3.7 we have

W<2 |a|<2

From (4.11)—(4.19) and the Schwartz inequality it follows that

\M\\T < ^ \ 2

Hence, if necessary, we retake p and T such that

we find that

II«JI*<§- (4-20)

Moreover, for uQ(t) = U(t)<f> we have the following estimate by Lemma 2.1

<5p< p/4. (4.21)

The induction argument and (4.6), (4.20), (4.21) show that {«„} is a well-defined
sequence in XTp.

Using Lemma 3.9 instead of Lemmas 3.5-3.8, a similar calculation shows {un} is a
Cauchy sequence which implies Theorem 1.1. •
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