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Abstract

Binding sites are key components of biomolecular structures, such as proteins andRNAs, serving
as hubs for interactions with other molecules. Identification of the binding sites in macromol-
ecules is essential for structure-based molecular and drug design. However, experimental
methods for binding site identification are resource-intensive and time-consuming. In contrast,
computational methods enable large-scale binding site identification, structure flexibility ana-
lysis, as well as assessment of intermolecular interactions within the binding sites. In this review,
we describe recent advances in binding site identification using machine learning methods; we
classify the approaches based on the encoding of the macromolecule information about its
sequence, structure, template knowledge, geometry, and energetic characteristics. Importantly,
we categorize the methods based on the type of the interacting molecule, namely, small
molecules, peptides, and ions. Finally, we describe perspectives, limitations, and challenges of
the state-of-the-art methods with an emphasis on deep learning-based approaches. These
computational approaches aim to advance drug discovery by expanding the druggable genome
through the identification of novel binding sites in pharmacological targets and facilitating
structure-based hit identification and lead optimization.
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Introduction

Proteins are essential for many cellular functions, including
enzymatic activity, structural support, transport, and cell signal-
ing (Alberts, 2017). Structurally, they are large macromolecules
composed of long chains of amino acids, which fold into unique
three-dimensional shapes specific to each protein (Rodwell et al.,
2018). Their functional roles are driven by local intermolecular
interactions within specific regions called binding sites. Binding
sites play a crucial role in drug discovery. They serve as ‘hot spots’
on pharmacological targets where designed drug-like molecules
bind. Identifying novel binding sites expands the ‘druggable gen-
ome’, offering new strategies for therapeutic development and
drug discovery (Hopkins and Groom, 2002). Drug-like molecules
typically target either the orthosteric binding site, where proteins
interact with their natural ligands, or distinct allosteric binding
sites, which have garnered special interest. Allosteric sites show
higher sequence variability between protein subtypes, enabling
the design of more selective drug-like molecules compared to
those targeting orthosteric binding sites (Changeux, 2013;
Wagner et al., 2016; Lu et al., 2018). Furthermore, the binding
sites can be formed by several protein molecules at their inter-
action interface (Ferré et al., 2014; Wang et al., 2018a), opening
another opportunity for proximity-induced drug discovery (Békés
et al., 2022; Dewey et al., 2023; Liu and Ciulli, 2023; Tan et al.,
2024). While proteins are the most common pharmacological
targets, nucleic acids, particularly RNAs, are gaining increasing
interest in structure-based drug design (Chen et al., 2024; Tong
et al., 2024). RNA plays a vital role in gene regulation and
information transfer, making it an appealing target for drug
development (Warner et al., 2018). Like proteins, RNAmolecules
are highly structured and contain binding sites that can be modu-
lated by small molecules (Yu et al., 2020). Both proteins and
nucleic acids are flexible macromolecules, adopting multiple con-
formations throughout their life cycle. Accordingly, binding sites
are dynamic properties, influenced by the conformational changes
of macromolecules (Laskowski et al., 2009; Changeux and Chris-
topoulos, 2016). A single structure of a macromolecule represents
only a single point of the complete conformational space. There-
fore, it is possible to overlook binding sites in the static structures
(Di Pietro et al., 2017; Sun et al., 2020). A remarkable progress has
been made in developing experimental methods for identifying
binding sites, including fragment screening, site-directed tether-
ing (Hardy and Wells, 2004; Ludlow et al., 2015), antibody-based
techniques (Lawson, 2012), small molecule microarrays (Doyle
et al., 2016), hydrogen-deuterium exchange (Chalmers et al.,
2006), and site-directed mutagenesis (Gelis et al., 2012). However,
experimental methods are often resource-intensive and may yield
negative results. In contrast, computational approaches enable
large-scale identification of binding sites, exploration of macro-
molecular flexibility, and the ability to assess how well chemical
compounds fit into these sites.

While there are several articles describing binding site predic-
tion methods (Laurie and Jackson, 2006; Henrich et al., 2010; Leis
et al., 2010; Chen et al., 2011; Roche et al., 2015; Simões et al., 2017;
Zhao et al., 2020; Liao et al., 2022; Utgés and Barton, 2024), we
found several gaps persisting in the literature. Specifically, most of
the works focus only on protein–small molecule interactions, neg-
lecting other important binding site interaction types, such as
protein–peptide, nucleic acid–small molecules, or protein–ion.
Furthermore, while deep learning-based approaches have gained
popularity, there has been a limited discussion on their limitations,

applicability, and interpretability compared to traditional methods.
In this study, we provide a comprehensive review of computational
methods for the prediction of binding sites. We eliminate existing
gaps in the literature with a unified overview of computational
techniques across diverse binding site interaction types. The com-
putational methods are classified based on the types of binding sites
they predict: (i) protein–small molecule binding sites (Section
Protein–small molecule binding sites); (ii) protein–peptide binding
sites (Section Protein–peptide binding sites); (iii) nucleic acid–
small molecule binding sites (Section Nucleic acid–small molecule
binding sites); and (iv) protein–ion binding sites (Section Protein–
ion binding site prediction). For each type of binding site, the
corresponding methods are further divided into categories based
on the macromolecule input representation (sequence or structure)
and algorithm type (template-based, geometric, energetic, machine
learning-based, and deep learning-based). If available, we also list
the benchmarks and the performance metrics of different methods
for each category of binding sites. Finally, we conclude the review
with a discussion of current challenges and future perspectives in
the field.

Protein–small molecule binding sites

In this section, we describe computational methods for the predic-
tion of small molecule binding sites on proteins. Small molecules
are usually defined asmolecules with amass ≤ 500Da (Benet et al.,
2016) designed to interact with biological targets to modulate their
functions (Southey and Brunavs, 2023). A binding site usually has
specific geometry and physicochemical properties, making the
corresponding protein region distinguishable from the rest of the
protein surface. Thus, methods for predicting binding sites in
proteins aim to identify such regions based on the input informa-
tion (e.g., sequence, structure, or other type of information). This
section is organized as follows: first, we divided methods into two
large groups based on the representation of input protein as
sequence or structure. After that, we further split all structure-
based methods into five categories based on the type of algorithm
they use: template-based, geometric, energetic, machine learning-
based, and deep learning-based methods. Table 1 provides a list of
computational method for prediction of small molecule binding
sites on proteins along with type of approach they use.

Sequence-based

Sequence-based methods utilize sequence or sequence-driven
information about proteins. In this problem setup, the model takes
the protein sequence as input and outputs a score for each position
in this sequence , indicating whether the amino acid residue at this
position interacts with the ligand or not. Figure 1 provides a
schematic representation of the overall pipeline of sequence-based
methods. Some methods search for similar sequences in a template
database of sequences with known binders and map binding infor-
mation from them (Kauffman and Karypis, 2009; López et al., 2007;
Yang et al., 2013). The idea is supported by the study suggesting,
that in most cases the function of the unknown protein can be
identified from its sequence or structure by homology (Yao et al.,
2003). However, for the correct work of template-based methods,
there should be proteins with significant sequence identity to a
query sequence in a database (Devos and Valencia, 2000; Wilson
et al., 2000), as it was shown that proteins with <35–40% identity
may not share the same biochemical function (Todd et al., 2001).
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The majority of sequence-based methods generate descriptors for
each position in the input sequence. The feature vector can be
composed of multiple different descriptors: evolutionary informa-
tion comprised of a position-specific scoring matrix (PSSM) or
conservation score; tabular physicochemical properties of amino
acid residues on specified position: hydrophobicity, polarity, solv-
ation potential, residue interface propensities, net charge, average
accessible surface area (ASA), values from the AAindex
(Kawashima et al., 2007) database, and others. Note, that one can
also utilize structural features predicted from sequence using other
tools (including ML ones) to generate more sophisticated feature
vectors; for example, solvent accessible solvent area (SASA)(Dor
and Zhou, 2007; Garg et al., 2005; Yuan and Huang, 2004; Ahmad
et al., 2003; Adamczak et al., 2004; Heffernan et al., 2015), second-
ary structure information (Faraggi et al., 2012; Yaseen and Li, 2014;
Lin et al., 2005; Bondugula and Xu, 2007; Cheng et al., 2007; Pei and
Grishin, 2004), dihedral angles (Wood and Hirst, 2005; Dor and
Zhou, 2007; Xue et al., 2008; Heffernan et al., 2015; Lyons et al.,
2014), etc. The feature vectors are then used as inputs into the
machine learning algorithm. In somemethods, feature vectors from
several consecutive amino acid residues (typically between 7 and
25 residues) are processed together to form a new feature vector
(Chen et al., 2014, 2015). One can feed the feature vectors to a
classical classification ML model, such as support vector machine
(SVM) (Cortes and Vapnik, 1995) or random forest (RF) (Ho,
1995), which outputs probability scores for the amino acid residues
to interact with the ligand (Kauffman and Karypis, 2009; Chen
et al., 2014, 2015; Yu et al., 2015; Lu et al., 2019). Other methods are
based on larger DL models, such as 1D-CNN, GRU, or LSTM,
feeding the whole sequence at once (Cui et al., 2019; Lee and Nam,
2022) and also predicting a probability score for each position.

Recently, large pre-trained language models have advanced many
tasks in the field of natural language processing (NLP). Protein
sequences can be viewed as a ‘sentence’with amino acid residues as
‘words’, and approaches similar to ones fromNLP can be applied to
them. This idea brought the development of several transformer-
based (Vaswani et al., 2017) models, such as ESM (Lin et al., 2023),
ProtTrans (Elnaggar et al., 2021) or ProteinBert (Brandes et al.,
2022). Most of these models utilize BERT-like (Devlin et al., 2018)
architectures and were trained on huge databases in a self-
supervised manner for the prediction of masked tokens in
sequence. It was shown that such protein language models (PLM)
can capture structural information, such as secondary structure or
residue-residue contacts (Rives et al., 2021). The sequence or amino
acid residue embeddings derived from these models can be used as
feature vectors in ML or DL models to predict different types of
binding sites (Li et al., 2023d).

Template-based

The template-based methods operate with a database of protein
complexes with known binding sites (Figure 2). Then, for the query
protein, they search for similar proteins and retrieve information
about binding sites from them.

Some methods rely on a global comparison of a query structure
against the template structures, then superimpose known ligands or
positions of binding residue position from the identified similar
templates (Brylinski and Skolnick, 2008; Wass et al., 2010; Yang
et al., 2013; Gao et al., 2016). However, methods that rely on global
comparison canmiss non-conserved binding sites, as some proteins
bind the same molecule at sites with different amino acid patterns
(Moodie et al., 1996; Denessiouk et al., 2001). Other template-based

ML/DL

DL

Input sequence

Feature vectors

Moving window

LM
sequential /

physicochemical
properties

Alignment against template database

Figure 1. Schematic presentation of the sequence-basedmethods. The top part demonstrates the pipeline for a template-based approach: the target sequence is aligned against a
database of template sequences with known binding residues, and the output binding residues are defined by the consensus score from the alignment. The bottom part
demonstrates the pipeline for ML or DL methods. First, the feature vectors (e.g., sequence or physicochemical properties) or the embeddings (e.g., using language models) are
calculated. Then, a method uses a moving window across the sequence and feeds feature vectors for each position into an ML or DL model outputting a binding score for each
position, or utilizing a larger DL model to get binding scores for each position simultaneously.
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methods incorporate more complicated local comparisons of sub-
structures or surface patches (Figure 2). For example, one uses
geometric hashing to compare two sets of graph vertices represent-
ing the query and template protein structures. These vertices can be
centers of 3D cells (Rinaldis et al., 1998), surface residues (Schmitt
et al., 2002), surface vertices (Rosen et al., 1998), surface patches
(Shulman-Peleg et al., 2004), conserved residues (Roy et al., 2012),
or all atoms (Barker and Thornton, 2003; Gold and Jackson, 2006).
Somemethods utilize themaximum clique detectionmethod (Bron
and Kerbosch, 1973) to compare the two sets of residues (Lee and
Im, 2013; Viet Hung et al., 2015; Konc and Janežič, 2010) or
surfaces (Kinoshita and Nakamura, 2005). Other use sub-graph
isomorphism (Ullmann, 1976) for the comparison of two sets of
pseudo-atoms representing residue side chains (Spriggs et al., 2003)
or calculate root-mean-square-deviation (RMSD) between spatially
neighboring sets of residues in the query and the template (Stark
et al., 2003). There are also many approaches that use geometric
methods to identify pockets in the query protein structure, and then
provide a method to compare two binding sites. The comparison
methods can be divided into alignment-based or alignment-free.

The alignment-based methods calculate alignment for each pair of
binding sites to estimate their similarity and are usually computa-
tionally demanding. On the other hand, alignment-free methods
calculate translation- and rotation-invariant descriptors, which can
be compared relatively fast. These methods are much faster than
alignment-based approaches, but their results may be difficult to
interpret (we refer the reader to this review on binding site com-
parison methods (Eguida and Rognan, 2022)). Nonetheless, the
template-based methods in general have higher interpretability,
compared to the ML ones. However, the template-based methods
are resource-consuming, as for each query protein one needs to
screen the entire database, and the screening time increases as the
database grows. They also strongly depend on the database itself – if
the database lacks certain type of binding site, the method will not
be able to identify such a binding site in a query.

Geometric

Geometric methods identify pockets from the protein shape by
analyzing occupancy grids, surfaces, or probes, such as spheres

Figure 2. Schematic presentation of the structure template-based methods. In the first stage, the target is screened against a database of template structures with known binding
sites. In the second stage, the output prediction is obtained based on the most similar template structures with respect to the target.

4 Kozlovskii and Popov

https://doi.org/10.1017/S003358352500006X Published online by Cambridge University Press

https://doi.org/10.1017/S003358352500006X


placed around the protein. Figure 3 demonstrates a schematic
overview of geometric methods for binding site detection.

