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Abstract

The generalized perturbative approach is an all-purpose variant of Stein’s method used to
obtain rates of normal approximation. Originally developed for functions of independent
random variables, this method is here extended to functions of the realization of a hidden
Markov model. In this dependent setting, rates of convergence are provided in some
applications, leading, in each instance, to an extra log-factor vis-à-vis the rate in the
independent case.
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1. Introduction

Let X = (X1, . . . , Xn) be a random vector with coordinates in a Polish space E, and let
f : En →R be a measurable function such that f (X), for n large, is square-integrable. For a
large class of such functions f it is expected that as n grows without bound, f (X) behaves
like a normal random variable. To quantify such estimates one is interested in bounding the
distance between f (X) and the normal random variable N ∼ N(mf , σ 2

f ) where mf =E[f (X)]

and σ 2
f = Var(f (X)). Two such distances of interest are the Kolmogorov distance

dK(f (X),N ) := sup
t∈R

|P(f (X) ≤ t) − P(N ≤ t)|

and the Wasserstein distance

dW (f (X),N ) := sup
h

|E[h(f (X))] −E[h(N )]|,

where this last supremum is taken over real-valued Lipschitz functions h such that |h(x) −
h(y)| ≤ |x − y| for all x, y ∈R.

For the case where the components of X are independent random variables, upper bounds
on dW (f (X),N ) were first obtained in [2], and these were extended to dK(f (X),N ) in [14].
Both results rely on a class of difference operators that will be described in Section 2.

Received 9 October 2020; revision received 15 July 2021.
∗ Postal address: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160, USA. Email
address: houdre@math.gatech.edu
∗∗ Postal address: Université du Luxembourg, Unité de Recherche en Mathématiques, Maison du Nombre, 6 Avenue
de la Fonte, L-4364 Esch-sur-Alzette, Grand Duché du Luxembourg. Email address: gkerchev@gmail.com

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

536

https://doi.org/10.1017/apr.2021.40 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.40
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/apr.2021.40&domain=pdf
https://doi.org/10.1017/apr.2021.40


Normal approximation for hidden Markov models 537

Very few results address the (weakly) dependent case, and in the present work we provide
estimates on dK(f (X),N ) and dW (f (X),N ) when X is generated by a hidden Markov model.
Such models are of interest because of their many applications in fields such as computational
biology and speech recognition; see e.g. [7]. Recall that a hidden Markov model (Z, X) consists
of a Markov chain Z = (Z1, . . . , Zn) which emits the observed variables X = (X1, . . . , Xn). The
possible states in Z are each associated with a distribution on the values of X. In other words
the observation X is a mixture model where the choice of the mixture component for each
observation depends on the component of the previous observation. The mixture components
are given by the sequence Z. Note also that given Z, X is a Markov chain.

The content of the paper is as follows. Section 2 contains a short overview of results on nor-
mal approximation in the independent setting and introduces a simple transformation involving
independent and identically distributed (i.i.d.) random variables that allows us to adapt these
estimates to the hidden Markov model. Moreover, further quantitative bounds are provided
for the special case when f is a Lipschitz function with respect to the Hamming distance.
Applications to variants of the ones analyzed in [2] and [14] are developed in Sections 3 and
4, leading to an extra log-factor in the various rates obtained there. The majority of the more
technical computations are carried out and presented in Section 5.

2. Main results

For a comprehensive review of Stein’s method we refer the reader to [4]. The exchangeable
pairs approach was outlined in [2]. We now recall below a few of its main points.

Let W := f (X). Originally in [2], and then in [14], various bounds on the distance between
W and the normal distribution were obtained through a variant of Stein’s method. As is well
known, Stein’s method is a way to obtain normal approximations based on the observation
that the standard normal distribution N is the only centered and unit-variance distribution that
satisfies

E
[
g′(N )

]=E
[Ng(N )

]
for all absolutely continuous g with almost-everywhere (a.e.) derivative g′ such that
E|g′(N )| < ∞ (see [4]), and for the random variable W, |E[Wg(W) − g′(W)]| can be thought
of as a distance measuring the proximity of W to N . In particular, for the Kolmogorov distance,
the solutions gt to the differential equation

P(W ≤ t) − P(N ≤ t) = g′
t(W) − Wgt(W)

are absolutely continuous with a.e. derivative such that E
∣∣g′

t(N )
∣∣< ∞ (see [4]). Then,

dK(W,N ) = sup
t∈R

∣∣E[g′
t(W) − Wgt(W)

]∣∣. (1)

