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Abstract

Weighted sieves are used to detect numbers with at most S prime factors with S ∈N as
small as possible. When one studies problems with two variables in somewhat symmetric
roles (such as Chen primes, that is primes p such that p + 2 has at most two prime factors),
one can utilise the switching principle. Here we discuss how different sieve weights work in
such a situation, concentrating in particular on detecting a prime along with a product of at
most three primes.

As applications, we improve on the works of Yang and Harman concerning Diophantine
approximation with a prime and an almost prime, and prove that, in general, one can find
a pair (p, P3) when both the original and the switched problem have level of distribution at
least 0.267.

2020 Mathematics Subject Classification: 11N35 (Primary); 11N36, 11A41,
11N80 (Secondary)

1. Introduction

Classical sieve methods can be used to study integers without small prime factors. In
particular, under certain hypotheses, they can give upper and lower bounds for

S(A, z) := {n ∈ A : (n, P(z)) = 1}, (1·1)

where A ⊆N and P(z) =∏
p<z p. Among other things, this allows one to detect numbers

that have only few prime factors — if A ⊆ [1, x] ∩N and S(A, x1/v) > 0, then A necessarily
contains numbers with at most �v − 1� distinct prime factors.

Kuhn [11, 12] first observed that if one attaches a weight W(n) to every n ∈ A, with W(n) =
1 −∑

p|n wp and suitable coefficients wp ≥ 0, then one can find integers in A with even fewer
prime factors than with the above argument. Weighted sieves have then been developed by
various authors, see e.g. [7, chapters 9–10] and [5, chapter 5] for more information.

We shall reserve the letter p with or without subscripts for primes and the notation Pk for
numbers with at most k prime factors.

As an example, let us consider the twin prime conjecture. Take

A = {p + 2: p prime, p ≤ x}.
Using the linear sieve (see Lemma 2·5 below), with level of distribution 1/2 − ε/3 com-
ing from the Bombieri-Vinogradov theorem (for the definition of level of distribution,
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2 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

see Definition 2·4 below), one obtains

S(A, x1/4−ε) > c0
x

log2 x

for some constant c0 = c0(ε). This implies that p + 2 = P4 infinitely often. The level of
distribution 1/2 − ε/3 is sufficient to replace P4 by P3 if one uses a weighted sieve with
well-chosen weights wp, see for instance [7, theorem 9·2].

Optimal weighted sieve coefficients are not known but there has been some work
surrounding them, see for instance [5, chapter 5].

In 1973, Chen [2] made a breakthrough in the twin prime problem by showing that p +
2 = P2 infinitely often. Primes of this form are often called Chen primes. Chen had the
ingenious idea of switching the roles of the variables in some parts of the argument. He first
proved a lower bound for the number of primes such that p + 2 = P3 (with the prime factors
of P3 belonging to certain ranges). He then removed the contribution of products of three
primes by applying an upper bound sieve to the sequence p1p2p3 − 2, thus sieving the prime
p. Later Fouvry and Grupp [3] managed to show that p + 2 = P2 infinitely often without
using switching, but a better level of distribution coming from deep estimates for sums of
Kloosterman sums.

There has been some interest in optimising weights in Chen’s set-up, see e.g. Wu [15, 16],
which for instance leads to improved lower bounds for the number of Chen primes.

Chen’s switching idea [2] has also been utilised in finding pairs (p, Pk) with k ≥ 3 in
various contexts like for instance the ones found in [8], [13] and [14]. However, it seems
like little attention has been paid to the corresponding choice of weights. The aim of this
note is to initiate the study of this subject, and set up the scene for further investigations.
Most of what we do works in a very general setting for detecting pairs (p, Pk) using flexible
weights. Nonetheless, we will in particular study the case k = 3 and illustrate the effect of
some weights, which we intend to keep rather simple. Using other weights might lead to
improvements on our results.

The following application demonstrates how one can obtain stronger results by simple
changes to the sieve weights.

THEOREM 1·1. Let λ0 ∈R and let λ1, λ2 ∈R \ {0} be such that λ1/λ2 is negative and
irrational. Then there are infinitely many solutions to

|λ0 + λ1p + λ2P3| < p−ρ

with ρ = 0.09.

This theorem improves on the work of Yang [17] that had exponent ρ = 1/131, which in
turn improved on the work of Harman [8] with ρ = 1/300. Here, we use the same arithmetic
information as in those previous works, but with different sieve weights — actually Harman
[8] wrote that ρ could be improved “by using better weights (for example see Section 2 of
[6]) and making more use of Chen’s technique”. What is perhaps surprising about Theorem
1·1 is the quality of the improvement and the fact that it is obtained using simpler sieve
weights rather than more complicated ones. Unfortunately, despite the significant improve-
ment on ρ, we are not able to replace P3 by P2 for any positive ρ, which would be the most
desired result in this problem.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004125000258
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.56, on 28 Jun 2025 at 09:37:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000258
https://www.cambridge.org/core


Weighted sieves with switching 3

We will also show that if one has level of distribution 0.267 in both the original and the
switched problem, then one can find pairs (p, P3). We will state this result formally only upon
stating the needed assumptions precisely (see Theorem 3·2 below). Note that in [13], where
Vaughan’s method [14] was used, a stronger level of distribution 0.34096 was required (see
Remark 3·3 below for more information).

The paper is organised in the following way. In Section 2, we recall some auxiliary results
needed to carry out our work, specially those involving sums over primes and the linear
sieve. In Section 3, we present and discuss the basic set-up and assumptions in our general
sieving situation as well as apply the linear sieve to reduce our task of finding pairs (p, Pk) to
the task of finding a positive lower bound for the difference of two expressions �1 and �2.
Toward the end of Section 3 we state Theorem 3·2 mentioned above and provide Example
3·4, where we present three important specific choices of weights.

In Section 4, we find a lower bound for �1, whereas in Section 5 we find an upper bound
for �2. In Section 6, we illustrate the effect of the weights from Example 3·4 in the context
of Theorem 1·1, and prove Theorem 1·1 in Section 6·3. In Section 7, we prove Theorem 3·2.
Finally, in Section 8 we present a way to deal with more general weights than those needed
for our theorems.

All the numerical calculations have been carried out using Mathematica and are available
alongside the arXiv version of this work.

2. Notation and auxiliary results

For n ∈N, we write �(n) for the total number of prime factors of n and ω(n) for the
number of distinct prime factors.