SurfNet (Laskowski, 1995) is one of the first geometric algo-
rithms; it generates an occupancy grid for protein atoms and
outlines the surface around the occupied voxels to determine the
cavities as the binding sites. Many other methods are based on a
very similar approach, which generates an occupancy grid and, for
each empty grid point, calculates the fraction of directions that are
enclosed by protein atoms or surfaces (Levitt and Banaszak, 1992;
Hendlich et al., 1997; Huang and Schroeder, 2006; Weisel et al.,
2007; Halgren, 2009; Marchand et al., 2021) (see Figure 3a).
POCKET (Levitt and Banaszak, 1992) casts rays along three direc-
tions and determines, if a ray goes through protein–empty points–
and then again protein; in this case, the point is considered to be in
the pocket. Similarly, LIGSITE (Hendlich et al., 1997) casts rays
along seven directions (diagonals added), and if the number of
intersections is higher than a threshold, the point is a pocket point.

PocketPicker (Weisel et al., 2007) calculates buriedness for each
grid point, scans into 30 directions with rays of length 10Å and
width 0.9Å, and counts the number of intersections. SiteMap
(Halgren, 2009) calculates the fraction of 110 rays striking the
receptor within 8Å distance. SiteMap also calculates multiple
descriptors to evaluate the druggability of the detected pocket.
Similarly, CAVIAR (Marchand et al., 2021) casts rays in 14 direc-
tions, selects relevant grid points surrounded by protein atoms, and
clusters the grid points forming a binding site. Another common
approach involves generating two representations of the protein,
corresponding to the spheres probes with two different radii placed
around the protein (Peters et al., 1996; Kawabata and Go, 2007).
More specifically, APROPOS (Peters et al., 1996) creates a Delau-
nay representation of a protein and, then, rolls spheres of two
different radii over the structure to remove some of the sides.
Shapes removed by small spheres and not removed by large ones
are considered pockets (see Figure 3b). Similarly, PHECOM

a

b

c

Figure 3. Schematic overview of geometric methods for binding site detection. (a) Generation of occupancy grid and calculation of the fraction of directions enclosed by the target
macromolecule for each empty grid point (used, for example, in POCKET (Levitt and Banaszak, 1992), LIGSITE (Hendlich et al., 1997), PocketPocker (Weisel et al., 2007), SiteMap
(Halgren, 2009), CAVIAR (Marchand et al., 2021)). (b)Rolling of sphereswith twodifferent radii around the targetmacromolecule. The sphereswith a larger radius remove the smaller
ones. The remaining small spheres are clustered to get final predictions (used, for example, in APROPOS (Peters et al., 1996), PHECOM (Kawabata and Go, 2007), (Masuya and Doi,
1995), GHECOM (Kawabata, 2010), and POCASA (Yu et al., 2010)). (c) The addition-removal algorithm, is used in Delaney (1992), Kleywegt and Jones (1994), and Brady and Stouten
(2000). Each step consists of adding and removing the surface-exposed points until the convergence. The target macromolecule is represented with a lilac surface, and grid points
and probe spheres are shown with circles.
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(Kawabata and Go, 2007) and (Masuya and Doi, 1995) roll spheres
around protein atoms, and GHECOM (Kawabata, 2010) and
POCASA (Yu et al., 2010) place spheres on a 3D grid. Small spheres
are removed, if they intersect with large ones; after that, clusters of
small spheres are considered as pockets. In a similar approach (Kim
et al., 2008), one generates inner and outer surface meshes through
Voronoi diagrams with different probe radii; the pocket is then
defined as the cavity between inner and outer meshes. Note, that
multiple methods (Delaney, 1992; Kleywegt and Jones, 1994; Brady
and Stouten, 2000) comprise an addition-removal iterative process,
where at each step a buffer around the protein is added and some of
the points are removed again until the pocket is identified or there is
no change after the iteration (see Figure 3c). One can use grid-based
approaches, where the flood fill algorithm is performed after each
addition until the pocket points become enclosed and cannot be
removed (Delaney, 1992; Kleywegt and Jones, 1994). DoGSite
(Volkamer et al., 2010) generates a 3D occupancy grid for the
protein, then repeatedly applies Gaussian filters to remove points
with values exceeding a specified threshold; the remaining grid
points are clustered to form the binding site. Other heuristics can
also be applied; for example, LISE (Xie andHwang, 2012) generates
sets of triangle motifs with assigned scores from protein atoms.
Then, the method generates a 3D grid around the protein, and for
each empty point, the sum of scores from triangles whose centers lie
inside the voxel is assigned. In the next step, for each empty point,
the score is recalculated as a sum of scores of all empty points within
a sphere of radius 11Å. Finally, top-score points are selected as final
pocket centers. Another example is PASS (Brady and Stouten,
2000), which adds spheres around triplets of protein atoms and
filters them until no spheres can be added. There are many other
types of geometric approaches that treat protein structures as 3D
object and apply geometry-based algorithms to detect binding sites.
CAST (Binkowski et al., 2003; Liang et al., 1998) creates a Delaunay
representation of a protein and then applies a flow theory to
determine pockets. In Del Carpio et al. (1993), the authors utilized
an iterative process in which they first calculate a protein center,
identify the closest surface atom, and flag all surface atoms in sight
from this atom. Further, the next closest unflagged surface atom is
selected and the process repeats until all atoms are flagged. In
Coleman and Sharp (2006), the method calculates the surface and
the convex hull, which is defined as the smallest convex polyhedron
containing all the surface points. For surface points, it calculates
‘travel depth’, as the minimal distance from a point to the convex
hull, and determines pockets as points with higher ‘travel depth’. In
Bock et al. (2007), the method generates a protein surface, and
surface points calculates ‘spin-images’ from classical computer
vision algorithms, fromwhich the largest spheres that can be placed
on a particular surface point without intersection with other sur-
faces are defined. Then the method clusters large spheres and
outputs them as predicted pockets. MSPocket (Zhu and Pisabarro,
2011) generates a surface and converts it to a graph, where two
surface points are considered adjacent if moving these points along
their normals makes them closer to each other. Then this graph is
pruned, and surface points in the left subgraphs represent final
pockets. CurPocket (Liu et al., 2020b) generates a solvent-accessible
surface for a protein, calculates curvature at each point, and then
clusters points with high curvature. In Xie and Bourne (2007), the
method constructs a Delaunay tessellation of protein Cα atoms.
Then it removes too long edges and determines edges for protein
boundaries. And, finally, it calculates surface directions and geo-
metric potentials, from which the binding site is predicted. Fpocket
(Le Guilloux et al., 2009) is the most widely used geometric method

for binding pocket detection. It operates via alpha spheres. An alpha
sphere is a sphere that contacts with four atoms and does not
contain atoms inside. Intuitively, small spheres should lie inside
the protein, large spheres are outside, and cavities should corres-
pond to spheres of intermediate radii. So, the algorithm consists of
the following steps: (i) detection of alpha spheres via Voronoi
tessellation; (ii) filtering out too small and too large spheres;
(iii) clustering alpha spheres; and (iv) calculation of additional
descriptors and pocket re-ranking. It is worth mentioning, that
there are other geometric methods that rely on the previously
mentioned assumption, that residues in protein functional sites
are more conserved. These methods map conservation scores of
residues onto surface points of respective residues, and cluster the
most conserved points in space to get binding sites (Glaser et al.,
2006; Pupko et al., 2002; Armon et al., 2001; Nimrod et al., 2008;
Panchenko et al., 2004; Capra et al., 2009).

Geometry-basedmethods are usually faster than othermethods,
but they often have lower accuracy due to the lack of information
about the physicochemical and energetic properties of a protein
structure.

Energetic

Most energetic methods operate with atom probes placed in a 3D
grid around the protein and determine low-energy clusters (see
Figure 4). In Goodford (1985), the authors proposed the first probe-
based method, searching for energetically favorable positions on 3D
maps for three types of probes: water probe, amino group NH+

3 , and
methyl group CH3. For this, they used three-term energy functions
including Lennard-Jones, electrostatic, and hydrogen-bond poten-
tials. In Ruppert et al. (1997), the authors used another three types of
probes (hydrogen atom for hydrophobic interaction, NH for hydro-
gen bond donor, and C=O for hydrogen bond acceptor probe) to
obtain clusters of the lowest-energy points on the protein surface.
DrugSite (An et al., 2004), Q-SiteFinder (Laurie and Jackson, 2005),
and PocketFinder (An et al., 2005) identify binding pockets via
calculation of potential energy maps with aliphatic carbon probe
using Lennard-Jones potential with parameters from ECEPP/3
(Nemethy et al., 1992) or GRID (Wade et al., 1993) force fields.
SiteHound (Ghersi and Sanchez, 2009; Hernandez et al., 2009)
creates maps of potential energies for six probes (methyl, phosphate
oxygen, hydroxyl oxygen, peptide nitrogen, water, and carbon),
where potential energy is calculated as a sum of van der Waals and
electrostatic interactions with parameters from GROMOS (Van Der
Spoel et al., 2005) force field. FTSite (Ngan et al., 2012; Brenke et al.,
2009) places 16 small molecular probes (ethanol, isopropanol, iso-
butanol, acetone, acetaldehyde, dimethyl ether, cyclohexane, ethane,
acetonitrile, urea, methylamine, phenol, benzaldehyde, benzene,
acetamide, and N,N-dimethylformamide) on a dense grid around
the protein, optimizes their positions with extended energy expres-
sion using CHARMM force field (Brooks et al., 1983) and obtains
low-energy clusters of probes. AutoSite (Ravindranath and Sanner,
2016) calculates affinity maps for hydrophobic (carbon) and hydro-
philic (oxygen, hydrogen) probes using the van derWaals interaction
term from AutoDock energy function (Morris et al., 2009; Huey
et al., 2007). SuperStar (Verdonk et al., 2001) uses a slightly modified
approach. This method places four different probes, NH+

3 nitrogen
atom, carbonyl oxygen atom, hydroxyl oxygen atom, and methyl
carbon atom, into the grid, and converts these maps according to
distributions of densities observed in a database of crystallographic
structures. In Tsujikawa et al. (2016), the atom probe approach in
addition takes into account the conservation of amino acid residues.
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The method places a carbon atom probe, calculates van der Waals
energies for them, and, then, weights interaction energy by conser-
vation scores of nearby amino acid residues. Another class of energy-
based methods runs MD simulations and retrieves information
about binders from trajectory analysis. OMD (Bhinge et al., 2004)
runs short MD simulations of protein in water and then determines
binding pockets as volumes, where the RMSD of solvent molecules
within the trajectory is low. SILCS (Faller et al., 2015) runs an MD
simulation of proteinwith water solvent andmultiple small molecule
fragments. It defines what protein regions are more likely to be
occupied by which small molecule types. PlayMolecule CrypticScout
(Martinez-Rosell et al., 2020) runs mixed-solvent MD with benzene
molecules and defines binding hotspots as regions with high occu-
pancy of benzene molecules or regions with low RMSD for these
molecules within the trajectory. Another approach is utilized in

MDPA (Gu et al., 2022). It is based on the assumption, that ligand
binding occurs in regions with higher conformational dynamics
(Ming and Wall, 2006). To calculate the external interaction of
proteins with test points, the method treats proteins as elastic net-
work structures and simulates interactions using connected springs.

Generally, energetic methods have higher accuracy than geo-
metric methods and high interpretability. However, they are com-
putationally expensive andmaymiss some interactions not covered
by the existing probe types.

Machine learning-based

Most machine learning-based methods can be described in the
following way. Firstly, they calculate feature vectors for amino acid
residues in the input protein; then, the method feeds the feature

a b

c d

Figure 4. Schematic presentation of the energy probe-based methods. (a) Different probes (shown as red, blue, and green circles) are placed on a 3D grid around the target
macromolecule (shown as a lilac surface) and their interaction energies with the target’s atoms are calculated. (b) The probes corresponding to the high-energy values are filtered
out. (c) The remaining probes are clustered. (d) The filtering procedure is applied to remove non-relevant clusters.

Surface points

Residues / atoms

ML

ML

Clustering
Feature
vectors

Figure 5. Schematic presentation of the machine learning-based methods. On the top, the target structure is represented as a surface, and feature vectors are calculated for the
surface points. On the bottom, feature vectors are calculated for the target’s residues or atoms. Then, an ML classifier predicts the binding scores for the points, residues, or atoms,
based on the input feature vectors. Finally, the output predictions are filtered by a score threshold and clustered.
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vectors into an ML classifier, which outputs the probability of a
residue being in the binding site. Then, themethod spatially clusters
high-scoring residues to get the binding site composition (Figure 5).
Feature vectors can contain sequential (conservation), physico-
chemical (electrostatics, hydrogen bonds, solvation energy, hydro-
phobicity, atom types), geometrical, or structural (solvent
accessibility, secondary structure, local geometry) descriptors. In
Gutteridge et al. (2003), the method identifies catalytic residues in
enzymes. It calculates multiple descriptors for each residue: con-
servation score, relative solvent accessibility, secondary structure,
and closeness to a cleft identified by Surfnet (Laskowski, 1995), and
residue depth. This feature vector is used as input for a single-layer
NN. Petrova and Wu (2006) calculates sequential and structural
properties of residues (conservation, flexibility, solvent accessibil-
ity, position on the protein surface, hydrogen bonds, secondary
structure) and classifies them using an SVM. Tong et al. (2009)
calculate electrostatic features, geometric properties, and sequence-
based conservation for each residue and classify them using a
maximum-likelihood algorithm. Qiu and Wang (2011) calculates
eight structural properties (solvent accessible surface area, solvation
energy, hydrophobicity, depth index, protrusion index, preference,
theoretical b-factor) for residues, and uses a Random Forest clas-
sifier. ISMBLab-LIG (Jian et al., 2016) first calculates 3Dprobability
density maps that describe interacting atom types around the
protein surface using pre-calculated distributions from a database.
Then, for each surface atom, the method collects a feature vector of
surface local geometry combined with properties retrieved from the
described density maps. The method uses a NN model as a classi-
fier. GRaSP (Santana et al., 2020) retrieves a set of physicochemical
properties (solvent relative accessibility, atom types, interaction
level) from an atomic graph, and then uses an extremely random-
ized tree to classify residues as binding/non-binding.

