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The skin-friction coefficient is a dimensionless quantity defined by the wall shear stress
exerted on an object moving in a fluid, and it decreases as the Reynolds number
increases for wall-bounded turbulent flows over a flat plate. In this work, a novel
transformation, based on physical and asymptotic analyses, is proposed to map the skin-
friction relation of high-speed turbulent boundary layers (TBLs) for air described by
the ideal gas law to the incompressible skin-friction relation. Through this proposed
approach, it has been confirmed theoretically that the transformed skin-friction coefficient
C f,i , and the transformed momentum-thickness Reynolds number Reθ,i for compressible
TBLs with and without heat transfer, follow a general scaling law that aligns precisely
with the incompressible skin-friction scaling law, expressed as (2/C f,i )

1/2 ∝ ln Reθ,i .
Furthermore, the reliability of the skin-friction scaling law is validated by compressible
TBLs with free-stream Mach number ranging from 0.5 to 14, friction Reynolds number
ranging from 100 to 2400, and the wall-to-recovery temperature ratio ranging from 0.15
to 1.9. In all of these data, (2/C f,i )

1/2 and ln Reθ,i based on the present theory collapse
to the incompressible relation, with a squared Pearson correlation coefficient reaching an
impressive value 0.99, significantly exceeding 0.85 and 0.86 based on the established van
Driest II and the Spalding–Chi transformations, respectively.
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1. Introduction
The turbulent boundary layer (TBL) is among the most intriguing and important turbulent
flows, drawing numerous researchers to engage in both physical and mathematical
modelling of this phenomenon (Bradshaw 1977; Duan et al. 2010; Pirozzoli 2011; Smits
et al. 2011; Marusic & Monty 2019; Chen et al. 2023; Cheng & Fu 2024). It is well known
that incompressible TBLs at high Reynolds numbers exhibit several nearly universal
scaling laws (van Driest 1951; Nagib et al. 2007; Marusic et al. 2013; Chen & Sreenivasan
2021). For example, the mean streamwise velocity profiles versus the wall-normal
coordinate can be unified into the law of the wall through the non-dimensionalisation with
respect to the friction velocity and kinematic viscosity. The skin-friction coefficient C f
decreases along the streamwise direction, and is widely recognised to exhibit a functional
relation with the Reynolds number Reθ based on the momentum thickness θ . The scaling
law between C f and Reθ for incompressible TBLs over a flat plate can be expressed as
(Nagib et al. 2007) (

2
C f

)1/2

∝ ln Reθ , (1.1)

as a result of the logarithmic law of the mean streamwise velocity.
However, the compressible TBLs with high free-stream Mach number and non-

negligible heat transfer do not directly obey the above scaling laws observed in
incompressible cases. Consequently, significant efforts are dedicated to mapping
compressible TBLs onto the incompressible counterparts by considering variations in
mean properties such as density and viscosity inspired by Morkovin hypothesis (Bradshaw
1977). Such a transformation holds not only theoretical significance but also practical
importance for reduced-order turbulence modelling, since it would enable the established
incompressible wall models to be seamlessly applied to compressible flows (Chen et al.
2024). An exemplary instance of the mapping is the velocity transformation. Over the
past decades, several variants have been proposed for the velocity transformation of
compressible TBLs (Zhang et al. 2012; Trettel & Larsson 2016; Volpiani et al. 2020b;
Griffin et al. 2021; Hasan et al. 2023), building upon the pioneering work of van Driest
(1951). Among these methods, the physics-based Griffin-Fu-Moin (GFM) transformation
(Griffin et al. 2021) combining the modified transformation of Zhang et al. (2012) with
the transformation of Trettel & Larsson (2016) successfully collapses mean streamwise
velocity profiles of compressible TBLs with and without heat transfer into the law of the
wall observed in incompressible scenarios.

