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Abstract 

While solar photovoltaics are projected to grow, major financial barriers exist that impede installation. 

Soft costs (human-driven costs) can account for over half of total project costs and are often simplified 

in typical models. We use the National Renewable Energy Laboratory’s “Cost of Renewable Energy 

Spreadsheet Tool” to quantify uncertainty of three soft cost inputs and their influence on the output cost 

of energy using variance-based sensitivity indices. We then suggest how the development process and 

model can be redesigned to represent the complexities of this socio-technical system. 

Keywords: uncertainty, engineering design, sustainability 

1. Introduction 

Renewable energy technologies (RET) are the fastest growing source of energy at 7.1% per annum 

and statistics show that RET will increase from 4% to 15% of the global energy demand in the next 20 

years (BP, 2019). Solar energy is projected to grow 10 times in the next 20 years to help meet that 

demand (BP, 2019); however, current industry surveys show that many barriers exist for solar 

projects, particularly for larger-scale photovoltaic (PV) projects. A study conducted by the National 

Renewable Energy Laboratory (NREL) under the United States Department of Energy (US DoE) 

found that the largest reported barriers to solar projects were “financial in nature” (Hubbell et al., 

2009). Costs are a significant driver for decision-making in solar implementation and can influence the 

design of the overall system, yet methods for estimating and predicting costs in the solar industry are 

typically unsophisticated compared to other highly technical industries.  

A solar developer must consider three major areas of costs during project development: (1) hard costs, 

defined as the cost of hardware, such as panels and inverters; (2) financial costs, defined as finance-

related and tax-related terms; and (3) soft costs, defined as human-driven costs including permitting, 

land-leasing, and installation labour costs. Soft costs in particular can account for a major portion of 

total project costs; an analysis conducted by NREL determined that soft costs can account for up to 

63% of total project costs (Fu et al., 2018). The US DoE has prioritized the reduction of human-drive 

costs for solar projects in recent years and are leading efforts in many diverse areas to facilitate cost 

reduction (Department of Energy, 2019); however, soft costs continue to persist as a significant barrier 

for solar PV projects and the uncertainty of the costs can greatly shift how engineering systems are 

designed. Permitting processes that vary between jurisdictions can determine how the PV systems 

themselves are designed, such as how many panels are used and where the systems are installed. 
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Installation cost fluctuations can influence the type of work force that is hired and what kinds of technical 

issues a system might experience during its lifetime. Land lease costs can also wildly vary based on 

negotiations with landowners and can dictate how much land is available for the project. While these are 

just a few examples of how uncertainty of soft costs influences the engineering design of solar plants, 

further examination of publicly available cost models shows that a typical cost model does not account for 

uncertainty in its soft cost inputs. In stark contrast to the highly technical modelling of the design of 

physical systems, human driven costs in solar modelling are linearly additive and do not reflect the true 

variability that is present in the industry. Quantifying the uncertainty of soft costs could present a new 

approach to designing models of sociotechnical systems, unlock new insights into how soft costs 

influence solar project design, and suggest focused research areas to accelerate soft cost reduction. 

This paper presents an analysis of a solar cost model built by NREL called the “Cost of Renewable 

Energy Spreadsheet Tool” (CREST) model (National Renewable Energy Laboratory, 2011) and 

quantifies the uncertainty of three soft cost inputs using Sobol’ indices, a variance-based sensitivity 

index. Variance-based sensitivity indices measure the influence each input has on the output variance 

and accounts for interactions between inputs; these indices can be used to determine the relative 

importance of the inputs and better understand how the model design contributes to the output. The 

CREST model accepts a wide range of inputs to calculate the output levelized cost of energy (LCOE). 

