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Abstract

The grounding bottleneck poses one of the key challenges that hinders the widespread adoption
of answer set programming in industry. Hybrid grounding is a step in alleviating the bottleneck
by combining the strength of standard bottom-up grounding with recently proposed techniques
where rule bodies are decoupled during grounding. However, it has remained unclear when hybrid
grounding shall use body-decoupled grounding (BDG) and when to use standard bottom-up
grounding. In this paper, we address this issue by developing automated hybrid grounding: we
introduce a splitting algorithm based on data-structural heuristics that detects when to use BDG
and when standard grounding is beneficial. We base our heuristics on the structure of rules and
an estimation procedure that incorporates the data of the instance. The experiments conducted
on our prototypical implementation demonstrate promising results, which show an improvement
on hard-to-ground scenarios, whereas on hard-to-solve instances, we approach state-of-the-art
performance.

KEYWORDS: logic programming, answer set programming, grounding, grounding bottleneck,
hybrid grounding, body-decoupled grounding

1 Introduction

The so-called grounding bottleneck (Gebser et al . 2018; Tsamoura et al . 2020) in answer

set programming (ASP) is one of the key factors that hinders large-scale adoption of ASP

in the industry (Falkner et al . 2018). It occurs as part of the grounding step (Kaminski

and Schaub 2023), which is an integral part of the state-of-the-art (SOTA) ASP systems,

such as clingo (Gebser et al . 2016) or dlv (Leone et al . 2006). Grounding replaces the

variables of a non-ground ASP program by their domain values, which inherently results

in an exponentially larger (Dantsin et al . 2001) ground program.

The grounding bottleneck is a long-standing problem, which is the reason why modern

grounders like gringo (Gebser et al . 2015) or idlv (Calimeri et al . 2017), are highly

https://doi.org/10.1017/S1471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173
https://orcid.org/0009-0009-4252-1043
https://orcid.org/0000-0003-1594-8972
mailto:alexander.beiser@tuwien.ac.at
mailto:woltran@dbai.tuwien.ac.at
https://orcid.org/0000-0003-0131-6771
mailto:hecher@cril.fr
https://doi.org/10.1017/S1471068425100173


A. Beiser et al.2

optimized systems. They work according to a bottom-up and semi-naive approach

(Gebser et al . 2015), which instantiates rules along their occurrence on the topologi-

cal order of the dependency graph of the program. Although these systems are highly

optimized and implement advanced rewriting methods, as they incorporate structural

information on rules (Bichler et al . 2016; Calimeri et al . 2018), they are exponential in

the number of variables in the worst case.

Body-decoupled grounding (BDG) (Besin et al . 2022) is a novel approach that alle-

viates the grounding bottleneck by decomposing rules into literals and grounding the

literals individually. This is achieved by shifting some of the grounding effort from the

grounder to the solver, thereby exploiting the power of modern ASP solving technology.

Practically, BDG’s grounding size is only dependent on the maximum arity a of a pro-

gram. Experiments on grounding-heavy tasks have shown promising results, by solving

previously ungroundable instances. However, BDG on its own is not interoperable with

other SOTA techniques, which prohibits BDG from playing to its strengths in practical

settings. Hybrid grounding (Beiser et al., 2024) partially alleviates the challenge of inter-

operability, by enabling the free (manual) partitioning of a program Π into a part ΠH

grounded by BDG and ΠG grounded by bottom-up grounding.

Still, it remains unclear when the usage of BDG is beneficial. Grounding with BDG

potentially increases the solving time, as BDG pushes effort spent in grounding to solv-

ing. Rewriting techniques, used for example in idlv, complicate this matter further.

Additionally, BDG’s grounding size is solely dependent on the domain, not considering

the peculiarities of the instance. We address this challenge by introducing automated

hybrid grounding , which is an algorithm for detecting those parts of a program that shall

be grounded by BDG. Our contributions are three-fold:

• We present the data-structural splitting heuristics, which decides (based on the

structure of a rule and the instance’s data) whether it is beneficial to ground with

BDG.

• We develop the prototype newground3 that integrates BDG into bottom-up proce-

dures of SOTA grounders and uses BDG according to data-structural heuristics.

• Our experiments show that with newground3 we approach SOTA performance on

solving-heavy scenarios, while beating the SOTA on grounding-heavy scenarios.

The paper is structured as follows. After this introduction (Section 1), we state the

necessary preliminaries of ASP and on grounding techniques (Section 2). We continue by

showing our data-structural heuristics (Section 3). Next is the high-level description of our

prototypical implementation newground3 (Section 4), which is followed by the conducted

experiments (Section 5). The paper ends with a conclusion and discussion (Section 6).

Related work. While SOTA grounders use semi-naive grounding techniques (Gebser

et al . 2016; Calimeri et al . 2017), we focus on the interoperability between SOTA

grounders and alternative grounding procedures. Alternative grounding procedures

include lazy-grounding (Weinzierl 2017; Weinzierl et al . 2020), lazy-grounding with

heuristics (Leutgeb and Weinzierl 2018), compilation-based techniques via lazy rule injec-

tion (Cuteri et al . 2019; Lierler and Robbins 2021), or compilation-based techniques via

extensions of the CDNL procedure (Mazzotta et al . 2022; Dodaro et al . 2023, 2024).

Approaches based on ASP Modulo Theory combine ASP with methods from other fields
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(Liu et al . 2012; Banbara et al . 2017; Balduccini and Lierler 2017). Structure-based tech-

niques also showed promising results (Bichler et al . 2016). We focus on the alternative

grounding procedure of BDG (Besin et al . 2022). In contrast to the other approaches,

BDG is a rewriting approach based on complexity theory. In Beiser et al. (2024) BDG

was extended by hybrid grounding and the handling of aggregates. Hybrid grounding

enables the free partitioning of a program into a part grounded by semi-naive grounding

and a part grounded by BDG. Aggregates are handled by specially crafted rewriting pro-

cedures that decouple aggregates. We extend the previous work on BDG by proposing

a splitting heuristics that decides when the usage of BDG is useful. Further, we pro-

vide an extensive empirical evaluation of the heuristics with our prototype newground3.

