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ABSTRACT. Inverse methods, where surface data are ‘inverted’ in order to quantify basal properties of

ice sheets, play a major role in initializations. The balance-velocity method is a unique linear

initialization, in which accumulation, surface elevation and thickness data are used to calculate the

velocities and basal conditions required to maintain the observed ice-sheet altimetric signal, resulting in

an estimate of the basal sliding viscosity that is guaranteed to be non-negative. We examine the

observation that balance velocities based on the shallow-ice approximation (SIA) are extremely

dependent on grid size, showing that Antarctic balance velocities on a 1 km grid are excessively over-

channelized. Incorporating the membrane-stress approximation into balance-velocity calculations and

comparing them with a simplified analytical solution shows that numerical error monotonically

decreases with grid resolution and over-channelization is eliminated for Newtonian and non-Newtonian

rheology. In contrast, for the SIA reducing grid size below the membrane-stress coupling length fails to

improve accuracy. However, since this approach is nonlinear, a unique viscosity solution is not

guaranteed, and in practice ‘sliding viscosity’ estimates are noisy. This raises problems of the sensitivity

of these estimates to data and model errors, which may mean using inverse or smoothing techniques in

association with balance-velocity methods in many, if not all, practical applications.
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LIST OF SYMBOLS

A� Temperature-dependent flow-law parameter
a� Accumulation rate
B� Ice stiffness parameter
b� Ice-sheet basal elevation
D Ice ‘diffusivity’
e� Strain-rate tensor
E; F Parameters for the ice surface for the analytical

solution (Section 5)
g� Gravity
H� Ice-sheet thickness
kx ; ky Velocity wavelengths in the analytical solution

(Section 5)
l� Domain length
n Glen index
np Polynomial order in surface smoothing for SIA

q Flux of ice
s� Ice-sheet elevation
bs Coefficient of surface slope in analytical solution
t� Time
U� Ice velocity vector
ðu�; v�Þ Horizontal velocities
ðbu; bvÞ Coefficients of horizontal velocities in analytical

solution
w1;w2 Ice-stream width and length in analytical solu-

tion, respectively
ðx�; y�; z�Þ Space coordinates

��2 Coefficient of basal sliding
" Surface slope in MCL (Eqn (9))
e� Dimensionless viscosity
�x ,�y Diagonal matrix for x/y component of slope on

h-grid
�� Depth-averaged viscosity
�� Ice density
�� Stress tensor
�� Deviatoric stress

�� Boundary condition expression on ice front in
analytical solution

B �2 operator in Eqn (16)
Dx ,Dy x/y-differential operator

M� Linear operator on u (Eqn (10))

1. INTRODUCTION

Accurate data describing the physical environment at the
base of an ice sheet or glacier are fundamental in making
predictions of sea-level changes arising from ice-sheet
disequilibration. The prediction of ice-sheet behaviour is
becoming increasingly important, since observed changes in
continental ice masses may be indicators of the operation of
instability mechanisms that have the potential to have a
significant impact on global sea levels over the next few
centuries (e.g. Schoof, 2007). Predictive models need
prescriptions of the viscosity and sliding conditions at the
base of the ice sheet that are, in practice, largely
unobservable.

There are various approaches that can use surface or
elevation data to invert for the basal properties given
sufficient data, such as the use of control methods for
parameter tuning (e.g. MacAyeal, 1992, 1993), the use of a
Bayesian inference approach (Gudmundsson and Raymond,
2008; Raymond and Gudmundsson, 2009) and the inverse
Robin formulation of the initialization problem (Arthern and
Gudmundsson, 2010; Gillet-Chaulet and others, 2012), as
well as spin-up approaches (Pollard and DeConto, 2012)
and more direct approaches associated with the use of
linearized equations (Arthern and Hindmarsh, 2003; Bar-
rand and others, 2013). The decision of which approach to
use is partially dependent on the amount of data and
computational resources available. The balance-velocity
approach, which represents depth-averaged velocities of a
steady-state ice sheet that is in balance, is a suitable method
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in many cases, since it is computationally inexpensive and
requires data that are fairly abundant and accurate. In
particular, the balance-velocities approach is appropriate for
initializing with altimetric data. Such initializations are
attractive because they control the rate of change of mass,
which is of primary concern for ice-sheet modellers; many
current methods give a substantial nonzero elevation rate. To
calculate the balance velocities at every point on an ice
sheet three datasets are needed: a map of surface elevation,
an accumulation rate (or surface mass balance) and the ice
thickness at every point.

Hitherto, balance velocities have been calculated using
the shallow-ice approximation (SIA), where flow is always
parallel to the direction of the slope. Budd and Warner
(1996) presented a computer scheme for rapid calculation of
balance-flux distributions and showed how it could be used
for the whole of the grounded ice sheet in Antarctica, and the
method was further developed by Fricker and others (2000).
This method has been used to calculate balance velocities for
Antarctica (e.g. Bamber and others, 2000a; Huybrechts and
others, 2000; Wu and Jezek, 2004; Bingham and others,
2007) and Greenland (e.g. Joughin and others, 1997; Bamber
and others, 2000b). This approach is based on following
flowlines, and an alternative grid-based approach is pre-
sented by Hindmarsh (1997), Arthern and Hindmarsh (2003)
and Leysinger Vieli and others (2011).

The SIA method is usually applied to coarse resolutions
(grid resolution >5 km) and the surface elevation is usually
smoothed over a number of ice thicknesses, in order to
remove topographic sinks and account heuristically for the
effects of longitudinal stresses which are not included in the
approximation and would otherwise be expected to smooth
out localized variations in the ice surface. Using a linearized
approach, Kamb and Echelmeyer (1986) show that the effect
of slope and thickness perturbations drops off exponentially,
and suggest that this exponential decay length, termed the
‘longitudinal coupling length’, should be between four and
ten ice thicknesses. An alternative scale estimate of the
membrane coupling length (MCL) is given by Hindmarsh
(2006a), which represents the distance over which velocity
and stress fields are smoothed due to variations in, for
example, the bed properties. This quantity is conceptually
related to the ‘longitudinal coupling length’ of Kamb and
Echelmeyer (1986), but is quantitatively different, arguably
easier to compute and fully reflects the nonlinear nature of
the coupling. The coupling length estimate can be written in
forms that do not include the ice thickness, and it tends to
infinity for ice shelves, as one would expect. Up to now, the
choice of coupling length is, in practice, determined a
posteriori by inspecting the resulting flux distribution (Le
Brocq and others, 2006), and the smoothing is often done
over length scales of up to 20 ice thicknesses (e.g. Bamber
and others, 2000a; Testut and others, 2003). Consequently,
the SIA cannot reliably capture the fine detail of ice flow and
this method has been shown to be unsuitable for use with
high-resolution datasets (grid size <5 km) (Le Brocq and
others, 2006). Moreover, the SIA method is apparently ill-
posed, as results are severely dependent on grid size (e.g.
Testut and others, 2003; Le Brocq and others, 2006; Van den
Berg and others, 2006) and the assumption of downhill flow
used in the SIA is not always appropriate (e.g. Hindmarsh,
2004; Le Meur and others, 2004). Here we use the MCL to
explore the spatial distribution of the stress-gradient coupling
in the Antarctic ice sheet, in order to assess the effects of the