Further properties of the solutions gt allow for upper bounds on E
[
g′

t(W) − Wgt(W)
]

using
difference operators associated with W that were introduced in [2] (see [14]). This is called
the generalized perturbative approach in [3], and we describe it next. First, we recall the per-
turbations used to bound the right-hand side of (1) in [2, 14]. Let X′ = (X′

1, . . . , X′
n

)
be an

independent copy of X, and let W ′ = f (X′). Then (W, W ′) is an exchangeable pair, since it has
the same joint distribution as (W ′, W). A perturbation WA = f A(X) := f

(
XA
)

of W is defined
through the change XA of X as follows:

XA
i =

{
X′

i if i ∈ A,

Xi if i /∈ A,
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538 C. HOUDRÉ AND G. KERCHEV

for any A ⊆ [n] := {1, . . . , n}, including A = ∅. With these definitions, still following [2],
difference operators are defined for any ∅ ⊆ A ⊆ [n] and i /∈ A, as follows:

�if
A = f

(
XA)− f

(
XA∪{i}).

Moreover, set

TA(f ) :=
∑
j/∈A

�jf (X)�jf
(
XA),

T ′
A(f ) :=

∑
j/∈A

�jf (X)
∣∣�jf

(
XA)∣∣,

and for kn,A = 1/
( n
|A|
)

(n − |A|), set

Tn(f ) :=
∑

∅⊆A�[n]

kn,ATA(f ),

T ′
n(f ) :=

∑
∅⊆A�[n]

kn,AT ′
A(f ).

Now, for W = f (X1, . . . , Xn) such that E[W] = 0, 0 < σ 2 =E
[
W2
]
< ∞, and assuming all the

expectations below are finite, [2, Theorem 2.2] gives the bound

dW
(
σ−1W,N )≤ 1

σ 2

√
Var
(
E
[
Tn(f )|X])+ 1

2σ 3

n∑
j=1

E
∣∣�jf (X)

∣∣3, (2)

while [14, Theorem 4.2] yields

dK
(
σ−1W,N )≤ 1

σ 2

√
Var
(
E
[
Tn(f )|X])+ 1

σ 2

√
Var
(
E
[
T ′

n(f )|X])
+ 1

4σ 3

n∑
j=1

√
E
∣∣�j f

∣∣6 +
√

2π

16σ 3

n∑
j=1

E
∣∣�j f (X)

∣∣3, (3)

where in both cases N is now a standard normal random variable.
Our main abstract result generalizes (2) and (3) to the case when X is generated by a hidden

Markov model. It is as follows.

Proposition 2.1. Let (Z, X) be a hidden Markov model with Z an aperiodic time-homogeneous
and irreducible Markov chain with finite state space S , and X taking values in a
non-empty finite A. Let W := f (X1, . . . , Xn) with E[W] = 0 and 0 < σ 2 =E

[
W2
]
< ∞. Then

there exist a finite sequence of independent random variables R = (R0, R1, . . . , R|S|(n−1)
)
,

with Ri taking values in S ×A for i = 0, . . . , |S|(n − 1), and a measurable function h : (S ×
A)|S|(n−1)+1 −→R such that h

(
R0, . . . , R|S|(n−1)

)
and f (X1, . . . , Xn) are identically dis-

tributed. Therefore,

dW
(
σ−1W,N )≤ 1

σ 2

√
Var
(
E
[
T|R|(h)|R])+ 1

2σ 3

|S|(n−1)∑
i=0

E
∣∣�ih(R)

∣∣3 (4)
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and

dK
(
σ−1W,N )≤ 1

σ 2

√
Var
(
E
[
T|R|(h)|R])+ 1

σ 2

√
Var
(
E
[
T ′|R|(h)|R])

+ 1

4σ 3

|R|−1∑
j=0

√
E
∣∣�jh(R)

∣∣6 +
√

2π

16σ 3

|R|−1∑
j=0

E
∣∣�jh(R)

∣∣3, (5)

where N is a standard normal random variable.

At first glance the above results might appear to be simple corollaries to (2) and (3). Indeed, as
is well known, every Markov chain (in a Polish space) admits a representation via i.i.d. random
variables U1, . . . , Un, uniformly distributed on (0, 1), and the inverse distribution function.

Therefore, f (X1, . . . , Xn)
d= h(U1, . . . , Un), for some function h, where, as usual,

d= indicates
equality in distribution. However, providing quantitative estimates for E|�jh(U1, . . . , Un)| via
f seems to be out of reach, since passing from f to h involves the ‘unknown’ inverse distribution
function. For this reason, we develop for our analysis a more amenable, although more restric-
tive, choice of i.i.d. random variables, which is described intuitively in the next paragraph and
then again in greater detail in Section 2.1.