LCOE is a cost per energy value and is used in energy finance to compare the financial viability of 

different energy sources and make project decisions; the smaller the LCOE, the more financially viable 

the project. To understand how the LCOE varies based on the soft cost inputs, we first explore the 

structure of the CREST model and choose three soft costs for the analysis. We define input distributions 

for each of these inputs based on literature and industry data. We then propagate uncertainty through the 

model for a commercial-scaled PV solar plant and calculate Sobol’ indices. We use the results to 

determine relative importance of the soft cost inputs and how they influence the output LCOE. Overall, 

we use this analysis to better understand current solar industry development challenges and show how 

uncertainty quantification can help illuminate areas of opportunity for systems design. We conclude by 

suggesting improvements for both cost model design and solar development process design. 

2. Background 

The following section provides a review of soft costs in solar PV projects, existing publicly available 

solar cost models, and a background of variance-based sensitivity indices. 

2.1. Solar PV soft costs 

The US DoE Solar Energy Technologies Office defines soft costs to be “non-hardware costs,” including 

(but not limited) to customer acquisition, permitting, interconnection, and installation costs (Department of 

Energy, 2019). The challenges associated with these costs have not only hindered solar installations in the 

past, but also pose significant challenges for future installations. For example, jurisdictions across the U.S. 

require different permitting and inspection processes, resulting in lengthened timelines and wildly varying 

prices for developers, depending on where the project is. Municipalities, particularly in rural areas, often 

don’t have solar project requirements written into the code that governs new projects, forcing developers to 

work with the local government to update the code. Additionally, utilities may require significant 

interconnection fees and upgrades to existing infrastructure to connect projects to the grid. 

As part of the SunShot program, a nationwide initiative to make solar energy technologies cost-

competitive, the US DoE has offered a diverse set of activities, programs and funding opportunities in 

an effort to reduce soft costs. These activities and programs fall in the following categories: Business 

Innovation, Training, Networking and Technical Assistance, and Data Analysis (Department of 

Energy, 2019).  Additionally, the US DoE has funded two rounds of the Solar Energy Evolution and 

Diffusion Studies to support data-driven research to understand customer motivations and barriers to 

solar adoption (US Department of Energy, 2016a). For more information on current US DoE soft cost 

programs, see (US Department of Energy, 2016b). While these efforts and others at the state and local 

levels exist, the soft costs are still estimated to be a significant portion of the total project costs, 

approximately 35%-63%, depending on the size of the project (Fu et al., 2018). 
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2.2. Solar PV cost models 

Cost modelling is a crucial part of solar development; regardless of the size of the project, the decision 

to install a project is closely tied to its financial viability. While most models of solar project designs 

and costs are proprietary to the developer, Table 1 provides a review of the main solar cost models that 

are available to the public. 

Table 1. Publicly available solar project design and cost models 

Model Owner Description 

Cost of Renewable Energy 

Spreadsheet Tool (CREST) 

National Renewable 

Energy Laboratory 

The CREST model is a Microsoft Excel based cost 

model that incorporates hard costs, soft costs, financing 

terms, and outputs levelized cost of energy and a cash 

flow analysis. (National Renewable Energy Laboratory, 

2011) 

System Advisor Model 

(SAM) 

National Renewable 

Energy Laboratory 

SAM incorporates technical models with financial 

models for a more holistic and detailed sociotechnical 

analysis of solar projects. SAM can be interfaced via a 

graphical user interface or via a python wrapper. (Blair et 

al., 2017) 

PVsyst PVsyst: Photovoltaic 

Software 

PVSyst is a free software that combines project data, 

meteorological data, and economic data to analyse solar 

PV project viability and design. (PVSyst, 2019) 

PV*SOL Valentin Software PV*SOL is a licensed-based software that offers detailed 

tools for 3D shade analysis, solar output, and economic 

forecasting for solar PV projects. (Valentin Software, 

2019) 

Other models for solar PV projects exist solely for hardware-based analyses and do not include a full 

range of sociotechnical factors, thus were not included in Table 1. The cost models listed in Table 1 

have varying levels of capability for soft cost analysis and are purely deterministic. We chose to use 

the CREST model for our analysis due to the ease of use for our uncertainty quantification analysis. 