choice of smoothing length scale when using the SIA.
Membrane stresses also affect how far inland perturbations in
the forcing at the front of an ice shelf can propagate. A recent
result is that the propagation distance is rate-dependent, with
even very rapid high-frequency forcings being propagated
tens of kilometres inland directly via membrane stresses
(Williams and others, 2012). In these ways, membrane
stresses may act over distances greater than the smoothing
length scales used in SIA balance-velocity calculations.

In this study horizontal membrane (or longitudinal)
stresses, which are caused by extension and compression
directed along a thin body, are explicitly introduced into
calculations for balance velocities, in order to address these
issues (see Hindmarsh, 2006a, for further details of
membrane stresses). Incorporating such stresses could
decrease or remove the need for surface smoothing and
allow accurate representation of the high-resolution dynam-
ics of ice flow, which is not possible using the SIA. The
addition of these stresses also removes the assumption that
the flow has to be downhill and is a step towards more
realistic, full-Stokes modelling.

We firstly present a SIA balance-velocity approach based
on the work of Hindmarsh (1997) and use it to calculate
balance velocities for the whole of Antarctica on a smoothed
1 km grid. On comparing the resulting velocities with the
measured velocities of Rignot and others (2011), over-
channelization of flow is seen to be a clear problem. We
then calculate the MCL for the whole Antarctic ice sheet,
and find that the smoothing required to represent the
membrane stresses is not uniform in space. We conclude
that over-channelization induces structure at length scales
less than the MCL, and that, in consequence, membrane
stresses must be included in the mechanical description.

A balance-velocity approach that incorporates membrane
stresses (the membrane-stress approximation (MSA)) is then
presented and is validated and applied to two simplified
cases. Firstly, two analytical solutions for an idealized
geometry with linear rheology and sliding are presented,
in order to verify the numerical method and quantify the
difference between balance velocities calculated with the
SIA and MSA. One of these is a smooth solution, which
produces good agreement between the numerical method
and the analytical solution (Section 5). The second solution
is non-smooth, and induces convergence difficulties for the
nonlinear equations and non-smooth solutions (Section 8).
Secondly, the MSA and SIA balance-velocity approaches are
applied to an example of ice flowing with a nonlinear
rheology with idealized ice-stream geometry.

Attempts to apply the approach to the full extent of the
Antarctic ice sheet were made, but were not successful. We
discuss this, and conclude that the method is too sensitive to
data errors to allow solutions or convergence of solutions in
many practical cases. Consequently, at best it can estimate
smoothed sliding viscosities, likely in an inverse framework.
The paper endswith a discussion of theMSA balance-velocity
approach and its potential in future initialization procedures.

2. BALANCE VELOCITIES WITH THE SHALLOW-ICE
APPROXIMATION

First we present the balance-velocity approach using the
SIA, following the method proposed by Hindmarsh (1997),
and in the following section we show how the approach can
be altered to include membrane stresses. We write the force
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balance equation in the form

MMM�U� � ��2U� ¼ ��g�H�rrrs�, ð1Þ
where U�ðx�, y�, t�Þ is the flow velocity vector, H�ðx�, y�, t�Þ
is the ice thickness, s�ðx�, y�, t�Þ is the ice surface, �� is the
density of ice and g� is gravity. A full list of symbols is
provided in the List of symbols above; asterisk denotes
dimensional quantities and no asterisk denotes non-dimen-

sional quantities throughout. ��2 is a coefficient of basal

sliding: when ��2 ¼ 0, the equations describe an ice shelf

and when ��2 is large the equations represent a strongly
grounded ice sheet. MMM� is a membrane-stress operator,
defined in detail in the next section. The SIA is obtained
when MMM� � 0, thus in this case

���2U� ¼ ��g�H�rrrs�: ð2Þ
The model can be scaled using

½v�� ¼ ½u��, ½x�� ¼ ½y�� ¼ l�, ½s�� ¼ ½H��,

½��2� ¼ ��g�½H��2
l�½u�� ,

ð3Þ

where l� is the domain length and u� and v� are the two

horizontal components of the velocity vector U�. The scaled
equations (with dimensionless quantities shown without an
asterisk) then become

��2U ¼ Hrrrs: ð4Þ
In the vertically integrated approximation, the flux, q, is
simply the product of velocity, U, and ice thickness, H, thus

q ¼ HU,

and Eqn (4) can be written as

q ¼ ���2H2rrrs: ð5Þ
Rewriting Eqn (5) gives

Drrrs þ q ¼ 0, ð6Þ
where

D ¼ ��2H2 ð7Þ
is a dimensionless diffusivity that measures aspects of basal
properties, specifically the basal sliding viscosity. Coupling
the momentum balance equation with the continuity equa-
tion for steady state,

r � q ¼ a, ð8Þ
where a is the dimensionless accumulation rate, and
discretizing using a finite-difference scheme (see Appendix)
gives the matrix system

�x I 0
�y 0 I
0 DDDx DDDy

2
4

3
5

D
qx
qy

2
4

3
5 ¼

0
0
a

2
4
3
5,

where I is the identity matrix, q ¼ ðqx , qyÞ, and � ¼ rrrs. The
matrices DDDx ,DDDy indicate discretized first-differential opera-

tors defined at grid centres and we define �x and �y as

operator matrices for the x and y components of the slope,
respectively, such that the slopes are computed downwind
at the same locations as for the diffusivity vector, D. This
linear system can be solved using standard methods, and
gives a unique solution for D, provided there are no sinks in
the surface. This is a slightly disguised version of the grid-
based method for estimating balance fluxes given by
Hindmarsh (1997). Smoothing is often used to eliminate
sinks. Further comments on the numerical implementation
are provided in the Appendix.