Consider R = (R0, . . . , R|S|(n−1)
)

as stacks of independent random variables on the |S|
possible states of the hidden chain that determine the next step in the process, with R0
specifying the initial state. Each Ri takes values in S ×A and is distributed according to

the transition probability from the present hidden state. Then, one has f
(
X1, . . . , Xn

) d=
h
(
R0, . . . , R|S|(n−1)

)
, for h = f ◦ γ , where the function γ translates between R and X. This

construction is carried out in more detail in the next section. Further note that when (Xi)i≥1 is a
sequence of independent random variables, the hidden chain in the model consists of a single
state, and then the function γ is the identity function and so h = f .

In order for Proposition 2.1 to be meaningful, a further quantitative study of the terms in the
upper bounds is necessary. It turns out that the variance terms determine the order of decay;
see Remark 5.2. Nevertheless, we obtain additional quantitative estimates for all the terms
involved; the proofs are presented in Section 5.

Proposition 2.2. With the notation as above, let f be Lipschitz with respect to the Hamming
distance, i.e., let

|f (x) − f (y)| ≤ c
n∑

i=1

1xi �=yi

for every x, y ∈An and where c > 0. Then, for any r > 0,

E|�ih(R)|r ≤C1(ln n)r,

E|h(R) −E[h(R)]|r ≤C2nr/2(ln n)r,

for n large enough and C1, C2 > 0 depending on r and the parameters of the model.

Let R′ and R′′ be independent copies of R, and let R̃ be the random set of recombinations of
R, R′, and R′′. The set R̃ consists of 3|R| random vectors of size |R|:

R̃ := {
Z = (Z0, . . . , Z|R|−1

)
: Zi ∈

{
Ri, R′

i, R′′
i

}}
.
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540 C. HOUDRÉ AND G. KERCHEV

Let

B|R|(h) := sup
Y,Y ′,Z,Z′∈R̃

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0

∣∣�jh(Z)
∣∣2∣∣�kh

(
Z′)∣∣2],

B(k)
|R|(h) := sup

Y,Z,Z′∈R̃
E
∣∣1�i,jh(Y)�=0�ih(Z)2�jh

(
Z′)2∣∣,

B(j)
|R|(h) := sup

Y,Z,Z′∈R̃
E
∣∣1�i,kh(Y)�=0�ih(Z)2�kh

(
Z′)2∣∣.

(6)

Then the following general bound for the variance terms holds.

Proposition 2.3. With the notation as above and for U = T|R|(h) or U = T ′|R|(h), we have

√
Var
(
E[U|R]

)≤ 1√
2

∑
∅⊆A�[|R|]

k|R|,A

( |R|−1∑
i=0

∑
j,k/∈A

(
1i=j=kE|�ih(R)|4 + 1i �=j �=kB|R|(h)

+ (1i �=j=k + 1i=k �=j
)
B(k)

|R|(h) + (1i �=j=k + 1i=j �=k
)
B(j)

|R|(h)

))1/2

,

where [|R|] := {1, . . . , |R|}.
Note that in Proposition 2.3, the underlying function f is not assumed to be Lipschitz.

Moreover, the function h is not symmetric, and therefore the expression above cannot be sim-
plified further, in contrast to the similar results in [14]. The proofs of Propositions 2.2 and 2.3
are technical and are delayed to Sections 5.1 and 5.2 respectively.

2.1. Additional details on the construction of R

Let (Z, X) be a hidden Markov model with Z an aperiodic time-homogeneous and
irreducible Markov chain on a finite state space S , and with X taking values in an alphabet
A. Let P be the transition matrix of the hidden chain, and let Q be the |S| × |A| probability
matrix for the observations; i.e., Qij is the probability of seeing output j if the latent chain is in
state i. Let the initial distribution of the hidden chain be μ. Then

P
((

Z1, . . . , Zn; X1, . . . , Xn
)= (z1, . . . , zn; x1, . . . , xn

))
= μ(z1)Qz1,x1 Pz1,z2 . . . Pzn−1,zn Qzn,xn .

Next we introduce a sequence of independent random variables R0, . . . , R|S|(n−1) taking values
in S ×A and a function γ such that γ

(
R0, . . . , R|S|(n−1)

)= (Z1, . . . , Zn; X1, . . . , Xn
)
. For any

s, s′ ∈ S , x ∈A, and i ∈ {0, . . . , n − 1}, let

P
(
R0 = (s, x)

)= μ(s)Qs,x,

P
(
Ri|S|+s′ = (s, x)

)= Ps′,sQs,x.