2·1. Sums over primes

We will regularly utilise the standard device of using the prime number theorem to
transform sums over primes to integrals. For convenience, we describe an example of this
technique here. Indeed, letting v : [0, 1] → [1, 2] be a Lipschitz function, we have by the
prime number theorem that

∑
x1/20<p1<p2<p3<x1/2

x1/4<p1p2p3≤x3/4, p2
1p2≤x2/3

v( log p1
log x )

p1p2p3 log x
p1p2p3

= (1 + o(1))
∫∫∫

x1/20<t1<t2<t3<x1/2

x1/4<t1t2t3≤x3/4, t21t2≤x2/3

v( log t1
log x )

(t1 log t1)(t2 log t2)(t3 log t3) log x
t1t2t3

dt1dt2dt3.

Substituting tj = xαj , the above expression equals

1 + o(1)

log x

∫∫∫
1/20<α1<α2<α3<1/2

1/4<α1+α2+α3≤3/4, 2α1+α2≤2/3

v(α1)

α1α2α3(1 − α1 − α2 − α3)
dα1dα2dα3.
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4 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

2·2. Sums over rough numbers

We shall need asymptotic formulas for sums over rough numbers. Define first the
Buchstab function ωB : R≥0 →R≥0 by ωB(u) = 0 if u ∈ [0, 1), ωB(u) = 1/u if u ∈ [1, 2] and
(uωB(u))′ = ωB(u − 1) if u > 2.

LEMMA 2·1. Let ε > 0, x ≥ 2 and z ∈ [xε, x1−ε]. Then

∑
n≤x

(n,P(z))=1

1 = x

log z
ωB

(
log x

log z

)
+ O

(
x

(log x)2

)
.

Proof. This follows from an inductive argument and the prime number theorem, see [9,
section 1·4].

For j ∈N, we define the functions cj : R≥0 →R≥0 by recurrence as c1(t) = 1t≥1 and

cj(t) =
∫ max{j,t}

j

cj−1(α − 1)

α − 1
dα.

Similarly to the proof of Lemma 2·1, we use the prime number theorem and induction to
establish the following result, which is also stated in [18, section 2] and [1, lemma 2·2].
(Our Lemma 2·2 below corresponds to the special case β = 0 and q = a = 1 of [1, lemma
2·2]). For completeness we sketch its proof.

LEMMA 2·2. Let ε > 0, j ∈N, x ≥ 2, and z ∈ [xε, x/ log x]. Then

∑
n≤x

(n,P(z))=1
�(n)=j

1 = x

log x
cj

(
log x

log z

)
+ O

(
x log log x

(log x)2

)
.

Sketch of the proof. In case log x/log z ≤ j, the claim is trivial. In case log x/log z > j, we
induct on j. When j = 1, the claim follows immediately from the prime number theorem. Let
us now assume that the claim holds for j − 1 ≥ 1 and establish it for j. We have

∑
n≤x

(n,P(z))=1
�(n)=j

1 =
∑

z<p≤x1/j

∑
n≤x/p

(n,P(p))=1
�(n)=j−1

1 + O

(
x

z

)
. (2·2)

The contribution of the sum over p ∈ [x1/j/log x, x1/j] to the right-hand side of (2·2) is
O(x log log x/(log x)2). In the remaining range we can apply the induction hypothesis to the
innermost sum. Thus we obtain

∑
n≤x

(n,P(z))=1
�(n)=j

1 =
∑

z<p≤ x1/j
log x

x

p log(x/p)
cj−1

(
log(x/p)

log p

)
+ O

(
x

log log x

(log x)2

)
.

The claim follows by first using the prime number theorem to transform the sum over
primes to an integral over t (similarly to Section 2·1), and then substituting t = x1/α .
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Weighted sieves with switching 5

We are actually interested in rough numbers with at least a given number of prime factors.
In light of the above, for J ∈N, we define the function CJ : R≥1 →R≥0 via

CJ(t) = tωB(t) −
J−1∑
j=1

cj(t).

On combining Lemmas 2·1 and 2·2 we obtain the following.

LEMMA 2·3. Let ε > 0, J ∈N, x ≥ 2 and z ∈ [xε, x1−ε]. Then

∑

≤x

(
,P(z))=1
�(
)≥J

1 = x

log x
CJ

(
log x

log z

)
+ O

(
x

(log x)2

)
.

2·3. Level of distribution and linear sieve

We define now the level of distribution in case of a linear sieving problem.

Definition 2·4 (Level of distribution of vn.) Let X ≥ 1, x ≥ 2, and θ ∈ (0, 1). Let (vn)n≤x

be a sequence of complex numbers and let g : N→R≥0 be a multiplicative function such
that g(p) < p for every prime p.

We say that the sequence (vn)n≤x has level of distribution θ with size X and density g if

∑
d≤xθ

μ2(d)

∣∣∣∣∣∣
∑

n≤x/d

vdn − g(d)

d
X

∣∣∣∣∣∣= O

(
X

(log x)100

)
,

and if we have, for all z > w ≥ 2,

∏
w≤p<z

(
1 − g(p)

p

)−1

≤
(

1 + O

(
1

log w

))
log z

log w
. (2·3)

We extend the definition (1·1) to sequences, by writing, for A = (vn)n≤x,

S(A, z) =
∑
n≤x

(n,P(z))=1

vn.

We recall now that the linear sieve functions f , F : R+ →R≥0 are the continuous functions
defined through the system of differential equations{

sF(s) = 2eγ if 0 < s ≤ 3;

sf (s) = 0 if 0 < s ≤ 2;

{
(sF(s))′ = f (s − 1) if s > 3;

(sf (s))′ = F(s − 1) if s > 2.
(2·4)

Note that

f (s) = 2eγ

s
log(s − 1) if 2 ≤ s ≤ 4. (2·5)

Now we are ready to state the linear sieve.
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6 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

LEMMA 2·5 (The linear sieve). Let x ≥ z ≥ 2. Suppose that the sequence A = (vn)n≤x has
level of distribution θ ∈ (0, 1) with density g : N→R≥0 and size X ≥ 1. Write

s = log xθ

log z
.

Then

S(A, z) ≥
(

f (s) + O((log x)−1/6)
)

· X
∏
p<z

(
1 − g(p)

p

)

and

S(A, z) ≤
(

F(s) + O((log x)−1/6)
)

· X
∏
p<z

(
1 − g(p)

p

)
.

Here the implied constants do not depend on the sequence A itself but they may depend on θ

and the implied constants in Definition 2·4.