Previously proposed splitting heuristics include heuristics on when to use bottom-up

grounding and when to use structural rewritings (Calimeri et al . 2018). Related work

proposes a machine learning-based heuristics (Mastria et al . 2020). In contrast, we focus

on a splitting heuristics, when the usage of BDG is beneficial.

2 Preliminaries

Ground ASP. A ground program P consists of ground rules of the form a1 ∨ . . .∨
al← al+1, . . . , am, ¬am+1, . . . ,¬an, where ai are propositional atoms and l, m, n are

non-negative integers with l≤m≤ n. We let Hr := {a1, . . . , al}, B+
r := {al+1, . . . , am},

B−
r := {am+1, . . . , an}, and Br :=B+

r ∪B−
r . r ∈ P is normal iff |Hr| ≤ 1, a constraint iff

|Hr|= 0, and disjunctive iff |Hr|> 1. The dependency graph D is the directed graph D =

(V, E), where V =
⋃

r∈P Hr ∪Br and E = {(b, h)+|r ∈ P, b∈B+
r , h∈Hr} ∪ {(b, h)−|r ∈

P, b∈B−
r , h∈Hr}. We refer by (b, h)+ to a positively labeled edge and by (b, h)− to a

negatively labeled edge. A positive cycle consists solely of positive edges. A program P

is tight iff there is no positive cycle in D, P is not stratified iff there is a cycle in D that

contains at least one negative edge, and P is head-cycle-free (HCF) iff there is no positive

cycle in D among any two atoms {a, b} ⊆Hr. IsConstraint(r) is true iff r is a constraint.

We proceed by defining the semantics of ASP. Let HB(P ) be the Herbrand Base

(the set of all atoms). For ground programs this is HB(P ) = {p | r ∈ P, p∈Hr ∪Br}. An
interpretation I is a set of atoms I ⊆HB(P ). I satisfies a rule r iff (Hr ∪B−

r )∩ I 	= ∅
or B+

r \ I 	= ∅. I is a model of P iff it satisfies all rules of P . A rule r ∈ P is suitable for

justifying a∈ I iff a∈Hr, B
+
r ⊆ I, and I ∩B−

r = I ∩ (Hr \ {a}) = ∅. A level mapping ψ :

I→{0, . . . , |I| − 1} assigns every atom in I a unique value (Lin and Zhao 2003; Janhunen

2006). An atom a∈ I is founded iff there is a rule r ∈ P s.t. (i) r is suitable for justifying

a and (ii) there are no cyclic-derivations, that is ∀b∈B+
r : ψ(b)<ψ(a). I is an answer

set of a normal (HCF) program P iff I is a model (satisfied) of P , and all atoms in I are

founded. The Gelfond-Lifschitz (GL) reduct is the classical way to define semantics. The

GL reduct of P under I is the program P I obtained from P by first removing all rules r

with B−
r ∩ I 	= ∅ and then removing all p∈B−

r from the remaining rules r (Gelfond and

Lifschitz 1991). I is an answer set of a program P if I is a minimal model (w.r.t. ⊆) of P I .

Non-ground ASP. A non-ground program Π consists of non-ground rules r of the

form p1(X1)∨ . . .∨ p�(X�)← p�+1(X�+1), . . . , pm(Xm), ¬pm+1(Xm+1), . . . ,¬pn(Xn),

where each pi(Xi) is a literal and l, m, n are non-negative integers s.t. l≤m≤ n. A literal

pi(Xi) consists of a predicate pi and a term vector Xi = 〈x1, . . . , xz〉. A term xj ∈Xi is

a constant or a variable. For a predicate pi let |Xi| be its arity a(pi) = |pi|= |Xi|, and
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for a rule r ∈Π, let a=maxp(X)∈Hr∪Br
|X| be the maximum arity. IsVar(x) evaluates

to true iff the term x is a variable. We furthermore define var(r) := {x | x∈X, p(X)∈
Hr ∪Br, IsVar(x)}. For non-ground rules we define H r, B rô+, B rô-, and B r as in

the ground case, as we do with the attributes disjunctive, normal , constraint , stratified ,

tight , and HCF . The size of a rule is |r|= |Hr ∪Br| and of a program |Π|=∑
r∈Π |r|.

Grounding is the instantiation of the variables by their domain. Let F= {p(D) | p(D)∈
Π, ∀d∈D :¬IsVar(d)} be the facts and dom(Π) = {d | p(D)∈F, d∈D} be the domain.

Let x be a variable, then dom(x) = dom(Π). Naive grounding GN (Π) instantiates for

each rule all variables by all possible domain values, which results in a grounding size in

O
(|Π| · |dom(Π)|maxr∈Π |var(r)|). For non-ground programs the herbrand base HB(Π) is

defined as HB(Π) = {p(D) | r ∈ GN (Π), p(D)∈Hr ∪Br}. The semantics of a non-ground

program Π is defined over its ground version GN (Π) and carries over from the ground case.