In the field of aerospace engineering, it is essential to predict C f on a surface
where high-speed airflow passes along with intense heat transfer. To this end, there
are approximately 30 published theories for calculation of C f of compressible TBLs
(Spalding & Chi 1963). The theories presented by van Driest (1951) and Spalding & Chi
(1964) exhibit lowest root mean square error, and are two of the most commonly used
models to estimate C f . Specifically, considering variations in density and viscosity, van
Driest (1951) introduced a scaling of C f with Reynolds number for compressible TBLs,
which can be reduced to the incompressible relation as the Mach number approaches
zero and the heat transfer becomes negligible. According to Spalding & Chi (1964), the
compressible scaling of C f can be mapped to the incompressible relation by multiplying
C f and Reθ by FC and Fθ , respectively. Here, FC and Fθ are functions of free-stream
Mach number Ma∞ and temperature T . Spalding & Chi (1964) formulated FC and Fθ

based on the theory of van Driest (1951), called the van Driest II (vD-II) transformation.
Moreover, an empirically modified Fθ using C f data in the presence of heat transfer is
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proposed as the Spalding–Chi (SC) transformation (Spalding & Chi 1964). Hopkins &
Inouye (1971) compared the performance of the above two transformations, and concluded
that neither theory provided accurate predictions of C f for problems with wall-to-recovery
temperature ratios below 0.3. The review by Bradshaw (1977) further remarked that these
two theories failed to predict C f on a very cold wall. In a more recent study, Huang et al.
(2022) confirmed that neither of the two theories could map the compressible scaling of
C f to incompressible relation for a highly cooled wall.

Based on the aforementioned discussions, none of the theories could consistently predict
the C f of compressible TBLs with and without heat transfer. To this end, we revisit the
theory of van Driest (1951), and introduce a novel transformation for C f in this work.
This proposed approach effectively maps the scaling law of C f for high-speed TBLs in
air described by the ideal gas law, particularly those involving highly cooled walls, to the
incompressible relation (i.e. (1.1)).

2. Scaling law of Cf for compressible TBLs over a flat plate

The skin-friction coefficient, defined as C f = 2τw/ρ∞u2∞ with wall shear stress
τw = μ du/dy|w, free-stream density ρ∞, free-stream velocity u∞, viscosity μ and wall-
normal coordinate y, is a crucial parameter in the design of supersonic and hypersonic
aircraft. Hereafter, an overline denotes the Reynolds average, and subscripts w and
∞ represent quantities at the wall and in the free stream, respectively. Coefficient
C f is widely recognised to exhibit a functional relation with the Reynolds number
Reθ = ρ∞u∞θ/μ∞ based on the momentum thickness θ . According to Spalding & Chi
(1964), for compressible TBLs over a flat plate, C f and Reθ can be linearly transformed
to C f,i and Reθ,i by multiplying by FC and Fθ , respectively, i.e.

C f,i = FCC f , Reθ,i = Fθ Reθ . (2.1)

Here, C f,i and Reθ,i should obey the incompressible scaling for C f , i.e. (1.1). The
transformation factor FC is the same in both vD-II (van Driest 1951) and SC (Spalding
& Chi 1964) theories considering variations in density and viscosity, and can be
expressed as

(FC )vD = (FC )SC =
[∫ 1

0

√
ρ

ρ∞
dz

]−2

, (2.2)

with z = u/u∞, density ρ and streamwise velocity u. Here, subscripts ‘vD’ and ‘SC’ refer
to the transformation factors from the vD-II and SC theories, respectively. Using the fact
that the pressure is nearly constant in TBLs and the velocity–temperature relation, the
factor FC can be further written as

(FC )vD = (FC )SC =
Tr

T∞
− 1(

sin−1 α + sin−1 β
)2 , (2.3)

where α = (2A2 − B)/(B2 + 4A2)1/2, β = B/(B2 + 4A2)1/2, A = [r(γ − 1)/2 ×
Ma2∞ T∞/Tw]1/2 and B = Tr/Tw − 1. Here, r is the recovery factor, Tr is the recovery
temperature, and γ is the heat capacity ratio. However, the factor Fθ differs between the
two theories and is given as

(Fθ )vD = μ∞
μw

, (Fθ )SC =
(

T∞
Tw

)0.702 ( Tr

Tw

)0.772

. (2.4)
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These two transformations are used most commonly but fail to predict C f on a highly
cooled wall (Hopkins & Inouye 1971; Bradshaw 1977; Huang et al. 2022). The key
issue with these two theories is the use of a linear transformation to eliminate the
influences of Mach number and heat transfer on Reθ . Indeed, the momentum thickness is
defined as

θ =
∫ δe

0

ρ

ρ∞
u

u∞

(
1 − u

u∞

)
dy, (2.5)

where δe represents the TBL edge, typically chosen at the location where u = 0.99u∞. It
is evident that the integrand in the definition of θ is a quadratic function of the velocity
profile. Hence the factor Fθ in the linear transformation of (2.1) is unavailable to include
all effects of Mach number and heat transfer on u. To address this concern, we redefine a
momentum thickness θ∗ as