Another approach is to classify points or patches on the protein
surface instead of residues. Bradford andWesthead (2005) classifies
surface points, where for each point a feature vector consists of
seven properties: shape index, curvedness, conservation, electro-
static potential, hydrophobicity, residue interface propensity, and
solvent accessible surface area. P2Rank (Krivák and Hoksza, 2018)
generates a protein surface, and projects features calculated for
protein atoms to surface points. Afterward, it predicts the ligand-
ability of each point using an RF classifier and clusters points with
high scores. Similarly, SiteFerret (Gagliardi and Rocchia, 2023) first
calculates a set of features for surface points, incorporating infor-
mation about cavities, and then classifies them using the Isolation
Forestmethod. It is also possible to directly classify cavities detected
by a geometric method. SCREEN (Nayal and Honig, 2006) first
identifies all possible cavities on the protein surface. After that, it
calculates a large set of cavity descriptors of different types, such as
cavity size, electrostatics, hydrogen bonding, hydrophobicity,
polarity, amino acid composition, rigidity, secondary structure,
and cavity shape. An RF model classifies cavities as drug-binding/
non-drug-binding and selects a smaller fraction of relevant descrip-
tors. FEATURE (Bagley and Altman, 1995, 1996; Wei and Altman,
1998, 2003) represents a set of tools for the prediction of binding
sites of different types, such as calcium binding (Wei and Altman,
1998), ATP binding (Wei and Altman, 2003), serine protease active
sites (Bagley and Altman, 1996), and others (Liang et al., 2003). It
represents microenvironments around a protein as concentric
shells with centers placed on a grid and calculates physicochemical
properties within these shells. These properties are comparedwith a
set of features for known binding sites and non-binding sites. Then,
the Bayesian classifier (Friedman et al., 1997) is used to distinguish

binding sites from non-binding ones. There are also consensus-
based methods that retrieve predictions from multiple other
methods, including geometric, energy-based, or template-based
approaches and combine them into final predictions using an
ML-based re-scoring. For example, MetaPocket2.0 (Zhang et al.,
2011) aggregates results from eight different methods: LIGSITEcsc

(Huang and Schroeder, 2006), PASS (Brady and Stouten, 2000),
Q-SiteFinder (Laurie and Jackson, 2005), Surfnet (Laskowski,
1995), Fpocket (Le Guilloux et al., 2009), GHECOM (Kawabata,
2010), ConCavity (Capra et al., 2009), and POCASA (Yu et al.,
2010). Another example is COACH (Yang et al., 2013), which
combines prediction results from TM-SITE (Yang et al., 2013),
S-SITE (Yang et al., 2013), COFACTOR (Roy et al., 2012), FIND-
SITE (Brylinski and Skolnick, 2011), and ConCavity (Capra et al.,
2009).

ML-based methods strongly rely on the dataset construction
and calculated feature vectors, and can produce false positive
predictions – that is, identification of ‘undruggable’ regions
(Broomhead and Soliman, 2017). Moreover, even extensive feature
engineering does not guarantee capturing all the information rele-
vant to the binding site prediction.

Deep learning-based

The accumulation of large amounts of structural data and advance-
ments in deep learning methods in other fields have led to the
development of top-performing methods in structural bioinfor-
matics problems, such as protein structure prediction (Jumper
et al., 2021; Baek et al., 2021) DL-based approaches may not require
hand-crafted feature engineering and may be capable of capturing
relevant structural context by construction. To begin with, these
methods typically operate on protein structures represented as a
point cloud, a graph, or a 3D density grid. Although a graph is
typically a 2D representation of a structure, the 3D information can
be encoded as the feature vectors of graph nodes or edges. There-
fore, most of the DL-based methods can be classified based on the
structure representation, and further split into two classes: (i) where
a DL model performs segmentation using the entire graph or grid;
and (ii) where a DL model samples sub-graphs or sub-grids and
classifies whether their centers correspond to a binding site or not.
Figure 6 demonstrates a schematic representation of this idea, and
we provide more details about methods in each class below.

We start with methods that sample small 3D voxel grids around
a protein structure and classify whether the grid center corresponds
to a binding site. DeepSite (Jiménez et al., 2017) was one of the first
methods developed for predicting ligand binding sites. It represents
a protein structure as a 3D voxel grid with 1Å voxels in size, where
each voxel contains eight channels for atoms of different types:
hydrophobic, aromatic, hydrogen bond acceptor, hydrogen bond
donor, positive ionizable, negative ionizable, metal, and excluded
volume. Each channel of a voxel stores the occupancy value of
nearby atoms of the respective type, where occupancy is calculated
as n rð Þ¼ 1� exp � rvdw=rð Þ12� �

. Then, from the generated 3D
voxel grid of a protein, subgrid cubes of size 16 × 16 × 16 voxels
are sampled through a sliding window. These cubes are provided as
input into a 3DCNN,which outputs a probability score for the cube
center being closer than 4Å to the geometric center of a binding site.
In Jiang et al. (2019a), the authors utilized a similar approach but
parameterized the input voxel grid differently. They calculate four
pseudo-energy channels instead of using an occupancy-based grid:
(i) a shape channel retrieved as output from the LIGSITE (Hendlich
et al., 1997)method; (ii) a van derWaals potential energy channel of
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an -CH3 probe; (iii) a hydrogen bond potential channel using an
-OH probe; and (iv) an electric potential energy channel. Deep-
Pocket (Aggarwal et al., 2021) re-scores pockets predicted by
Fpocket (Le Guilloux et al., 2009) using a similar 3D CNN model.
For this, it uses libmolgrid (Sunseri and Koes, 2020) to obtain a
cubic 3D voxel grid of size 23.5Å with a voxel size of 0.5Å around a
pocket and passes it into a 3D CNNmodel that classifies the pocket
as ligandable or non-ligandable. After that, the method also gen-
erates a segmented representation of ligandable pockets by passing
a larger (32Å) cubic grid into another U-Net-like (Ronneberger
et al., 2015) 3D CNN. DeepSurf (Mylonas et al., 2021), CAT-Site
(Petrovski et al., 2022), and SAPocket (Wang et al., 2023c) instead
of using a sliding window, sample points on the protein surface,
calculate voxelized representations for cubic grids centered on these
points and pass these grids as input into a 3D CNN classification
model. FRSite (Jiang et al., 2019b) utilizes the faster R-CNN
approach (Ren et al., 2016): it first passes a voxelized representation
of a protein into a 3D Region Proposal Network, and further feeds
proposals into a 3DCNN for classification. BiteNet (Kozlovskii and
Popov 2020) utilizes the YOLO approach for real-time object
detection in videos (Redmon et al., 2016). It first obtains a voxelized
representation of an input protein and applies a 3D CNNmodel to
it. Themodel splits the input grid into cells, where each cell contains
predicted values for the probabilities of a binding site center being
within the cell and the center of a binding site with respect to the
cell. Kalasanty (Stepniewska-Dziubinska et al., 2020) was one of the
first methods to perform 3D segmentation of binding sites in a
single pass. The method represents a protein as a 3D grid of a
constant size of 70Å along each direction with a 2Å voxel size and
feeds it into a 3D U-Net (Ronneberger et al., 2015). There are
multiple follow-up methods of the Kalasanty approach with
adjusted 3D CNN model (Kandel et al., 2021; Li et al., 2022; Li
et al., 2023b; Nazem et al., 2021; Liu et al., 2023). PUResNet (Kandel
et al., 2021) modified the encoder in the U-Net model to ResNet.
RefinePocket (Liu et al., 2023) used an attention-enhanced encoder
and amask-guided decoder inside theU-Net. RecurPocket (Li et al.,

2022) and GLPocket (Li et al., 2023b) used a recurrent LMSER
(Least Mean Square Error Reconstruction) network with gated
recurrent refinement. DUNet (Wang et al., 2022b) added a Dense-
Net (Huang et al., 2017) encoder into the U-Net model. InDeep
(Mallet et al., 2022) used a 3D U-Net for the prediction and
segmentation of small molecule binding sites occurring on pro-
tein–protein interfaces. PointSite (Yan et al., 2022) represents a
point cloud-based segmentation approach: it constructs a point
cloud from all protein atoms, converts it into a 3D sparse grid, and
applies a segmentation model with a U-Net architecture based on
submanifold sparse convolutions.

A different approach is to consider the 3D structure of a
protein as a graph. Some methods sample points on the protein
surface or around the protein on a grid, and analyze the graph
constructed from these points, that is predicting whether a point
corresponds to a binding site or not. MaSIF (Gainza et al., 2020)
pre-calculates physicochemical properties for the whole protein
surface. Then, from this surface, the method samples patches
represented as a graph with surface points as nodes and with
surface point feature vectors as node feature vectors, containing
geometric (shape index, distance-dependent curvature) and
chemical (hydropathy, continuum electrostatics, free electrons/
protons) descriptors with additional values for geodesic coordinates.
Then, a GNN with geodesic convolutions is applied to the patch
graph with multiple orientations to obtain an embedding vector
for the input patch. The authors used this approach for different
tasks: prediction of protein–ligand binding sites, prediction of
protein–protein binding sites, and fast scanning of protein sur-
faces for identification of protein–protein binder partners. In
dMaSIF (Sverrisson et al., 2021), the authors further improved
this approach and made the method fully differentiable without
the need for memory- and computation-demanding pre-calculation
of surface descriptors. SiteRadar (Evteev et al., 2023) selects points
on a 3D grid outside of the protein, then generates a graph with
protein atoms around the selected points as the nodes, and uses a
GNN to analyze the graphs, predicting whether the point center
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Sampling of sub-graphs

Sampling of grids
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Segmentation of full grid
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Figure 6. Schematic presentation of the DL-based methods. Most of the methods utilize graph-based or voxel grid representations of the target macromolecular structure. Then,
they sample either sub-graphs or sub-grids around the structure and classify their centers as belonging to the binding site or not. Alternatively, they use segmentation models to
operate with the full graph or grid.
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belongs to a binding site or not. PocketAnchor (Li et al., 2023c)
samples a set of ‘anchor’ points around the protein, representing
potentially ligandable positions. For each ‘anchor’ point, it further
generates a graphwith protein atoms and surface points within 6Å
from the ‘anchor’ center. Atom and surface point nodes contain a
different number of geometric and chemical features. The graphs
are processed with MPNNs, outputting binding site scores for
each ‘anchor’ point. Of note, GraphSite (Shi et al., 2022) uses a
graph representation of local protein regions and utilizes GNNs
to classify ligand binding sites into 14 classes. A higher-level
approach is to provide the whole protein graph as input into a
graph neural network model for segmentation. For example,
GraphBind (Xia et al., 2021) uses residue centroids as node centers
and structural and sequential features of residues as node features
and passes the graph into a Hierarchical Graph Neural Network,
which predicts a score for each residue indicating whether it is on
the binding interface with nucleic acid. Similarly, GraphPLBR
(Wang et al., 2023d) operates on residues as nodes. FABind (Pei
et al., 2023) uses two separate GNNs, one for working with the
protein residue graph and another operating on the ligand atomic
graph. Embeddings from the two models are combined to make a
ligand-specific prediction of binding residues. GrASP (Smith
et al., 2023) builds a graph using all protein atoms within 5Å from
the surface and uses a GNN with graph attention to classify atoms
as binding or non-binding. Similarly, GU-Net (Nazem et al.,
2023) uses all protein atoms for the graph and predicts atom
scores using a U-Net-like Graph Convolutional Network (Gao
and Ji, 2019). EquiPocket (Zhang et al., 2023) builds graphs using
both protein atoms and surface points and applies GNNs with
E(3)-equivariant convolutions (Satorras et al., 2021) to identify
binding atoms. LigBind (Xia et al., 2023) demonstrated another
approach: it first pre-trains GNNs for a ligand-general binding
residue predictor and a feature extractor for ligand-residue pair
embeddings, and then fine-tunes ligand-specific binding residue
predictors for more than 1000 ligand types from the BioLip (Yang
et al., 2012) database.

Recently, models for protein structure prediction have made
significant advances. A breakthrough occurred in the 14th Crit-
ical Assessment of Protein Structure Prediction (CASP14) chal-
lenge (Kryshtafovych et al., 2021) when AlphaFold2 (Jumper
et al., 2021) achieved almost experimental accuracy in the
prediction of full-atom protein structures. AlphaFold2 takes an
MSA and structural templates as inputs and utilizes a compli-
cated deep-learning model with the newly introduced Evolution-
ary Transformer. Some approaches for binding site prediction
use these methods to generate protein structure models from
sequences alone, and retrieve structural features along with
sequential ones for each residue (Littmann et al., 2021; Ho
et al., 2021; Seo et al., 2024). Furthermore, some models extract
a structural graph from a generated protein model, where res-
idues correspond to the graph nodes and the their features
correspond to the node features. Then, the composed graph is
used as the input for a graph neural network (GNN) (Yuan et al.,
2022a; Zhang and Xie, 2023). Previously, it was shown that
AlphaFold2 can successfully predict protein–peptide structures
(Chang and Perez, 2023; Tsaban et al., 2022), but it was not clear
whether AlphaFold2 could be used for the analysis of interactions
between proteins and small molecules, as the latter were absent in
the training objective for modeling. However, in some cases,
AlphaFold2 predicts rotamers as if they were interacting with
small molecules, suggesting that it can be used to train a binding
site detection model. Moreover, as AlphaFold2 can predict

protein–peptide complexes, it can be reasoned that this model
can also be useful for the identification of interactions with small
molecules, as they or their fragments can resemble amino-acid
side chains (Polizzi and DeGrado, 2020). AF2BIND (Gazizov
et al., 2023) is constructed as follows: as input to the AlphaFold2
model, it provides a sequence of a target protein, the protein
backbone structure as a template, and 20 ‘bait’ amino acids as
individual chains, appending them to the sequence with large
offsets. The method further uses AlphaFold2 output pairwise
representations between target residues and each of the twenty
‘bait’ amino acids as input into a logistic regression model,
predicting whether a target residue is ligand binding or not.
The authors demonstrated a correlation between the chemical
properties of the small molecule ligands and the 20 ‘bait’ amino
acids.