The recent publication of the 1 km grid size dataset for
Antarctica, Bedmap2 (Fretwell and others, 2013), allows
high-resolution SIA balance velocities to be calculated, as
shown in Figure 1b. In order to construct this figure, we
solve the matrix system described above for the case of
sliding to compute balance velocities for all the grounded
ice of Antarctica. This method has previously been used to
calculate balance velocities of Antarctica at 5 km resolution
(Leysinger Vieli and others, 2011). The accumulation map of
Arthern and others (2006) interpolated onto the 1 km grid
together with the ice surface and bed from Bedmap2 were
then used to calculate the 1 km SIA balance velocities for the
Antarctic ice sheet, as shown in Figure 1b. The ice shelves
were masked out. In this case the surface slopes were
smoothed to eliminate the numerous small sinks in the ice
surface, whose existence contradicts one assumption of the
SIA balance-velocity approach, but unsmoothed thicknesses
are used in the balance-velocity calculation (as Leysinger
Vieli and others, 2011). The surface smoothing was done by
fitting a polynomial of order np to a square surface patch of

np data cells on either side of each point, where np was

Fig. 1. (a) Antarctic ice velocity derived from satellite radar
interferometry measurements of Rignot and others (2011).
(b) Balance velocities calculated using a SIA with 1 km resolution
and a 40 km smoothing of surface slopes. The insert in both cases
shows velocities for Pine Island Glacier, West Antarctica, the
location of which is indicated by the black box in the main figure.

Williams and others: Balance velocities with membrane stresses296

https://doi.org/10.3189/2014JoG13J092 Published online by Cambridge University Press

https://doi.org/10.3189/2014JoG13J092


chosen to be sufficiently large to ensure enough smoothing
to eliminate most of the sinks. In this case we use np ¼ 20,

implying a 20th-order polynomial fit to a 40 km�40 km
square around each point. This left 82 sinks, but since these
were spread out over the whole ice sheet and only

accounted for 3:24� 10�4% of the points, these were left
as sinks, causing singularities to remain at these points. It is
clear from Figure 1 that this did not have a significant effect
on the overall results.

Figure 1a shows Antarctic velocities compiled from
satellite radar interferometry datasets (Rignot and others,
2011), and the calculated SIA balance velocities are shown
in Figure 1b; both clearly show the widespread complex flow
found by Bamber and others (2000a). However, although
both velocity maps have the same general features and
patterns of ice streams, the ice streams calculated by balance
velocities are evidently more concentrated and channelized
than the real data suggest. This over-channelization is an
expected feature with the SIA (e.g. Le Brocq and others,
2006), and indicates that the SIA cannot properly resolve the
dynamics of fast flow at this spatial resolution. Additionally,
this over-channelization effect occurs even with a relatively
high amount of smoothing, indicating that the smoothing
length scale did not have a significant effect on our results.

3. THE MEMBRANE COUPLING LENGTH FOR
ANTARCTICA

Hindmarsh (2006a,b) proposed a length scale over which
the membrane-stress terms in the force balance equation are
expected to act (i.e. when the membrane operator term,MMM�

in Eqn (1), is of comparable size to the driving stress and the
drag terms):

MCL� ¼ 2B�u�
1
n

��g�"

 ! n
nþ1

, ð9Þ

where B� is the ice stiffness (or rigidity) given by B� ¼ A��
1
n,

and A� is the flow-law parameter, which is a function of ice
temperature and fabric; " is the surface slope. We refer to this
as the MCL, MCL. The MCL can be calculated at every
gridpoint on the 1 km Bedmap2 grid of Antarctica (Fretwell
and others, 2013), using velocities from Rignot and others
(2011), slopes calculated from the Bedmap2 surface and
using surface temperatures interpolated from the 5 km grid
provided by Le Brocq and others (2010), originally from
Comiso (2000), to calculate A� (see Cuffey and Paterson,
2010, for details). Results of this calculation are shown in
Figure 2. From this it is clear that the MCL varies significantly
over the continent, with high values in the central part of East
Antarctica (due to low surface slopes) and generally lower
MCL around the edge of the continent. Furthermore, high
MCL of many tens of kilometres also appears along some of
the main ice streams in West Antarctica, such as Pine Island
Glacier and the ice streams of the Siple Coast, indicating that
for many fast-flowing streams the membrane stresses act over
distances of at least a similar magnitude to the smoothing
length scales used to account for these stresses in many SIA
calculations (e.g. Fricker and others (2000), use a horizontal
smoothing length of 35 km). Typically, the grid sizes and data
smoothing used in earlier SIA calculations have heuristically
replicated the smoothing effect of the membrane stresses.
Consequently, spatially uniform smoothing with the SIA does
not properly account for the non-uniform effects of the

membrane stresses in all regions and this, together with the
fact that the SIA does not resolve the dynamics at high
resolution and leads to over-channelization of streams,
suggests that to account for this spatial variability, membrane
stresses need to be explicitly modelled in balance-velocity
calculations. In the following section, we explicitly include
these stresses, by introducing the membrane stress operator,
MMM�, into the calculation of balance velocities.

4. THE BALANCE-VELOCITY APPROACH
INCORPORATING MEMBRANE STRESSES

To incorporate membrane stresses into calculations for
balance velocities we follow the much-used model formula-
tion of Muszynski and Birchfield (1987) and MacAyeal
(1989) and consider the vertically integrated approximation
to give the membrane-stress form of Eqn (1) with the
membrane-stress operator, MMM�, as

MMM� ¼

@�x 4H���@�x
� �

þ @�y H���@�y

� �
@�x 2H���@�y

� �
þ @�y H

���@�x
� �

@�y 2H
���@�x

� �
þ @�x H���@�y

� �
@�y 4H���@�y

� �
þ @�x H

���@�x
� �

2
64

3
75,

ð10Þ

where �� is the depth-average viscosity given by

�� ¼ B�

2
e�2xx þ e�2yy þ e�2xy þ e�xxe

�
yy

� � 1
2

1
n�1ð Þ

, ð11Þ

where e� is the strain-rate tensor and n is the Glen
coefficient (Cuffey and Paterson, 2010). After scaling with
the relationships given in Eqn (3) and � ¼ ��=½���, the force
balance (Eqn (1)) becomes

MMMU � �2U ¼ Hrrrs, ð12Þ

and the dimensionless membrane-stress operator, MMM
(Eqn (10)), is then given by

MMM¼ e� @x 4H�@xð Þ þ @y H�@y
� �

@x 2H�@y
� �

þ @y H�@xð Þ
@y 2H�@xð Þ þ @x H�@y

� �
@y 4H�@y
� �

þ @x H�@xð Þ

" #
,

ð13Þ

Fig. 2. The membrane coupling length, MCL� (from Hindmarsh,
2006a), calculated on the 1 km grid of Antarctica from Bedmap2
(Fretwell and others, 2013).
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where e� is a measure of dimensionless viscosity given by

e� ¼ ½u��½���
l���g�½H�� : ð14Þ

This system is often referred to as the shallow-shelf or
membrane-stress approximation (MSA). In order to facilitate
comparison with the expression for the SIA model, shown in
Eqn (6), we can use Eqns (5) and (7), for ice flux and
diffusivity, D, respectively, to write

Drrrs þ q ¼ D

H
MMMU, ð15Þ

which is the same as Eqn (6) when MMM¼ 0. Coupling the
momentum balances with the continuity equation for steady
state (Eqn (8)) gives the discretized matrix system in terms of
velocities as

H�1�x I � BBBMMMxx �BBBMMMxy

H�1�y �BBBMMMyx I � BBBMMMyy

0 DDDxH DDDyH

2
4

3
5

D
u
v

2
4

3
5 ¼

0
0
a

2
4
3
5, ð16Þ

where BBB represents a matrix with diagonal elements ��2.
Note that BBB and D are related quantities and the equations
are now nonlinear, even for a linear rheology. The whole
matrix represents the mass conservation equation and two
momentum balance equations, and includes operators and
values for both boundary and interior points (see Appendix).