The random variables Ri are well defined since
∑

x Qs,x = 1 for any s ∈ S and
∑

s Ps′,s =∑
s μ(s) = 1 for any s′ ∈ S . One can think of the variables Ri as a set of instructions indicat-

ing where the hidden Markov model goes next. The function γ reconstructs the realization
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(Zi, Xi)i≥1 sequentially from the sequence (Ri)i≥0. In particular, γ captures the following
relations: (

Z1, X1
)= R0,(

Zi+1, Xi+1
)= Ri|S|+s if Zi = s for i ≥ 1.

One can also think of the sequence (Ri)i≥0 as |S| stacks of random variables on the |S| possible
states of the latent Markov chain, and the values being rules for the next step in the model. Note
that only one variable on the ith level of the stack will be used to determine the (i + 1)th hidden
and observed pair. Furthermore, the distribution of the random variables Ri for i ≥ 1 encodes
the transition and output probabilities in the P and Q matrices of the original model.

Thus one can write f
(
X1, . . . , Xn

)= h
(
R0, . . . , R|S|(n−1)

)
, for h := f ◦ γ , where the func-

tion γ does the translation from (Ri)i≥0 to
(
Zi, Xi

)
i≥1 as described above.

Let R′ = (R′
0, . . . , R′

|S|(n−1)

)
be an independent copy of R. Let A ⊆ {0, 1, . . . , |S|(n − 1)},

and let the change RA of R be defined as follows:

RA
i =

{
R′

i if i ∈ A,

Ri if i /∈ A,
(7)

where, as before, when A = {j} we write Rj instead of R{j}.
Recall that the ‘discrete derivative’ of h with a perturbation A is

�ih
A = h

(
RA)− h

(
RA∪{i}).

Then (4) and (5) follow from (2) and (3), respectively, since when (Z, X) is a hidden Markov
model one writes

W = f
(
X1, . . . , Xn

) d= h
(
R0, . . . , R|S|(n−1)

)
,

where the sequence (Ri)i≥0 is a sequence of independent random variables.

Remark 2.1. (i) The idea of using stacks of independent random variables to represent a
hidden Markov model is somewhat reminiscent of Wilson’s cycle popping algorithm for gen-
erating a random directed spanning tree; see [17]. The algorithm has also been related to
loop-erased random walks in [9].

(ii) If S consists of a single state, making the hidden chain redundant, there is a single stack
of instructions. This corresponds to the independent setting of [2] and [14], and then γ is just
the identity function.

(iii) The same approach, via the use of instructions, is also applicable when A and S are
infinite countable. The Qs,x no longer form a finite matrix, but the same definition holds as
long as

∑
x∈A Qs,x = 1 for all s ∈ S . We need a countably infinite number of independent

instructions to encode (Zi, Xi)1≤i≤n. In particular, let R0 and
(
Ri,s
)

1≤i≤n,s∈S be such that

P
(
R0 = (s, x)

)= μ(s)Qs,x,

P
(
Ri,s′ = (s, x)

)= Ps′,sQs,x.

Then the function γ reconstructs
(
Zi, Xi

)
1≤i≤n from R0 and

(
Ri,s
)

1≤i≤n,s∈S via(
Z1, X1

)= R0,(
Zi+1, Xi+1

)= Ri,s if Zi = s for i ≥ 1.
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542 C. HOUDRÉ AND G. KERCHEV

(iv) It is possible to obtain bounds on the various terms involved in Proposition 2.2 and
Proposition 2.3 in the case when |S| is a function of n. Assuming that there exists a gen-
eral deterministic upper bound gr(n) on E|�ih|r, one can bound the non-variance terms in
Proposition 2.2 by C|S| (√g6(n) + g3(n)

)
/σ 3. The variance terms, using Proposition 2.3,

will then be bounded by C
√|S|g4(n) + |S|3(A)/σ 2, where A is a complicated expression that

depends on the particular problem as well as on E|�ih|r and |S|.
The next crucial part in the analysis is the key result we use everywhere: if a change in

an instruction propagates X levels (a random variable), then P(X > K) ≤ (1 − ε)K , for some
absolute 0 < ε < 1. If |S| is finite, this holds under some standard assumptions on the model. If
|S| grows with n, then under some minor additional restrictions in the hidden Markov model,
we have P(X > K) ≤ (1 − 1/|S|)K . Then K can be chosen to be at most a small power of n
(we take K = ln n in the finite case, which explains the logarithmic factors in our bounds).
For meaningful bounds, |S| could grow at most like ln n. However, much more fine-tuning is
necessary in the actual proof.