Finally, there are methods combining multiple representations
of the protein. PocketMiner (Meller et al., 2023) uses a geometric
vector perceptron GNN (GVP-GNN) (Jing et al., 2020) and a 3D
CNN for the prediction of putative cryptic pockets. For this, the
authors generated 40-ns simulations for 37 proteins and trained the
models to predict the positions in each structure where a pocket
would open during a short simulation. The authors showed that
both GVP-GNN and 3D CNN work equally well.

Benchmarks

Most of the newest ML- and DL-based methods rely on scPDB
(Desaphy et al., 2015), PDBbind (Liu et al., 2015), or BioLip (Yang
et al., 2012) databases for training and validation. scPDB (Desaphy
et al., 2015) is a large database containing �16,000 complexes,
where each entry is annotated with calculated properties for
the ligand, cavity, and interactions. PDBbind (Liu et al., 2015) is
a curated database of protein–ligand complexes (�23,000),
with experimentally determined binding affinity. BioLip (Yang
et al., 2012; Zhang et al., 2024) contains �460,000 structures of
proteins or nucleic acids, with a total of approximately �890,000
ligands. BioLip includes a wide range of classes of macromolecules
and ligands, allowing researchers to construct various training and
validation sets. In addition, it incorporates a comprehensive pro-
cedure to select relevant ligands and includes cross-references with
many other databases (PDBbind (Liu et al., 2015), BindingDB
(Gilson et al., 2016), SIFTS (Dana et al., 2019), UniProt
(Consortium, 2019), and DrugBank (Knox et al., 2024), etc.). Note
that the provided numbers are for 2024; these are likely to increase
in future versions of the databases. Finally, other approaches rely on
training datasets compiled from PDB, followed by structure refine-
ment, clustering, and filtering of redundant structures.

There are two benchmark sets, COACH420 (Krivák and
Hoksza, 2018) and HOLO4K (Schmidtke et al., 2010), which are
widely used for the comparison of binding site detection methods.
COACH420 (Krivák and Hoksza, 2018) is a dataset of 420 single-
chain proteins containing natural compounds and drug-like lig-
ands. It was first created for the evaluation of the P2Rank method
(Krivák and Hoksza, 2018) as a subset of a test set from (Roy et al.,
2012; Yang et al., 2013), without proteins from the training set of
P2Rank. HOLO4K (Schmidtke et al., 2010), in turn, is a large set of
protein–ligand complexes. It was initially composed for the val-
idation of the PocketFinder (An et al., 2005) method and later
used for a comprehensive large-scale comparison of binding site
prediction methods (Schmidtke et al., 2010). Interestingly, ori-
ginally, it comprised apo complexes; but after the work of (Krivák
and Hoksza, 2018), a subset of holo complexes is mainly used. It is
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important to note that, although the COACH420 and HOLO4K
benchmarks are used by many methods, most of them perform
additional filtering (e.g., removing irrelevant ligands or address-
ing data leakage between the training and test sets), resulting in
slightly different subsets of COACH420 andHOLO4K. Therefore,
a direct comparison of methods based on these benchmarks may
not be as straightforward as it may seem. Nonetheless, onemay see
the performance metrics of different methods in Supplementary
Tables S2–S10.

The other benchmarks include: CHEN11 (Chen et al., 2011),
B48/U48 (Huang and Schroeder, 2006), B210 (Huang and Schroe-
der, 2006), DT198 (Zhang et al., 2011), ASTEX (Hartshorn et al.,
2007), and CASP (Lopez et al., 2009; Schmidt et al., 2011; Gallo
Cassarino et al., 2014). CHEN11 (Chen et al., 2011) is a non-
redundant dataset of 251 proteins, where each structure is the
most representative structure of a family, with a ligand superim-
posed from the closest homolog in cases where a ligand is absent in
the original structure. B48/U48 (Huang and Schroeder, 2006) is a
small dataset of pairs of apo and holo-structures of the same
protein. The Astex Diverse set (Hartshorn et al., 2007) is a small
benchmark for docking methods, which was used as the binding
site detection benchmark (Le Guilloux et al., 2009; Yan et al.,
2022). Some of the older classical methods used CASP8 (Lopez
et al., 2009), CASP9 (Schmidt et al., 2011), and CASP10 (Gallo
Cassarino et al., 2014) benchmarks to evaluate their performance
for the prediction of ligand-binding residues. However, these
benchmarks are much smaller compared to the other ones
described above. Finally, we would like to note that, while for
older methods, the most used metrics correspond to binary clas-
sification metrics derived from the residue scores, newer methods
include metrics based on the distances between the predicted
binding site center and the true binding site, as well as the overlap
of the predicted and true binding site cavity in the case of binding
site segmentation. Supplementary Section Metrics provides more
details on commonly used performance metrics for binding site
prediction methods.

Protein–peptide binding sites

Protein–protein interactions (PPIs) regulate numerous essential
biological pathways, making them a key class of pharmacological
targets (Ruffner et al., 2007). There is an increasing need to
develop inhibitors of intracellular PPIs to modulate critical bio-
logical processes. However, PPIs have long been considered dif-
ficult to target (Tsomaia, 2015). On the one hand, large biologics,
which are effective in targeting extracellular PPIs, cannot pene-
trate cell membranes to reach intracellular PPIs. On the other
hand, traditional small molecule scaffolds can cross membranes
but are often unsuitable for the large, shallow surfaces typical for
PPI interfaces (Tsomaia, 2015). PPI interfaces exhibit distinct
characteristics, such as larger contact areas (� 1500�3000Å

2

for PPI compared to � 300�1000Å
2
for protein–small molecule

interactions (Smith and Gestwicki, 2012)) and the absence of
deep binding pockets usually found in small molecule interactions
(� 270Å

3
in volume (Buchwald, 2010)). Notably, PPI interfaces

often contain smaller binding pockets (� 100Å
3
(Fuller et al.,

2009)) that play a crucial role in binding affinity (Clackson and
Wells, 1995). Peptides and peptide-based molecules occupy a
unique position between small molecules (with a molecular
weight < 0:5kDa) and biologics (> 150kDa). They offer a prom-
ising therapeutic approach for targeting intracellular PPIs, as they

can potentially combine the benefits of biologics, such as low
toxicity, high specificity, and strong affinity, with the membrane
permeability of small molecules (Tsomaia, 2015). The successful
design of therapeutic peptides requires detailed knowledge of the
binding sites on their protein targets. Identifying new protein–
peptide binding sites could broaden the range of druggable targets,
opening up new opportunities for drug discovery. Many methods
for protein–peptide binding site prediction utilize approaches
similar to the ones described in the previous section, but we still
cover these methods here to highlight some specific characteris-
tics. See Table 2 for an extensive list of methods for prediction of
protein-peptide binding sites.

Machine learning-based

Multiple sequence-based methods calculate features for each resi-
due (e.g., PSSM, predicted ASA, SS, physicochemical properties,
and intrinsic disorder) in an input protein sequence and pass these
features as input into a classical ML model (Taherzadeh et al.,
2016; Zhao et al., 2018; Iqbal and Hoque, 2018; Shafiee et al.,
2022). More advanced approaches tend to rely on additional
information. SPRINT-Str (Taherzadeh et al., 2018) and Multi-
VORFFIP (Segura et al., 2012) calculate structural and physico-
chemical descriptors for each residue in a target protein and use
RF for the binary classification of residues as binding/non-
binding. PINUP (Liang et al., 2006) calculates structural and
physicochemical descriptors for interface residues, then selects
surface patches by choosing a central surface residue and 19 res-
idues nearest to it, and then classifies the patch based on a set of
features for the 20 patch residues. P2Rank-Pept (Krivák et al.,
2018) calculates geometrical and physicochemical descriptors for
protein surface points and classifies these points using RF. PepSite
(Trabuco et al., 2012) uses spatial PSSMs for the identification of
peptide-binding hot spots on the protein surface. For this, the
method estimates the densities of protein atoms around each
amino acid type in the peptide and encodes them into a 3D
grid. Then, PepSite screens the target protein with these S-PSSM
grids and identifies appropriate hot spots. PepBind (Zhao et al.,
2018) is a consensus method combining predictions from
SVMpep, S-SITE, and TM-SITE.

Deep learning-based

The sequence-based approaches, such as VisualP (Wardah et al.,
2020) encode a window around a residue into a 2D image and
apply a CNN.MTDSite (Sun et al., 2021) uses a BiLSTM to predict
binding residues for DNA, RNA, carbohydrates, and peptides.
PepBCL (Wang et al., 2022a) and PepNN-Seq (Abdin et al., 2022)
retrieve protein sequence embeddings from the language model
ProtTrans (Elnaggar et al., 2021). Similarly to the machine
learning-based methods, recent deep learning-based approaches
tend to incorporate different types of information into the model.
PepCNN (Chandra et al., 2023) represents residues using sequen-
tial and structural descriptors, along with embeddings from the
ProtT5 (Elnaggar et al., 2021) model, and passes them into a 1D
CNN model. PepNN-Struct (Abdin et al., 2022) uses a GNN with
attention to extract embeddings from a graph of protein residues
and uses multi-head attention to encode a peptide sequence for
predicting of binding residues. The authors also demonstrated
that pre-training on protein–protein complexes significantly
increases the model accuracy in predicting peptide-binding res-
idues. GraphPPepIS (Li et al., 2023a) represents both protein and
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Table 1. List of methods for prediction of protein–small molecule binding sites

Method name Year
Representation
type Algorithm type Reference

Goodford et al. 1985 Structure Energetic (Goodford et al., 1985)

CavitySearch 1990 Structure Geometric (Ho and Marshall, 1990)

POCKET 1992 Structure Geometric (Levitt and Banaszak, 1992)

Delaney et al. 1992 Structure Geometric (Delaney, 1992)

Del Carpio et al. 1993 Structure Geometric (Del Carpio et al., 1993)

VOIDOO 1994 Structure Geometric (Kleywegt and Jones, 1994)

SurfNet 1995 Structure Geometric (Laskowski et al. 1995)

Masuya et al. 1995 Structure Geometric (Masuya and Doi, 1995)

FEATURE 1995 Structure ML-based (Bagley and Altman, 1995, 1996;Wei and Altman, 1998, 2003; Liang et al.,
2003)

APROPOS 1996 Structure Geometric (Peters et al., 1996)

LIGSITE 1997 Structure Geometric (Hendlich et al., 1997)

Ruppert et al. 1997 Structure Energetic (Ruppert et al., 1997)

de Rinaldis et al. 1998 Structure Template-based (de Rinaldis et al., 1998)

Rosen et al. 1998 Structure Template-based (Rosen et al., 1998)

PASS 2000 Structure Geometric (Brady and Stouten, 2000)

ConSurf 2001 Structure Geometric (Armon et al., 2001)

SuperStar 2001 Structure Energetic (Verdonk et al., 2001)

Schmitt et al. 2002 Structure Template-based (Schmitt et al., 2002)

Rate4Site 2002 Structure Geometric (Pupko et al., 2002)

Jess 2003 Structure Template-based (Barker and Thornton, 2003)

Spriggs et al. 2003 Structure Template-based (Spriggs et al., 2003)

PINTS 2003 Structure Template-based (Stark et al., 2003)

CAST 2003 Structure Geometric (Liang et al., 1998; Binkowski et al., 2003)

Gutteridge et al. 2003 Structure ML-based (Gutteridge et al., 2003)

SiteEngine 2004 Structure Template-based (Shulman-Peleg et al., 2004)

Panchenko et al. 2004 Structure Geometric (Panchenko et al., 2004)

DrugSite 2004 Structure Energetic (An et al., 2004)

OMD 2004 Structure Energetic (Bhinge et al., 2004)

eF-Site 2005 Structure Template-based (Kinoshita and Nakamura, 2005)

Q-SiteFinder 2005 Structure Energetic (Laurie and Jackson, 2005)

PocketFinder 2005 Structure Energetic (An et al., 2005)

Bradford et al. 2005 Structure ML-based (Bradford and Westhead, 2005)

SitesBase 2006 Structure Template-based (Gold and Jackson, 2006)

LIGSITEcsc 2006 Structure Geometric (Huang and Schroeder, 2006)

Coleman et al. 2006 Structure Geometric (Coleman and Sharp, 2006)

SURFNET-ConSurf 2006 Structure Geometric (Glaser et al., 2006)

Petrova et al. 2006 Structure ML-based (Petrova and Wu, 2006)

SCREEN 2006 Structure ML-based (Nayal and Honig, 2006)

firestar 2007 Sequence Template-based (López et al., 2007)

PocketPicker 2007 Structure Geometric (Weisel et al., 2007)

PHECOM 2007 Structure Geometric (Kawabata and Go, 2007)

Bock et al. 2007 Structure Geometric (Bock et al., 2007)

(Continued)
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Table 1. (Continued)

Method name Year
Representation
type Algorithm type Reference

Xie et al. 2007 Structure Geometric (Xie and Bourne, 2007)

FINDSITE 2008 Structure Template-based (Brylinski and Skolnick, 2008)

Kim et al. 2008 Structure Geometric (Kim et al., 2008)

PatchFinder 2008 Structure Geometric (Nimrod et al., 2008)

LIBRUS 2009 Sequence Template-based,
ML-based

(Kauffman and Karypis, 2009)

SiteMap 2009 Structure Geometric (Halgren, 2009)

Fpocket 2009 Structure Geometric (Le Guilloux et al., 2009)

ConCavity 2009 Structure Geometric (Capra et al., 2009)

SiteHound 2009 Structure Energetic (Ghersi and Sanchez, 2009; Hernandez et al., 2009)

Tong et al. 2009 Structure ML-based (Tong et al., 2009)

3DLigandSite 2010 Structure Template-based (Wass et al., 2010; McGreig et al., 2022)

ProBiS 2010 Structure Template-based (Konc and Janežič, 2010)

GHECOM 2010 Structure Geometric (Kawabata, 2010)

POCASA 2010 Structure Geometric (Yu et al., 2010)

DoGSite 2010 Structure Geometric (Volkamer et al., 2010)