θ∗ =
∫ δe

0

ρ

ρ∞
U I

UI,∞

(
1 − U I

UI,∞

)
d(y∗δv), (2.6)

where δe is determined at U I = 0.99UI,∞, the semi-local wall-normal coordinate is
y∗ = y

√
τwρ/μ, the viscous length scale is δv = μw/

√
τwρw, and U I using the physics-

based GFM velocity transformation (Griffin et al. 2021) is given as

U I =
∫ y∗

0

1
μ+

dU
+

dy∗

1 + 1
μ+

dU
+

dy∗ − μ+ dU
+

dy+

dy∗. (2.7)

Throughout this paper, the superscript + indicates a non-dimensionalisation by the friction
velocity uτ = √

τw/ρw, δv and μw. Note that U I in (2.7) is based on constant-stress-
layer GFM transformation. In fact, the performances of U I based on total-stress-based
GFM transformation without the constant-stress-layer assumption, and on constant-stress-
layer GFM transformation, are nearly identical (Griffin et al. 2021). Therefore, the
constant-stress-layer assumption in (2.7) does not impact the establishment of the skin-
friction scaling law, which has also been validated in Appendix A. The profiles of the
transformed U I (y∗) in compressible TBLs, with and without heat transfer, collapse to the
incompressible law of the wall, and are independent of Mach number and heat transfer.
Clearly, θ∗ is similar to the traditional momentum thickness θ , except that θ∗ is based on
U I and y∗. Since the profiles of U I (y∗) are independent of Mach number and heat transfer,
θ∗ can be physically interpreted as a momentum thickness unaffected by the effects of
Mach number and heat transfer in the velocity profiles of compressible TBLs. Therefore,
only ρ in the redefined θ∗ is affected by Mach number and heat transfer. These effects
can be reasonably included in a linear transformation factor Fθ∗ with a redefined Reynolds
number Reθ∗ = ρ∞u∞θ∗/μ∞. It is important to highlight that by multiplying y∗ by δv in
(2.6), Reθ∗ can be precisely reduced to the Reθ of the incompressible case, where ρ and
μ are nearly constant.

Subsequently, we will theoretically derive the scaling law for C f based on Reθ∗ .
Given the fact that the contribution of the integrand to θ∗ in both the viscous sublayer
(U I /UI,∞ → 0) and outer layer (U I /UI,∞ → 1) is negligible, the log-law behaviour of
U I , expressed as
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y∗ = exp(κU I )

E
, (2.8)

is suitably employed to approximate θ∗. Here, κ is the von Kármán constant, and E is a
constant. By substituting (2.8) into (2.6), one can obtain

θ∗ = κ

E
δvUI,∞

∫ 1

0

ρ

ρ∞
Z(1 − Z) exp(κUI,∞Z) dZ , (2.9)

where Z = U I /UI,∞. The integral term in above equation,
∫ 1

0 (ρ/ρ∞)Z(1 − Z)

exp(κUI,∞Z) dZ = 1/(κUI,∞)
∫ 1

0 (ρ/ρ∞)Z(1 − Z) d exp(κUI,∞Z), can be integrated
by parts and expressed as

1
κUI,∞

∫ 1

0

ρ

ρ∞
Z(1 − Z) d exp(κUI,∞Z)

= 1
κUI,∞

{[
ρ

ρ∞
Z(1 − Z) exp(κUI,∞Z)

]1

0
−
∫ 1

0
exp(κUI,∞Z) d

ρ

ρ∞
Z(1 − Z)

}

= − 1
κUI,∞

∫ 1

0

[
ρ

ρ∞
(1 − 2Z) − Z(1 − Z)

ρ∞
dρ

dZ

]
exp(κUI,∞Z) dZ . (2.10)

Here, the term
[
(ρ/ρ∞)Z(1 − Z) exp(κUI,∞Z)

]1
0 represents the difference in values

of [(ρ/ρ∞)Z(1 − Z) exp(κUI,∞Z)] at the locations Z = 1 and Z = 0. Similarly, by
repeatedly applying integration by parts to (2.10), (2.9) can be expressed as an asymptotic
series of 1/κUI,∞ as