For some recent results (different from ours) on normal approximation for functions of
general Markov chains we refer the reader to [5].

3. Covering process

Although our framework was initially motivated by [11] and the problem of finding a nor-
mal approximation result for the length of the longest common subsequences in dependent
random words, some applications to stochastic geometry are presented below. Our method-
ology can be applied to other related settings, in particular to the variant of the occupancy
problem introduced in the recent article [10] (see Remark 4.1).

Let (K,K) be the space of compact subsets of Rd, endowed with the hit-and-miss topology.
Let En be a cube of volume n, and let C1, . . . , Cn be random variables in En, called germs. In
the i.i.d. setting of [14], each Ci is sampled uniformly and independently in En; i.e., if T ⊂ En

with measure |T|, then

P(Ci ∈ T) = |T|
n

,

for all i ∈ {1, . . . , n}.
Here, we consider C1, . . . , Cn, generated by a hidden Markov model in the following way.

Let Z1, . . . , Zn be an aperiodic irreducible Markov chain on a finite state space S . Each s ∈ S
is associated with a measure ms on En. Then for each measurable T ⊆ En,

P
(
Ci ∈ T|Zi = s

)= ms(T).

Assume that there are constants 0 < cm ≤ cM such that for any s ∈ S and measurable T ⊆ En,

cm|T|
n

≤ ms(T) ≤ cM|T|
n

.

Note that cm = cM = 1 recovers the setting of [14].
Let K1, . . . , Kn be compact sets (grains) with Vol(Ki) ∈ (V1, V2) (absolute constants) for

i = 1, . . . , n. Let Xi = Ci + Ki for i = 1, . . . , n be the germ–grain process. Consider the closed
set formed by the union of the germs translated by the grains

Fn =
(

n⋃
k=1

XK

)
∩ En.
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We are interested in the volume covered by Fn,

fV
(
X1, . . . , Xn

)= Vol(Fn),

and the number of isolated grains,

fI
(
X1, . . . , Xn

)= #
{
k : Xk ∩ Xj ∩ En = ∅, k �= j

}
.

Theorem 3.1. Let N be a standard normal random variable. Then, for all n ∈N,

dK

(
fV −EfV√

Var fV
,N
)

≤ C

(
n(ln n)3√
Var(fV )3

+ n1/2(ln n)4

Var(fV )

)
, (8)

dK

(
fI −EfI√

Var fI
,N
)

≤ C

(
n(ln n)3√
Var(fI)3

+ n1/2(ln n)4

Var(fI)

)
, (9)

for some constant C > 0 independent of n.

The study of the order of growth of VarfI and VarfV is not really part of the scope
of the present paper. In the independent case, there are constants 0 < cV ≤ CV such that
cVn ≤ VarfV ≤ CVn and cVn ≤ VarfI ≤ CVn for n sufficiently large (see [13, Theorem 4.4]).
In our dependent setting, a variance lower bound of order n will thus provide a rate of order
( log n)4/

√
n.

The proofs of the normal approximations for fV and fI are carried out in Sections 3.1 and
3.2. Many of the more technical computations are carried out in Section 5.

3.1. Normal approximation for f V

Write fV
(
X1, . . . , Xn

)= h
(
R0, . . . , R|S|(n−1)

)
for a set of instructions R defined as in

Section 2.1. The volume of each grain is bounded by V2, so fV is Lipschitz with respect to
the Hamming distance, with constant V2. Proposition 2.1 holds, and from Proposition 2.2, the
non-variance terms in the bounds in Proposition 2.1 are bounded by C(ln n)3/

√
n. Here and

below, C is a constant, independent of n, which can vary from line to line. Indeed, for instance,

1

4σ 3

|R|−1∑
j=0

√
E|�jh(R)|6 ≤ CVar(fV )−3/2(|S|(n − 1) + 1)(ln n)3

≤ Cn(ln n)3/Var(fV )3/2. (10)

To analyze the bound on the variance terms given by Proposition 2.3, first note that

|R|−1∑
i=0

∑
j,k/∈A

1i=j=kE|�ih(R)|4 ≤ Cn(ln n)4,

using Proposition 2.2. The other terms are bounded as follows.
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Proposition 3.1. Let A � [|R|], and let B|R|(h), Bk|R|(h), and Bj
|R|(h) be as in (6). Then

|R|−1∑
i=0

∑
j,k/∈A

1i �=j �=kB|R|(h) ≤ Cn(ln n)8, (11)

|R|−1∑
i=0

∑
j,k/∈A

(
1i �=j=k + 1i=k �=j

)
B(k)

|R|(h) ≤ Cn(ln n)4, (12)

|R|−1∑
i=0

∑
j,k/∈A

(
1i �=j=k + 1i=j �=k

)
B(j)

|R|(h) ≤ Cn(ln n)4, (13)

for some constant C > 0 that does not depend on n.

