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TERM BY TERM DYADIC DIFFERENTIATION
CHARLES H. POWELL AND WILLIAM R. WADE

1. Introduction. Let yq, ¢i1, ... denote the Walsh-Paley functions
and let 4 denote the group operation which Fine [5] defined on the
interval [0, 1). Thus, if 2 = 0 is an integer and if «, ¢ are points in the
interval [0, 1) then

Wl + 1) = (¥ (0), 275 = 1 4 (= 1m2

(where a; = 0 or 1 represents the kth coefficient of the binary expansion
of t), and

¢k2n(t)¢]<t> = ¢k'2"+j<t) fOI' n = ]., 2, e and O é ] < 2",

A real-valued function f, is said to be dyadically differentiable at a point
x € [0,1) if fis defined at x and at x + 27", n = 0,1, ..., and if the
sequence

D) du(frx) = Z 2N (f(x) — fx + 277

converges as N — o0. In this case, we shall denote the limit of (1) by
df(x) and call it the dyadic derivative of f at x. This definition was intro-
duced by Butzer and Wagner [1], who proved that every Walsh function
is dyadically differentiable on [0, 1) with dy, = kyy, £k = 0,1, ..., and
that if N and k are any non-negative integers and if %, satisfies 0 £ k¢ <
2V and k = ko(mod 2¥) then

N—1

@ L 2T0 = %@ = ke

In a later paper, Butzer and Wagner [2] began to study the problem of
determining which Walsh series were term by term dyadically differen-
tiable, that is to say, under what conditions would a function

[

B)  f) = 2 an(®)

k=0
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have a dyadic derivative which satisfies

@) df@) = i kg ()

at a certain point x?

They proved that (4) holds a.e. if both {a;} and {ka,} are quasi-convex
and ka, — 0 as & — o0, that (4) holds everywhere if Z‘;I;l kla] < o0,
and they conjectured that (4) would hold a.e. if ka, | 0 as & — 0. This
conjecture was verified by Schipp [7], who showed that (4) holds, in this
case, for all but countably many x € [0, 1).

In Section 2 we shall derive a condition sufficient to conclude that (4)
holds at a particular point x. In Section 3 we shall use this condition to
study dyadic derivatives, growth of Walsh-Fourier coefficients, and con-
ditions sufficient to conclude that a continuous function is constant. In
the process, we shall show that if k% | 0, as &k — o, for some a > 1
then (4) holds everywhere in (0, 1). Hence, a tightening of the hypothesis
in Schipp’s theorem leads to a stronger conclusion.

2. The main theorem. In this section we shall outline a proof of
the following result.

THEOREM. Let x be a point in the interval [0, 1), let ao, ay, . . . be a se-
quence of real numbers and suppose that « > 1. If the series

(5) :;“ karn (x)

converges then the function

[es)

J@) = Z i (t)

k=0
is dyadically differentiable at x and (4) is satisfied.

We begin by observing that convergence of (5) implies that k%, — 0
as k — o0. It follows that

o
2 lai| < 0.
=0

Hence, f(¢) is absolutely convergent for all ¢ € [0, 1].
Let N = 1 be an integer, and observe that

N—1

de() = 227 B ale) = pule + 277N,

n="0 k

If we apply the identity ¥, (x + 27=1) = ¥, (x)¥(27"~1), we can rewrite
the expression displayed above in the following form:

© a0 = 5 (T2 e

k=1 n=0
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Multiplying the k™ term of (6) by 1 = k*- k™, we have that

o N—1
(M) dy(f,x) = ];k_a(z::OQn_l[l - '//k(g_n_l)])ka(lk\bk(x)-

In § 4 we shall verify that if (5) converges then the sequence (7) has a
limit, as N — o0, and that this limit can be obtained by replacing N by
oo on the right-hand-side of (7) (see Lemma 5). In view of (2), this means
that

lim dy(f, x) = fj kagpi(x),

Now

which completes the proof of our theorem.

3. Applications. Throughout this section, let f(¢) represent the Walsh
series D o ¥ (¢). Since any Walsh series whose coefficients are bounded
variation converges everywhere on the interval (0, 1), our main theorem
contains the following result.

COROLLARY 1. If the sequence {k®a;} 1s of bounded variation for some
a > 1, then f(x) has a dyadic derivative which satisfies (4) everywhere on
(0, 1).

The hypothesis of Corollary 2 is surely satisfied if k2a; | 0 as & — 0.
Thus Coury’s example [3] g(x) = D i 27, (x) is both classically dif-
ferentiable a.e. and dyadically differentiable everywhere on (0, 1), with

dgx) = 2 k2 ().

Our main theorem, together with the convergence theorems of [6], [9],
and [8], yield the following sufficient conditions for global dyadic differen-
tiability.

COROLLARY 2. Suppose that {n;} is a lacunary sequence of integers and
that {ay} is a sequence of real numbers satisfying ay = 0 unless b = n; for
some j. If for every point x in some non-degenerate interval I there exists an
a > 1 such that

Z k’ay Vi (x )
k=1

lim sup

N—>00

< o,

then f(x) has a dyadic derivative which satisfies (4) everywhere on [0, 1).