5. ANALYTICAL SOLUTION: LINEAR VISCOSITY
AND SLIDING

In this section, we present an analytical solution that can be
used as a simple test case for the numerical model. We
assume the ice sheet is rectangular and the ice acts as a
Newtonian viscous fluid (n ¼ 1) under linear sliding:

��ij ¼ 2��e�ij and e�ij ¼
1

2

@u�i
@x�j

þ
@u�j
@x�i

 !
, ð17Þ

where �� is the stress tensor. Since n ¼ 1, the depth-
integrated viscosity, ��, is now constant and ��¼½���¼B�=2
(Eqn (11)), thus � ¼ 1 (Eqn (13)) and e� is the dimensionless
measure of viscosity. We assume in this case that the

measure of basal sliding, �2, is a constant, �2 ¼ 1, and
consider the case of constant ice thickness, H ¼ 1. On using
the operator MMM the scaled vertically integrated momentum
equations with linear viscosity and sliding become

4e�H @2u

@x2
þ 3e�H @2v

@x@y
þ e�H @2u

@y2
� �2u ¼ H

@s

@x
, ð18Þ

4e�H @2v

@y2
þ 3e�H @2u

@y@x
þ e�H @2v

@x2
� �2v ¼ H

@s

@y
: ð19Þ

Consider a trial solution of the form

u ¼ bu sin ðkxxÞ cos ðkyyÞ, ð20Þ
v ¼ bv cos ðkxxÞ sin ðkyyÞ þHEy, ð21Þ

s ¼ bs cos ðkxxÞ cos ðkyyÞ �
1

2
�2Ey2 þ F , ð22Þ

where bu and bv are constants dependent on kx and ky and bs is
the coefficient of slope. E and F are parameters in the
surface function. Substituting these expressions back into
the momentum equations (Eqns (18) and (19)) leads to

expressions for bu and bv:

bu ¼ Hbskx
4e�H k2x þ k2y

� �
þ �2

, ð23Þ

bv ¼ Hbsky
4e�H k2x þ k2y

� �
þ �2

: ð24Þ

The boundary value problem on a rectangle is given by

A: u ¼ 0, exy ¼ 0 on x ¼ 0, 0 � y � w2;

B: u ¼ 0, exy ¼ 0 on x ¼ w1, 0 � y � w2;

C: v ¼ 0, exy ¼ 0 on y ¼ 0, 0 � x � w1;

D: 2
@v

@y
þ @u

@x
¼ ��, exy ¼ 0 on y ¼ w2, 0 � x � w1,

8
>>>>><
>>>>>:

where

exy ¼ � 1

2
sin ðkxxÞ sin ðkyyÞ kybu þ kxbv

� �
: ð25Þ

The boundary conditions are automatically satisfied on
boundary A, and are satisfied on boundary B if we choose
kx ¼ m�

w1
, where m 2 Z. Similarly, the boundary conditions

on C are also automatically satisfied. On boundary D, the

strain rate, exy ¼ 0, is satisfied if ky ¼ p�
w2
, p 2 Z, and the

expressions for bu and bv can be used to deduce

��¼
Hbs 2k2y þ k2x

� �

4e�H k2x þ k2y

� �
þ �2

cos ðkyw2Þ cos ðkxxÞþ 2HE: ð26Þ

Note that this expression for the normal stress arises as a
consequence of the other boundary conditions and is not set
independently. This is not physically realistic, but allows an
exact analytical solution to be formulated.

5.1. Comparing the SIA and MSA using the exact
analytical solution

The exact analytical solution can be used to verify the
numerical method for the case of linear rheology and
sliding. The test surface is shown in Figure 3 for an ice
stream 100 km in length and 200 km wide. Note that kx and
ky can be any integer multiples of �=w1 and �=w2,

respectively. Using the principle of superposition, one could
find a general solution to the problem by summing all
solutions from m ¼ 1 to m ¼ 1. However, in this case we
are predominantly interested in a solution that satisfies both
the equations and the boundary conditions, so we take a
particular solution, kx ¼ 4�=w1 and ky ¼ �=w2. The accu-

mulation is prescribed to give an ice sheet in balance,

a ¼ kxbu þ kybv
� �

cosðkxxÞ cos ðkyyÞ þHE : ð27Þ

Setting dimensionless �2 ¼ 1 and H ¼ 1 gives the
diffusivity D ¼ 1 everywhere (Eqn (7)). Comparing the
velocities and diffusivities calculated using the MSA and
the SIA with this value enables us to assess the accuracy of
the inversion methods.

Figure 4 shows velocities and diffusivities calculated from
the analytical solution, the SIA and the MSA for a resolution
of 2.5 km. For the MSA, a high level of agreement between
the analytical and numerical solutions was found for both
longitudinal and transverse velocities and for the diffusiv-
ities. However, for the SIA there are noticeable differences
between the analytical and numerical solutions. In particu-
lar, the y-velocities and the diffusivities are considerably
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overestimated in the ‘valley’ regions (in which there is zero
slope in the x-direction).

5.2. SIA and MSA error analysis

To assess the accuracy of the SIA and the MSA the percentage
error between the analytical and numerical speed was
calculated at each internal H gridpoint for both approxima-
tions (the boundary gridpoints could not be used because the
SIA only returns velocities on the interior gridpoints). ‘Speed’
at each gridpoint is defined as the absolute velocity, so that
both horizontal velocity components are accounted for

(speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2Þ

p
). These errors in speed were then used

to calculate the root-mean-square (rms) error of speed for a
range of grid resolutions. The results for both theMSA and the
SIA are shown in Figure 5.

It is clear that as the grid resolution increases (and grid
size decreases), the rms error monotonically decreases for
the MSA but decreases and subsequently increases for the
SIA. For a grid resolution of 5 km the MSA error is >15 times
smaller than the SIA error, and for even finer grids (resolution
�2.5 km) it is up to two orders of magnitude smaller than the
SIA and continues to diminish as resolution is increased.