MSPocket 2011 Structure Geometric (Zhu and Pisabarro, 2011)

Qiu et al. 2011 Structure ML-based (Qiu and Wang, 2011)

MetaPocket2.0 2011 Structure ML-based (Zhang et al., 2011)

COFACTOR 2012 Structure Template-based (Roy et al., 2012)

LISE 2012 Structure Geometric (Xie and Hwang, 2012)

FTSite 2012 Structure Energetic (Brenke et al., 2009; Ngan et al., 2012)

S-SITE 2013 Sequence Template-based (Yang et al., 2013)

TM-SITE 2013 Structure Template-based (Yang et al., 2013)

COACH 2013 Structure ML-based (Yang et al., 2013)

G-LoSA 2013 Structure Template-based (Lee and Im, 2013)

LigandRFs 2014 Sequence ML-based (Chen et al., 2014)

LigandDSES 2015 Sequence ML-based (Chen et al., 2015)

OSML 2015 Sequence ML-based (Yu et al., 2015)

LIBRA 2015 Structure Template-based (Viet Hung et al., 2015)

SILCS 2015 Structure Energetic (Faller et al., 2015)

bSiteFinder 2016 Structure Template-based (Gao et al., 2016)

AutoSite 2016 Structure Energetic (Ravindranath and Sanner, 2016)

Tsujikawa et al. 2016 Structure Energetic (Tsujikawa et al., 2016)

ISMBLab-LIG 2016 Structure ML-based (Jian et al., 2016)

DeepSite 2017 Structure DL-based (Jiménez et al., 2017)

P2Rank 2018 Structure ML-based (Krivák and Hoksza, 2018)

MPLs-Pred 2019 Sequence ML-based (Lu et al., 2019)

DeepCSeqSite 2019 Sequence DL-based (Cui et al., 2019)

Jiang et al. 2019 Structure DL-based (Jiang et al., 2019a)

FRSite 2019 Structure DL-based (Jiang et al., 2019b)

CurPocket 2020 Structure Geometric (Liu et al., 2020a)

PlayMolecule CrypticScout 2020 Structure Energetic (Martinez-Rosell et al., 2020)

(Continued)
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peptide structures as graphs and passes them into a GCN, extract-
ing binding residues on both the protein and peptide sides. GAPS
(Zhu et al., 2023) encodes a protein into a point cloud of atoms
and uses a geometric attention-based network to classify atoms as
binding or non-binding. BiteNet Pp (Kozlovskii and Popov, 2021a)
represents peptide binding sites as a set of hotspots and utilizes an
approach similar to BiteNet (Kozlovskii and Popov, 2020): it
encodes an input protein into a 3D voxel grid and feeds it into a
3D CNN, which splits the grid into cells containing probabilities
of a peptide binding site hotspot being in the cell and hotspot

center coordinates. DeepProSite (Fang et al., 2023) builds a model
using ESMFold (Rives et al., 2021), retrieves embeddings using the
ProtTrans (Elnaggar et al., 2021) model, and feeds the graph into a
Graph Transformer network (Ingraham et al., 2019) afterward to
predict protein–protein and protein–peptide binding sites.

Template- and energy-based methods

There are a few template-based and energy-based approaches. For
example, SPOT-peptide (Litfin et al., 2019) and InterPep

Table 1. (Continued)

Method name Year
Representation
type Algorithm type Reference

GRaSP 2020 Structure ML-based (Santana et al., 2020)

BiteNet 2020 Structure DL-based (Kozlovskii and Popov, 2020)

Kalasanty 2020 Structure DL-based (Stepniewska-Dziubinska et al., 2020)

CAVIAR 2021 Structure Geometric (Marchand et al., 2021)

DeepPocket 2021 Structure DL-based (Aggarwal et al., 2021)

DeepSurf 2021 Structure DL-based (Mylonas et al., 2021)

PUResNet 2021 Structure DL-based (Kandel et al., 2021)

GraphBind 2021 Structure DL-based (Xia et al., 2021)

bindEmbed21 2021 Structure DL-based (Littmann et al., 2021)

HoTS 2022 Sequence DL-based (Lee and Nam, 2022)

MDPA 2022 Structure Energetic (Gu et al., 2022)

CAT-Site 2022 Structure DL-based (Petrovski et al., 2022)

RecurPocket 2022 Structure DL-based (Li et al., 2022)

DUNet 2022 Structure DL-based (Wang et al., 2022a)

InDeep 2022 Structure DL-based (Mallet et al., 2022)

PointSite 2022 Structure DL-based (Yan et al., 2022)

GraphSite 2022 Structure DL-based (Yuan et al., 2022a)

MsPBRsP 2023 Sequence DL-based (Li et al., 2023a)

SiteFerret 2023 Structure ML-based (Gagliardi and Rocchia, 2023)

SAPocket 2023 Structure DL-based (Wang et al., 2023a)

RefinePocket 2023 Structure DL-based (Liu et al., 2023)

GLPocket 2023 Structure DL-based (Li et al., 2023a)

SiteRadar 2023 Structure DL-based (Evteev et al., 2023)

PocketAnchor 2023 Structure DL-based (Li et al., 2023a)

GraphPLBR 2023 Structure DL-based (Wang et al., 2023a)

FABind 2023 Structure DL-based (Pei et al., 2023)

GrASP 2023 Structure DL-based (Smith et al., 2023)

GU-Net 2023 Structure DL-based (Nazem et al., 2023)

EquiPocket 2023 Structure DL-based (Zhang et al., 2023)

LigBind 2023 Structure DL-based (Xia et al., 2023)

LaMPSite 2023 Structure DL-based (Zhang and Xie, 2023)

AF2BIND 2023 Structure DL-based (Gazizov et al., 2023)

PocketMiner 2023 Structure DL-based (Meller et al., 2023)

Pseq2sites 2024 Structure DL-based (Seo et al., 2024)
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(Johansson-Åkhe et al., 2019) screen a query protein against a
database of known protein–peptide complexes. Energy-based
methods sample small molecule probes around a protein and
cluster low-energy conformations to get final predictions.

PeptiMap (Lavi et al., 2013) adapts the FTmap (Brenke et al.,
2009) method for protein–small molecule binding site prediction
with additional post-processing for filtering out irrelevant sites.
ACCLUSTER (Yan and Zou, 2014) scans a protein surface with
20 amino acid probes. In Verschueren et al. (2013), the method
uses polypeptide fragments from the BriX (Vanhee et al., 2011)
database mapped around the target protein and generates ensem-
bles of energetically favorable protein–peptide complexes.

Benchmarks

For protein–peptide binding sites, themost widely used benchmark
is TS125, which is a test set from SPRINT-Seq (Taherzadeh et al.,
2016), constructed as a non-redundant subset of 1,279 protein–
peptide complexes from the BioLip database (Yang et al., 2012).
Other benchmarks include TS092, TS251, and TS639. TS092 is a
test benchmark from PepNN (Abdin et al., 2022), designed as a
subset of protein–peptide complexes from the PDB, submitted after
a specific date and having a sequence identity lower than 30%with
all protein targets in the training set. The TS251 benchmark from
InterPep (Johansson-Åkhe et al., 2019) was constructed such that
the TM-score (Zhang and Skolnick, 2005) of the protein structures
is lower than 0:5 with all the structures in the template database.
Finally, TS639 from PepBind (Zhao et al., 2018) is a different subset
of T1279, used for training and validation of SPRINT-Seq
(Taherzadeh et al., 2016), described above. Table 3 lists perform-
ance metrics (AUC and MCC, see also Supplementary Section
Metrics) for the protein–peptide binding site prediction methods.
As one can see, the top methods are ML- or DL-based, with
BiteNetPp (Kozlovskii and Popov, 2021a) being the top-performing-
one.

Nucleic acid–small molecule binding sites

RNA molecules are emerging as a significant class of pharmaco-
logical targets (Warner et al., 2018). Efforts in RNA-targeting drug
discovery span various approaches, such as designing stabilizers
for DNA G-quadruplexes (Ortiz de Luzuriaga et al., 2021), devel-
oping antibiotics that target riboswitches (Panchal and Brenk,
2021), using antisense RNA (McClorey and Wood, 2015), and
creating RNA-targeting antivirals. RNA targets that expand the
druggable genome, including those associated with ‘undruggable’
proteins or non-coding microRNAs, hold particular promise
(Matsui and Corey, 2017). However, the development of RNA-
targeted drugs faces significant challenges, such as limited chem-
ical diversity and the dynamic nature of RNA structures (Falese
et al., 2021). To advance RNA-targeting drug discovery, efficient
tools for detecting structure-specific RNA-small molecule binding
sites are needed.

There are many approaches targeting binding sites on proteins;
however, there is a limited number of methods for nucleic acids.
Table 4 provides a list of methods for prediction of nucleic acid-
small molecule binding sites.

Knowledge-based

Firstly, there are several knowledge-based methods. Rsite (Zeng
et al., 2015) and Rsite2 (Zeng and Cui, 2016) calculate distances
between nucleotides based on tertiary and secondary structures,
respectively, and determine nucleotides that are the most distant
from others as the binding nucleotides. Similarly, RBind (Wang,

Table 2. List of methods for prediction of protein–peptide binding sites

Method name Year
Representation
type

Algorithm
type Reference

PINUP 2006 Structure ML-based (Liang et al.,
2006)

Multi-VORFFIP 2012 Structure ML-based (Segura et al.,
2012)

PepSite 2012 Structure ML-based (Trabuco et al.,
2012)

PeptiMap 2013 Structure Energetic (Lavi et al., 2013)

Verschueren et al. 2013 Structure Energetic (Verschueren et
al., 2013)

ACCLUSTER 2014 Structure Energetic (Yan and Zou,
2014)

SPRINT 2016 Sequence ML-based (Taherzadeh et
al., 2016)

SVMpep 2018 Sequence ML-based (Zhao et al.,
2018)

PBRpredict 2018 Sequence ML-based (Iqbal and
Hoque, 2018)

SPRINT-Str 2018 Structure ML-based (Taherzadeh
et al., 2018)

P2Rank-Pept 2018 Structure ML-based (Krivák et al.,
2018)

PepBind 2018 Structure ML-based (Zhao et al.,
2018)

SPOT-peptide 2019 Structure Template-
based

(Litfin et al.,
2019)

InterPep 2019 Structure Template-
based

(Johansson-
Åkhe et al.,
2019)

Visual 2020 Sequence ML-based (Wardah et al.,
2020)

MTDSite 2020 Sequence ML-based (Sun et al., 2021)

BiteNetPp 2020 Structure DL-based (Kozlovskii and
Popov, 2021a)

SPPPred 2022 Sequence ML-based (Shafiee et al.,
2022)

PepBCL 2022 Sequence DL-based (Wang et al.,
2022a)

PepNN-Seq 2022 Sequence DL-based (Abdin et al.,
2022)

PepNN-Struct 2022 Structure DL-based (Abdin et al.,
2022)

PepCNN 2023 Structure DL-based (Chandra et al.,
2023)

GraphPPepIS 2023 Structure DL-based (Li et al., 2023a)

GAPS 2023 Structure DL-based (Zhu et al., 2023)

DeepProSite 2023 Structure DL-based (Fang et al.,
2023)
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Jian, et al., 2018b) calculates the degree and closeness of nodes in a
nucleotide network and determines binding nucleotides as those
with values exceeding a specified threshold. RNetsite (Liu et al.,
2024) represents an RNA molecule as a graph and calculates local
(degree, neighborhood connectivity) and global (betweenness cen-
trality, closeness, and eccentricity) properties for each node of the
graph. Then, each node is classified as binding or non-binding
based on the property statistics computed from a reference set of
RNA molecules.

Energetic

To the best of our knowledge, only two methods use an energy-
based approach. SILCS-RNA (Kognole et al., 2022) runs simula-
tions of a target macromolecule in a mixed solvent with eight
different probes. From these simulations, the method calculates a
3D grid with energy maps, which can be used for binding site
identification, docking, and binding affinity evaluation tasks. SHA-
MAN (Panei et al., 2024) is also a probe-based approach, but adds a
metadynamics enhanced-sampling technique to explore wider con-
formational changes of the input RNA molecule.

Machine learning-based

Machine learning-based methods for binding site detection in
nucleic acids have emerged very recently. RNAsite (Su et al.,
2021) calculates sequential features (e.g., conservation from
MSA) and structural features (e.g., topological properties, solvent
accessibility, and Laplacian norm) for each nucleotide and passes
them into an RF classifier to distinguish between binding and non-
binding nucleotides. Similarly, DrugPred_RNA (Rekand and
Brenk, 2021) calculates a set of simple structural descriptors such
as size, shape, and polarity for a pocket and uses an XGBoost model
(Chen and Guestrin, 2016) to classify it as druggable or non-
druggable. As descriptors are constructed in a macromolecule
type-agnostic way, the model is first pre-trained on a protein
dataset and then fine-tuned for binding sites in RNAs.

Deep learning-based

RLBind (Wang, Zhou, et al., 2023b) calculates local and global
sequential features (e.g., nucleotide types and evolutionary conser-
vation) and structural features (e.g., network topological properties,
biochemical properties, and ASAs), retrieves a window of 11
nucleotides for each position, and feeds it into a 1D CNN that
classifies the position as binding/non-binding. RNet (Möller et al.,
2022) utilizes an approach similar to DeepSite for predicting bind-
ing sites in proteins (Jiménez et al., 2017). It represents a macro-
molecule structure as an 80 × 80 × 80Å

3
3D voxel grid with eight

channels representing different atom types: carbon, nitrogen, oxy-
gen, phosphorus, sulfur, fluorine, bromine, and iodine. Themethod
passes this grid as input into a 3D CNN model, predicting ligand-
ability scores for voxels of size 4 × 4 × 4Å

3
. Binding sites are

retrieved by clustering predicted ligandable voxels. The authors
pre-trained the model on protein binding sites and fine-tuned it to
RNAs.MultiModRLBP (Wang et al., 2024) uses a relational GCN to
obtain features from a nucleotide structure graph and a pre-trained
language model (RNABert (Kalicki and Haritaoglu, 2022)) to get
embeddings from an RNA sequence. Themodel concatenates these
structural and sequential features and feeds the resulting vector into
a small neural network of fully connected layers to obtain a pre-
diction for each nucleotide. BiteNetN (Kozlovskii and Popov,
2021b) predicts binding site centers on both RNA and DNA
macromolecules. To train the model, the authors composed the
largest dataset of �2000 nucleic acid–small molecule structures.
First, the method converts an input nucleic acid macromolecule
structure into a voxel-based representation. Then, a 3DCNNmodel
takes this grid as input and produces a set of binding site centers and
coordinates, along with a binding score for each nucleotide.