COROLLARY 3. If for every point x in some set E of positive measure there
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exists an a > 1 such that

i 2% o (x)

k=1

converges, then g(x) = ZS’C‘;O apor(x) 1s dyadically differentiable a.e. on
[0, 1) and

dg(x) = i a2y (x)  ae.x € [0, 1).

COROLLARY 4. Suppose that g is a function which belongs to L log™
Llog™* log*L and that ay, = k=g (k) for some a > 1, where §(k)represents
the Walsh-Fourier coefficients of g, k = 0,1, .... Then f(x) has a dyadic
dertvative which satisfies (4) a.e.

In particular, if the function Zi‘;l keawi(x), e > 0, has a strong L?
dyadic derivative for some p > 1 (see [1]), then f(x) has a dyadic deriva-
tive which satisfies (4) a.e.

For any integer N = 1 and any point x € [0, 1), consider the series

o (+1)2V-1
(8) Ryk)=> 2% (x).

j=1 k=j2N
There is a strong connection between the convergence of (8) and the
formal dyadic derivative of f(x).

PROPOSITION. Suppose that f(t) exists for t = x and t = x 4+ 271,
n=20,1,..., and suppose that N 1s any positive integer. Then Ry(x)
exists and 1is finite if and only if

r2V_1

g(x) = lim Z kai(x)  exists,

T30 k=1

in which case,

9)  dw(f,x) = gx) — Ry(x).

In particular, if Zz‘;l_kakwk (x) converges then df (x) exists if and only if
R(x) = limy_, Ry(x) exists,

i which case,

(10) ) = 3 hara(s) = RG).

In other words, (4) holds if and only if R(x) = 0.
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To establish this proposition, we need only verify (9). To accomplish
this, return to (6) and apply (2) to obtain

oN_1 w (+12eN-1
dN(f, x) = ]FZO kaxr(x) + ; k:ZZ:N (k ‘jZN)ak‘Pk(x)-

Replace “ > 2," by “lim,,,, 2,21’ and conclude that

reN—1 r—1 (j+12N—1
dy(f, x) = lim{ Z kagdi(x) + Z Z <—]2N)ak‘//k(x)}
T k=0 j=1 k=joN
Since this limit exists, we have proved that g(x) exists if and only if
Ry (x) exists. Taking the limit, as 7 — co, we have also established (9).

COROLLARY 5. If a; | 0 as b — o0 and if Y_sor |ax] < 00, then f has a
dyadic derivative which satisfies (4) everywhere on (0, 1).

To establish this corollary, we begin by proving that the sequence
{ka;} is of bounded variation. Indeed, since the sequence {a;} is mono-
tone decreasing, it must be the case that

|kak - (k + l)ak+1; =< k(ak - ak+l) + ayp1,

for any integer £ = 1. Consequently,

N o
2 Mhaw = (& + Dapn| <2 2 o] + Na.

But absolute convergence of the series Zif;l a implies that Nay — 0
as N — . Thus the sequence {ka;} is of bounded variation.

It follows, therefore, that the Walsh series » oo kaw(x) converges
forallx € (0, 1). A similar argument establishes the fact that Ry(x) — 0
as N — oo forall x € (0, 1). By the proposition above, then, df(x) exists
for all x € (0, 1) and satisfies (4).

We conjecture that Corollary 5 holds if the condition “‘a, | Oask — o0 "
is replaced by “|a;| < byand b, [ Oask — 0.

When the proposition above is applied, in conjunction with Corollaries
1-4, we obtain some rather delicate growth conditions for certain types of
Walsh series. For example,

COROLLARY 6. If for every x (respectively, for a.e. x) in some interval I
there exists an a > 1 such that (5) converges then Ry(x) — 0, as N — 0,
for all x (respectively, for a.e. x) in 1.

Coury [4, Theorem 6] has shown that if f is continuous and if

(11) Zk[akl < o,

then f is constant. Our last corollary generalizes this result.
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COROLLARY 7. Suppose that f is continuous on (0, 1), and that for each
x € (0, 1) there exists an « > 1 such that (5) converges, or that Z?f:] kawy
converges on (0, 1) and that limy_, Ry (1) exists for each t € (0,1). Then
I is constant.

To prove this result, apply Corollary 1 or the proposition above to
conclude that df(x) exists for each x € (0, 1). Thus the sequence (1)
converges. It follows that the terms of the series on the right-hand-side
of (1) must tend to zero:

(12) 2'71(f(x) — flx +27"1)) »0asn— 0.

Recall that f(x + 27"=1) = f(x = 2="-1). Thus (12) implies that the
upper Dini derivate of f is non-negative and that the lower Dini derivate
of f is non-positive. Since f is continuous, it now follows that f is constant.

It is clear that this technique can be combined with other corollaries
above to obtain sufficient conditions that a continuous function f be con-
stant on (0, 1), or on some non-degenerate interval I.