Proof. See for instance [4, (12·12), (12·13)]. The lower bound there is stated only for
s ≥ 2 but it is trivial for s ∈ (0, 2). The upper bound is only stated for s > 1 but, when s ∈ (0, 1]
we can estimate S(A, z) = S(A, xθ/s) ≤ S(A, xθ/2), use the linear sieve with s = 2, and then
reach the conclusion by using (2·3) and (2·4).

3. Set-up and assumptions

Let us now formalize the sieve set-up that we will consider. Let x ≥ 2 be sufficiently
large, let S ∈N, and let A⊆ ([1, x] ∩Z)2 be such that we wish to find pairs (p, PS) ∈A. For
instance, in the case of the twin prime problem, we may take

A= {(n, n + 2) ∈Z2 : n ≤ x − 2}
and, in the case of Theorem 1·1, we could take

A= {(n1, n2) ∈Z2 : n1, n2 ≤ x, |λ0 + λ1n1 + λ2n2| < n−ρ
1 },

although, for technical reasons, our choice in Section 6 will be slightly different.
Next we discuss how we apply a weighted sieve with switching to the set A. Let

an =
∑
p≤x

(p,n)∈A

1, (3·6)

and let v ≥ u > 2. We consider weights W : N→R of the form

W(n) := 1 −
∑
p|n

x1/v≤p<x1/u

wp, (3·7)

with coefficients wp ∈ [0, 1]. In fact, we will take wp = w (log p/log x) for a Lipschitz func-
tion w : R≥0 → [0, 1] such that w(α) = 0 for α �∈ [1/v, 1/u], and write Cw > 0 for a fixed
Lipschitz constant of the function w.
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Weighted sieves with switching 7

We immediately see that there exists some (p, PS) ∈A if∑
n≤x

(n,P(x1/v))=1

anW(n) −
∑
n≤x

(n,P(x1/v))=1
�(n)≥S+1

anW(n) > 0.

In the above second sum, we may estimate the contribution of n with W(n) < 0 trivially, and
so, writing here and later W+(n) = max{W(n), 0}, it suffices to show that

�1 − �′
2 > 0, (3·8)

where

�1 :=
∑
n≤x

(n,P(x1/v))=1

anW(n) and �′
2 :=

∑
n≤x

(n,P(x1/v))=1
�(n)≥S+1

anW+(n). (3·9)

Before stating the formal hypotheses (see Assumption 3·1 below), we discuss informally
the assumptions we shall need. Thus (Ai∗), i ∈ {1, ..., 5}, will denote an informal assumption
and then (Ai) will be its corresponding formal assumption.

We shall apply the linear sieve (Lemma 2·5) to find a lower bound for �1. For this, we
assume

(A1∗) The sequence an has level of distribution θ1.

One typically chooses the weight W in such a way that �′
2 does not count too many

numbers. In particular W(n)1(n,P(x1/v))=1 will be positive only when n does not have too
many prime factors. We will assume:

(A2∗) The weight is non-positive when ω(n) > R:

As we will work with numbers with (n, P(x1/v)) = 1, this always holds for R = �v − 1�.
We write now

�2 :=
∑
n≤x

(n,P(x1/v))=1
S+1≤�(n)≤R

|μ(n)|anW+(n).

Note that when Assumption (A2∗) holds, the sums in the definitions of �′
2 and �2 differ

only for non-square-free n. Since (n, P(x1/v)) = 1 is a condition on those sums, such n form
a very sparse set, and the contribution is typically negligible. Hence we assume:

(A3∗) Replacing �′
2 by �2 introduces a negligible error

With respect to �2, we switch the roles of the variables before applying the linear sieve
and also write n = p1m, with p1 being the smallest prime factor of n. We take out the smallest
prime factor because in some cases the level of distribution of the switched problem depends
on the size of p1. Thus

�2 =
∑

(p,n)∈A
n≤x, (n,P(x1/v))=1

S+1≤�(n)≤R

|μ(n)|W+(n) =
∑

(
,p1m)∈A
p1m≤x, p1≥x1/v

p|m =⇒ p>p1, S≤�(m)≤R−1

|μ(m)|W+(p1m)1
∈P. (3·10)
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8 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

We shall sieve the variable 
. We split dyadically according to the size of p1, and so, for any
P ∈ [x1/v, x1/(S+1)], we define the sequence (bP,
)
≤x via

bP,
 =
∑

p1m≤x
(
,p1m)∈A
P<p1≤2P

p|m =⇒ p>p1
S≤�(m)≤R−1

(
|μ(m)|W+

P (m) + Cw

log x

)
, (3·11)

where

WP(m) := 1 − w

(
log P

log x

)
−

∑
p|m

x1/v≤p<x1/u

w

(
log p

log x

)
. (3·12)

Note that since Cw is a Lipschitz constant for the function w, we have, for every p1 ∈ (P, 2P]
and every m ≤ x/p1 such that p1 � m,

W(p1m) ≤ WP(m) + Cw

log x
.

In order to apply the upper bound in the linear sieve (Lemma 2·5) to the sequence
(bP,
)
≤x, we assume:

(A4∗) The sequence (bxα ,
)
≤x has level of distribution θ2(α).

The switching trick can be used in cases where we are able to perform sieving in both
coordinates in A — Assumption (A1∗) allows us to sieve the second coordinate whereas
Assumption (A4∗) allows us to sieve the first coordinate. In order to be able to compare the
main terms coming from �1 and �2 we assume:

(A5∗) The main terms coming from sieving (an)n≤x and (bP,
)
≤x are comparable in a
natural way.

Let us now formalise all our assumptions.

Assumption 3·1. Let δ > 0, S ∈N and v ≥ u ≥ 2 be fixed and such that v ≥ S + 1. Let also
x ≥ 2 be sufficiently large in terms of δ and the implied constants in Definition 2·4. We
assume that A⊆ ([1, x] ∩Z)2,

θ1 ∈ [1/u + δ, 1), θ2 : [1/v, 1/(S + 1)] → [δ, 1),

X1 ≥ 1, X2 : [1/v, 1/(S + 1)] → [1, ∞),

w : R≥0 → [0, 1], g1, g2 : N→R≥0

are such that θ2 and w are Lipschitz functions, w(α) = 0 for α �∈ [1/v, 1/u], and all of the
following hold, with Cw > 0 a fixed Lipschitz constant for the function w,

W(n) = 1 −
∑
p|n

x1/v≤p<x1/u

wp, wp = w

(
log p

log x

)
,

and WP(m) as in (3·12).
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Weighted sieves with switching 9

(A1) The sequence (an)n≤x defined in (3·6) has level of distribution θ1 with size X1 and
density g1.