Hindmarsh (2006a) also derived an expression for the
membrane couping length, MCL�, for a Newtonian fluid

under linear sliding as

MCL� ¼ 4
��u�

��g�"

� � 1
2

, ð28Þ

where u� is taken as the typical horizontal speed and �� is
the Newtonian viscosity (�� here if n ¼ 1). For the exact
solution for the case of linear rheology and sliding, we
calculated the MCL as L ¼ 7:75 km (using " ¼ 0:0067,

u� ¼ 100m a�1, �� ¼ 8:99� 106 Pa a, �� ¼ 917 kg m�3).
This is shown as a dashed line in Figure 5, where we note
that the error of the SIA increases significantly close to the
point at which the MCL is achieved by the grid spacing,
while the error for the MSA continues to decrease. Thus,
once the grid size is smaller than the coupling length, the
SIA does not capture the dynamics whereas the MSA does.
This dependency on grid size highlights the difficulty in
using the SIA when high-resolution data are required.

Table 1. Parameter descriptions and typical values for parameters
used in the analytical solution (in non-dimensional units). The
dimensional ice-stream width and length are shown in parentheses

Variable Description Typical value

w1 Ice-stream width 2 (200 km)
w2 Ice-stream length 1 (100 km)
kx Wavelength in the x-direction 4�=w1

ky Wavelength in the y-direction �=w2

bs Driving force coefficient 2
e� Scaled ice viscosity 5� 10�4

�2 Scaled coefficient of sliding 1
E Offset term for positive accumulation 50
F Constant offset for ice surface 30

Fig. 5. The root-mean-square of the percentage error for speed for
the MSA (crosses) and the SIA (open circles). The MCL for linear
rheology and sliding (Eqn (28)) is shown as a black dashed line.

Fig. 3. A trial dimensionless ice surface used for comparing
analytical and numerical solutions, with parameter values shown in
Table 1 and a grid size of 5 km.

Fig. 4. (a–c) x-velocities, (d–f) y-velocities and (g–i) diffusivities
calculated using the analytical solution (a, d, g), the MSA (b, e, h)
and the SIA (c, f, i) for the ice surface in Figure 3 and a grid
resolution of 2.5 km. All variables are dimensionless and parameter
values are shown in Table 1.
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Although the error for the SIA is much larger everywhere
than the MSA error when the grid resolution is less than
�10 km, Figure 6 shows that the SIA error is not evenly
distributed throughout the domain: the error is largest in the
regions of zero slope in the x-direction. In these valley
regions, super-concentration and very fast flow occur for the
SIA but not for the MSA, indicating that it is in these areas
that the membrane stresses appear to be important in
resolving the ice flow and preventing such discrepancies.
Note that the data are smooth and are not forcing the SIA
solutions to create structure and wavelengths shorter than
those found in the data; in other words, there is a
fundamental problem with the SIA when used in balance-
velocity calculations, arising from the prescription that
velocity is aligned with surface slope.

6. AN EXAMPLE OF A SYNTHETIC ICE STREAM
WITH NONLINEAR RHEOLOGY

For the MSA method to be useful in calculating balance
velocities and diffusivities for real ice sheets or ice-covered
regions, the method will need to be efficient for more-
realistic geometries and ice rheology. Thus, in this section,
the method is tested for a synthetic ice surface with varying
thickness, non-uniform diffusivity and nonlinear rheology
(n ¼ 3). An ice surface was generated by running an ice-sheet
model (BASISM; Hindmarsh, 2009) forward to steady state

with a prescribed accumulation and non-uniform diffusivity
to create an ice stream. The forward model includes
membrane stresses in the force balance and has a water-
pressure boundary condition on the ice front and free slip on
the other three sides. The resulting surface, diffusivities and
steady-state speeds for a grid resolution of 2 km are shown in

Figure 7. An accumulation rate of 0.3ma�1 was used and the
basal elevation was prescribed as zero everywhere (thus
s� ¼ H�). These surface and accumulation profiles were then
used in the balance-velocity inversion models for both the
MSA and the SIA, with the same boundary conditions.

The performance of the balance-velocity inversion
methods can be calculated by comparing the balance
speeds and retrieved diffusivities with the speeds from the
steady-state forward run and the prescribed diffusivity, as
shown in Figures 8 and 9, respectively. Figure 8b and d show
that the SIA method is prone to over-channelization of fast
flow in the ice-stream region when compared with the
steady-state speeds from the forward model (Fig. 7c), the
same effect as shown for the SIA velocities for the simplified
analytical solution. Conversely, the same comparison for
balance speeds calculated from the MSA (Fig. 8a and c) does
not show these effects, and speeds are a better match to the
steady-state speeds. In fact, the rms percentage speed error
on comparing the speeds from both methods with the
steady-state speed is over five times higher for the SIA than
the MSA (7.86% and 1.38%, respectively). In terms of the
retrieved diffusivity, Figure 9 shows that the diffusivity
mismatch is also smaller for the MSA than the SIA, although
the retrieved diffusivities are not as accurate as the retrieved
speeds for either method (the rms errors are 6.17% and
8.92% for the MSA and SIA methods, respectively). Some
edge effects are apparent at the ice divide and these con-
tribute significantly to the high rms, but since the diffusivity
is small here anyway, implying very little sliding, these errors
do not significantly affect the ice velocities (Fig. 8). Overall,
as for the analytical case, the MSA method provides a closer
match than the SIA to both the prescribed diffusivities and
speeds, highlighting the need to include these stresses in
calculations for balance velocities.

7. MSA BALANCE VELOCITIES IN REAL-WORLD
CASES

Our next step was to use real surface, bed and accumulation
data from Greenland and Antarctica, with cases centred on
ice divides (e.g. around Summit, Greenland) and lakes (e.g.
around Ellsworth Subglacial Lake, Antarctica). Numerous
attempts to use this direct method to retrieve diffusivities in

Fig. 7. (a) The prescribed synthetic ice surface generated by the forward model, (b) the prescribed diffusivity and (c) the steady-state ice
speeds from the forward model. The grid resolution is 2 km.

Fig. 6. Percentage speed error for SIA (circles) and MSA (crosses) at
y ¼ 0:5 for a grid resolution of 5 km.
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real-world applications led to the system failing to converge.
Since it is a nonlinear system, there is an issue of whether
solutions exist, or, more likely, whether solutions exist with

positive �2, which is a requirement for the second law of
thermodynamics to be satisfied. We suppose that these
problems are due to a combination of data errors and the fact
that the solutions are prone to being noisy, which hampers or
prevents convergence of the nonlinear equations. This
prevents us from reproducing Figure 1b using the MSA rather
than the SIA method for calculating balance velocities.