2.3. Variance-based sensitivity analysis 

Variance-based sensitivity analysis is used to investigate how inputs in a numerical model influence 

the variance of the output; the resulting analysis is a form of global sensitivity analysis (SA), which 

considers the full space of inputs and their interactions, rather than local SA, which focuses on 

sensitivity around a particular value (Pianosi et al., 2016). Variance-based SA can be used to evaluate 

which inputs have a significant effect on the output and in the case of complex models, de-parametrize 

the model (disregard unimportant inputs in the model analysis). 

Sobol’ indices are based on variance decompositions (Sobol’, 1993) and can be calculated assuming 

the input variables are independent. Total-order Sobol’ indices measure the overall contribution of 

each input to the output variance, including interaction effects. If the total index is small, we can 

consider the input unimportant in the analysis. Equation (1) shows the basic form for the total-order 

index, 𝑆𝑇𝑖, using notation from (Saltelli et al., 2004). 

𝑆𝑇𝑖 =  
𝐸(𝑉(𝑌|𝑋−𝑖))

𝑉𝑦
 (1) 

Where 𝐸 is the expected value, 𝑉 is the variance, 𝑌 is the output (LCOE in our analysis), and 𝑋−𝑖 

represents all input factors excluding the ith. First order effects can also be calculated to measure the 

direct contribution of the input to the output variance, not including interactions with other inputs. If 

the first index is large, we cannot neglect the input in our analysis. Equation (2) shows the basic form 

for the first-order index, 𝑆𝐹𝑖, using notation from (Saltelli et al., 2004). 

𝑆𝐹𝑖 =  
𝑉(𝐸(𝑌|𝑋𝑖))

𝑉𝑦
 (2) 
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Where 𝑋𝑖 is the ith input. It follows that 𝑆𝐹𝑖 ≤ 𝑆𝑇𝑖 for each input i, and the equality holds if the model 

is linear.  

3. Methods 

The following section describes the methods used for identifying soft cost inputs, defining distributions 

for each respective input, and calculating Sobol’ indices to quantify the uncertainty of the output LCOE. 

3.1. CREST model design analysis 

The CREST Model is currently offered for online download in Microsoft Excel format (National 

Renewable Energy Laboratory, 2011) and comes in five versions for cost prediction of five energy 

sources: solar, wind, geothermal, anaerobic digestion, and fuel cells. To conduct the analysis presented 

in this paper, we rewrote the solar model in Python1 using NumPy and Pandas packages. We validated 

the Python model against the original model to ensure accuracy of our results. 

3.2. Assumptions for analysis 

To analyse the CREST model and quantify uncertainty of soft costs, we use the following assumptions 

for the PV solar project modelled here: 

 The generator nameplate capacity (size of the solar project modelled) is 2 Megawatts (MW), 

the size of a typical “commercial-scale” PV project. Note that all power values in this paper 

refer to Direct Current (DC) values. 

 The location of the project is California, U.S., which is used to generate the net capacity factor 

for power calculations. 

 Federal Investment Tax Credit is set at 30% and state rebates or tax credits are not considered. 

 Interest rate on the term debt is 7% and interest rate on equity is 12%, both consistent with 

industry benchmarks (Hubbell et al., 2009). 

3.3. Soft cost distributions 

To choose the soft cost inputs for analysis, we considered the current soft cost priorities in the US 

DoE. Based on these priorities and previous research studies conducted by NREL, we chose three 

major soft cost inputs for the analysis: 

 Development Cost & Fees are described in the model as “…All costs relating to project 

management, studies, engineering, permitting, contingencies, success fees, and other soft costs 

not accounted for elsewhere…”  

 Land Lease Fees are described in the model as “…[The] fixed payments to the site host (and 

possibly other affected parties) for the use of the land on which the project is located.” 

 Interconnection Fees are described in the model as “…All project costs relating to connecting 

to the grid, such as the construction of transmission lines, permitting costs with the utility, and 

start-up costs. This category will also include the cost of a new substation, if necessary.” 

The following sections describe the distributions we used for each soft cost input. 