The non-ground dependency graph DΠ of the non-ground program Π carries over

from the ground case and is defined over the predicates. SCC(Π) refers to the set

of strongly-connected components (vertices) of DΠ. A reduced graph DR(G) of a

graph G= (V, E) is DR(G) = (Vr, Er), where Vr = SCC(G) and Er = {(s1, s2) | s1, s2 ∈
SCC(G), s1 	= s2, ∃v1 ∈ s1∃v2 ∈ s2 : (v1, v2)∈E}. Any reduced graph is a directed acyclic

graph (DAG). Let p be a predicate and LΠ be a topological order of the reduced depen-

dency graph DR(D) = (Vr, Er) and let SCCΠ(p) be the function SCCΠ(p) : V → Vr that

returns the corresponding SCC of p, that is SCCΠ(p) = s s.t. s∈ SCC(Π) and p∈ S.
Let s= SCCΠ(p) and S≺p(0) = {s}. We iteratively extend S≺p to a fixed point by

S≺p(t+ 1) = {s|s∈ SCC(Π), ∃s′ ∈ S≺p(t) : (s, s
′)∈Er} ∪ S≺p(t) for t > 0. A fixed point

is reached when S≺p(t+ 1) = S≺p(t), which we denote as S≺p = S≺p(t). As DR(G) is a

DAG, such a fixed point always exists (Knaster 1928; Tarski 1955). A predicate p is

stratified iff ∀s∈ S≺p, there is no cycle with at least one negative edge in s. Further,

let IsStratified(r) be true iff r contains (only) stratified body predicates p∈Br. Let

IsTight(r) be true iff ∀h∈Hr : ∀p∈B+
r : SCCΠ(h) 	= SCCΠ(p) - so r occurs in a tight

part. The variable graph D (r) = (V, E) for a rule r ∈Π is defined as the undirected graph

where V =var(r) and E = {(xi, xj) | xi, xj ∈ var(r), ∃p(X)∈Hr ∪Br : {xi, xj} ⊆X}. A

tree decomposition (TD) T= (T, χ) is defined over an undirected graph G= (V, E) where

T is a tree and χ a labeling function χ : T → V . χ(t)⊆ V is called a bag. A TD must fulfill:

(i) ∀v ∈ V ∃t∈ T : v ∈ χ(t), (ii) ∀(u, v)∈E∃t∈ T : {u, v} ⊆ χ(t), and (iii) every occurrence

of v ∈ V must form a connected subtree in T w.r.t. χ, so ∀t1, t2, t3 ∈ T , s.t. whenever
t2 is on the path between t1 and t3, it must hold χ(t1)∩ χ(t3)⊆ χ(t2). The width of a

TD is defined as the largest cardinality of a bag minus one, so maxt∈T |χ(t)| − 1. The

treewidth (TW) is the minimal width among all TDs. Further, let ϕr denote the bag size

of a minimal TD of the variable graph of r.

Bottom-up/Semi-naive grounding. Grounders gringo and idlv use (bottom-up)

semi-naive database instantiation techniques to ground a program Π (Gebser et al . 2016;

Calimeri et al . 2017). In the following, we sketch the intuition. Let LΠ be a topological

order of GR(DΠ), and let D be the candidate set , where D⊆HB(Π); initially D=F.

Intuitively, the candidate set D keeps track of all possibly derivable literals and is iter-

atively expanded by moving along the topological order LΠ. For each v ∈LΠ rules are

instantiated according to the candidate set D by a fixed-point algorithm. If a tuple is in

D it is possibly true, conversely, if a tuple is not in D, it is surely false. If an SCC contains
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a cycle, semi-naive techniques are used to prevent unnecessary derivations (Gebser et al .

2016; Calimeri et al . 2017). The grounding size is exponential in the maximum num-

ber of variables O
(∑

r∈Π |dom(Π)||var(r)|) in the worst-case. We use the terms SOTA,

traditional, bottom-up, or semi-naive grounding interchangeably.

Bottom-up grounding solves stratified programs. Bottom-up grounding is typi-

cally implemented in a way that enables full evaluation of stratified programs. Technically,

this is implemented by partitioning the candidate set D into a surely derived set DT and

a potentially derived set Dpot. Conversely, for any a∈HB(Π), but a 	∈Dpot ∪DT , we

know that we can never derive a. This split leads to a series of improvements related to

instantiating rules, among them is the full evaluation of stratified programs. However,

these improvements have no effect on the grounding size of non-stratified programs in

the worst case, thereby remaining exponential in the variable number.

Structure-aware rewritings. Utilizing the rule structure to rewrite non-ground rules

is performed by Lpopt (Morak and Woltran 2012; Bichler et al . 2016). It computes a

minimum size TD, which is then used to introduce fresh rules with a preferably smaller

grounding size. In more detail, for every rule r ∈Π Lpopt first creates the variable graph

D (r). After computing a minimum-size TD, it introduces fresh predicates and fresh rules

for every bag of the TD. The arity of the fresh predicates corresponds to the respective

bag size, as does the number of variables per rule. Let TW(D(r)) be the maximum TW of

all rules r ∈Π, then ϕr =TW(D(r)) + 1 is its bag size. It was shown that Lpopt produces

a rewriting that is exponential in ϕr, where ϕr ≤maxr∈Π |var(r)|: O(|Π| · |dom(Π)|ϕr ).

Internally, idlv uses the concepts of Lpopt to reduce the grounding size (Calimeri et al .

2018).

Body-decoupled Grounding. BDG (Besin et al . 2022) produces grounding sizes

that are exponential only in the maximum arity. Conceptually, BDG decouples each

rule into its literals which are subsequently grounded. As each literal has at most arity-

many variables, its grounding size can be at most exponential in its arity. Semantics is

ensured in three ways: (i) For a rule r, all possible values of its head literals are guessed,

and (ii) satisfiability, and (iii) foundedness are ensured by explicitly encoding them.

Interoperability with other techniques is ensured by hybrid grounding (Beiser et al.,

2024).

Let Π be an HCF program and ΠH ∪ΠG be a partition thereof. Then, let H be

the Hybrid Grounding procedure that is executed on (ΠH,ΠG), where ΠH is grounded

by BDG, and ΠG is grounded by bottom-up grounding. Let a be the maximum arity

(a=maxr∈Π maxp(X)∈Hr∪Br
|X|) and let c be a constant defined as: where c= a for r

being a constraint, c= 2 · a for r occurring in a tight HCF program, and c= 3 · a for r

occurring in an HCF program. Then, hybrid grounding for H (Π, ∅) has a grounding

size1 of ≈ |dom(Π)|c. The coefficients c stem from the nature of the checks we have to

perform. For constraints, it is sufficient to check satisfiability, while for normal programs

we additionally need to check foundedness, which increases the grounding size to

c= 2 · a. For HCF programs, cyclic derivations must be prevented. This is handled with

level-mappings, where the transitivity check increases the grounding size to c= 3 · a.