(A2) We have W(n)1(n,P(x1/v))=1 ≤ 0 whenever ω(n) > R.

(A3) We have ∑
p≥x1/v

∑
n≤x/p2

(n,P(x1/v))=1

anp2 ≤ X1

(log x)2
.

(A4) For every α ∈ [1/v, 1/(S + 1)], the sequence (bxα ,
)
≤x defined in (3·11) has level of
distribution θ2(α) with size X2(α) and density g2.

(A5) For every α ∈ [1/v, 1/(S + 1)], we have

X2(α) = (1 + o(1))
∑

p1m≤x
xα<p1≤2xα

p|m =⇒ p>p1
S≤�(m)≤R−1

(
|μ(m)|W+

xα (m) + Cw

log x

)
· X1∑

p≤x 1
.

Now, we can state our general result about finding pairs (p, P3) when the level of
distribution of the original problem is the same as that of the switched problem.

THEOREM 3·2. Let x ≥ 2 and A⊂ ([1, x] ∩Z)2 be such that Assumption 3·1 holds with
S = 3, v = 20, u = 6, w(α) = 1/2 · 1α∈[1/v,1/u], θ1 = θ2(α) = 0.267, some g1 = g2 and some
X1, X2. Then ∑

(p,P3)∈A
1 � X1

log x
.

The proof of Theorem 3·2 will be provided in Section 7.

Remark 3·3. Li, Zhang and Xue [13] studied Piatetski–Shapiro primes p such that

p + 2 = P3, (3·13)

showing that, when γ ∈ (0.9989445, 1), there are infinitely many solutions to (3·13) with p =
�n1/γ � for some n ∈N. Following Vaughan [14] they used Richert’s sieve with switching,
using a trivial upper bound for W(n) in the switched term (similarly to Harman’s argument
that we discuss in Section 6·1). This way they required level of distribution 0.34096 which is
a much stronger assumption than we need in Theorem 3·2. Consequently, Theorem 3·2 can
be used to improve upon the result concerning Piatetski–Shapiro primes in [13]. However,
the level of distribution in this problem decreases so quickly with γ that the improvement
would be very modest, replacing the range for γ by γ ∈ (0.996651, 1).

It would probably be possible to make a small further improvement to the range of γ using
that the level of distribution of the switched problem is somewhat better for some parts of
the sum, similarly to (A4) and Section 6 where the level of distribution of the switched sum
depends on the smallest prime factor.

Recall from (3·8) that in order to find pairs (p, PS) it suffices to show that �1 − �′
2 > 0.

Applying Assumptions (A2) and (A3) we see that in fact it suffices to show that
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10 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

�1 − �2 � X1

log x
. (3·14)

Before turning to lower bounding �1 and upper bounding �2, let us discuss some choices
for w that can be found from the literature.

Example 3·4.

(i) Taking w(α) = 0 and u = v, we obtain the trivial weights WTrivial(n) = 1. Hence
(A2) holds with R = �v − 1�. Trivial weights with switching were used at least in
[10] and [18].

(ii) Taking v > u and w(α) = 1
2 · 1α∈[1/v,1/u], we obtain the Kuhn type weights

WKuhn(n) = 1 −
∑
p|n

x1/v≤p<x1/u

1

2
.

Here WKuhn(n)1(n,P(x1/v))=1 ≤ 0 unless n has all its prime factors greater or equal than
x1/v and at most one distinct prime factor in [x1/v, x1/u). Hence (A2) holds with R =
�u(1 − 1/v)�. Kuhn type weights with switching have been used for detecting P2

numbers, starting from the work of Chen [2].

(iii) Taking w(α) = λ(1 − uα) · 1α∈[1/v,1/u] for some λ > 0, we obtain Richert’s weights

WRichert(n) = 1 − λ
∑
p|n

x1/v≤p<x1/u

(
1 − u

log p

log x

)
.

In order to determine R notice that, for n ≤ x with (n, P(x1/v)) = 1, we have

WRichert(n) ≤ 1 − λ
∑
p|n

(
1 − u

log p

log x

)
= 1 − λ

(
ω(n) − u

log n

log x

)

≤ 1 − λ(ω(n) − u).

(3·15)

Hence Assumption (A2) holds for R ≥ �1/λ + u − 1�. Switching with Richert’s
weights was first utilised by Vaughan [14] and then used for instance in [8] and [13].

From now on we assume that Assumption 3·1 holds for some choices of parameters. In
the following two sections we shall lower bound �1 and upper bound �2 in order to be in a
position to prove (3·14).

4. Lower bounding �1

In this section we find a lower bound for �1. From (3·9) and (3·7) we have

�1 =
∑
n≤x

(n,P(x1/v))=1

anW(n) =
∑
n≤x

(n,P(x1/v))=1

an

⎛
⎜⎜⎜⎝1 −

∑
p|n

x1/v≤p<x1/u

wp

⎞
⎟⎟⎟⎠

=
∑
n≤x

(n,P(x1/v))=1

an −
∑

x1/v≤p<x1/u

wp

∑
m≤x/p

(m,P(x1/v))=1

amp.
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Weighted sieves with switching 11

Similarly to [4, section 25·2], we can apply the lower bound in the linear sieve (Lemma
2·5) to the first term with s = θ1v and the upper bound in the linear sieve to the inner sum of
the second term with

s = log xθ1

p

log x1/v
= θ1v − v

log p

log x
.

This way, we obtain

�1 ≥ X1

⎛
⎝f (θ1v) −

∑
x1/v≤p<x1/u

g1(p)

p
w

(
log p

log x

)
F

(
θ1v − v

log p

log x

)⎞⎠

·
∏

p<x1/v

(
1 − g1(p)

p

)
+ o

⎛
⎝X1

∏
p<x1/v

(
1 − g1(p)

p

)⎞⎠ .

(4·16)

Notice first that since g1 satisfies (2·3), we have, for any z > w ≥ 2,

∑
w≤p<z

g1(p)

p
= log

( ∏
w≤p<z

exp

(
g1(p)

p

))
≤ log

⎛
⎝ ∏

w≤p<z

(
1 − g1(p)

p

)−1
⎞
⎠

≤ log
log z

log w
+ O

(
1

log w

)
=

∑
w≤p<z

1

p
+ O

(
1

log w

)
.

Now since w and F are Lipschitz functions in the relevant range, covering [x1/v, x1/u] by
� log x/log log x intervals of the type [y, y log x], this implies that

∑
x1/v≤p<x1/u

g1(p)

p
w

(
log p

log x

)
F

(
θ1v − v

log p

log x

)

≤
∑

x1/v≤p<x1/u

1

p
w

(
log p

log x

)
F

(
θ1v − v

log p

log x

)
+ O

(
1

log log x

)
.