4. Unavoidable technicalities. Throughout this section b, ;, b;, and
x; will denote real numbersfork = 0,1,...,n = 0,1, ..., which satisfy

(13) Z!'bn,k — byl EM n=0,1,...,
k=0

(14) limnew bn,k = bk k= 0, 1, .

and

(15) . x. converges.
k=0

We begin with two elementary observations. First, since

j—1
bn,]’ = J;Z(; (bn,k - bn,k+1) + ba,o,

conditions (13) and (14) prove that the sequences {b, } and {b;} are
bounded:

LEmMA 1. There exists an A < o such that |b, | £ A and |b| £ A4 for
all integers n = 0 and k = 0.

Secondly, since b, — by+1 can be written in the form

(=bux + bx) = (=bui + buis1) — (Grpr — byasr)

we can apply (13) and (14) to show that {b,} is also of bounded variation:
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LEMMA 2. For each integer N > 0,

N
> (b — bina| < M.
k=0
This leads to the following convergence result.

LEMMA 3. Both Y g by i X and

=0

are convergent series.

Comparing Lemma 2 with (13), it suffices to show that (16) converges.
By Abel’s transformation, however,
m m m—1 m—1 k
2o bixe = by 2oy = b 2w+ 20 20w (be — bera).
k=n j=n

j=n k=n j=n

Hence by Lemmas 1 and 2, we conclude that

m
Z by,
k=n

This inequality, together with (15) establishes the convergence of (16).

k

in

i=n

IIA

(24 + M) sup

k=n

LEMMA 4. If conditions (13), (14) and (15) are satisfied, then

k=0

N—oo k=0

To prove this result let ¢ > 0 and fix an integer N = 1 so that

m
2%

a7 < e whenn,m > N.
l=n
Next, observe by Lemma 3 that
=) =3 F}V ! @
Z b X — Z byxr = Z (bn,k - bk)xk + Z (bn,k - bk)xk-
k=0 k=0 k=0 k=N+1

Since N is fixed, (14) implies that the first term above is negligible as
n — 0. It suffices, therefore, to show that

e}

o= 2 (bax — b))%

k=N+1

converges to zero, as n — 0.
Toward this, apply Abel’s transformation to Z,, obtaining the following
identity:

[

Z, = Z (Onx — bpgyr — b + Digr) - lez + (bn,y—bn)- l;rlxz-
=k =]

k=N+1
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In particular, it follows from (15), Lemma 2, (17), and Lemma 1 that
12, £ e(2M + 24).

Since ¢ > 0 was arbitrary, this inequality completes the proof of Lemma
4.

This lemma can be used to justify the interchange of limit and sum
sign used in § 2. Indeed, if we let k% i (x) play the role of x;, and observe
by Lemma 3 that if (5) converges for @ = a, then (5) converges for all
a = ag, then we need verify only the following result.

LeEmMMA 5. If for some a, 1 < a < 3/2,

by = k_“(§12"“1[1 - %(2'”71)]),

n=0

N=1,2,...andk =0,1,...and by =1for k =0,1,..., then (15)
is satisfied.

In order to prove this lemma, we begin by establishing that if j > 0 and
0 <k <2Vt — 1, then

ko k1
(j2N+l+k)a = (]'2N+l+ k + l)a .

Indeed, for any positive real number B, it is the case that

1 ] 1 3/2
(““}3‘) é(“r]é) ~

Furthermore, if B =2 1 then 1/B® < 1/B?, so the following inequality

holds:
1 ’ ( 2) ’
(1 B) = ! B/

It follows, therefore, that if B = 1 and C = 0 satisfies 2C < B, then

1\* 1
it < el
(1 + B) =l+e
Hence (18) is obtained by setting B = j2¥+! + kand C = k.
We shall establish Lemma 5 by showing that the sequence

(18)

o 2Nt1 N—1
Sy = ZO > G R ZO 2L — P (277N)]
J= k= n—

N—1

- (jQNH + k4 1)_a : Zo 2%1[1 - t//ﬁN‘r 1+k+1(2_n-—1)]

is uniformly bounded in N. To evaluate the terms inside the square
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brackets, recall that for such 7, k, and #,
YN+ (27071 = V(2707 - (27071 = 1 (27070,
Hence, by equation (2),

N—1
Zo 2_n_1[1 - lﬁj2N+l+k(2“n*l)] = k
for0 < k< 2¥tlandj=0,1,....If B = 2+ then

YN+ (27 =1

so in this case the term inside the square brackets is exactly zero. It
follows that Sy is dominated by T, where

I

o oN+1_9
T Z{ 2 @2 BT = (27 R DT+ )

7=0 k=0
_ lj2N+1 + 2N+1 _ 1|——a(2N+1 - 1)} .

The j = 0 term of T’y has the form

oN+1_9

(2N+1 _ 1)1—0: + ]g |k1—a _ (k _|__ 1)1—ul

and thus telescopes to a sequence dominated by 3. According to inequality
(18), each term of T’y corresponding to j > 0 also telescopes, leaving us
with

(2244 4 2%+ — D@ — 1)),

In particular,
Sy <342 Z (]-2N+1 4oVt _ 1)—a2N+1 <3492 ZJ-—{
=1 =1

Since a > 1, we have obtained the uniform bound for Sy and have com-
pleted the proof of Lemma 5.
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