1 For brevity we sometimes shorten O (|Π| · |dom(Π)|x) with ≈ |dom(Π)|x for an arbitrary x∈N.
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Algorithm 1 Heur(r , MARKER) for Computing Data-Structural Heuristics

Data: Rule r, Set MARKER of marked rules
1 if IsStratified(r) then
2 MARKER← MARKER∪ (r,SOTA) ;
3 else if r < |var(r)|∧ T̂ (Lpopt(r))< T̂ (r) then
4 Rl ← Lpopt(r) ;
5 for rl in Rl do
6 Heurstruct(rl ,MARKER) ;
7 else if a< r∧ IsConstraint(r) ∧T̂H (r)< T̂ (r) then
8 MARKER← MARKER∪ (r,BDG) ;
9 else if 2 ·a< r∧ IsTight(r) ∧T̂H (r)< T̂ (r) then

10 MARKER← MARKER∪ (r,BDG) ;
11 else if 3 ·a< r ∧ T̂H (r)< T̂ (r) then
12 MARKER← MARKER∪ (r,BDG) ;
13 else
14 MARKER← MARKER∪ (r,SOTA) ;

3 Automated splitting heuristics

We designed an automated splitting heuristics that decides when it is beneficial to

use BDG. This approach is given in Algorithm 1. Intuitively, the decision is based on

fixed structural measures, like the number of variables and TW, as well as data-driven

grounding-size estimation. Let Π be an HCF program, and r ∈Π, then let T̂H (r) be the

estimated grounding size of BDG, and let T̂��(r) be the estimated SOTA grounding size.

The algorithm takes as input a rule r and the set MARKER. Set MARKER stores whether a

rule r is grounded by BDG or SOTA if (r,BDG)∈ MARKER or (r, SOTA)∈ MARKER respec-

tively. This is then used to pass ΠH = {r | r ∈Π, (r,BDG)∈ MARKER} and ΠG = {r | r ∈
Π, (r, SOTA)∈ MARKER} to H.

First, in Lines (1)–(2), the algorithm performs a stratification check, where rules are

SOTA-grounded whenever rules occur in stratified parts. Subsequently, the rule structure

is checked, and a structural rewriting is performed in Lines (3)–(6), if beneficial. Finally,

in Lines (7)–(14). BDG is evaluated and marked whenever it is structurally and data-

estimation-wise beneficial.

Example 1.

We show the details and underlying intuitions of the heuristics along the lines of the

example shown below. A simple instance graph is given by means of atoms over the edge

predicate e/2. We guess subgraphs f/2, g/2, and h/2, where we forbid three or more

connected segments in subgraph f/2, cliques of size ≥ 3 in subgraph g/2, and aim at

inferring all vertices of a clique of size ≥ 3 in subgraph h/2. Let r1, r2, r3 be the rule in

Line (2), (3), (4), respectively.
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1 {f(X,Y)} ← e(X,Y). {g(X,Y)} ← e(X,Y). {h(X,Y)} ← e(X,Y).
2 ← f(X1,X2), f(X2,X3), f(X3,X4).
3 ← g(X1,X2), g(X1,X3), g(X2,X3).
4 i(X1) ← h(X1,X2), h(X1,X3), h(X2,X3).

Previous results indicate that BDG should be used for dense rules on dense instances

(Besin et al . 2022; Beiser et al . 2024). However, the terms dense rule and dense instance

were loosely defined and the usage of BDG was guided by intuition. Our algorithm makes

these terms precise and transitions from intuition to computation.

Variable-based Denseness. Next, we motivate how we consider variable-based

denseness.

Example 2.

Observe how r1 has four and r2, and r3 have three variables. Standard bottom-up ground-

ing is exponential in these variables in the worst case. Without considering contributions

of data and structural based rewritings for now, bottom-up’s grounding size for rule r1 is

≈ |dom(Π)|4, while it is ≈ |dom(Π)|3 for r2, and ≈ |dom(Π)|3 for r3. In contrast, BDG’s

grounding size is only dependent on the maximum arity and the type of the rule. The max-

imum arity of all r1, r2, and r3 is 2. As both r1 and r2 are constraints, their grounding

size is in ≈ |dom(Π)|2, while as r3 is a tight HCF rule its grounding size is ≈ |dom(Π)|3.
The differences between BDG and SOTA are striking: A reduction from ≈ |dom(Π)|4
to ≈ |dom(Π)|2 and from ≈ |dom(Π)|3 to ≈ |dom(Π)|2 for r1 and r2, respectively (no

difference for r3).

We cover variable-based denseness based on the rule type and a comparison between

the number |var(r)| of the variables and the maximum arity a. Henceforth, whenever

the maximum arity adjusted for rule type is strictly smaller than the number of the

variables, BDG is used. Let the maximum head arity be ah =maxp(X)∈Hr
|X| and the

maximum body arity be ab =maxp(X)∈Br
|X|. For constraints, using BDG is beneficial

whenever a< |var(r)|, for tight HCF rules if ah + ab ≤ 2 · a< |var(r)|, and for HCF rules

if 3 · a< |var(r)|.
When the projected grounding sizes match asymptotically, precedence is given to the

bottom-up procedure: First, due to the effects of data (discussed below) and second, due

to BDG’s nature of pushing effort from grounding to solving. Since bottom-up grounding

solves stratified programs with a grounding size in≈ |dom(Π)|a, grounding stratified parts

with BDG is not beneficial.

Incorporating Rule Structure. To grasp the importance of structure, recall our

running example.

Example 3.