This is a subtly different issue from the usual non-unique-
ness associated with data inversions, as it is related to the
existence of non-negative solutions for the diffusivity with the
nonlinear equation set. It might be profitable to investigate
these further from a more mathematical point of view, but in
terms of practical geophysics the use of balance velocities in
an inverse framework (e.g. control methods (MacAyeal,
1992) or inverse Robin methods (Arthern and Gudmundsson,
2010)) may be a more practicable approach. In order to
understand this further, we looked at idealized cases with
non-smooth data as shown in the following section.

8. LINEAR RHEOLOGY WITH STEEP TOPOGRAPHY:
THE EFFECTS OF NON-SMOOTH DATA

In order for the MSA balance-velocity method to be practical
for the rugged topography of Antarctica, we need to
investigate its robustness to steep topography and other rapid
variations in the data. We create such a configuration using
the analytical solution with linear rheology (n ¼ 1) by
summing exact solutions with different wavelengths, using

the principle of superposition. This allows us to create a
steep-sided trough, as shown in Figure 10a, for which surface
and accumulation profiles with kxm ¼ m�

w1
, m ¼ 1, 3, . . . , 21

are summed as follows:

s ¼ Re
4

�
sðkx1Þ �

1

3
sðkx3Þ þ

1

5
sðkx5Þ � . . .

� �� �
: ð29Þ

The x- and y-velocities are obtained by summing the
solutions for each kxm, using this expression; uniform
diffusivity, D ¼ 1, uniform thickness, H ¼ 1 and Glen index
n ¼ 1 were used. In this case, ky ¼ �=2w2, E ¼ 25 and all

other parameters are as shown in Table 1.
The speeds and diffusivities retrieved using these surface

and accumulation profiles with the MSA inversion method
are shown in Figure 10. There are sharp gradients in the ice
surface around the edges of the surface trough, and in these
regions the retrieved speeds and diffusivities do not accur-
ately match the analytical solution. In fact, these sharp
changes cause oscillations in the retrieved diffusivity, D, in
the transverse flow direction, as shown in Figure 10d. These
problems may be indicative of issues that arise when
attempting to calculate balance velocities for real datasets,
as discussed in the preceding section. These problems are
not unexpected, and might be due to numerical resolution of
sharp gradients or more fundamental issues with the use of
MSA in regions where there are sharp gradients.

9. DISCUSSION AND CONCLUSIONS

In this study we have described a method which uses a
membrane-stress model and surface and accumulation data

Fig. 9. (a, b) Diffusivities for the surface shown in Figure 7a
calculated using (a) the MSA inversion method and (b) the SIA
inversion method. (c, d) Percentage diffusivity errors for the MSA (c)
and the SIA (d) methods. The prescribed diffusivity is shown in
Figure 7b.

Fig. 8. (a, b) Balance speeds for the surface shown in Figure 7a
calculated using (a) the MSA inversion method and (b) the SIA
inversion method. (c, d) The percentage error of the speeds for the
MSA (c) and the SIA (d) methods, when compared with the steady-
state speeds for the forward model (Fig. 7c).

Williams and others: Balance velocities with membrane stresses 301

https://doi.org/10.3189/2014JoG13J092 Published online by Cambridge University Press

https://doi.org/10.3189/2014JoG13J092


to invert for the basal diffusivity (a combination of sliding
and rheological effects near the base). This is accomplished
by incorporating membrane stresses into calculations for
balance velocities, and in formulating this method we have
explicitly shown how the omission of these membrane
stresses can lead to unreliable results.

A numerical method for a vertically integrated model
(based on the model described by Hindmarsh, 1997), which
uses accumulation, elevation and thickness data to invert for
horizontal velocities and diffusivities, has been described. To
show the importance of membrane stresses for such
calculations, we first calculated balance velocities using
only the SIA for the whole of the grounded part of the
Antarctic ice sheet, using the new Bedmap2 dataset (Fretwell
and others, 2013). Comparison with measured velocity data
(Rignot and others, 2011) demonstrated that at high reso-
lution there is substantial over-channelization of ice flow in
ice streams. Furthermore, we found that the length scale over
which the membrane terms are expected to act (the MCL)
varies widely over Antarctica, indicating that the surface
smoothing that is frequently used with the SIA in order to
account for the effects of membrane stresses (e.g. Bamber
and others, 2000a; Le Brocq and others, 2006) should not be
done uniformly over the domain. In addition, the MCL was
found to be many tens of kilometres in some areas, especially
in the fast-flowing ice streams, which is larger than the
smoothing length often used. We note that in transient cases
Williams and others (2012) found that frontal effects can be
passed many tens of kilometres upstream via the transmission
of membrane stresses over distances considerably greater
than the MCL. Thus we conclude that additional terms in the
force balance, namely membrane stresses, are needed for
inversions via the balance-velocity method.

The numerical method which includes the membrane-
stress terms (MSA) has been verified using a simplified, exact
analytical solution for the case of Newtonian viscosity and
linear sliding. The SIA solution was computed for the same
geometry and parameters, allowing a direct comparison of
the two balance-velocity inversion methods. For the MSA
presented in this paper, excellent agreement was found

between numerical and analytical velocities and diffusiv-
ities. The average error in speed decreased monotonically as
a function of increasing grid resolution, indicating no
dependence of the solutions on grid spacing. However, for
the SIA the error mismatch between the solutions was up to
two orders of magnitude higher than the MSA error for a grid
size of 2.5 km or less and, moreover, results were dependent
on grid size, with the average error increasing once the
resolution was greater than �10–12 km.

The length scale above which the SIA error begins to
increase approximately matches the MCL. A key assumption
in the SIA is that ice always flows downhill, causing ice to
speed up too much and over-concentrate in narrow streams
at the bottom of valleys. If the grid resolution is less than the
MCL, the SIA is unable to capture the smoothing dynamics of
membrane-stress coupling; instead the ice flow is sensitive to
the smoothing provided by the numerical discretization. The
incorporation of membrane stresses smooths ice flow to form
broader ice streams that are not grid-size dependent and
which accurately match the exact solution. Thus, whereas
other studies use uniform computational smoothing tech-
niques over the whole domain to account for the effects of
membrane stresses (e.g. Bamber and others, 2000a; Testut
and others, 2003), we have negated the need for such
methods by resolving the system in amore physically realistic
manner by explicitly including membrane stresses.