Benchmarks

One of the most widely used benchmarks for RNA-ligand binding
site detection methods is the TE18 test set from RNAsite (Su et al.,
2021). Another benchmark is RB19 from RBind (Wang, Jian, et al.,
2018b). Note that, typically, methods use only a subset of these test
sets to avoid sharing similar complexes with the training sets. Most
recently, the authors of SHAMAN (Panei et al., 2024) created a test
set based on seven RNA complexes: riboswitches (FMN, THF, TPP,
and dG) and viral RNAs (HIV-1 TAR, HCV-IRES-IIa, and IAV).
They also introduced different strategies to evaluate the methods’
performance based on the holo or apo structures of these com-
plexes. Supplementary Tables S11–S16 list the performance of
RNA-small molecule binding site detection methods.

Table 3. Performance of protein–peptide binding site detection methods on
test benchmarks retrieved from Kozlovskii and Popov (2021a), Abdin et al.
(2022), and Fang et al. (2023)

Dataset Method AUC MCC

TS125 BiteNetPp (Kozlovskii and Popov, 2021a) 0.91 0.49

DeepProSite (Fang et al., 2023) 0.88 0.45

PepNN-Struct (Abdin et al., 2022) 0.89 0.39

PepBCL (Wang et al., 2022a) 0.81 0.39

PepBind (Zhao et al., 2018) 0.79 0.37

P2Rank-Pept (Krivák et al., 2018) 0.85 0.35

MTDSite (Sun et al., 2021) 0.76 0.30

SPRINT-Str (Taherzadeh et al., 2018) 0.78 0.29

PeptiMap (Lavi et al., 2013) 0.63 0.27

PepNN-Seq (Abdin et al., 2022) 0.79 0.26

Multi-VORFFIP (Segura et al., 2012) 0.78 0.21

SPRINT-Seq (Taherzadeh et al., 2016) 0.68 0.20

PepSite (Trabuco et al., 2012) 0.61 0.20

Visual (Wardah et al., 2020) 0.73 0.17

TS092 PepNN-Struct (Abdin et al., 2022) 0.86 0.41

PepNN-Seq (Abdin et al., 2022) 0.78 0.27

PBRPredict (Iqbal and Hoque, 2018) 0.59 0.08

TS251 PepNN-Struct (Abdin et al., 2022) 0.83 0.37

PepNN-Seq (Abdin et al., 2022) 0.77 0.28

Interpep (Johansson-Åkhe et al., 2019) 0.79

TS639 DeepProSite (Fang et al., 2023) 0.86 0.40

PepNN-Struct (Abdin et al., 2022) 0.87 0.35

PepBind (Zhao et al., 2018) 0.77 0.35

PepBCL (Wang et al., 2022a) 0.80 0.31

PepNN-Seq (Abdin et al., 2022) 0.80 0.25
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Protein–ion binding site prediction

Ions are crucial for various physiological processes, such as enzym-
atic function, signal transduction, and muscle contraction, through
their interactions with proteins (Al-Fartusie and Mohssan, 2017).
Ions can bind to protein-active sites (Andreini et al., 2008), stabilize
or trigger conformational changes in protein structures (Dudev and
Lim, 2014; Jernigan et al., 1994), regulate the activity of DNA/RNA
polymerases (De Baaij et al., 2015), or affect the concentration-
dependent aggregation rate of proteins (Poulson et al., 2020). In
addition, ions can act as allostericmodulators. For instance, sodium
ions modulate G protein-coupled receptors (Katritch et al., 2014),
while in calcium-sensing receptors (CaSR), Ca2+ , and Mg2+ serve
as activators, Cl� acts as a positive allosteric modulator, and SO2�

4 /
PO3�

4 act as negative modulators (Liu et al., 2020a). Chloride ions
(Cl�) also modulate mGluRs (metabotropic glutamate receptors)
(Tora et al., 2015), and calcium ions (Ca2+ ) influence nAChRs
(nicotinic acetylcholine receptors) (Changeux, 2018). Therefore,
understanding protein–ion interactions, particularly ion binding
sites, is critical to deciphering protein function. Ion binding sites
differ from protein–ligand and protein–peptide binding sites in
several ways. First, the size of ion binding sites is generally smaller,
as small molecules or peptides typically interact with more residues
on the protein surface. Furthermore, ion-binding sites are often
more adaptable than those of ligands (Chakrabarti, 1993). Another
distinction is that many ions require specific coordination geom-
etries with protein atoms. For example, Zn2+ binding sites are
typically formed by residues such as Cys, His, Asp, or Glu, and are
coordinated by four or five atoms, adopting a distorted-tetrahedral
or trigonal-bipyramidal geometry (Auld, 2001). Various computa-
tional approaches have been proposed to identify ion binding sites,
as summarized in Table 5.

Sequence-based

Similarly to sequence-based methods that predict protein–small
molecule binding sites, almost all of the sequence-based methods
for the identification of binding sites for ions utilize a machine
learning-based approach (Chen et al., 2013; Shu et al., 2008; Lippi
et al., 2008; Passerini et al., 2011; Ferrè and Clote, 2006; Passerini
et al., 2007; Haberal and Oğul, 2017, 2019; Qiao and Xie, 2019; Yu
et al., 2013, 2015; Li et al., 2019a; Li et al., 2019b; Yan et al., 2019;
Jiang et al., 2016; Ding et al., 2017; Srivastava and Kumar, 2018;
Zhao et al., 2019; Essien et al., 2019; Sun et al., 2022). First, they
move a sliding window along the input sequence and calculate
sequential features for each position. Features can include: evolu-
tionary information such as position-specific scoring matrix
(PSSM) or conservation score, predicted secondary structure,
and predicted solvent accessibility of residues. Then, these
features are fed into an SVM, RF, AdaBoost, or a simple
NN. ZincExplorer (Chen et al., 2013) combines a machine learn-
ing approach with a templates-based search of known binders to
identify Zn-binding sites. IBayes_Zinc (Li et al., 2019a) uses
previously described sequence descriptors and predictions from
other methods (ZincExplorer (Chen et al., 2013), ZincFinder
(Passerini et al., 2007), and ZincPred (Shu et al., 2008)) as input
into a Bayesian algorithm to predict Zn sites. MetalPredator
(Valasatava et al., 2016) searches through a database of Pfam
domains for Fe-S clustering binding and metal binding fragments
from MetalPDB (Andreini et al., 2012). ZINCCLUSTER (Ajitha
et al., 2018) first creates a database of all monopeptides, dipep-
tides, and tripeptides and assigns a Z-score for each of them to be

Zn-binding based on a dataset. Then, it screens an input sequence
with pentapeptides and retrieves a Z-score from the database for
two central dipeptides and three tripeptides. The method con-
siders this fragment to be Zn-binding if the average Z-score of
dipeptides and tripeptides is higher than zero. With advance-
ments in deep learning, transformer-based models have been
developed for ion binding site prediction. IonPred (Essien et al.,
2023) employs a transformer architecture to predict ion binding
sites directly from protein sequences. M-Ionic (Shenoy et al.,
2024) leverages residue embeddings generated by the pre-trained
protein language model ESM-2 (Lin et al., 2023) to identify
binding sites for various ions. Similarly, LMetalSite (Yuan et al.,
2022b) utilizes residue embeddings from ProtTrans (Elnaggar
et al., 2021) for the prediction of binding sites specific to Zn2+ ,
Ca2 + , Mg2+ , and Mn2+ .

Template-based

Many methods aim to find fragments of an input structure that are
present in the template database of known ion-binding sites. MIB
(Lin et al., 2016) and (Lu et al., 2012) use a fragment transformation
method to search for parts of an input protein that are present in a
database of binding residue templates for multiple ion types. For
this, they split residues in the input structure and the template into
residue triplets, measured triplet pair similarity and performed
clustering of triplets similar to binding ones to get the final
predictions. FindSite-metal (Brylinski and Skolnick, 2011) utilizes
TM-align (Zhang and Skolnick, 2005; Pandit and Skolnick, 2008) to
align template fragments onto the input structure, clusters the
obtained alignments, and outputs residue binding scores as the
fraction of templates including corresponding positions. TEMSP
(Zhao et al., 2011) creates a database of Zn-binding templates from
all pairs of residues interacting with this ion. Then, for an input
protein, it screens all residue pairs and detects the ones present in
the template library. After that, matched pairs are combined into
‘pairs-of-pairs’, which are further filtered using predefined geomet-
rical thresholds to get the final predictions. In Garg and Pal (2021),
the authors used a geometric hashing technique to match query
structures with templates of binding sites for different ion types. In
Schymkowitz et al. (2005b), the method creates a database of
canonical positions of water molecules or ions with respect to

Table 4. List of methods for prediction of nucleic acid–small molecule binding
sites

Method name Year Algorithm type Reference

Rsite 2015 Knowledge-based (Zeng et al., 2015)

Rsite2 2016 Knowledge-based (Zeng and Cui, 2016)

RBind 2018 Knowledge-based (Wang, Jian, et al., 2018b)

RNAsite 2021 ML-based (Su et al., 2021)

BiteNetN 2021 DL-based (Kozlovskii and Popov,
2021b)

DrugPred_RNA 2021 ML-based (Rekand and Brenk, 2021)

SILCS-RNA 2022 Energetic (Kognole et al., 2022)

RNet 2022 DL-based (Möller et al., 2022)

SHAMAN 2023 DL-based (Panei et al., 2024)

RLBind 2023 DL-based (Wang, Zhou, et al., 2023b)

MultiModRLBP 2023 DL-based (Wang et al., 2024)
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protein atom triads. Then, it screens the surface of the protein with
these triads, clusters favorable points, and performs optimization of
positions using the empirical force field. GASS-Metal (Paiva et al.,
2022) uses a genetic algorithm for the effective search of structural
patterns similar to ion binding sites from a curated database of
templates.

Machine learning-based

Apart from the sequence-basedmachine learning approaches, most
of the structure-based machine learning methods (Sodhi et al.,
2004; Bordner, 2008; Zheng et al., 2012; Ireland and Martin,
2021; Song and Jiang, 2023) calculate sequential and structural
features for each residue and feed them into an SVM, RF, or neural
network classifier. For example, FEATURE (Ebert and Altman,
2008) constructs concentric radial shells for the atomic environ-
ments, calculates physicochemical features inside each of them, and
uses Bayesian learning to differentiate whether an environment
corresponds to a Zn-binding site or not. IonCom (Hu et al.,
2016) combines predictions from the sequence-based approach
IonSeq and other tools for binding site prediction: COFACTOR
(Roy et al., 2012), TM-SITE, S-SITE, and COACH (Yang et al.,
2013), and trains a classifier on top of them. PinMyMetal (Zheng
et al., 2024) uses geometrical features, including residue properties,
interatomic distances, bond angles, and atomic types as input into
the ensemble ML model predicting Zn2+ binding sites.

Deep learning-based

GraphBind (Xia et al., 2021) is a GNN-based model that predicts
binding sites for Ca2+, Mn2+, and Mg2+. DeepProSite (Fang et al.,
2023), as mentioned in Section Deep learning-based, uses ESMFold
(Rives et al., 2021), ProtTrans (Elnaggar et al., 2021), and aGNN for
the prediction of different types of binding sites, including those for
Ca2+ , Mn2+ , and Mg2+ . In Gamouh et al. (2023), the authors used
embeddings from ProtTrans (Elnaggar et al., 2021) as features for
the graph nodes and used GNN to predict binding sites for nucleo-
tides and ions: Ca2+ , Mg2+ , Mn2+ , Fe3+ , and Zn2+ . DELIA (Xia
et al., 2020) first constructs a feature vector as the combination of
outputs from two other models: (i) BiLSTM which takes as the
input the sequence-based features; and (ii) 2D CNNResNet model,
which takes as the input the distance matrix. The constructed
feature vectors are used as the input to the next fully connected
layer, which outputs the probability of each residue being binding
or non-binding. Metal3D (Dürr et al., 2023) employs a 3D CNN to
predict the probability density of Zn2+ binding across the protein
structure. MoM (Laveglia et al., 2023) utilizes a GNN to classify
local protein environments composed of Cys, His, Asp, and Glu
residues, determining whether these environments are likely to
bind Zn2+ . BindWeb (Xia et al., 2022) is a consensus method
combining predictions from GraphBind (Xia et al., 2021) and
DELIA (Xia et al., 2020) models.

Other

There are several geometric methods that search positions with
surrounding atoms whose geometry resembles the ion coordin-
ation shell. GRE4Zn (Liu et al., 2014) utilizes the fact that most
known Zn-binding sites comprise sets of four or three residues with
distinctly specific geometries. GaudiMM Metals (Sciortino et al.,
2019) retrieves information about acceptable coordination shell
geometries for a set of ions and implements them as an additional

objective for optimization with ion presence in the GaudiMM
platform (Rodrı́guez-Guerra Pedregal et al., 2017). BioMetAll
(Sánchez-Aparicio et al., 2020) constructs a grid of metal probes
around a protein and checks each grid position to see if the amino
acid environment matches geometric constraints determined from
statistics in a dataset of protein structures. Themethod obtains final
predictions from the clustering of relevant points. Also, there are
methods that utilize an energetic approach. For example, BION
(Shashikala et al., 2021) calculates electrostatic potential maps with
a gaussian-smooth dielectric function term to predict the positions
of non-specifically surface-bound ions.