θ∗ = κ

E
δvUI,∞ ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(κUI,∞) + 1
ρ+∞

(κUI,∞)2

+

{
d

dZ

[
ρ

ρ∞
(1 − 2Z) − Z(1 − Z)

ρ∞
dρ

dZ

]
exp(κUI,∞Z)

}1

0
(κUI,∞)3 + O

[
1

(κUI,∞)4

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(2.11)

According to the logarithmic law of TBLs, it can be estimated that UI,∞ � 20, leading
to κUI,∞ being of the order of O(10) for TBLs. The ratio of magnitude of the third-
order term related to 1/(κUI,∞)3 to the magnitude of the second-order term related to
1/(κUI,∞)2 is of the order of O(10−1). Moreover, given the fact that pressure is nearly
constant in TBLs, 1/ρ+∞ ≈ T∞/Tw. For common high-speed TBLs, T∞/Tw < 1, which
implies 1/ρ+∞ < 1 � exp(κUI,∞) ∼ O(104). To this end, the term 1/ρ+∞, which is much
smaller than exp(κUI,∞), along with the higher-order terms that are smaller than the
second-order term, can be neglected. Consequently, Reθ∗ can be determined by

Reθ∗ = 1
E

ρ∞u∞μw

μ∞
√

τwρw

exp(κUI,∞)

κUI,∞
. (2.12)
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Moreover, according to (2.7), UI,∞ is determined by

UI,∞ = u∞√
τw

ρw

∫ 1

0

1

μ+ + dU
+

dy∗ − (μ+)2 dU
+

dy+

dz. (2.13)

Letting F = ∫ 1
0 [μ+ + dU

+
/dy∗ − (μ+)2 dU

+
/dy+]−1 dz, which is determined by given

viscosity and velocity profiles in TBLs, the functional relation between Reθ∗ and C f can
be obtained by substituting (2.13) into (2.12) as√√√√√ 2

C f

(
ρ∞
ρw

)
F−2

= 1
κ

ln
(

ρwμ∞
ρ∞μw

F Reθ∗
)

+ C, (2.14)

with a constant C = ln(Eκ)/κ . Obviously, we can define a novel transformation for C f
and Reθ∗ as

C f,i = FC∗C f , Reθ,i = Fθ∗ Reθ∗, (2.15)

where the new transformation factors are expressed as

FC∗ = ρ∞
ρw

F−2, Fθ∗ = ρwμ∞
ρ∞μw

F. (2.16)

Employing the present transformation, i.e. (2.15), the scaling for C f of a compressible
TBL can be written as (

2
C f,i

)1/2

∝ ln Reθ,i . (2.17)

The functional relation between the newly transformed C f,i and Reθ,i is exactly the
same as the incompressible scaling for C f expressed by (1.1). Furthermore, in the
incompressible TBL with constant ρ and μ, it is clear that FC∗ = 1, Fθ∗ = 1 and
Reθ∗ = Reθ . Hence the newly transformed C f,i and Reθ,i can be precisely reduced to
the incompressible counterparts when the effects of Mach number and heat transfer
are negligible. The preceding discussions on the innovative transformation indicate that
this novel approach theoretically maps the scaling for C f of compressible TBLs for air
described by the ideal gas law to the incompressible relation for C f . Furthermore, by
performing a linear fit of the data to determine the constants κ f and C , the scaling for C f
of a compressible TBL can be quantified as(

2
C f,i

)1/2

= 1
κ f

ln Reθ,i + C. (2.18)

Given the approximations involved in deriving the skin-friction scaling, the constant
obtained by linearly fitting (2/C f,i )

1/2 and ln Reθ,i in (2.18) will differ from the value
of the von Kármán constant κ obtained from the stream velocity profile, and is therefore
denoted as κ f . Additionally, based on the definition of Reθ∗ , the newly transformed
Reθ,i can be further expressed as Reθ,i = Fρwu∞θ∗/μw. It is evident that μ∞ used in
the present definition of Reθ∗ does not appear in the final form of transformed Reθ,i .
In other words, in the definition of Reθ∗ , replacing μ∞ with μw, shear stress-weighted
average viscosity introduced by Kianfar et al. (2023) to account for the relative influence
of turbulence on the skin friction, or any other viscosity, does not change the final form of
the transformed Reθ,i .
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Case Ma∞ Tw/Tr Reτ Reδe Reθ Reθ∗ C f × 103