3.3.1. Development cost & fees 

The Development Cost and Fee is under the Capital Cost section of the CREST model with the units of 

USD. This input is used as a general “catch-all’ term for the soft costs associated with the project, not 

including the installation labour. 

In the NREL 2018 Solar Cost Benchmark report for the first quarter (Jan.-Mar.) of the year, the authors 

reported the overall soft cost fees ranged from 26 ¢/W to 85 ¢/W for commercial/utility-scaled projects (Fu 

et al., 2018). Based on this information, we used these values as the lower and upper bounds for a uniform 

                                                           
1 https://github.com/syalsm/CRESTSolarModelPython 
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distribution. Scaling the values for a 2 MW solar PV project, Table 2 gives the bounds for the uniform 

distribution used to represent this input. 

Table 2. Uniform distribution parameters for development cost and fees, values are based on 
(Fu et al., 2018) 

Lower Bound Upper Bound 

$520,000 $1,718,000 

3.3.2. Land lease fees 

The Land Lease input is under the Operations and Maintenance Cost section of the CREST model 

and has units of USD/year. As the solar industry grows and the deployment of large-scaled solar PV 

farms increases, significant land use is a major concern for the industry (Ong et al., 2013). 

Developers rarely purchase land to build solar farms, due to lack of land plot availability and the 

amount of upfront capital required; developers typically lease land from landowners, often farmers, 

for the project duration (25-30 years after installation). Annual land lease costs and land use for 

solar PV projects vary based on the negotiated lease rate per acre, the amount of acreage a project 

requires, and the contract terms agreed upon. This process, referred to as “Landowner Acquisition,” 

has received attention in the industry and literature, including studies on utilizing agricultural land 

for PV projects (North Carolina Clean Energy Technology Center, 2017), contract considerations 

for farmers from major trade organizations (Solar Energy Industries Association, 2016), and 

landowner guides produced by university agricultural extensions (Carroll, 2019; Romich, 2017). 

An annual land lease cost requires three inputs: the project capacity (MW), the annual lease rate 

(USD/acres), and the number of acres for the project (acres/MW). The first input is based on our 

assumption of a 2 MW project for this analysis. The second input is typically a negotiated rate and 

is proprietary information; for this analysis, we assumed an average annual lease rate in California’s 

central valley of $1000/acre (Strategic Solar Group, 2019). The number of acres of land required for 

a particular sized project can vary; a team of researchers at NREL collected data from various-sized 

projects across the U.S. for solar PV projects to calculate land areas (Ong et al., 2013). The team 

collected official project data, project fact sheets/news releases, official project drawings, and other 

data provided by the developer or project owner, as well as used satellite imagery to fill in gaps of 

the data. Using the dataset built from California projects in the NREL analysis, we plotted a 

histogram of the acres/MW values, shown in Figure 1. We then fit a normal distribution, resulting in 

the following parameters: 𝑁 ~ (7.89,  2.17). 

 
Figure 1. Distribution of acre / MW values for solar PV projects in California, values are based 

on (Ong et al., 2013) 
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Using values from the normal distribution, we can calculate the annual Land Lease rate input to the 

model, as shown in Equation (3), where L is the acres per MW determined by the distribution 

parameters. 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑎𝑛𝑑 𝐿𝑒𝑎𝑠𝑒 𝐶𝑜𝑠𝑡 = 2 𝑀𝑊 ∗ 𝐿
𝑎𝑐𝑟𝑒

𝑀𝑊
∗

$1000

𝑎𝑐𝑟𝑒
 (3) 

3.3.3. Interconnection fees 

The Interconnection input is under the Capital Cost section of the CREST model and has the units of 

USD. With the increase in solar projects connecting to the grid, traditional investor-owned utilities 

have redefined their interconnection processes; in the transition, these processes are often poorly 

documented, fraught with delays, and depend on the individuals doing the inspections and labour; just 

the interconnection studies alone have been reported to vary from $2,500 to $30,000 for commercial-

scale solar projects (Friedman et al., 2013). 