It is important to note that many of the ion binding site iden-
tification methods consider only Cys, His, Glu, and Asp residues
(Chen et al., 2013; Shu et al., 2008; Passerini et al., 2007), as these
four amino acids are involved in the coordination shell of a bound
ion in many cases. Moreover, MetalDetector (Lippi et al., 2008;
Passerini et al., 2011) and DeepMBS (Haberal and Oğul, 2017,
2019) operate only with His and Cys, and DiANNA (Ferrè and
Clote, 2006) work solely with Cys residues. On the other hand,
many methods have been developed to predict binding regions for
specific ions. For example, multiple approaches aim to predict
Zn-binding regions (Chen et al., 2013; Shu et al., 2008; Passerini
et al., 2007; Haberal and Oğul, 2017, 2019; Li et al., 2019a; Li et al.,
2019b; Yan et al., 2019; Ajitha et al., 2018).

It is worth noting that for some ions (e.g., Ca2 + , Mg2+ , Na+ ,
and K+ ), the performance metrics are much lower compared to
others, as can be seen in Supplementary Table S19. As pointed out
in Lu et al. (2012) andQiao andXie (2019), this can be caused by the
higher variability of these binding sites in terms of amino acid
composition and structure. Indeed, in Qiao and Xie (2019), the
authors calculate the frequency difference index, defined as the
average difference in the ratio of binding and non-binding residues
of each type among the 20 amino acid types, and observed that the
index values are much lower for Ca2+ , Mg2+ , Na+ , and K+

compared to other ions.

Benchmarks

We observed that different methods use various benchmarks for
evaluation; here, we list benchmarks that were used by several
methods. The Passerini dataset (Passerini et al., 2006) is a dataset
containing 2,727 sequences with 687 protein chains bound to a
metal atom. There are four methods that used it as a training or
validation set for the prediction of Zn-binding sites (ZincFinder
(Passerini et al., 2007), ZincPred (Shu et al., 2008), ZincExplorer
(Chen et al., 2013), DeepMBS (Haberal and Oğul, 2017)). However,
note that these methods calculated different metrics on different
sets of residues (e.g., Cys and His or Cys, His, Glu, and Asp). The
Zhao dataset (Zhao et al., 2011) is a dataset used for training and
validation of a template-basedmethod TEMSP, consisting of �600
protein targets with bound Zn ions. Although many methods use
this dataset as an independent test set, somemethods retrieved only
a subset from it. SSWPNN (Li et al., 2019b) provides the most
complete comparison ofmethods on this dataset (see Supplementary
Table S21). Furthermore, for the validation of SSWPNN, the authors
also collected a second independent test set from PDB consisting of
213 protein chains with 1,017 Zn-binding sites, and compared
SSWPNNwith five other approaches for the predictionof Zn binding
sites on the Zhao and SSWPNN datasets (see Supplementary Tables
S21 and S22). ZincBindDB (Ireland and Martin, 2019) is the largest
database of Zn binding sites (about 35,000 binding sites from about
16,000 structures), that was used for training and validation of the
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Table 5. List of methods for prediction of protein–ion binding sites

Method name Year Representation Algorithm type Ion types Reference

MetSite 2004 Structure ML-based Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+ (Sodhi et al., 2004)

Schymkowitz
et al.

2005 Structure Template-based Mg2+, Ca2+, Zn2+, Mn2+, Cu2+ (Schymkowitz et al., 2005a)

DiANNA 2006 Sequence ML-based Fe3+, Zn2+, Cd2+ (Ferrè and Clote, 2006)

ZincFinder 2007 Sequence ML-based Zn2+ (Passerini et al., 2007)

ZincPred 2008 Sequence ML-based Zn2+ (Shu et al., 2008)

MetalDetector 2008 Sequence ML-based Any metal ion (Lippi et al., 2008; Passerini
et al., 2011)

SitePredict 2008 Structure ML-based Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+ (Bordner, 2008)

FEATURE 2008 Structure ML-based Zn2+ (Ebert and Altman, 2008)

FindSite-metal 2011 Structure Template-based Ca2+, Co2+, Cu2+, Fe3+, Mg2+, Mn2+, Ni2+, Zn2+ (Brylinski and Skolnick, 2011)

TEMSP 2011 Structure Template-based Zn2+ (Zhao et al., 2011)

Lu et al. 2012 Structure Template-based Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+ (Lu et al., 2012)

ZincIdentifier 2012 Structure ML-based Zn2+ (Zheng et al., 2012)

ZincExplorer 2013 Sequence ML-based Zn2+ (Chen et al., 2013)

TargetS 2013 Sequence ML-based Ca2+, Zn2+, Mg2+, Mn2+, Fe3+ (Yu et al., 2013)

GRE4Zn 2014 Structure Geometric Zn2+ (Liu et al., 2014)

MetalS3 2014 Structure Template-based Any metal ion (Valasatava et al., 2014)

OSML 2015 Sequence ML-based Ca2+, Mg2+, Mn2+, Fe3+, Zn2+ (Yu et al., 2015)

MetalPredator 2016 Sequence ML-based Fe-S clusters (Valasatava et al., 2016)

IonSeq 2016 Sequence ML-based Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+, CO3
2-, NO2

-,
SO4

2-, PO4
3-

(Hu et al., 2016)

IonCom 2016 Structure ML-based Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+, CO3
2-, NO2

-,
SO4

2-, PO4
3-

(Hu et al., 2016)

MIB 2016 Structure Template-based Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2
+, Cu+

(Lin et al., 2016)

DeepMBS 2017 Sequence ML-based Zn2+ (Haberal and Oğul, 2017, 2019)

EC-RUS 2017 Sequence ML-based Ca2+, Mg2+, Mn2+, Fe3+, Zn2+ (Ding et al., 2017)

ZINCCLUSTER 2018 Sequence ML-based Zn2+ (Ajitha et al., 2018)

ZincBinder 2018 Sequence ML-based Zn2+ (Srivastava and Kumar, 2018)

MIonSite 2019 Sequence ML-based Zn2+, Ca2+, Mg2+, Mn2+, Fe3+, Cu2+, Fe2+, Co2+, Na+, K+, Cd2+,
Ni2+

(Qiao and Xie, 2019)

IBayes_Zinc 2019 Sequence ML-based Zn2+ (Li et al., 2019a)

SSWPNN 2019 Sequence ML-based Zn2+ (Li et al., 2019b)

ZnMachine 2019 Sequence ML-based Zn2+ (Yan et al., 2019)

SXGBsite 2019 Sequence ML-based Ca2+, Mg2+, Mn2+, Fe3+, Zn2+ (Zhao et al., 2019)

GaudiMM Metals 2019 Structure Geometric Mg2+, Ca2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+ (Sciortino et al., 2019)

ZinCaps 2019 Sequence DL-based Zn2+ (Essien et al., 2019)

DELIA 2020 Structure DL-based Ca2+, Mn2+, Mg2+ (Xia et al., 2020)

BioMetAll 2020 Structure Geometric Any metal ion (Sánchez-Aparicio et al., 2020)

Garg et al. 2021 Structure Template-based Zn2+, Cu2+, Fe3+, Ca2+, Mg2+ (Garg and Pal, 2021)

BION 2021 Structure Energetic Ca2+, Zn2+, Cl-, Mg2+ (Shashikala et al., 2021)

ZincBindPredict 2021 Structure ML-based Zn2+ (Ireland and Martin, 2021)

GraphBind 2021 Structure DL-based Ca2+, Mn2+, Mg2+ (Xia et al., 2021)

BindWeb 2022 Structure DL-based Ca2+, Mn2+, Mg2+ (Xia et al., 2022)

LMetalSite 2022 Sequence DL-based Zn2+, Ca2+, Mn2+, Mg2+ (Yuan et al., 2022a)

(Continued)
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ZincBindPredictmethod (Ireland andMartin, 2021) (however, itwas
not used by the other methods). Note that a newer version of the
database contains more samples ( � 40,000 binding sites from �
16,000 structures); so one may expect improved performance for

newer methods. The BION dataset (Petukh et al., 2013) contains
binding sites for Ca2+ , Zn2+ , Cl�, and Mg2+ ions from 446 protein
structures. In Shashikala et al. (2021), the authors used this dataset to
compare the performances of BION (Petukh et al., 2013) and
BION-2 (Shashikala et al., 2021) methods with forcefield-based tools
fromVMD (Humphrey et al., 1996) and Fold-X (Schymkowitz et al.,
2005a). InHu et al. (2016), the authors created a large dataset of 2,100
protein structures in complex with 3,075 ions ( Zn2+ , Cu2+ , Fe2+ ,
Fe3+ , Ca2+ , Mg2+ , Mn2+ , Na+ , K+ , CO2�

3 , NO�
2 , SO2�

4 ,
and PO3�

4 ) retrieved from the BioLip database (Yang et al., 2012).
The authors used it for 5-fold cross-validation of IonSeq and IonCom
methods, and there are available scores for several methods on this
benchmark (see Supplementary Table S18). In MIonSite (Qiao and
Xie, 2019), the authors created a large dataset of 7,676 sequences for
training and 274 sequences for an independent test set. These sets
include ions of multiple types: Zn2+ , Ca2 + , Mg2+ , Mn2+ , Fe3+ ,
Cu2+ , Fe2+ , Co2+ , Na+ , K+ , Cd2+ , and Ni2 + . MIonSite was
compared with other methods on their test set (see Supplementary
Table S19). The authors also created a small dataset (BTD) of
10 proteins with metal ion-binding sites and 10 proteins without
metal ion-binding sites for additional comparison with other
methods (see Supplementary Table S20). TargetS (Yu et al., 2013)
used the BioLip database (Yang et al., 2012) to assemble training
and validation sets withmetal ion binding sites ( Ca2+ , Zn2+, Mg2+ ,
Mn2+ , and Fe3 + ) and nucleotides with 3,779 and 642 ion-bound
protein sequences, respectively. The authors used an independent
test set to compare TargetS with ligand-specific predictors and an
alignment-based predictor (see Supplementary Table S23). Garg
and Pal (Garg and Pal, 2021) assembled datasets for five metal ions
(Cu2+ , Fe3+ , Ca2+ , Mg2+ , and Zn2+ ) and split them into training
and testing sets with 1,079 and 268 structures in total, respectively.
The authors compared their method with IonCom (Hu et al., 2016)
and MIB (Lin et al., 2016) (see Supplementary Table S24). In Yan
et al. (2019), the authors prepared the zn1436 dataset of proteinswith
bound zinc ions for a comparison of the ZnMachine method with
ZincExplorer (Chen et al., 2013) (see Supplementary Table S25). In

Yuan et al. (2022b), the authors compiled a test set from the BioLip
database (Yang, 2012), consisting of 211, 183, 235, and 57 protein
chains bound to Zn2+ , Ca2+ , Mg2+ , and Mn2+ ions, respectively
(see Supplementary Table S27). Similarly, the authors of M-Ionic
(Shenoy et al., 2024) constructed an independent test set from
BioLip, but reported performance metrics only for LMetalSite
(Yuan et al., 2022b) andM-Ionic (Shenoy et al., 2024) on this dataset
(see Supplementary Table S28). Among the benchmarks used by a
single method, one may notice the BioMetAll test set (Sánchez-
Aparicio et al., 2020), which consists of 53 crystallographic structures
containing the two-histidine one-carboxylatemotif (FTM).This is an
interesting benchmark since its structures vary in size, and this motif
may bind multiple types of metal ions ( Cd2+ , Co2+ , Cu2+ , Fe3 + ,
Hg2+ , Mg2+ , Mn2+ , Ni2 + , Ru3+ , and Zn2+ ). Note that almost all
methods operate with residue-based scores as their performance
metric, and only GaudiMMMetals (Sciortino et al., 2019) and BION
(Shashikala et al., 2021) used distance-based scores, which are likely
more representative of the ion binding site prediction problem.

Despite the large variety of methods and benchmarks (see Table
5), one can see from Supplementary Tables S18 and S19 that
MIonSite (Qiao and Xie, 2019) and IonCom (Hu et al., 2016)
demonstrate better performance for different ions. Interestingly,
MIonSite is a sequence-based method, and IonCom is a structure-
basedmethod; therefore, it would be interesting to see if a combined
approach shows even better results. As for the Zn-specific predict-
ors, Supplementary Table S22 shows that SSWPNN (Li et al.,
2019b) outperforms other methods.

Challenges

The composition of high-quality and diverse labeled datasets and
benchmarks is one of the biggest challenges in the binding site
detection problem. As one can see from the Benchmarks subsec-
tions, typically, there are no unified training-validation sets and test
benchmarks to perform a rigorous comparison of the developed
methods. Moreover, the existing training and test splits often
contain data leakage (let alone structural artifacts), resulting in
likely overly optimistic performance metrics, that should not be
compared between the different methods. Unfortunately, despite
the exponential growth of available experimental structures in PDB,
in some cases, the test benchmarks are too small to make

Table 5. (Continued)

Method name Year Representation Algorithm type Ion types Reference

GASS-Metal 2022 Structure Template-based Zn2+, Fe3+, Mg2+, Ca2+, Mn2+, K+, Na+, Cu2+, Ni2+, Co2+, Gd3+,
Hg2+, Sb3+, Cd2+

(Paiva et al., 2022)

Sun et al. 2022 Sequence DL-based Ca2+, Mg2+ (Sun et al., 2022)

DeepProSite 2023 Structure DL-based Ca2+, Mn2+, Mg2+ (Fang et al., 2023)

Gamouh et al. 2023 Structure DL-based Ca2+, Mn2+, Mg2+, Fe3+, Zn2+ (Gamouh et al., 2023)

M-Ionic 2023 Sequence DL-based Ca2+, Mn2+, Mg2+, Zn2+, Cu2+, PO4
3-, SO4

2-, Fe2+, Fe3+, Co2+ (Shenoy et al., 2024)

IonPred 2023 Sequence DL-based Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+, CO3
2-, NO2

-,
SO4

2-, PO4
3-

(Essien et al., 2023)

Song et al. 2023 Structure ML-based Ca2+, Cu2+, K+, Mg2+, Na+, Zn2+ (Song and Jiang, 2023)

Metal3D 2023 Structure DL-based Zn2+ (Dürr et al., 2023)

MoM 2023 Structure DL-based Zn2+ (Laveglia et al., 2023)

PinMyMetal 2024 Structure DL-based Zn2+ (Zheng et al., 2024)
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statistically solid conclusions. For example, the commonly used
RNA-small molecule binding site benchmark, TE18, contains just
18 structures (see SectionNucleic acid–small molecule binding sites
Benchmarks). Related to this, another challenge to consider, espe-
cially with respect to the ML and DL methods, is overfitting.
Overfitting is a common problem in machine learning, where
models perform well on training data but fail to generalize to the
unseen cases. Deficient training sets or incorrect training-
validation-test splitting can also result in models showing artifi-
cially high score values (Kapoor and Narayanan, 2023). Thus, to
overcome these challenges, not only high-quality datasets are
required but also unified training-validation-test splits. This will
also help to make the comparison of different methods more
rigorous. However, other hidden biases may remain. For example,
using pre-trained language models (LMs) may lead to data leakage,
as the LM model itself might have seen data similar to the
training set.