Present DNS 4.0 0.5 664−790 48 769−59 273 3051−3649 7005−8312 1.96−1.88
4.0 0.25 620−745 16 434−20 571 1223−1545 1062−1317 2.59−2.39
6.0 0.5 748−814 227 507−249 253 9628−10 427 88 090−94 805 1.14−1.13

Table 1. The parameters for compressible TBLs self-simulated using the open-source code STREAmS
(Bernardini et al. 2021, 2023) in fully developed turbulent regions. Here, Ma∞ is the free-stream Mach number,
Tw/Tr is the wall-to-recovery temperature ratio, Reτ is the friction Reynolds number, Reδe is the Reynolds
number based on boundary layer thickness, Reθ is the Reynolds number based on momentum thickness, and
Reθ∗ is the redefined Reynolds number based on transformed momentum thickness.

Reference Ma∞ Tw/Tr Reτ Reδe Reθ Reθ∗ C f × 103

Zhang 0.5 1.0 563−696 13 552−17 433 1 426−1 862 1 509−1 967 3.86−3.56
et al. 2.0 1.0 661−820 36 532−47 060 2 945−3 815 5 892−7 592 2.59−2.40
(2022, 2.0 0.5 652−806 12 481−16 014 1 253−1 598 967−1 230 3.59−3.33
2024) 4.0 1.0 623−747 121 667−148 933 6 339−7 638 34 598−41 401 1.37−1.32

6.0 1.0 589−702 519 256−629 102 18 517−22 041 449 876−528 268 0.79−0.77
8.0 1.0 566−655 1 204 449−1 426 517 32 616−38 621 1 587 255−1 813 217 0.49−0.47
8.0 0.5 601−710 460 813−555 324 15 484−18 265 305 564−355 140 0.71−0.68

Li et al. 2.25 1.0 607−776 38 962−52 592 2 760−3 913 6 398−9 038 2.61−2.35
(2009, 8.0 0.81 700−1175 660 259−1 200 648 17 476−34 771 313 120−561 846 0.51−0.44
2019) 8.0 0.15 1439−2271 154 565−259 128 5 907−10 597 13 465−21 977 0.88−0.78

Volpiani 2.28 1.0 246−280 14 196−16 598 1 126−1 320 2 532−2 965 3.03−2.86
et al. 2.28 1.0 410−491 25 406−31 555 1 987−2 493 4 456−5 596 2.63−2.45
(2018, 2.28 1.9 102−125 13 625−17 572 859−1 113 4 742−6 032 2.76−2.50
2020a) 5.0 0.8 691−795 174 578−210 194 7 263−9 186 45 980−56 792 1.19−1.08

5.0 0.8 567−629 138 653−160 991 5 834−7 046 37 457−44 339 1.26−1.15
5.0 1.9 188−206 149 146−171 344 4 643−5 591 100 185−116 561 1.02−0.93

Table 2. The parameters for compressible TBLs of Zhang et al. (2022, 2024), Li et al. (2009, 2019) and
Volpiani et al. (2018, 2020a) in fully developed turbulent regions. The representations of the parameters are
presented in table 1.

3. Validation of the newly proposed scaling law
To verify the scaling law for C f , we conduct direct numerical simulations (DNS)
of compressible TBLs, and also collect as much published DNS data as possible on
compressible TBLs with adiabatic (Li et al. 2009; Pirozzoli & Bernardini 2011; Volpiani
et al. 2018; Zhang et al. 2018, 2024; Maeyama & Kawai 2023; Cogo et al. 2023), cooled
(Zhang et al. 2018, 2022; Li et al. 2019; Volpiani et al. 2020a; Cogo et al. 2023), and
heated (Volpiani et al. 2018, 2020a) walls. The data cover a fairly wide range of flow
conditions, with Ma∞ ranging from 0.5 to 14, friction Reynolds number Reτ ranging
from 100 to 2400, and Tw/Tr ranging from 0.15 to 1.9. A wall-to-recovery temperature
ratio Tw/Tr less than 1 signifies a cooled wall, Tw/Tr equal to 1 denotes an adiabatic wall,
and Tw/Tr greater than 1 indicates a heated wall. Detailed parameters regarding the DNS
data of TBLs can be found in tables 1, 2 and 3.