Furthermore, arguing as in Section 2·1, we see that

∑
x1/v≤p<x1/u

1

p
w

(
log p

log x

)
F

(
θ1v − v

log p

log x

)

= (1 + o(1))
∫ 1/u

1/v

w(α)

α
F (v (θ1 − α)) dα.

Hence, by recalling the estimation (4·16), we derive

�1 ≥ X1

(
f (θ1v) −

∫ 1/u

1/v

w(α)

α
F (v (θ1 − α)) dα + o(1)

) ∏
p<x1/v

(
1 − g1(p)

p

)
. (4·17)
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12 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

5. Upper bounding �2

We now turn our attention to �2. By (3·10) and (3·11)

�2 ≤
∑

x1/v≤P≤x1/(S+1)

P=2jx1/v

∑

≤x

bP,
1
∈P.

Applying the upper bound of the linear sieve with s = 2θ2(log P/log x) ∈ (0, 2) and using
Assumptions (A4) and (A5), we derive

�2 ≤ (1 + o(1))
∑

x1/v≤P≤x1/(S+1)

P=2jx1/v

2eγ

2θ2( log P
log x )

X2

(
log P

log x

) ∏
p<x1/2

(
1 − g2(p)

p

)

= eγ (1 + o(1))
X1∑
p≤x 1

∏
p<x1/2

(
1 − g2(p)

p

)

·
∑

x1/v≤P≤x1/(S+1)

P=2jx1/v

1

θ2( log P
log x )

∑
p1m≤x

P<p1≤2P
p|m =⇒ p>p1
S≤�(m)≤R−1

(
|μ(m)|W+

P (m) + Cw

log x

)
.

Since θ2 : [1/v, 1/(S + 1)] → [δ, 1) is Lipschitz we have, for p1 ∈ (P, 2P],∣∣∣∣∣∣
1

θ2

(
log P
log x

) − 1

θ2

(
log p1
log x

)
∣∣∣∣∣∣=

∣∣∣θ2

(
log p1
log x

)
− θ2

(
log P
log x

)∣∣∣
θ2

(
log P
log x

)
θ2

(
log p1
log x

) = O

⎛
⎜⎝ 1

θ2

(
log P
log x

)2
log x

⎞
⎟⎠ .

Furthermore, since w is Lipschitz, we have, for p1 ∈ (P, 2P], W+
P (m) = W+(pm) +

O(1/ log x). Hence we obtain

�2 ≤ eγ X1∑
p≤x 1

∏
p<x1/2

(
1 − g2(p)

p

)
U2 + o

⎛
⎝X1

∏
p<x1/2

(
1 − g2(p)

p

)⎞⎠ , (5·18)

where

U2 :=
∑

p1m≤x
p1≥x1/v

p|m =⇒ p>p1
S≤�(m)≤R−1

|μ(m)|W+(p1m)

θ2( log p1
log x )

. (5·19)

Now our main task in upper bounding �2 is understanding U2.
The most convenient way to evaluate U2 depends on u, v, and w. In the following two

subsections we study U2 in two important cases, first when R is rather small and second when
all prime divisors of m are at least x1/u. In the first case we end up with (R − 1) -fold integrals
that can be numerically calculated whereas in the second case we have W+(p1m) = W+(p1)
and we can evaluate the sum over m using Lemma 2·3. In Section 8, we will evaluate U2 in
a way that is useful in some more general cases.

In Sections 5·2 and 8, it is important to make the following observation: for some weights
wp it is helpful to write m = k
, where all prime factors of k are strictly smaller than x1/u and
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Weighted sieves with switching 13

all prime factors of 
 are at least x1/u. Noticing that W(p1m) = W(p1k), we see that

U2 =
∑

p1k≤x, p1≥x1/v

p|k =⇒ p∈(p1,x1/u)

W+(p1k)

θ2( log p1
log x )

∑

≤x/(p1k), p|
 =⇒ p≥max{x1/u,p1}

S−�(k)≤�(
)≤R−1−�(k)

|μ(p1k
)|. (5·20)

5·1. Evaluating U2 when R is small

We will present a way to calculate U2 that holds in general but is most efficient numeri-
cally when R is small, as it involves the calculation of an (R − 1)-fold integral. It should be
compared to the analysis of Section 8.

We write in (5·19) m = p2 · · · pJ with pJ > . . . > p2 > p1 and J ∈ {S + 1, . . . , R}, so that

U2 =
R∑

J=S+1

∑
p1···pJ≤x

pJ>···>p1≥x1/v

(
1 −∑

p|p1···pJ
w( log p

log x )
)+

θ2( log p1
log x )

,

where (y)+ = max{y, 0}. Rearranging, we obtain

U2 =
R∑

J=S+1

∑
p1···pJ−1≤x/pJ−1

pJ−1>···>p1≥x1/v

1

θ2( log p1
log x )

∑
pJ≤ x

p1···pJ−1
pJ>pJ−1

⎛
⎝1 −

∑
p|p1···pJ

w

(
log p

log x

)⎞⎠
+

. (5·21)

Let us show that, now that we have added the condition p1 · · · pJ−1 ≤ x/pJ−1, removing
the condition pJ > pJ−1 yields an error of size O(x/(log x)2). Indeed by the prime number
theorem and rearranging,

R∑
J=S+1

∑
p1···pJ−1≤x/pJ−1

pJ−1>···>p1≥x1/v

∑
pJ≤ x

p1···pJ−1
pJ≤pJ−1

1 �
R∑

J=S+1

∑
p1···pJ−2≤x/p2

J−2

pJ−2>···>p1≥x1/v

∑
pJ−1≤( x

p1···pJ−2
)

1
2

pJ−1

log x

�
R∑

J=S+1

∑
p1···pJ−2≤x/p2

J−2

pJ−2>···>p1≥x1/v

x

p1 · · · pJ−2(log x)2
� x

(log x)2
.