Proof. See Section 5.3 for the proof of the first bound. The others follow similarly. �
The bound on the variance terms in Proposition 2.3 becomes√

Var(E[U|R]) ≤ 1√
2

∑
A�[|R|]

k|R|,A
(
Cn(ln n)4 + Cn(ln n)8 + 2Cn(ln n)4)1/2

≤C
√

n(ln n)4. (14)

Then (8) follows from (14), (10), and Proposition 2.1.

3.2. Normal approximation for f I

The proof of (9) is more involved since the function fI is not Lipschitz. Abusing nota-
tion, write fI

(
X1, . . . , Xn

)= h
(
R0, . . . , R|S|(n−1)

)
for a set of instructions R as in Section 2.1.

Proposition 2.1 holds, and, as in our analysis for fV , we proceed by estimating the non-variance
terms in the bounds. The following holds.

Proposition 3.2. For any t = 1, 2, . . . and i ∈ {0, . . . , |S|(n − 1)},
E|�ih|t ≤ C(ln n)t, (15)

where C = C(t) > 0.

Proof. See Section 5.4. The approach is similar to the one employed for Proposition 2.2 and
uses a graph representation. �

Therefore, for the non-variance term in Proposition 2.1, we have

1

4σ 3

|R|−1∑
j=0

√
E|�jh(R)|6 +

√
2π

16σ 3

|R|−1∑
j=0

E|�jh(R)|3 ≤ Cn

(
ln n√
Var(fI)

)3

. (16)

We are left to analyze the bound on the variance terms given by Proposition 2.3. First, note that
using Proposition 3.2,

|R|−1∑
i=0

∑
j,k/∈A

1i=j=kE|�ih(R)|4 ≤ Cn(ln n)4.
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Proposition 3.3. Let A � [|R|], and let B|R|(h), Bk|R|(h), and Bj
|R|(h) be as in (6). Then the

bounds (11), (12), and (13) hold in this setting as well.

Proof. See Section 5.5. �
The bound on the variance terms in Proposition 2.3 becomes√

Var(E[U|R]) ≤ 1√
2

∑
A�[|R|]

k|R|,A
(

Cn(ln n)4 + Cn(ln n)8 + 2Cn(ln n)4
)1/2

≤C
√

n(ln n)4. (17)

Then (9) follows from (17), (16), and Proposition 2.1.

4. Set approximation with random tessellations

Let K ⊆ [0, 1]d be compact, and let X be a finite collection of points in K. The Voronoi
reconstruction, or the Voronoi approximation, of K based on X is given by

KX := {
y ∈Rd : the closest point to y in X lies in K

}
.

For x ∈ [0, 1]d, denote by V(x; X) the Voronoi cell with nucleus x within X, given by

V(x; X) := {
y ∈ [0, 1]d : ||y − x|| ≤ ||y − x′|| for any x′ ∈ (X, x)

}
,

where (X, x) = X ∪ {x}, and where, as usual, || · || is the Euclidean norm in Rd. The volume
approximation of interest is

ϕ(X) := Vol
(
KX)=∑

i

1Xi∈KVol
(
V
(
Xi; X

))
.

In [14], X = (X1, . . . , Xn) is a vector of n i.i.d. random variables uniformly distributed on
[0, 1]d. Here, we consider X1, . . . , Xn generated by a hidden Markov model in the following
way. Let Z1, . . . , Zn be an aperiodic irreducible Markov chain on a finite state space S . Each
s ∈ S is associated with a measure ms on [0, 1]d. Then for each measurable T ⊆ [0, 1]d,

P
(
Xi ∈ T|Zi = s

)= ms(T).

Assume, moreover, that there are constants 0 < cm ≤ cM such that for any s ∈ S and measurable
T ⊆ [0, 1]n,

cm
|T|
n

≤ ms(T) ≤ cM
|T|
n

.