Figure 1(a) displays the correlation between the transformed (2/C f,i )
1/2 and Reθ,i

according to the proposed theory, employing logarithmic coordinate for Reθ,i . It should
be noted that a second-order difference scheme is uniformly employed to calculate the
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Reference Ma∞ Tw/Tr Reτ Reδe Reθ Reθ∗ C f × 103

Maeyama & Kawai (2023) 2.28 0.96 716 45 005 3 466 7 463 2.36
2.28 0.96 1279 86 515 6 440 14 082 2.06
2.28 0.96 2405 171 960 12 296 27 131 1.84

Zhang et al. (2018) 2.50 1.0 505 36 942 2 694 6 508 2.30
5.84 0.25 436 37 367 2 011 4 310 1.69
5.86 0.76 448 240 290 9 583 129 938 0.96
7.87 0.48 467 313 170 10 729 161 282 0.77

13.64 0.18 634 701 422 17 689 204 479 0.39
Cogo et al. (2023) 2.0 1.0 444 23 633 1 981 3 900 2.81

2.0 0.90 443 19 971 1 714 2 934 2.99
2.0 0.79 443 16 609 1 486 2 159 3.17
2.0 0.76 1947 87 859 7 954 11 581 2.16
2.0 0.69 444 13 399 1 242 1 494 3.39
4.0 0.81 444 63 551 3 657 14 604 1.63
4.0 0.63 444 44 215 2 749 7 976 1.85
4.0 0.44 444 27 001 1 848 3 428 2.15
6.0 1.0 444 228 481 8 401 88 891 0.84
6.0 0.78 444 166 073 6 643 53 030 0.94
5.86 0.76 1947 996 276 41 172 410 017 0.69
6.0 0.57 444 108 382 4 841 25 836 1.09
6.0 0.35 444 56 610 2 813 8 531 1.34

Pirozzoli & Bernardini (2011) 2.0 1.0 204 10 216 877 1 793 3.45
2.0 1.0 251 13 012 1 131 2 301 3.22
2.0 1.0 445 24 792 2 090 4 276 2.79
2.0 1.0 580 33 702 2 890 5 864 2.56
2.0 1.0 838 51 312 4 437 9 092 2.30
2.0 1.0 893 55 170 4 760 9 739 2.27
2.0 1.0 992 62 125 5 347 10 938 2.21
2.0 1.0 1106 70 513 6 045 12 325 2.13
3.0 1.0 403 44 654 3 013 10 547 2.01
3.0 1.0 502 57 893 3 955 13 606 1.86
4.0 1.0 395 83 623 4 713 26 874 1.39
4.0 1.0 501 107 715 5 943 33 392 1.34

Table 3. The parameters for compressible TBLs of Maeyama & Kawai (2023), Zhang et al. (2018),
Cogo et al. (2023) and Pirozzoli & Bernardini (2011) in fully developed turbulent regions. The representations
of the parameters are presented in table 1.

derivatives in FC∗ and Fθ∗ for all data. With a squared Pearson correlation coefficient R2

as high as 0.99 between (2/C f,i )
1/2 and ln Reθ,i , it is indicated that the transformed C f,i

of compressible TBLs with and without heat transfer strictly satisfies the incompressible
scaling for C f , i.e. (2/C f,i )

1/2 ∝ ln Reθ,i , based on present theory. For comparison, the
results of vD-II and SC theories are depicted in figures 1(b) and 1(c), respectively. No
significant linear relationship is observed between (2/C f,i )

1/2 and ln Reθ,i under these
two theories, with R2 values 0.85 and 0.86, much less than 0.99 of present theory.

To quantitatively confirm if the present theory effectively collapses the compressible
scaling for C f to the incompressible relation, the constants κ f and C are determined
by linearly fitting present data for compressible TBLs, and (2.18) is plotted in figure 1.
Two commonly used incompressible correlations for C f , namely the modified Coles–
Fernholz (Nagib et al. 2007) and Smits et al. (1983) relations, are also depicted. It
is evident that the C f,i correlation of present theory lies between two incompressible
relations at Reθ,i � 500. However, the C f,i correlation of vD-II theory deviates from
two incompressible relations at Reθ,i � 10 000, and that of SC theory notably deviates
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Maeyama & Kawai (2023)

Zhang et al. (2018)

Cogo et al. (2023)

Pirozzoli & Bernardini (2011)

Incompressible cases

Coles–Fernholz (Nagib et al., 2007)