Observe also that pJ ≤ x/(p1 · · · pJ−1 log x) makes a contribution O(x/(log x)2) to U2. On
the other hand, when x/(p1 · · · pJ−1 log x) < pJ ≤ x/(p1 · · · pJ−1), since w is Lipschitz, we
may approximate

w

(
log pJ

log x

)
= w

(
log x

p1···pJ−1

log x

)
+ O

(
log log x

log x

)
. (5·22)

Hence, by using (5·22) and then the prime number theorem, the sum over pJ in (5·21)
(with the condition pJ > pJ−1 removed) equals

x ·
(

1 −∑
p|p1···pJ−1

w
(

log p
log x

)
− w

(
log x

p1···pJ−1
log x

))+

p1 · · · pJ−1 log x
p1···pJ−1

+ O

(
x log log x

(log x)2p1 · · · pJ−1

)
.
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14 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

Substituting the above expression into (5·21) and arguing as in Section 2·1 we obtain that

U2 = x

log x

R∑
J=S+1

∫
· · ·

∫
αJ−1>...>α1>1/v∑J−1

j=1 αj≤1−αJ−1

(
1 −∑

α∈{α1,...,αJ−1,1−∑J−1
j=1 αj} w (α)

)+

θ2(α1)α1 · · · αJ−1(1 −∑J−1
j=1 αj)

dα1 · · · dαJ−1

+ O

(
x log log x

(log x)2

)
.

(5·23)

We shall use this formula in Section 6·1.

5·2. Evaluating U2 when k = 1

Recall that in (5·20) we have p1 ≥ x1/v and all the prime factors of k are from the interval
(p1, x1/u). Therefore, in Example 3·4(i)–(ii), W+(p1k) �= 0 only when k = 1. In such case,
Lemma 2·3 gives

U2 ≤
∑

x1/v≤p1≤x1/(S+1)

W+(p1)

θ2( log p1
log x )

CS

(
log x

p1

log max{x1/u, p1}

)
x

p1 log x
p1

+ O

(
x

(log x)2

)
.

Arguing as in Section 2·1, we see that

U2 = x

log x

∫ 1/(S+1)

1/v

(1 − w(α))CS

(
min{u(1 − α), 1−α

α
}
)

θ2(α)α(1 − α)
dα + O

(
x

(log x)2

)
.

In case u ≥ S + 1, we obtain

U2 = x

log x

⎛
⎝∫ 1/u

1/v

(1 − w(α))CS(u(1 − α))

θ2(α)α(1 − α)
dα +

∫ 1/(S+1)

1/u

CS

(
1−α
α

)
θ2(α)α(1 − α)

dα

⎞
⎠

+ O

(
x

(log x)2

)
.

(5·24)

We shall use this formula in Sections 6·2 and 6·3.

6. Case study: Diophantine approximation with a prime and an almost-prime

In this section we demonstrate what different choices of weights give in the problem
addressed in Theorem 1·1. We will assume ρ ∈ (0, 1/5) — in any case larger ρ are out of
reach.

Following Harman [8, section 2], we first rationalise the problem. Recall we want to find
infinitely many solutions to

|λ0 + λ1p + λ2P3| < p−ρ

with λ0 ∈R and λ1, λ2 ∈R \ {0} such that λ1/λ2 is negative and irrational. By dividing by
−λ2, we can clearly assume that λ1 > 0 and λ2 = −1 if we increase ρ by ε′ > 0. Hence we
look for solutions to

|λ0 + λ1p − P3| < p−ρ . (6·25)
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Weighted sieves with switching 15

Moreover, let a/q be a convergent to the continued fraction for λ1 and let X = q8/5. We
assume that q is large in terms of λ0, λ1, 1/λ1. We can write λ0 = b/q + ν with b ∈Z and
|ν| < 1/q. We set x = max{X, (aX + b)/q} and focus on finding (p, P3) ∈ ([1, x] ∩Z)2 such
that (6·25) holds.

With our choices of parameters |1/q + p/q2| � X− 1
4 for p ≤ X and thus it suffices to show

that the number of solutions to

∣∣∣∣bq + a

q
p − P3

∣∣∣∣< X−ρ

2

tends to infinity with X, where p ≤ X and P3 ≤ (aX + b)/q. Thereupon, we define

A :=
{

(n1, n2) ∈ (Z∩ [1, x])2 :

∣∣∣∣bq + a

q
n1 − n2

∣∣∣∣< X−ρ

2

}
.

Let us write now ‖y‖ for the distance from y to the nearest integer(s) and [y] for the nearest
integer to y when ‖y‖ �= 1/2. As our aim is to find a pair (p, P3) ∈A, we set S = 3. Notice
that

an =
∑

(p,n)∈A
1 =

{
1 if n =

[
b+pa

q

]
for some p ≤ X with‖ b+pa

q ‖ < X−ρ

2 ;

0 otherwise,

so that an is the characteristic function of the set A introduced in [8, section 2].
We use the letters η and ε for arbitrarily small positive numbers and allow implied con-

stants to depend on them. Thus, [8, lemma 9] tells us that assumption (A1) holds with
θ1 = 1/3 − ρ − ε, g1 = 1, and X1 = X−ρ

∑
p≤X 1.

Let us next verify Assumption (A3). First note that by estimating trivially anp2 ≤ 1, we
have

∑
p≥x1/3

∑
n≤x/p2

(n,P(x1/v))=1

anp2 ≤
∑

d≥x1/3

x

d2
� x1− 1

3 ≤ X1

2(log x)2
, (6·26)

where we have used that x � X and that ρ < 1/5. On the other hand

∑
x1/v≤p<x1/3

∑
n≤x/p2

(n,P(x1/v))=1

anp2

≤
∑

x1/v≤p<x1/3

∣∣∣∣
{

(m, n) ∈ ([1, x] ∩Z)2 :

∣∣∣∣bq + a

q
m − p2n

∣∣∣∣< X−ρ

2

}∣∣∣∣
≤

∑
x1/v≤p<x1/3

∣∣∣∣
{

m ≤ x :

∥∥∥∥ b

qp2
+ a

qp2
m

∥∥∥∥<
X−ρ

2p2

}∣∣∣∣ .

Splitting b + am into residue classes (mod qp2), we see that this is
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16 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

≤
∑

x1/v≤p<x1/3

∑
|k|≤qp2· X−ρ

2p2

∑
m≤x

b+am≡k (mod qp2)

1

≤
∑

x1/v≤p<x1/3

p�a

(
qX−ρ + 1

) ( x

qp2
+ 1

)
+

∑
x1/v≤p<x1/3

p|a

∑
|k|≤ qX−ρ

2
p|k−b

x

q

≤ 2
∑

x1/v≤p<x1/3

(
xX−ρ

p2
+ qX−ρ

)
+

∑
x1/v≤p<x1/3

p|a

(
qX−ρ

p
+ 1

)
x

q

≤ x1−1/vX−ρ + qx1/3X−ρ + vx1−1/vX−ρ + v
x

q
≤ X1

2(log x)2
.