Recall the notions of Lebesgue boundary of K given by

∂K := {x ∈ [0, 1]d : Vol(B(x, ε) ∩ K) > 0 and Vol
(
B(x, ε) ∩ Kc)> 0, for any ε > 0}

and

∂Kr := {
x : d(x, ∂K) ≤ r

}
, ∂Kr+ := Kc ∩ ∂Kr,

where d(x, A) is the Euclidean distance from x ∈Rd to A ⊆Rd.
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Now, for β > 0, let

γ (K, r, β) :=
∫

∂Kr+

(
Vol(B(x, βr) ∩ K)

rd

)2

dx.

Next, recall that K is said to satisfy the (weak) rolling ball condition if

γ (K, β) := lim inf
r>0

Vol
(
∂Kr)−1(

γ (K, r, β) + γ
(
Kc, r, β

))
> 0. (18)

Our main result is as follows.

Theorem 4.1. Let K ⊆ [0, 1]d satisfy the rolling ball condition. Moreover, assume that there
exist S−(K), S+(K), α > 0 such that

S+(K)rα ≤ Vol
(
∂Kr)≤ S+(K)rα for every r > 0.

Then, for n ≥ 1,

dK

(
ϕ(X) −Eϕ(X)√

Var(ϕ(X))
,N
)

≤ C
(ln n)3

n1/2−α/d
, (19)

where C > 0 is a constant not depending on n.

As in [14], we split Theorem 4.1 into two results. The first one establishes a central limit
theorem.

Proposition 4.1. Let 0 < σ 2 = Var(ϕ(X)). Assume that Vol(∂Kr) ≤ S+(K)rα for some
S+(K), α > 0. Then, for n ≥ 1,

dK

(
ϕ(X) −Eϕ(X)

σ
,N
)

≤C

(
(ln n)2

σ 2n3/2+α/2d
+ (ln n)3

σ 3n2+α/2d

)
, (20)

where C > 0 is a constant not depending on n.

The second result introduces bounds on the variance under some additional assumptions.

Proposition 4.2. Let K ⊆ [0, 1]d satisfy the rolling ball condition. Moreover, assume that there
exist S−(K), S+(K), α > 0 such that

S+(K)rα ≤ Vol(∂Kr) ≤ S+(K)rα for every r > 0.

Then, for n sufficiently large,

C−
d S−(K)γ (K) ≤ Var(ϕ(X))

n−1−α/d
≤ C+

d S+(K) (21)

for some C−
d , C+

d > 0.

It is clear that Theorem 4.1 will be proved once Proposition 4.1 and Proposition 4.2 are
established.
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4.1. Proof of Proposition 4.1

Again, as before, we introduce a set of instructions R and a function h such that h(R) = ϕ(X).
We apply Proposition 2.1, and the initial step is to bound E|�ih(R)|r, where r > 0. In fact, the
following holds.

Proposition 4.3. Under the assumptions of Proposition 4.1,

E|�ih(R)|r ≤ cd,r,αS+(K)(ln n)rn−r−α/d, (22)

where cd,r,α depends on the parameters of the model and the dimension d, as well as on r
and α. Moreover, for n, q ≥ 1,

E|ϕ(X) −Eϕ(X)|r ≤ Cd,r,αS+(K)(ln n)rn−r/2−α/d (23)

for some Cd,r,α > 0.

Before presenting the proof, we introduce some notation. Recall that x, y ∈ [0, 1]d are said to
be Voronoi neighbors within the set X if V(x; X) ∩ V(y; X) �= ∅. In general, the Voronoi distance
dV (x, y; X) between x and y within X is given by the smallest k ≥ 1 such that there exist x =
x0, x1 ∈ X, . . . , xk−1 ∈ X, xk = y such that xi, xi+1 are Voronoi neighbors for i = 0, . . . , k − 1.

Denote by v(x, y; X) = Vol
(
V(y; X) ∩ V(x; (y, X))

)
the volume that V(y; X) loses when x is

added to X. Then, for x /∈ X,

ϕ(X, x) − ϕ(X) = 1x∈K

∑
y∈X∩Kc

v(x, y; X) − 1x∈Kc

∑
y∈X∩K

v(x, y; X).

Let Rk(x; X) be the distance from x to the farthest point in the cell of a kth-order Voronoi
neighbor in X; i.e., for X = (X1, . . . , Xn),

Rk(x; X) = sup
{||y − x|| : y ∈ V

(
Xi; X

)
, dV

(
x, Xi; X

)≤ k
}
,

with R(x; X) := R1(x; X). If x does not have kth-order neighbors, take Rk(x; X) = √
d. Then

Vol(V(x; X)) ≤ κdR(x; X)d,

where κd = πd/2/�(d/2 + 1) is the volume of the unit ball in Rd.