One rather technical but important thing that also prevents a
rigorous comparison of binding site detection methods is the use of
different performancemetrics for their evaluation. First of all, many
papers present accuracy, precision, recall, or ROC AUC metrics,
which may be misleading. Indeed, precision or recall metrics are
high when themodel outputs either the lowest or highest number of
positive predictions, respectively, and accuracy or ROC AUC tends
to be 1 when there is a high imbalance in binary labels. MCC is a
much more suitable metric for binding site detection; however, it
still depends on the choice of the threshold for determining binary
labels. On the other hand, AP or AURPC, which is the area under
the precision-recall curve, is much more convenient for the classi-
fication of binding residues, as it takes into account the ranking of
predictions and does not depend on class imbalance. Also, instead
of calculating precision on the top-N predictions for each structure
(seeDCC andDCAmetrics in Supplementary SectionMetrics), one
can use AP for assessingmodel performance using a distance-based
criterion as well (Kozlovskii and Popov, 2020), following this idea
from object detection in computer vision (Everingham et al., 2010).
More reliable performance metrics can be roughly divided into
three categories: distance-, volume-, and residue-based. Distance-
based metrics define a prediction as successful if the distance from
the predicted binding site center to the true center or any atom of
the binding site or ligand is lower than a threshold value, which is
usually set to 4Å. Volume-based metrics calculate the overlap
between the predicted and true binding site cavities. Finally,
residue-based metrics rely on binary classification metrics calcu-
lated from residue scores. There is no one-size-fits-all solution,
however. For example, residue-based scores may be misleading
for protein–ion binding sites. Indeed, the number of interacting
residues is small; thus, the impact of a single residue on themetric is
high. Furthermore, the definition of interacting residues varies too,
resulting in differentmetric values for the same predictions but with
a slightly different set of true labels. Similarly, a residue-based
metric may be misleading for nucleic acid–small molecule binding
site prediction, though with the opposite reasoning. In this case, the
number of nucleotides in the structure is typically small; thus, the
binding site covers a larger portion of nucleotide residues. As a
result, residue-based metrics may become insensitive to very dif-
ferent predictions. In contrast, distance- and volume-based metrics
have been shown to be informative enough for protein–small mol-
ecule binding site predictions. Therefore, distance-based metrics
would be more robust for protein–ion and nucleic acid–small mol-
ecule binding site detection problems. However, as one can see from
Sections Nucleic acid–small molecule binding sites Benchmarks and

Protein–ion binding site prediction Benchmarks, most of the
methods rely on residue-based metrics. On the other hand, residue-
based metrics can be more suitable for protein–peptide binding site
detectionmethods compared to distance- and volume-basedmetrics,
because of the large size of protein–peptide binding site interfaces.

Another challenge is the interpretability of ML and DL-based
binding site detection models. While these methods could
achieve superior accuracy compared to classical approaches,
their predictions often lack clear mechanistic explanations, mak-
ing it difficult to extract meaningful insights about the under-
lying molecular interactions (Murdoch et al., 2019; Vecchietti
et al., 2024). This issue can be particularly relevant when under-
standing why a model identifies a particular region as a potential
binding site is essential for hypothesis-driven drug design.
Unlike physics-based or first-principle methods, which rely on
well-understood physical and chemical principles, DL models
operate as complex, non-linear transformations of input data,
obscuring the contributions of individual molecular features. This
ambiguity also hampers debugging models, detecting biases in data-
sets, and ensuring reliable generalization across diverse molecular
structures. Recent advances in explainable AI (XAI) (Jiménez-Luna
et al., 2020; Bhatt et al., 2024), such as feature attribution techniques
(e.g., SHAP (Lundberg and Lee, 2017), LRP (Montavon et al., 2019),
Grad-CAM (Selvaraju et al., 2017)) and attention mechanisms in
transformer-based models (Wiegreffe and Pinter, 2019), have been
proposed to increase interpretability, but their application to binding
site prediction remains limited. Incorporating interpretable ML
techniques into binding site detection could improve trust in
DL-based predictions and enhance their practical usability in drug
discovery pipelines.

In drug discovery, one of the challenges is to assess the ‘drugg-
ability’ or ‘ligandability’ of the detected binding sites. Currently, there
are no strict criteria for the ‘druggable’ binding sites. Similarly to the
characterization of drug-like molecules using the rule of 5, Ghose
filter, or other heuristics, one can compose such knowledge-based
criteria for the binding sites based on their properties. While an
exhaustive review of binding site characterizationmethods is beyond
the scope of this article, it is noteworthy that several computational
tools have been developed to analyze specific properties of binding
sites. These tools assess attributes such as volume, surface area, and
flexibility, and often identify sub-pockets within larger pockets
(Durrant et al., 2014; Guerra et al., 2021), typically, employing
approaches similar to those discussed in Section Protein–small mol-
ecule binding sites Geometric. Moreover, certain geometric binding
site prediction methods inherently provide volume estimations of
binding sites (Kawabata andGo, 2007; Capra et al., 2009; LeGuilloux
et al., 2009; Zhu and Pisabarro, 2011), and some methods analyze
pockets throughout molecular dynamics (MD) trajectories, offering
dynamic insights into binding site properties (Craig et al., 2011;
Schmidtke et al., 2011; Paramo et al., 2014; Laurent et al., 2015;
Wagner et al., 2017; Chen et al., 2019; Lv andCao, 2024). Other tools,
like MOLE (Pravda et al., 2018), CAVER (Stourac et al., 2019), and
others (Yaffe et al., 2008; Lee and Helms, 2012) aim at the charac-
terization of protein tunnels, channels, and pores.

Last but not least challenge is the prospective validation of the
developed methods. Given the aforementioned challenges that can
lead to over-optimistic performance on the retrospective benchmarks,
the real-world application is of crucial importance. However, such
case studies are quite rare (Popov et al., 2024; Naz et al., 2015) and
absent formost of the developedmethods. In this regard, community-
driven challenges, such as CASP (https://predictioncenter.org) and
CACHE (https://cache-challenge.org), may comprise targets with
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previously unpublished binding sites and, thus, provide an opportun-
ity to demonstrate the predictive power of the developed methods.

Trends and future directions

It is no wonder that machine learning-based approaches are grad-
ually displacing the first-principle methods, and while older
research focuses more on searching for the most powerful features,
newer research is more focused on exploring various neural net-
work architectures. Moreover, with the advances in large language
models, it has become common to utilize embeddings produced by,
for example, protein language models, as the feature vectors for the
downstream task of the binding site detection. While this idea
seems promising, extensive exploration of this research direction
is computationally expensive, requiring significant hardware
resources and time, which can limit accessibility for some research
groups.

When applying or testing binding site detection methods, an
important question to address is the flexibility of the target. Nat-
urally, one expects that a method should detect a binding site in the
holo conformation of the target. But in practice, one needs to
discover novel binding sites given the unbound conformation. At
what point in the imaginary trajectory between the unbound and
bound conformations should a method detect the binding site? The
answer to this question likely depends on the considered set of
ligands for a particular target, such that the method should detect a
binding site in the structure, if the corresponding conformation is
within a certain vicinity of the bound conformation for at least one
of the ligands. The vicinity can be simply defined as all conform-
ations within a given RMSD threshold relative to the bound con-
formations. Constructing such a benchmark of conformational
ensembles would be a valuable step forward for the development
of robust binding site detection approaches. Currently, one typic-
ally addresses the flexibility issue by generating multiple conform-
ations of the target using molecular dynamics or another method
and applying binding site detection to them (Kozlovskii and Popov,
2020; Martinez-Rosell et al., 2020; Meller et al., 2023; Panei et al.,
2024). The development of spatiotemporal methods to analyze
target binding sites and their dynamics is a valuable direction for
future research.

There are other types of binding sites besides those covered in
this review. For example, specific models have been developed for
protein-nucleotide binding sites (Chauhan et al., 2009; Chen et al.,
2012; Kusuma et al., 2019), carbohydrate binding sites (Canner
et al., 2023), vitamin binding sites (Panwar et al., 2013), catalytic
sites (Dou et al., 2012), as well as water positions (Zaucha et al.,
2020; Park and Seok, 2022). As for RNA targets, there are methods
to predict RNA-ion binding sites, including MetalionRNA
(Philips et al., 2012), MgNet (Zhou and Chen, 2022),
Metal3DRNA (Zhao et al., 2023), as well as machine learning
methods to predict RNA-protein binding sites using only
sequence data (Choi and Han, 2013; Panwar and Raghava, 2015;
Tuvshinjargal et al., 2016; Choi et al., 2017; Zhan et al., 2018; Pan
et al., 2020; Tahir et al., 2021; Zhao et al., 2022), sequential and
secondary structure (Uhl et al., 2019), or sequential and tertiary
data (Luo et al., 2017). Some of the sequence-based methods rely
on large databases with experimental data on RNA-protein bind-
ing, such as RNAcompete (Ray et al., 2009), CLIP-seq, and RIP-
seq (Ray et al., 2013). Notably, there are approaches to predict
DNA binding sites (e.g., DeepBind (Alipanahi et al., 2015) and
DeepSTF (Ding et al., 2023)), trained on datasets from protein

binding microarrays (PBMs) (Mukherjee et al., 2004), ChIP-seq
(Kharchenko et al., 2008), or HT-SELEX (Jolma et al., 2010). We
would like to separately note that protein-covalent ligand binding
sites constitute a special case of protein–small molecule binding
sites. Covalent ligands may be useful as a therapeutic modality in
various diseases; hence, the prediction of this type of binding site is
relevant in covalent drug discovery (Boike et al., 2022). A ligand
can form a covalent bond with target residues (commonly Cys,
Ser, and Lys, but there are other cases as well) upon binding, which
imposes strict constraints on the binding site detection problem.
There are several databases of covalent agents, including Cova-
lentInDB (Du et al., 2021) and CovPDB (Gao et al., 2022), and
there are methods for predicting the ability of cysteines to form a
covalent bond with ligands ( Zhang et al., 2016, 2017; Zhao et al.,
2017; Du et al., 2022; Gao and Günther, 2023). Other examples
include methods to predict macromolecular binding sites, such as
protein-nucleic acids ( Hendrix et al., 2021; Wei et al., 2022; Yuan
et al., 2022a; Liu and Tian, 2023; Roche et al., 2023; Song et al.,
2023; Zhu and Yu, 2023) or protein–protein (Fout et al., 2017;
Gainza et al., 2020; Dai and Bailey-Kellogg, 2021; Renaud et al.,
2021; Sverrisson et al., 2021; Tubiana et al., 2022; Gao et al., 2023;
Jha et al., 2023; Krapp et al., 2023). Most of these methods are
based on approaches similar to the ones described here. Given the
large variety of binding site types on one hand and the advances in
multi-modal and multi-task machine learning approaches on the
other hand, we expect that the next-generation binding site pre-
diction methods will operate across different types of macromol-
ecular structures as well as their binding counterparts. Although
there is currently no strong evidence that this will improve model
accuracy, one may expect that a single model trained on compre-
hensive datasets could have stronger generalization ability and
robustness. We observed that some methods implicitly explore
this idea already; for example, RNet (Liu et al., 2024) and
BiteNetPp (Kozlovskii and Popov, 2021a) started with protein–
small molecule binding site detectionmodels and fine-tuned them
for RNA-smallmolecule and protein–peptide binding sitemodels,
respectively.

Finally, the discovery of novel binding sites may come from an
orthogonal direction. For example, global molecular docking
approaches search for the optimal configuration of two binding
partners without prior knowledge of the corresponding binding
site. Molecular docking methods have been developed for differ-
ent types of macromolecules and ligands, including those
described here in the context of the binding site detection prob-
lem. Needless to say, the molecular docking field and virtual
ligand screening, in general, are also affected by the machine-
learning era (Fadahunsi et al., 2024). Moreover, breakthroughs in
protein structure prediction by DeepMind (https://deepmind.
google/technologies/alphafold/) have also opened new oppor-
tunities to solve binding site detection problems. Particularly,
one promising direction is the development of co-folding
approaches that aim to predict the 3D structure of the molecular
complex starting from a 1D (sequence) or 2D (graph) represen-
tation of its subunits. The most recent examples of such
approaches include AlphaFold3 (Abramson et al., 2024), RoseT-
TaFold All-Atom (Krishna et al., 2024), or NeuralPLexer (Qiao
et al., 2024). Although their predictive power has yet to be
assessed on independent test benchmarks to date, one may expect
the rise of end-to-end approaches to solving structure prediction,
binding site detection, and molecular docking problems simul-
taneously in the future.
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DL deep learning
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SVM support vector machine
MSA multiple sequence alignment
NN neural network
CNN convolutional neural network
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MPNN message passing neural network
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LSTM long short-term memory
RMSD root-mean-square deviation
MD molecular dynamics
SS secondary structure
ASA accessible surface area
SASA solvent accessible surface area
RSASA relative solvent accessible surface area
PSSM position specific scoring matrix
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ATP adenosine triphosphate
RNA ribonucleic acid
DNA deoxyribonucleic acid
PDB Protein Data Bank
NMR nuclear magnetic resonance
pLM protein language model
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