NREL conducted a review of the practices, processes, and costs of interconnection for 92 solar PV systems 

in Western U.S. grid (Bird et al., 2018). Through interviews and data collection, the researchers looked at 

the different processes and a range of potential barriers, including lack of application standardization, 

inspection delays, and excessive costs associated with the application process. The solar developer must 

take on all the costs required to connect to the grid, which may include application fees, application review, 

any costs associated with project start-up for the utility, and any potential upgrades to the grid. 

For the projects within the capacity range of 0.1-5 MW, Bird et al. (2018) reported a cumulative 

interconnection fee range of $60,000/MW to $200,000/MW. Scaling these bounds for a 2 MW project, we 

used the following lower and upper bound to define a uniform distribution for the Interconnection input: 

Table 3. Uniform distribution parameters for Interconnection input, values are based on 
(Bird et al., 2018) 

Lower Bound Upper Bound 

$120,000 $400,000 

3.4. Sobol’ index calculation 

To quantify the uncertainty of each soft cost input in the analysis, we calculated total-order index 

indices, as described in Section 2.3. Naïve computation of Sobol’ indices require evaluation of 

integrals, thus can be computationally costly depending on the input distributions and model structure. 

Sobol’ (1993) introduced a method for approximation using Monte Carlo sampling; for more 

information on implementation, see  (Owen, 2013, pg. 23). 

After investigating our cost model with the current inputs, we find that our model is nearly linear with 

the form: 

𝑦 =  18.17 + (2.7𝑥10−6)𝑥1 + (4.1𝑥10−5)𝑥2 + (4.2𝑥10−6)𝑥3 R2 = 0.99 (4) 

Where y is the output LCOE, 𝑥1is the Development Cost and Fees, 𝑥2is the Land Lease fees, and 𝑥3 is 

the Interconnection fees. Using this linear form and the input distributions described above, the total-

order index can be calculated directly. Note that since the model is linear, the first-order indices will 

equal the total-order indices, thus only total-order indices are reported in the results. We use Effective 

Quadratures, an open-source Python library for uncertainty quantification, to calculate the indices 

using the linear model described in Equation (4) (Seshadri and Parks, 2017). 

4. Results 

The following figure shows the results of the Sobol’ total-order index calculations.  

The results show that the total-order index for Development Cost and Fee heavily outweighs the other 

indices calculated. The total-order index for the Land Lease input was significantly smaller than the 

other indices; a small total-order index indicates the Land Lease input is unimportant in the given 

analysis. This means we can be confident the Land Lease input contributes very little to the overall 
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LCOE variability through individual effects or interaction effects, compared to the other inputs in our 

analysis. 

 
Figure 2. Total-order indices for Development cost and fees, land lease, and interconnection 

(left to right) 

5. Discussion 

The results show many interesting insights. First, the Development Cost and Fee was the most 

important soft cost input we analysed based on the index results; this index is both the largest value 

in magnitude and also the most difficult to quantify due to lack of industry data. The model is 

designed such that this particular cost input is a “catch-all” input that combines many uncertain 

variables that may not have publicly available data. The analysis suggests the Development Cost 

and Fees are the most important soft cost for determining LCOE, relative to the other soft costs in 

the analysis. We know from industry anecdotes that often these costs can significantly affect the 

output costs and design; however, the CREST model in its current form aggregates these costs and 

effectively simplifies the nuances of how this input could truly influence the system design. In 

future analyses, we suggest the Development Cost and Fee input should be deconstructed into its 

subcomponents and studied at a more granular level to understand which subcomponents contribute 

to the overall cost. The lack of data for these costs may be an immediate limitation to future 

analyses and should be further investigated. To address these challenges, future studies can include 

partnerships with developers and utilities, as well as interviews and surveys conducted with industry 

professionals, to better inform model design and cost data. 