We depict the variable graphs of r1, r2, and r3 in Figure 1 , which have TWs of 1, 2, and

2 respectively. A minimal TD of the variable graph of r1 has a bag size of ϕr1 = 2. Take

X1 X2 X3 X4 X1 X2 X3 X1 X2 X3

Fig 1. Variable graphs of r1 (left), r2 (center), and r3 (right) for Example 1.
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for example T = (T, χ), where T = ({t1, t2, t3}, {{t1, t2}, {t2, t3}}) and χ(t1) = {X1, X2},
χ(t2) = {X2, X3}, and χ(t3) = {X3, X4}. Based on T, we depict in the next listing a

possible structural rewriting. Observe the grounding size of ≈ |dom(Π)|2.
1 tmp1(X3) ← f(X3,X4). tmp2(X2) ← f(X2,X3), tmp1(X3). ← f(X1,X2), tmp2(X2).

In contrast to this, a minimal TD of r2 or r3 has a bag size of ϕr = 3, such as T = (T, χ),

where T = ({t1}, ∅) and χ(t1) = {X1, X2, X3}. Using structural rewritings for r2 or r3
has no effect. Therefore, the grounding sizes of BDG and Lpopt match for r1 (both are

≈ |dom(Π)|2), while BDG achieves a reduction from ≈ |dom(Π)|3 to ≈ |dom(Π)|2 for r2.

For r3, both have a grounding size of ≈ |dom(Π)|3.Whenever grounding sizes of BDG and

Lpopt match, we give preference to Lpopt, as for BDG there are guesses2 during solving.

The observations above are incorporated in the heuristics by computing the TW

of its variable graph and using Lpopt whenever the bag size φr of a minimal TD is

strictly smaller than the number |var(r)| of variables (φr < |var(r)|). See Lines (3)–(6).

Subsequently, a decision between BDG and bottom-up grounding is made based on the

bag size of a minimal decomposition compared to the maximum arity of r (a< φr), and

the rule-type (constraint, tight, non-tight). Thereby, we transition from variable-based

denseness to structure-aware denseness, which we incorporate into our algorithm in Lines

(7), (9), and (11).

Incorporating Data-Awareness. The incorporation of data into our heuristics is vital.

In its absence, BDG may be used when it is unwise to use it. Indeed, BDG is a domain-

based grounding procedure, whose grounding size depends entirely on the domain of the

program. On the other hand, bottom-up grounding is partially data-aware, as rule bodies

perform joins between variables.

Example 4.

To visualize this, consider r2 and a graph that is a path with 100 vertices. While BDG’s

grounding size of r2 is ≈ |100|2, bottom-up’s grounding size is 0.

To incorporate data into heuristics, observe that rule instantiations are similar to

joins in a database system, where joins are done in the positive body (Leone et al . 2001).

Interestingly, join size estimation procedures are common in the literature (Garcia-Molina

et al. 2008). We estimate the SOTA grounding size according to the join-selectivity

criterion (Leone et al . 2001)3.

Let r ∈Π. We compute the join estimation T̂��(r) in an iterative way, by considering

one literal pi ∈B+
r at a time. We start with the first positive body literal pl+1 and

end with the last positive body literal pm, as B+
r = {pl+1, . . . , pm}. Further, we denote

the computation of all positive predicates up to and including pi as Ai. Let T̂ (pi+1)

be the estimated number of tuples of pi+1, and T̂ (Ai) be the estimated join size up to

and including predicate pi. Let dom(X, r) be the domain of variable X for the rule r,

dom(X, pi) be the domain of variable X for literal pi, and let pX be pX = {p(X) | p(X)∈
B+

r , X ∈X}, where X ∈ var(r) is a variable. We compute a variable’s domain size as

2 Guesses are due to Equations (2), (4), and (9) of Figure 1 in hybrid grounding (Beiser et al. 2024).
3 A variant of the join-selectivity criterion is used in idlv (Calimeri et al . 2018).
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dom(X, r) =
⋃

pi(X)∈pX
dom(X, pi). Equations (1)–(3) show our join size estimation for

SOTA-grounding for a rule r, where T̂��(r) refers to the estimation for a rule r.

T̂ (Al+1) = T̂ (pl+1) (1)

T̂ (Ai+1) = T̂ (Ai �� pi+1) =
T̂ (Ai) · T̂ (pi+1)

ΠX∈var(Ai)∩var(pi+1)|dom(X, r)| (2)

T̂��(r) = T̂ (Am) = T̂ (Am−1 �� pm) (3)

Precise grounding size estimations are possible for hybrid grounding. We show in

Equations (4)–(10) the grounding size estimations for non-ground normal (HCF) pro-

grams. Each equation estimates the size of the respective hybrid grounding rules ,4 as

introduced in Beiser et al. (2024). Consider for example Equation (7), which estimates

the size of Rules (5)–(7) of the hybrid grounding reduction as introduced in Beiser et al.

(2024). It intuitively captures for a rule r ∈Π whether a literal p(X)∈Hr ∪Br for an

arbitrary instantiation p(D)∈HB(Π) contributes to r being satisfied. We estimate this

as T̂S3
H (r) in Equation (7). We continue with a brief description of the other equations

and their corresponding rules in the hybrid grounding reduction. Equation (4) is the

estimation of the head-guess size, for the respective Rule (2). Equations (5)–(7) estimate

the size of the satisfiability encoding, where Equations (5) and (6) estimate the impact of

variable guessing, saturation, and the constant parts, which relate to the Rules (4) and

(8) in hybrid grounding. We already described Equation (7) above. Equations (8)–(10)

estimate the size of the foundedness part. Equation (8) estimates the size of the constraint

that prevents unfounded answersets, which relates to Rule (12). Equation (9) estimates

the size of the variable instantiations, which relates to Rule (9). Finally, Equation (10)

is concerned with the estimation when a rule is suitable for justifying an atom, which

relates to Rules (10)–(11).