Now Assumption (A3) follows by combining this with (6·26).
On the other hand, we write, for α ∈ [1/v, 1/(S + 1)] and n ≤ (aX + b)/q,

v(α)n =

⎧⎪⎨
⎪⎩

|μ(m)|W+
xα (m) + Cw

log x

if n = p1m with xα < p1 ≤ 2xα ,

p | m =⇒ p > p1, S ≤ �(m) ≤ R − 1;

0 otherwise,

so that

bxα ,
 =
∑

p1m≤x
(
,p1m)∈A
xα<p1≤2xα

p|m =⇒ p>p1
S≤�(m)≤R−1

(
|μ(m)|W+

xα (m) + Cw

log x

)
= 1‖(b+
a)/q‖<X−ρ/2 v(α)[(b+
a)/q].

Now bxα ,
 is a slight variant of A∗(α) in [8, lemma 10] — the difference is that instead of
the set N (α) in [8], we have a sequence (v(α)n). However the structure is similarly bilinear,
with support on numbers n = p1m with p1 ∈ (Xα , 2Xα] and coefficients of the type

ν(α)n = ν(α)p1m = 1p1∈P∩(Xα ,2Xα]am

with am � 1 (as in [8], there is additionally a mild cross-condition p | m ⇒ p > p1 but it can
be easily removed for instance by using Perron’s formula, see e.g. [9, section 3·2]). Hence,
similarly to [8, lemma 10], we have that (A4) holds with θ2(α) = 1

2 (1 − α) − ρ − 2η, g2 = 1.
Also,

X2(α) = X−ρq

a

∑
n≤ aX+b

q

v(α)n,

and by the prime number theorem, we see that

q

a

∑
n≤ aX+b

q

v(α)n = (1 + o(1))
∑
n≤X

v(α)n,

since X is large in terms of the size of a/q. Thus, we see that Assumption (A5) holds.
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Weighted sieves with switching 17

Next, recall that our aim is to show that

�1 − �2 � X1

log x
(6·27)

with ρ < 1/5 as large as possible. In the following sections, we are going to experiment with
different weights, inspired by Example 3·4.

Before dealing with (6·27), observe that (4·17) gives

�1 ≥ X1

log x
e−γ v

(
f (θ1v) −

∫ 1/u

1/v

w(α)

α
F (v (θ1 − α)) dα + o(1)

)
, (6·28)

where we have used Mertens’ third theorem
∏

p<x1/v

(
1 − 1

p

)
= e−γ v

log x (1 + o(1)).

6·1. Richert’s weights and Harman’s argument

Harman [8] used Richert’s weights (Example 3·4(iii)) with parameters

v = 4

θ1
, u = 1 + η

θ1
, λ = 1

5 − u − η
, (6·29)

where η > 0 is small. With the above choice of parameters, we have θ1v = 4 and
v(θ1 − α) ≤ 3 for α ∈ [1/v, 1/u]. Thus, by applying (2·4) and (2·5) and recalling that w(α) =
λ(1 − uα) · 1α∈[1/v,1/u], we derive from (6·28) that

�1 ≥ 2X1

log x

(
log 3

θ1
−
∫ 1/u

1/v

λ(1 − uα)

α(θ1 − α)
dα + o(1)

)
.

According to Example 3·4(iii), we can take R = � 1
λ

+ u − 1� = 4. Thus, upon using (5·18)
and (5·23), we obtain

�2 ≤ 2X1

log x

∫∫∫
α3>α2>α1>1/v
α1+α2+2α3≤1

(
1 − w(α1) − w(α2) − w(α3) − w(1 −∑3

j=1 αj)
)+

θ2(α1)α1α2α3(1 −∑3
j=1 αj)

dα1dα2dα3

+ o

(
X1

log x

)
.

(6·30)

Instead of evaluating this integral, Harman [8, section 3] bounded �2 using a point-
wise upper bound for WRichert(n), so his treatment of �2 corresponds to the use of trivial
weights (Example 3·4(i)). Harman obtained the pointwise upper bound by noticing that
(3·15) implies that, when n ≤ x is square-free and such that (n, P(x1/v)) = 1 and �(n) = 4,
we have

WRichert(n) ≤ 1 − λ(�(n) − u) = λ

(
1

λ
− (4 − u)

)
= λ(1 − η).

Harman [8, section 3] used this pointwise upper bound to obtain alternatively

�2 ≤ 2X1

log x

∫∫∫
α3>α2>α1>1/v
α1+α2+2α3≤1

λ

θ2(α1)α1α2α3(1 −∑3
j=1 αj)

dα1dα2dα3 + O

(
X1

(log x)2

)
. (6·31)
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18 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

This way, he obtained that (6·27) holds when ρ = 1/300 and in fact ρ = 1/150 would be
still admissible.

By using the formula (6·30) instead of (6·31), thus using Richert’s weights instead of the
trivial ones also for �2, one obtains that (6·27) holds when ρ = 1/25 keeping the choice of
parameters (6·29). It turns out to be better to choose

v = 19.2, u = 4.1, and λ = 1

5.5 − u − η
.

With these choices, we have that (S, R) = (3, 5) instead of (3, 4), so that the upper bound
for �2 following from (5·18) and (5·23) contains now a four-dimensional integral, and we
obtain ρ = 0.075.

6·2. Trivial weights

As per Example 3·4(i), we have u = v and w(α) = 0, so that by (6·28)

�1 ≥ X1

log x
e−γ v (f (θ1v) + o(1)) .

Suppose now that v > S + 1 = 4. Then, by using (5·18) and (5·24), we derive

�2 ≤ 2X1

log x

∫ 1/4

1/v

C3

(
1−α
α

)
θ2(α)α(1 − α)

dα + o

(
X1

log x

)
.

Evaluating the integrals shows that (6·27) holds when ρ = 1/16 and v = 10.8.

6·3. Kuhn’s weights and the proof of Theorem 1·1
As per Example 3·4(ii), we have w(α) = 1

2 · 1α∈[1/v,1/u], so that by (6·28)

�1 ≥ X1

log x
e−γ v

(
f (θ1v) −

∫ 1/u

1/v

1

2α
F (v (θ1 − α)) dα + o(1)

)
.

Further, by (5·18) and (5·24), we have, when u ≥ S + 1 = 4,

�2 ≤ 2X1

log x

⎛
⎝∫ 1/u

1/v

C3(u(1 − α))

2θ2(α)α(1 − α)
dα +

∫ 1/4

1/u

C3

(
1−α
α

)
θ2(α)α(1 − α)

dα + o(1)

⎞
⎠ .