Balance velocities and diffusivities have also been
calculated using both the SIA and MSA methods for an
idealized ice surface generated from a forward model for the
case of nonlinear rheology and non-uniform thickness and
diffusivity. Diffusivity was prescribed in order to create an
ice stream, and comparing the retrieved speeds and
diffusivities with the prescribed or known equivalents
showed, as for the simpler case, that the SIA method is less
accurate than the MSA and results in over-channelized flow
in ice streams. However, the retrieved diffusivities were not
as accurate as the balance velocities (MSA error of 6.17% for
D and 1.38% for speed). Since the MSA method does
provide accurate speeds, it may be that these errors in
diffusivity do not have a large effect on the ice flow. This

Fig. 10. (a) The trial ice surface generated by summing solutions of different wavelength, kxm (Eqn (29)), (b) the retrieved speeds and
(c) diffusivities obtained using this surface and corresponding accumulation with the MSA inversion method. (d) The retrieved diffusivity
across the flow at y ¼ 0:5. The grid resolution is 5 km and the ice-stream width and length are 200 and 100 km, respectively.
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appears to be the case for the area close to the ice divide,
where the diffusivity is �50% wrong in places but the ice
velocity is hardly affected. In any case, the MSA method is
still considerably more accurate than the SIA method when
inverting for basal properties in this instance.

We have shown that the MSA balance-velocity approach
can be used for inverting surface data to give balance
velocities and a measure of the basal sliding viscosity of an
ice sheet in some cases. This method is relatively straightfor-
ward and retains the essential physics, possibly making it a
suitable alternative to initializations by the SIA and spin-up
techniques. The next stage is to apply this method to a real-
world ice sheet, such as Antarctica. However, initial explora-
tions indicate that while this method works well for idealized
synthetic data, it appears to be sensitive to errors in the
datasets and to large variations in surface topography, which
we found can lead to oscillations in the retrieved diffusivity.
These errors can lead to the method returning negative values
of the diffusivity, which is clearly non-physical, and so, in
practice, Antarctic or Greenland balance velocities cannot
be calculated using this method. This implies that a
smoothing or initialization with additional data, such as the
horizontal velocities of Rignot and others (2011) (Fig. 1a), is
required, which implies relaxing the constraint on the flux
divergence. This is a route we are investigating.

The issue of whether the full-Stokes equations should be
used in initializations arises. Note that while the SIA
produces non-smooth solutions from smooth data, such
that the assumptions underlying the SIA are violated, this is
not the case for the MSA. However, with non-smooth data,
it seems problematic to achieve solutions with the MSA, and
either the data should be smoothed, or a smoothing/inverse
technique in the estimation of the basal viscosity needs to
be used.

To conclude, incorporating membrane stresses into bal-
ance-velocity calculations in theory represents a significant
and necessary improvement when using the SIA, and results
for idealized cases are promising. To use this method as an
inverse procedure, the numerical method needs to be made
more robust, possibly by constraining with additional data,
before being employed to initialize models of the major ice
sheets of Antarctica and Greenland which can then be run
forward in time to make predictions on the effects of future
climate and oceanic changes on ice-sheet volume.

ACKNOWLEDGEMENTS

This work was supported by funding from the ice2sea
programme from the European Union 7th Framework
Programme, grant No. 226375, ice2sea contribution
No. 149, and the NERC British Antarctic Survey ‘Polar
Science For Planet Earth’ programme. We are grateful to
Gwendolyn Leysinger Vieli and an anonymous reviewer for
detailed and knowledgeable comments and for suggesting
improvements to the manuscript.

REFERENCES

Arthern RJ and Gudmundsson GH (2010) Initialization of ice-sheet
forecasts viewed as an inverse Robin problem. J. Glaciol.,
56(197), 527–533 (doi: 10.3189/002214310792447699)

Arthern RJ and Hindmarsh RCA (2003) Optimal estimation of
changes in the mass of ice sheets. J. Geophys. Res., 108(F1),
6007 (doi: 10.1029/2003JF000021)

Arthern RJ, Winebrenner DP and Vaughan DG (2006) Antarctic
snow accumulation mapped using polarization of 4.3 cm
wavelength microwave emission. J. Geophys. Res., 111(D6),
D06107 (doi: 10.1029/2004JD005667)

Bamber JL, Vaughan DG and Joughin I (2000a) Widespread
complex flow in the interior of the Antarctic ice sheet. Science,
287(5456), 1248–1250 (doi: 10.1126/science.287.5456.1248)

Bamber JL, Hardy RJ and Joughin I (2000b) An analysis of balance
velocities over the Greenland ice sheet and comparison with
synthetic aperture radar interferometry. J. Glaciol., 46(152),
67–74 (doi: 10.3189/172756500781833412)

Barrand NE and 11 others (2013) Computing the volume response of
the Antarctic Peninsula ice sheet to warming scenarios to 2200.
J. Glaciol., 59(215), 397–409 (doi: 10.3189/2013JoG12J139)

Bingham RG, Siegert MJ, Young DA and Blankenship DD (2007)
Organized flow from the South Pole to the Filchner–Ronne ice
shelf: an assessment of balance velocities in interior East
Antarctica using radio echo sounding data. J. Geophys. Res.,
112(F03), F03S26 (doi: 10.1029/2006JF000556)

Budd WF and Warner RC (1996) A computer scheme for rapid
calculations of balance-flux distributions. Ann. Glaciol., 23,
21–27

Comiso JC (2000) Variability and trends in Antarctic surface
temperatures from in situ and satellite infrared measure-
ments. J. Climate, 13(10), 1674–1696 (doi: 10.1175/1520-0442
(2000)013<1674:VATIAS>2.0.CO;2)

Cuffey KM and Paterson WSB (2010) The physics of glaciers, 4th
edn. Butterworth-Heinemann, Oxford

Fretwell P and 59 others (2013) Bedmap2: improved ice bed,
surface and thickness datasets for Antarctica. Cryosphere, 7(1),
375–393 (doi: 10.5194/tc-7-375-2013)

Fricker HA, Warner RC and Allison I (2000) Mass balance
of the Lambert Glacier–Amery Ice Shelf system, East
Antarctica: a comparison of computed balance fluxes and
measured fluxes. J. Glaciol., 46(155), 561–570 (doi: 10.3189/
172756500781832765)

Gillet-Chaulet F and 8 others (2012) Greenland Ice Sheet contri-
bution to sea-level rise from a new-generation ice-sheet model.
Cryosphere, 6(4), 1561–1576 (doi: 10.5194/tc-6-1561-2012)

Gudmundsson GH and Raymond M (2008) On the limit to
resolution and information on basal properties obtainable from
surface data on ice streams. Cryosphere, 2(2), 167–178 (doi:
10.5194/tc-2-167-2008)

Hindmarsh RCA (1997) Use of ice-sheet normal modes for
initialization and modelling small changes. Ann. Glaciol., 25,
85–95