T̂G
H (r) = 2 · (Σh(X)∈Hr

ΠX∈X|dom(X)|) (4)

T̂S1
H (r) = 2 ·ΣX∈var(r)|dom(X)| (5)

T̂S2
H (r) = 2 (6)

T̂S3
H (r) =Σp(X)∈Hr∪Br

ΠX∈X|dom(X)| (7)

T̂F1
H (r) = Σh(X)∈Hr

ΠX∈X|dom(X)| (8)

T̂F2
H (r) = Σh(X)∈Hr

(
ΣY ∈var(r)\X (|dom(Y )| ·ΠX∈X|dom(X)|)) (9)

T̂F3
H (r) = Σh(X)∈Hr

(
Σp(Y)∈Hr∪Br\{h(X)} (ΠY ∈Y|dom(Y )| ·ΠX∈X|dom(X)|)) (10)

We are left with Equation (11), which computes T̂H (r), the hybrid grounding size

estimation for a rule r. Equation (11) sums up Equations (4)–(10).

T̂H (r) = T̂G
H(r) + T̂S1

H (r) + T̂S2
H (r) + T̂S3

H (r) + T̂F1
H (r) + T̂F2

H (r) + T̂F3
H (r) (11)

4 To avoid confusion, we distinguish in this paragraph between equation, the grounding size estimation,
and rule, the equation of the hybrid grounding reduction that is being estimated as introduced in
Beiser et al . (2024).
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Fig 2. Plot comparing the estimated (left) and actual (right) number of ground rules of r2 of
Example 1. Comparison between SOTA and BDG. x-axis: number of vertices; y-axis: number
of rules. Comparing different graph densities, shown as SOTA(x) and BDG(x) for density x.

Example 5.

In Figure 2 we show the estimated and actual number of instantiated rules for bottom-

up grounding and BDG, for r2. The behavior is analyzed on different graph densities

(number of edges divided by edges of complete graph in percent) and graph sizes (1 to

300 vertices). The number of tuples T (pi) can be adequately estimated for our example,

so T̂ (pi)≈ T (pi). While for bottom-up grounding the estimated number of ground rules

varies with density, it remains constant for BDG. BDG’s number of instantiated rules

between a complete ( 100%) and a sparse ( 1%) graph remains relatively similar. For

bottom-up grounding, the number of instantiated rules varies.

Overall we obtain the following result on the grounding size by automated hybrid

grounding.

Theorem 1.

Let Π be a non-ground HCF program and k be the maximum TW of any rule

in Π. Then, the grounding size of Π, grounded with the markings MARKER, ΠH =

{r | r ∈Π, (r,BDG)∈ MARKER} and ΠG = {r | r ∈Π, (r, SOTA)∈ MARKER}, produced by

Algorithm 1 and grounded by H (ΠH,ΠG), is in O
(
(|Π| · k) · |dom(Π)|3·a).

Proof (idea).

Intuitively, structural parts of the algorithm bound the grounding size to O((|Π| · k) ·
|dom(Π)|3·a). We are left to prove that this still holds when incorporating data-awareness,

which holds on dense instances. The proof is detailed in the appendix.

4 Prototype implementation newground3

Our prototype newground35 is a full-fledged grounder that combines bottom-up with

BDG. It incorporates BDG into the bottom-up procedure, where we decide according to

the data-structural heuristics (Algorithm 1) whether to use BDG or not. Furthermore, the

algorithm does not pre-impose on the user which SOTA grounder to use, and therefore,

5 Prototype available under https://github.com/alexl4123/newground.
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Fact
Splitter

Structural
HeuristicsEncoding

Data
Heuristics

Facts
Gringo or
I-DLV BDG

Fig 3. Schematics of the software architecture of the newground3 prototype.

offers integration with gringo and idlv. In this section, we discuss implementation

choices, highlight implementation challenges, and present the structure of the prototype.

We performed a full-scale redevelopment of the earlier versions of newground3

(newground and NaGG), where on a high level, semi-naive grounding is interleaved with

BDG. We further extended its input language to the ASP-Core-2 (Calimeri et al . 2020)

input language standard6 and improved the grounding performance of newground. For

the semi-naive grounding parts we use either gringo, or idlv, whereas, for the BDG part

we use a completely redesigned BDG-instantiator. To improve performance even further,

we combine Python with Cython and C code.

Architectural Overview. The general architecture of the prototype consists of 4

parts, where we show a schematics in Figure 3. Given a program Π, the fact splitter and

analyzer (Fact Splitter) written in Cython, separates facts from the encoding. It further

computes the number of facts, and fact-domain. This enables an efficient computation of

the positive dependency graph and analysis thereof (D Analyzer). Based on these results

the structural heuristics decides which rules are eligible for grounding with BDG. If no

rules are structurally eligible for grounding with BDG then the program is grounded by

either gringo or idlv. Otherwise, the bottom-up procedure is emulated and for each

strongly connected component in the positive dependency graph, where at least one rule

is structurally eligible for grounding with BDG, the data heuristics decides whether to

ground the rule with BDG or with a SOTA-approach.

In the development of the prototype we encountered two major challenges: (i) integra-

tion and communication with gringo and idlv, and (ii) suitable domain inference for

grounding size estimations of Algorithm 1. To address these, we split the data-structural

heuristics into two parts in our implementation: first, the structural heuristics decides,

which parts are eligible for grounding with BDG and only then the estimation of the size

of the instantiation of the eligible rules is performed. Further, we minimize the number

of interactions with gringo and idlv, as each call to a SOTA-grounder is expensive

and should better be avoided. Therefore, we do not infer the domain if the result of the

structural heuristics states that BDG should not be used. The emulation is necessary, as

neither gringo nor idlv provides callback functions which let us implement our heuris-

tics directly. In the future a direct implementation of the heuristics in a SOTA grounder

would render these calls unnecessary and would improve performance even further.