Second, the results of this analysis show that Land Lease costs are relatively unimportant to the 

variability of the LCOE, compared to the other soft cost inputs. Land lease costs and land use for 

solar projects have received industry and research attention, particularly in the agricultural industry, 

due to the high land requirements of large-scale solar projects. The analysis suggests that if the goal 

of the industry is to decrease LCOE for solar projects, designing programs and conducting research 

toward reducing land lease costs may not be the best use of efforts. Developers may want to design 

their development process to prioritize aspects such as reducing permitting costs and 

interconnection fees instead of optimizing landowner fee negotiations. One important caveat not 

included in this analysis is the landowner acquisition process for solar development has the potential 

to completely derail a project if a landowner declines to lease his or her land to the developer. The 

effects of these landowner-developer interactions are not taken into account in the analysis 

presented in this paper. 
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Finally, the analysis provides insight into how the solar industry builds models to represent 

sociotechnical systems and how uncertainty is communicated (or not) when making crucial project 

decisions. The CREST model and others described in Table 1 are designed to incorporate soft costs in 

a mathematically simplistic manner, whereas industry data suggests soft costs are complicated and do 

not influence output costs and engineering design outcomes in a linear way. Quantifying uncertainty 

through variance-based indices introduces a new way to evaluate sociotechnical model design and 

provides interesting insights into how the development process can be redesigned. This analysis, and 

further studies in uncertainty quantification of soft cost inputs, can lead to more accurate cost 

predictions, better engineering designs, and more efficient project planning, ultimately leading to 

higher solar installation rates. 

The analysis presented in this paper has many limitations that are worth noting. First, the NREL 

CREST model was last updated in 2013; the numbers used in the model may not accurately reflect the 

cost of solar projects by the time this paper is published. This shortcoming may limit how realistic the 

results are and may have biased the outputs. NREL currently offers a more detailed solar cost model 

called Systems Advisor Model (SAM), as described in Table 1. SAM has been validated with real 

industry data and may offer interesting insights as a next step to studying the uncertainty of solar soft 

cost inputs. 

Second, the data used to build distributions for the three soft cost inputs was difficult to obtain, due to 

the proprietary nature of the industry. We based the distributions on data from studies in the literature, 

which may not reflect the true industry distribution. Data for the aggregated input, Development Cost 

and Fees, proved difficult to obtain and specific data relating to Interconnection costs are generally not 

publicly released. The distribution for Land Lease costs was slightly more reliable, due to the dataset 

available from NREL, however the calculations were still simplistic. In general, a limitation of this 

project was the lack of availability of data in the industry and literature. 

Finally, limitations exist when calculating Sobol’ indices. Inputs are required to be independent to 

calculate the indices, which we assumed in our analysis. In reality, this assumption may not hold 

true. 

6. Conclusion 

In this paper, we studied a publicly available solar cost model, the NREL CREST model, and 

quantified the uncertainty of soft cost inputs. We rewrote the CREST model from Microsoft Excel 

to Python for the analysis and chose three soft cost inputs to analyse – Development Cost and 

Fees, Land Lease, and Interconnection. Using publicly available industry data, we defined 

distributions for each soft cost and calculated the total-order Sobol’ indices for the resulting linear 

model. The indices were used to determine the relative importance of each input with respect to 

output LCOE variability and provide insight into the CREST model design of soft cost inputs. We 

found that the Development Cost and Fees were most important in the analysis; however, this 

input was simplified mathematically in the model. We recommend studying the uncertainty of this 

input at more granular level to determine the uncertainty and influence of its subcomponents. We 

also found that Land Lease costs were relatively unimportant to the variability of the output 

LCOE and development efforts working toward reducing this cost may not be as important in 

practice as reducing Development Cost and Fees and Interconnection Fees to achieve lower 

project costs. Overall, quantifying the uncertainty of soft costs provides a new way for the solar 

industry to consider the uncertainty of human-driven costs and how sociotechnical models are 

designed to account for these complex uncertainties. Additionally, this analysis suggests 

improvements for the development process and suggests focus areas to reduce soft costs; 

ultimately, with the goal to accelerate solar installations. 
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