Hindmarsh RCA (2004) A numerical comparison of approximations
to the Stokes equations used in ice sheet and glacier modeling.
J. Geophys. Res., 109(F1), F01012 (doi: 10.1029/2003JF000065)

Hindmarsh RCA (2006a) The role of membrane-like stresses in
determining the stability and sensitivity of the Antarctic Ice
Sheets: back pressure and grounding line motion. Philos. Trans.
R. Soc. London, Ser. A, 364(1844), 1733–1767 (doi: 10.1098/
rsta.2006.1797)

Hindmarsh RCA (2006b) Stress gradient damping of thermoviscous
ice flow instabilities. J. Geophys. Res., 111(B12), B12409 (doi:
10.1029/2005JB004019)

Hindmarsh RCA (2009) Consistent generation of ice-streams via
thermo-viscous instabilities modulated by membrane
stresses. Geophys. Res. Lett., 36(6), L06502 (doi: 10.1029/
2008GL036877)

Hindmarsh RCA and Payne AJ (1996) Time-step limits for stable
solutions of the ice-sheet equation. Ann. Glaciol., 23, 74–85

Huybrechts P, Steinhage D, Wilhelms F and Bamber J (2000)
Balance velocities and measured properties of the Antarctic ice
sheet from a new compilation of gridded data for modelling.
Ann. Glaciol., 30, 52–60 (doi: 10.3189/172756400781820778)

Joughin I, Fahnestock M, Ekholm S and Kwok R (1997) Balance
velocities of the Greenland ice sheet. Geophys. Res. Lett.,
24(23), 3045–3048 (doi: 10.1029/97GL53151)

Williams and others: Balance velocities with membrane stresses 303

https://doi.org/10.3189/2014JoG13J092 Published online by Cambridge University Press

https://doi.org/10.3189/2014JoG13J092


Kamb B and Echelmeyer KA (1986) Stress-gradient coupling in

glacier flow: I. Longitudinal averaging of the influence

of ice thickness and surface slope. J. Glaciol., 32(111),

267–284
Le Brocq AM, Payne AJ and Siegert MJ (2006) West Antarctic

balance calculations: impact of flux-routing algorithm,

smoothing algorithm and topography. Comput. Geosci.,

32 (10), 1780–1795 (doi: 10.1016/j.cageo.2006.05.003)
Le Brocq AM, Payne AJ and Vieli A (2010) An improved Antarctic

dataset for high resolution numerical ice sheet models (ALBMAP

v1). Earth Syst. Sci. Data, 2(2), 247–260 (doi: 10.5194/essdd-

3-195-2010)
Le Meur E, Gagliardini O, Zwinger T and Ruokolainen J (2004)

Glacier flow modelling: a comparison of the Shallow Ice

Approximation and the full-Stokes solution. C. R. Phys., 5(7),

709–722 (doi: 10.1016/j.crhy.2004.10.001)
Leysinger Vieli GJMC, Hindmarsh RCA, Siegert MJ and Bo S (2011)

Time-dependence of the spatial pattern of accumulation rate in

East Antarctica deduced from isochronic radar layers using a 3-

D numerical ice flow model. J. Geophys. Res., 116(F2), F02018

(doi: 10.1029/2010JF001785)
MacAyeal DR (1989) Large-scale ice flow over a viscous basal

sediment: theory and application to Ice Stream B, Antarctica.

J. Geophys. Res., 94(B4), 4071–4087 (doi: 10.1029/

JB094iB04p04071)
MacAyeal DR (1992) The basal stress distribution of Ice Stream E,

Antarctica, inferred by control methods. J. Geophys. Res.,

97(B1), 595–603 (doi: 10.1029/91JB02454)
MacAyeal DR (1993) A tutorial on the use of control methods in

ice-sheet modeling. J. Glaciol., 39(131), 91–98
Muszynski I and Birchfield GE (1987) A coupled marine ice-

stream–ice-shelf model. J. Glaciol., 33(113), 3–15
Pollard D and DeConto RM (2012) A simple inverse method for the

distribution of basal sliding coefficients under ice sheets, applied

to Antarctica. Cryosphere, 6(5), 953–971 (doi: 10.5194/tc-6-

953-2012)
Raymond MJ and Gudmundsson GH (2009) Estimating basal

properties of ice streams from surface measurements: a non-

linear Bayesian inverse approach applied to synthetic data.

Cryosphere, 3(2), 265–278 (doi: 10.5194/tc-3-265-2009)
Rignot E, Mouginot J and Scheuchl B (2011) Ice flow of the

Antarctic Ice Sheet. Science, 333(6048), 1427–1430 (doi:

10.1126/science.1208336)
Schoof C (2007) Ice sheet grounding line dynamics: steady states,

stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi:

10.1029/2006JF000664)
Testut L, Hurd R, Coleman R, Rémy F and Legrésy B (2003)
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APPENDIX: DISCRETIZATION AND MATRIX
EQUATIONS

The full system of momentum equations is solved using a
conservative finite-difference scheme on a staggered grid, as
described by Hindmarsh (1997) for the SIA. The basic
numerical procedure is the same for both the SIA and the
MSA. Ice thicknesses and diffusivities are defined on the
nodes, and the continuity equation is solved on these points.
The x- and y-velocities are defined on the same staggered
grid as used in the SIA (see Hindmarsh and Payne, 1996, for
details).

We consider four grids: an H-grid, with nx � ny points; a

u-grid, with ðnx þ 1Þ � ny points; a v-grid, with nx � ðny þ 1Þ
points; and for cases with a calving front along the x-axis, the
diffusivity is solved on the inner ðny � 1Þ � nx points (or

ny � ðnx � 1Þ if the calving front is along the y-axis), which

we call the D-grid. With boundary conditions and field
equations, there are sufficient equations to solve for the x-
and y-direction velocities. Solving the continuity equation on
the D-grid provides a sufficient number of equations to solve
for the diffusivity on this grid. Consequently, the diffusivity is
not estimated at the boundary points.

A subtlety is that while slopes are defined at grid
midpoints (i.e. the u- and v-grids), the diffusivities are
defined at grid centres. The numerical method is defined so
that diffusivities are associated with those slopes where the
flow is out of the gridpoint, consistent with the method for
the SIA used by Hindmarsh (1997).

The matrix in Eqn (16) is constructed with the necessary
operators and variables and includes both interior and
boundary points. The accumulation, surface elevation and
thickness data are required as inputs. The problem is now
nonlinear. The matrix can then be inverted to give the
horizontal velocities, u and v, on the staggered grid and the
diffusivity, D, on the grid nodes using standard Newton

iteration. Convergence was obtained to an accuracy of 10�7

for all grids explored.
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