6 Currently not all ASP-Core-2 constructs are supported with BDG rewritings. Checks ensure that only
supported constructs are considered to be grounded by BDG, while non-groundable ones are grounded
by SOTA-techniques.
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5 Experiments

In the following, we demonstrate the practical usefulness of our automated hybrid

grounding approach. We benchmark solving-heavy and grounding-heavy instances, aim-

ing at SOTA-like results on solving-heavy benchmarks, and beating SOTA results on

grounding-heavy benchmarks

Benchmark System. We compared gringo (Version 5.7.1), idlv (1.1.6), ProASP

(Git branch master , short commit hash 2b42af8 ), ALPHA (Version 0.7.0), and our hybrid

grounding system newground3. We benchmarked newground3 with both gringo, and

idlv. Further, we investigated the impact of using our system in combination with Lpopt

(Version 2.2). We chose clingo (Version 5.7.1) with clasp (3.3.10) for solving. However,

in principle, one could also use dlv with wasp, or use heuristics to determine the solver of

choice (Calimeri et al . 2020). For newground3 we use Python version 3.12.1. Our system

has 225 GB of RAM, and an AMD Opteron 6272 CPU, with 16 cores, powered by Debian

10 OS with kernel 4.19.0-16-amd64.

Benchmark Setup. For all experiments and systems, we measure total time, which

includes grounding and solving time for ground-and-solve systems, or execution time for

ALPHA and ProASP. Further, we measure RAM usage for all systems and experiments.

For the ground-and-solve systems we measured grounding performance (grounding time,

grounding size, and RAM usage) in a separate run. Every experiment has a timeout of

1800s and a RAM (and grounding-size) limit of 10 GB . For integrated grounders and

solvers (ALPHA and ProASP) this RAM limit applies to their execution. For ground-and-

solve systems this applies to grounding and solving.

We consider instances as a TIMEOUT whenever they take longer than 1800s , and a

MEMOUT when their RAM usage exceeds 10 GB . We set seeds for clingo (11904657 ),

and for Lpopt (11904657 ). Further, for all generated graph instances for the grounding-

heavy experiments we generated random seeds that we saved inside the random instance

as a predicate.

5.1 Experiment scenarios and instances

We distinguish between solving- and grounding-heavy benchmarks. For the solving-heavy

benchmarks we compare idlv, gringo, newground3 with gringo (NG-G), newground3

with idlv (NG-I), ALPHA, and ProASP (ground-all). For the grounding-heavy benchmarks

we compare grounders idlv, gringo, newground3 with gringo, newground3 with idlv,

ALPHA, ProASP (ground-all), and ProASP with compiling constraints (ProASP-CS).

Solving-Heavy Benchmarks. The solving-heavy benchmarks are taken from the

2014 ASP-Competition (Calimeri et al . 2016), as they provide a large instance set with

readily available efficient encodings. The 2014 ASP-Competition has 25 competition

scenarios, where each (with the exception of Strategic-Companies) has two encodings,

resulting in 49 competition scenarios. Each scenario has a different number of instances.

We benchmarked all instances over all scenarios. Further, we preprocessed the encodings

s.t. no predicates occur, which have the same predicate name, but differing arity.

We show the encoding of problem MaximalCliqueProblem (2014 encoding)7 as an

example:

7 The whole competition suite can be found at: https://www.mat.unical.it/aspcomp2014/FrontPage.
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1 clique(X) ← node(X), not nonClique(X).
2 nonClique(X) ← node(X), not clique(X).
3 ← clique(X), clique(Y), X < Y, not edge(X,Y), not edge(Y,X).
4 :∼ nonClique(X). [1,X]

Intuitively the encoding guesses nodes that are part of the maximal clique (Lines 1,2).

If there is a missing edge between a pair of nodes, then it is not a clique (Line 3). We

minimize the number of non-clique nodes (Line 4).

Grounding-Heavy Benchmarks. We take grounding-heavy benchmarks from the

BDG experiments (Besin et al . 2022) and from the hybrid grounding experiments (Beiser

et al. 2024). These scenarios take a graph as an input, where we generate random graphs

ranging from instance size 100 to 2000 with a step-size of 100 for the BDG scenarios

(Besin et al . 2022) and random graphs ranging from instance size 20 to 400 with a step-

size of 20 for the hybrid grounding scenarios (Beiser et al. 2024). For both, we use graph

density levels ranging from 20% to 100%.

Further, we adapt the benchmarks from Besin et al . (2022) by adding two variations

of the 3-Clique benchmark. The variations resemble different difficulties for BDG and

SOTA grounders. The first listing (3-Clique-not-equal) shows the original formulation

from Besin et al . (2022), and the second one (3-Clique) depicts the adaptation that

makes it easier for SOTA grounders by changing “	=” to “<.”

1 {f(X,Y)} ← edge(X,Y).
2 ← f(A,B), f(A,C), f(B,C), A =B, B = C, A = C.

1 {f(X,Y)} ← edge(X,Y).
2 ← f(A,B), f(A,C), f(B,C), A < B, B < C, A < C.

The adapted8 scenarios from Besin et al . (2022) are called as follows: 3-Clique, 3-

Clique-not-equal, directed-Path, directed-Col, 4-Clique, NPRC. The examples S3T4,

S4T6, NPRC-AGG, and SM-AGG, are from Beiser et al . (2024).

5.2 Experimental hypotheses

H1 The Data-Structural-Heuristics (Algorithm 1) implemented in our prototype

newground3 approaches other SOTA ground-and-solve system’s performance on

solving-heavy benchmarks.

H2 Data-Structural-Heuristics of newground3 yields an improvement in performance

(solved instances) on grounding-heavy benchmarks, in contrast to other SOTA

systems.

5.3 Experimental results and discussion

We show an overview of our results in Table 1 and Figure 4; a detailed solving profile of

the grounding-heavy scenario 4-Clique is given in Figure 5. For details, see supplementary

material.

8 ProASP’s syntax currently does not support choice rules, so we adapted the subgraph encoding for
ProASP with a negative cycle encoding (f(X,Y) :- edge(X,Y), not nf(X,Y). nf(X,Y) :- edge(X,Y), not
f(X,Y).). This is also used for ALPHA.
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Solving-heavy: Ground & Solve Time [s]. Grounding-heavy: Ground & Solve Time [s].