Evaluating the above two integrals and taking u = 6.6 and v = 23 shows that (6·27) holds
when ρ = 0.092, which implies Theorem 1·1.

7. Proof of Theorem 3·2
Write θ = 0.267 and let parameters be as in Theorem 3·2 (in particular we apply Kuhn’s

weights). Similarly to Section 6·3

�1 ≥ X1

log x
e−γ v

(
f (θv) −

∫ 1/u

1/v

1

2α
F (v (θ − α)) dα + o(1)

)
,
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and (since u > S + 1 = 4),

�2 ≤ 2X1

log x

⎛
⎝∫ 1/u

1/v

C3(u(1 − α))

2θα(1 − α)
dα +

∫ 1/4

1/u

C3

(
1−α
α

)
θα(1 − α)

dα + o(1)

⎞
⎠ .

Evaluating the integrals with u = 6 and v = 20 we see that (3·14) holds.

8. Evaluating U2 in general

We return once more to evaluating

U2 =
∑

p1m≤x
p1≥x1/v

p|m =⇒ p>p1
S≤�(m)≤R−1

|μ(m)|W+(p1m)

θ2( log p1
log x )

=
∑

p1k≤x
p1≥x1/v

p|k =⇒ p∈(p1,x1/u)

W+(p1k)

θ2( log p1
log x )

∑

≤x/(p1k)

p|
 =⇒ p≥max{x1/u,p1}
S−�(k)≤�(
)≤R−1−�(k)

|μ(p1k
)|.
(8·32)

The analysis in Section 5·1 was most efficient when R is quite small. In Section 5·2 R was
allowed to be large as long as only k = 1 is contained in the sum. Here we consider the case
when k might have a few prime factors, and work under the following extra assumption.

(A6) We have W(n)1(n,P(x1/v))=1 ≤ 0 whenever n has more than R0 prime factors in the
interval [x1/v, x1/u).

Now Section 5·2 handles the cases R0 ∈ {0, 1} whereas the analysis in this section stays
efficient as long as R0 is rather small, which is often the case when we look for PS numbers
with a small S.

Using Lemma 2·3 to the inner sum on the right-hand side of (8·32) and separating the
contribution of 
 = 1, we have U2 ≤ U2,1 + U2,2, where

U2,1 :=
∑

p1k≤x
x1/v≤p1≤x1/u

p|k =⇒ p∈(p1,x1/u)
S≤�(k)≤R0−1

W+(p1k)

θ2( log p1
log x )

|μ(p1k)|

U2,2 :=
∑

p1k≤x
p1≥x1/v

p|k =⇒ p∈(p1,x1/u)
�(k)≤R0−1

|μ(p1k)|W+(p1k)

θ2( log p1
log x )

CS−�(k)

(
log x

p1k

log max{x1/u, p1}

)
x

p1k log x
p1k

+ O

( ∑
p1k≤x, p1≥x1/v

p|k =⇒ p∈(p1,x1/u)

x

p1k(log x)2

)
.

In principle we could evaluate also the sums over k by looking for a recursive asymptotic
formula for the number of integers with all prime factors in a given interval, and using
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20 K. MATOMÄKI AND S. ZUNIGA–ALTERMAN

partial summation — however, the outcome would look quite formidable. Instead, we recall
that the functions CS−�(k) are defined through recursion in Section 2·2 and can be evaluated
quite fast. With that numerical remark at hand, we may work out an asymptotic formula
via splitting U2,1 and U2,2 according to the number of prime factors of k and then using the
prime number theorem.

We write k = p2 · · · pJ and obtain

U2,1 =
R0∑

J=S+1

∑
p1···pJ≤x

x1/v≤p1<...<pJ<x1/u

(
1 −∑

p|p1···pJ
w( log p

log x )
)+

θ2( log p1
log x )

=
R0∑

J=S+1

∑
p1···pJ−1≤x/pJ−1

x1/v≤p1<...<pJ−1<x1/u

1

θ2( log p1
log x )

∑
pJ≤ x

p1···pJ−1

pJ−1<pJ<x1/u

⎛
⎝1 −

∑
p|p1···pJ

w

(
log p

log x

)⎞⎠
+

.

Here adding the condition p1 · · · pJ−1 ≥ x1−1/u introduces an error of the size

�
∑

n≤x1−1/u

(n,P(x1/v))=1

∑
pJ<x1/u

1 � x

(log x)2
.

Using similar arguments to Section 5·1 it is not difficult to see that we can, with a negligible
error, also remove the condition pJ−1 < pJ and make the approximation (5·22). Hence, U2,1

equals

R0∑
J=S+1

∑
x1−1/u≤p1···pJ−1≤x/pJ−1

x1/v≤p1<...<pJ−1<x1/u

(1 − F(p1, ..., pJ−1))+

θ2( log p1
log x )

∑
pJ≤ x

p1···pJ−1

1 + o

(
x

log x

)
,

where

F(p1, ..., pJ−1) :=
∑

p|p1···pJ−1

w

(
log p

log x

)
+ w

(
log x

p1···pJ−1

log x

)
.

Arguing as in Section 2·1 we see that

U2,1 = x

log x
(M1 + o(1)),

where M1 equals

R0∑
J=S+1

∫
· · ·

∫
1
v <α1<...<αJ−1<

1
u

1− 1
u ≤∑J−1

j=1 αj≤1−αJ−1

(
1 −∑

α∈{α1,...,αJ−1,1−∑J−1
j=1 αj} w (α)

)+

θ2(α1)α1 · · · αJ−1(1 −∑J−1
j=1 αj)

dα1 · · · dαJ−1.
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Weighted sieves with switching 21

In U2,2 we separate the case p1 ≥ x1/u (in which case k = 1) and argue similarly. We
obtain

U2,2 = x

log x
(M2 + o(1)),

where

M2 :=
∫ 1/(S+1)

1/u

CS

(
1
α

(1 − α)
)

θ2(α1)α1(1 − α1)

+
R0∑

J=1

∫
· · ·

∫
1
v <α1<...<αJ<

1
u∑J

j=1 αj≤1− S−J
u

(
1 −∑

α∈{α1,...,αJ} w (α)
)+

CS+1−J(u(1 −∑J
j=1 αj))

θ2(α1)α1 · · · αJ(1 −∑J
j=1 αj)

dα1 · · · dαJ .

Note that our work in Section 5·2 corresponds to the case R0 = 1 and, naturally, the result is
the same in this case.
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