Smits et al. (1983)
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Figure 1. The transformed (2/C f,i )
1/2 versus transformed Reθ,i : (a) present theory (using (2.15)),

(b) vD-II theory (using (2.1) with (FC )vD and (Fθ )vD) and (c) SC theory (using (2.1) with (FC )SC and (Fθ )SC ).
The coloured symbols represent DNS data from both adiabatic and diabatic compressible TBLs, with colours
indicating the wall-to-recovery temperature ratios. The black symbols × denote DNS and experimental data
for incompressible TBLs, with Reθ � 3000 from Schlatter & Örlü (2010), 4000 � Reθ � 6500 from Sillero
et al. (2013), and 13 000 < Reθ < 52 000 (corresponding to 6000 < Reτ < 20 000) from Samie et al. (2018).
The dashed and dash-dotted lines represent the incompressible correlations of Coles–Fernholz (modified
by Nagib et al. (2007), i.e. (2/C f,i )

1/2
C F = 2.604 ln Reθ,i + 4.127) and Smits et al. (1983) (i.e. (C f,i )SM =

0.024 Re−1/4
θ,i ), respectively. The squared Pearson correlation coefficient R2 between (2/C f,i )

1/2 and ln Reθ,i

for each transformation is provided in each plot. For a pair of variables (X, Y ), R2 is defined as R2 =
cov2(X, Y )/(σ 2

X σ 2
Y ), where cov denotes the covariance, σX is the standard deviation of X , and σY is the

standard deviation of Y .

from incompressible relations. Moreover, the C f of incompressible DNS data (Schlatter
& Örlü 2010; Sillero et al. 2013) and experimental data (Samie et al. 2018) also falls
between two incompressible relations, following the C f,i correlation of present theory.
Hence comparing with vD-II and SC theories, the present theory elegantly maps the
compressible scaling for C f to the incompressible relation. Additionally, the performance
of present theory for TBLs at supercritical pressure is discussed in Appendix B.

Error statistics of C f,i from DNS data, compared to the modified Coles–Fernholz
relation (Nagib et al. 2007), are provided in figure 2 to assess the theory’s performance
in predicting C f for compressible TBLs. The maximum errors for the present, vD-II
and SC theories are slightly below 5 %, slightly below 10 %, and surpassing 14 %,
respectively. The data from compressible TBLs with heated and extensively cooled walls
exhibit a significant error for vD-II theory, aligning with observations on the vD-II
theory’s inadequacy in predicting C f on a highly cooled wall (Hopkins & Inouye 1971;
Bradshaw 1977; Huang et al. 2022). The significant error in the SC theory indicates a
notable deviation from incompressible relations, leading to its failure in predicting C f of
compressible TBLs. Therefore, the present theory provides the most reliable predictions
of C f for compressible TBLs with and without heat transfer.

The distributions of C f,i versus Reθ,i are depicted directly in figure 3. Both
compressible and incompressible data collapse to the C f,i correlation of the present
theory, lying between two incompressible relations. Additionally, C f,i exhibits a typical
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Figure 2. The error of the skin-friction coefficient, defined as |(2/C f,i )
1/2
DN S − (2/C f,i )

1/2
C F |/(2/C f,i )

1/2
C F :

(a) present theory, (b) vD-II theory, and (c) SC theory. The black dashed line in each plot represents the
maximum error.
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Figure 3. The transformed C f,i versus transformed Reθ,i : (a) present theory, (b) vD-II theory, and
(c) SC theory.

decreasing relation with increasing Reθ,i . In the vD-II and SC theories, the data fail
to collapse to their C f,i correlation. The C f,i of a highly cooled wall (Tw/Tr � 0.3) is
overestimated by the vD-II theory but underestimated by the SC theory. This phenomenon
is also noted by Huang et al. (2022). These observations further suggest that the newly
proposed theory effectively unifies the compressible and incompressible scaling of C f .
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4. Conclusions
By redefining the Reynolds number, i.e. Reθ∗ , the defects of vD-II and SC transformations
of C f that do not completely absorb the effects of Mach number and heat transfer in
high-speed TBLs for air described by the ideal gas law are overcome. Based on physical
and asymptotic analyses, we derived a novel transformation utilising Reθ∗ to precisely
map the compressible scaling law for C f to the incompressible relation, expressed as
(2/C f,i )

1/2 ∝ ln Reθ,i . Moreover, the transformed C f,i and Reθ,i can be precisely reduced
to the incompressible skin-friction coefficient and the Reynolds number when the effects
of Mach number and heat transfer are negligible. By employing the novel theory, the
transformed C f,i from the data of compressible TBLs over a flat plate with a fairly
wide range of flow conditions elegantly collapses to the incompressible scaling law of
C f . Therefore, the newly established theory effectively unifies the scaling law for C f in
high-speed TBLs, both with and without heat transfer, and in incompressible TBLs.