Solving-heavy: Max RAM Usage [GB]. Grounding-heavy: Max RAM Usage [GB].(d)

(b)(a)

(c)

Fig 4. Solving-heavy (Figures 4a and 4c) and grounding-heavy (Figures 4b, and 4d)
experiments. x-axis: instances; y-axis: time [s] or size [GB]. Measured idlv, gringo,
newground3 with gringo (NG-G), and newground3 with idlv (NG-I). Timeout: 1800s;

memout: 10 GB.

Discussion of H1. To confirm H1, we focus our attention on the results of the solving-

heavy experiments. These are displayed in Figures 4a and 4c and in the lower half of

the Table 1. The figures show that that newground3’s performance is approximately the

same as the other ground-and-solve approaches. The detailed results of the table show

that the overall number of solved instances for gringo is 5449, for idlv 5469, for NG-G

5418, and for NG-I 5434. The difference between gringo and NG-G are 31 instances,

and for idlv and NG-I are 35 instances. On in total 8509 solving-heavy instances this

resembles an approximate relative difference of 0.36% for gringo versus NG-G and 0.41%

for idlv versus NG-I. The detailed results show that for gringo versus NG-G there are

cases where gringo beats NG-G and cases where NG-G beats gringo. The same holds for

idlv versus NG-I. As the differences of solved instances between newground3 and the

respective SOTA grounders are minor, we confirm H1.

Discussion of H2. We compare the results for the grounding-heavy scenarios of

Figures 4b and 4d, and the upper half of Table 1. While gringo solves 218, and idlv

281, newground3 solves 566 in the NG-G and 710 in the NG-I configuration, from a total

of 1000 instances. This is a difference of 34.8% and 42.9%, respectively. Also observe the

milder increase in RAM usage in Figure 4d and the ability to ground denser instances

(Figure 5). As newground3’s ability to automatically determine when to use BDG leads

to an approximate doubling in the number of solved grounding-heavy instances, we can

confirm H2.
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Fig 5. Solving profiles for grounding-heavy scenario 4-Clique for gringo (left) and newground3

with gringo (NG-G). One rectangle represents one grounded and solved instance. Timeout:
1800s; memout: 10 GB. Instance size on x-axis, instance density on y-axis.

Table 1. Experimental results showing all scenarios, those executable by Alpha, and those
executable by ProASP, with differing number of instances (#I). We depict solved instances
(#S), memouts (M), and timeouts (T) for gringo, idlv, NG-G, NG-I, ALPHA, and ProASP

Instance Summary #I Total #Solved

Grounding-Heavy Scenarios

gringo idlv NG-G

#S M T #S M T #S M T

All 1000 218 169 613 281 198 521 566 336 98
ProASP 500 149 97 254 158 102 240 280 210 10

NG-I ALPHA ProASP-CS

#S M T #S M T #S M T

All 1000 710 247 43 – – – – – –
ProASP 500 288 198 14 147 177 176 389 81 30

Solving-Heavy Scenarios

gringo idlv NG-G

#S M T #S M T #S M T

All 8509 5449 650 2410 5469 697 2343 5418 524 2567
Alpha 1640 1255 30 355 1280 0 360 1251 24 365
ProASP 320 308 0 12 308 0 12 307 0 13

NG-I ALPHA ProASP

#S M T #S M T #S M T

All 8509 5434 599 2476 – – – – – –
Alpha 1640 1272 0 368 183 290 1167 – – –
ProASP 320 306 0 14 3 53 264 311 0 9
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Summary of results

For both solving-heavy and grounding-heavy benchmarks NG-G and NG-I outperformed

ALPHA significantly. ProASP has a comparable performance on solving-heavy benchmarks.

On grounding-heavy benchmarks, ProASP shows promising results, however only when

we use ProASP in the compile constraints mode. In the ground-all mode its behavior

is similar to gringo or idlv. This confirms the results of previous studies about the

performance of ProASP (Dodaro et al . 2024). Although the results of ProASP are very

promising, it is only usable for a small fragment of the scenarios.

6 Conclusion

The advancement of alternative grounding procedures is an important step towards solv-

ing the grounding bottleneck. Previous results for the newly introduced BDG method

(Besin et al . 2022) showed improvements on grounding-heavy tasks. Hybrid grounding

(Beiser et al. 2024) enables manual partitioning of a program into a part grounded by

standard grounders and a part grounded by BDG. However, due to the challenging pre-

dictability of BDG’s solving performance, it remained unclear when the usage of BDG

is useful.

In this paper, we state a data-structural heuristics, which decides when it is beneficial

to use BDG. Our heuristics decision is based on the structure of a rule and the data

of the instance. For each rule a minimum TD of the rule’s variable graph is computed

and compared to the maximum arity of the rule. Whenever the bag size of the minimum

TD is smaller, the rule is grounded with bottom-up grounding. Otherwise the grounding

size of the rule is estimated for bottom-up grounding by methods from databases, which

is compared to an estimate of BDG’s grounding size. Whichever is smaller is chosen

for grounding. Our prototype newground3 implements this heuristics by emulating a

bottom-up procedure. The results of our experiments show that we approach bottom-up

grounders number of solved instances for solving-heavy scenarios, while we approximately

double the number of solved instances for grounding-heavy scenarios. We think that this

is an important step towards integrating BDG into SOTA grounders. However, there

is still future work to be explored for BDG. We argue that near-term research should

include improvements of BDG for high-arity programs, as well as for syntactic extensions,

highly cyclic rules, large HCF rules, and disjunctive programs.

Supplementary material

Supplementary material and prototype available under: https://github.com/alexl4123/

newground.
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Calimeri, F., Fuscà, D., Perri, S. And Zangari, J. 2018. Optimizing answer set computation
via heuristic-based decomposition. In PADL18, Vol. 10702, LNCS, IOS Press, 135–151.
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