Since the GFM transformation used to derive the scaling law is effective only for
TBLs with air described by the ideal gas law over smooth flat plates with zero-pressure
gradient, the present skin-friction scaling law is limited to these specific conditions.
However, redefining Reθ∗ to establish the skin-friction scaling law in the present study is
enlightening. Future investigations can establish skin-friction scaling laws for TBLs with
pressure gradients, surface roughness, supercritical pressure, or non-air-like viscosity law,
utilising Reθ∗ in conjunction with an appropriate velocity transformation. Moreover, the
skin-friction scaling law established in the present work is of practical value. Specifically,
the present skin-friction scaling law, validated by extensive DNS data, can serve as a
reference for assessing the accuracy of methods that employ turbulence models, such
as large eddy simulation and Reynolds-averaged Navier–Stokes methods, in simulating
high-speed TBLs. Since the present method unifies the skin-friction scaling relations of
compressible and incompressible TBLs, the C f of high-speed TBLs can be obtained using
results from incompressible flows at the same Reθ,i .
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Appendix A
The performance of skin-friction transformation using U I , based on total-stress-based
GFM transformation without constant-stress-layer assumption, is examined. The U I for
total-stress-based GFM transformation is expressed as

U I =
∫ y∗

0

τ+

μ+
dU

+

dy∗

τ+ + 1
μ+

dU
+

dy∗ − μ+ dU
+

dy+

dy∗, (A1)
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Figure 4. The transformed C f,i versus transformed Reθ,i using U I based on (a) constant-stress-layer
GFM transformation and (b) total-stress-based GFM transformation.
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Figure 5. (a) Transformed (2/C f,i )
1/2 versus transformed Reθ,i for the present theory. (b) Transformed stream

velocity U I using GFM transformation. Here, the filled coloured symbols and coloured lines represent data
from TBLs at supercritical pressure with Ma∞ = 0.3, as reported in Kawai (2019). The filled circle and triangle
correspond to flows with free-stream pressures p∞ = 2 and 4 MPa, respectively. The solid and dash-dotted
lines represent flows at these same pressures. The colours green, yellow and red denote the temperature ratios
Tw/T∞ = 1, 4 and 8, respectively.

where τ+ is the total shear stress (i.e. the sum of the viscous and Reynolds shear stresses)
normalised by τw. Using (A1) to define Reθ∗ does not alter the form of the transformation
factors, except for F = ∫ 1

0 τ+/[τ+μ+ + dU
+
/dy∗ − (μ+)2 dU

+
/dy+] dz in FC∗ and

Fθ∗ . Figure 4, which includes all DNS data providing total shear stress, illustrates the
skin-friction scaling between transformed C f,i and Reθ,i using U I based on both constant-
stress-layer GFM transformation and total-stress-based GFM transformation. Evidently,
the constant-stress-layer assumption has little effect on the performance of the proposed
skin-friction transformation.

Appendix B
Figure 5(a) illustrates the performance of the present skin-friction transformation on the
data for TBLs at supercritical pressure from Kawai (2019). The transformed C f,i for TBLs
at supercritical pressure with Tw/T∞ = 1 obeys the proposed skin-friction scaling law,
exhibiting an error of 1.3 %. In contrast, C f,i for TBLs at supercritical pressure with
Tw/T∞ = 4 and 8 deviates from the proposed skin-friction scaling law, with errors ranging
from 9.7 % to 16.7 %. This is because the GFM transformation used to calculate U I in
Reθ∗ has been shown in figure 5(b) to deviate from the incompressible velocity profile for
these cases. Therefore, it can be concluded that the present skin-friction transformation is
not suitable for TBLs at supercritical pressure and TBLs involving non-air-like viscosity
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laws. Researchers focusing on these flows can establish the corresponding skin-friction
scaling law by using Reθ∗ in conjunction with an appropriate velocity transformation.
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