Proof of Proposition 4.3. The proof relies on two results. First, we have the following
technical lemma which is established in Section 5.6.

Lemma 4.1. Assume there exist S+(K), α > 0 such that Vol(∂Kr) ≤ S+(K)rα for all r > 0.
Let

Uk(i) = 1
d
(

Xi,∂K
)
≤Rk

(
Xi; X
)Rk
(
Xi; X

)d.

Then, for some cd,qd+α,k > 0,

EUq
k (i) ≤ S+(K)cd,qd+α,kn−q−α/d

for all n ≥ 1, q ≥ 1.

Second, within our framework, we have the following version of [14, Proposition 6.4] where
S(R) is the original set of points generated by R and S(Ri) is the set of points generated after
the change in the instruction Ri.
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Proposition 4.4. (i) If, for every s ∈ S(R) \ S
(
Ri
)
, the set R1(s, S(R)), which contains s and all

its neighbors, is either entirely in K or entirely in Kc, then �ih(R) = 0. A similar result holds
for s ∈ S

(
Ri
) \ S(R) and the set R1

(
s, S
(
Ri
))

.
(ii) Assume |i − j| is large enough so that (S

(
Ri
) \ S(R)) ∪ (S(Rj) \ S(R)) = S

(
Rij
) \ S(R),

where S
(
Rij
)

is the set of points generated after the changes in both Ri and Rj. Suppose that for
every s1 ∈ S

(
Ri
)
�S(R) and s2 ∈ S

(
Rj
)
�S(R), at least one of the following holds:

1. dV (s1, s2; S
(
Rij
)∩ S(R)) ≥ 2, or

2. dV
(
s1, ∂K; S

(
Rij
)∩ S(R)

)≥ 2 and dV
(
s2, ∂K; S

(
Rij
)∩ S(R)

)∩ S(R)) ≥ 2.

Then �i,jh(R) = 0.

Now, write

|�ih(R)| ≤
∑

s∈S(R)\S
(

Ri
) 1dS(R)(s,∂K)≤R1(s; S(R))kdR1(s; S(R))d

+
∑

s∈S(Ri)\S(R)

1
dS(Ri)(s,∂K)≤R1

(
s; S
(

Ri
))kdR1

(
s; S
(
Ri))d.

As before, for some T > 0, there exist an event E and ε > 0 such that, conditioned on E,
|S(Ri) \ S(R)| = |S(R) \ S(Ri)| ≤ T and P(Ec) ≤ (1 − ε)T . Then, from Lemma 4.1, there exist
S+(K), α > 0 such that

E|�ih(R)|r ≤ cd,r,α(1 − ε)T + cd,r,αS+(K)Trn−r−α/d,

where cd,r,α depends on the parameters of the model and the dimension d, as well as on r and
α. If T = cln n for a suitable c > 0, then

E|�ih(R)|r ≤ cd,r,αS+(K)(ln n)rn−r−α/d,

as desired. An application of the rth-moment Efron–Stein inequality (see [12, 16]) then
yields (23). �

For the non-variance term in Theorem 2.1, we have

1

4σ 3

|R|−1∑
j=0

√
E|�jh(R)|6 +

√
2π

16σ 3

|R|−1∑
j=0

E|�jh(R)|3 ≤ Cσ−3(ln n)3n−2−α/2d. (24)

To analyze the bound on the variance terms given by Proposition 2.3, first note that

|R|−1∑
i=0

∑
j,k/∈A

1i=j=kE|�ih(R)|4 ≤ C(ln n)4n−3−α/d,

again using Proposition 4.3. The other terms are bounded as follows.
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Proposition 4.5. Let A � [|R|], and let B|R|(h), Bk|R|(h) and Bj
|R|(h) be as in (6). Then, for ε > 0,

|R|−1∑
i=0

∑
j,k/∈A

1i �=j �=kB|R|(h) ≤ Cε

(
n−3−2α/d(ln n)10+4ε

)
,

|R|−1∑
i=0

∑
j,k/∈A

(
1i �=j=k + 1i=k �=j

)
B(k)

|R|(h) ≤ Cε

(
n−3−2α/d(ln n)10+4ε

)
,

|R|−1∑
i=0

∑
j,k/∈A

(
1i �=j=k + 1i=j �=k

)
B(j)

|R|(h) ≤ Cε

(
n−3−2α/d(ln n)10+4ε

)
,

for some constant Cε > 0 that does not depend on n.

Proof. See Section 5.7 for the proof of the first bound. The others follow similarly. �
The bounds on the variance terms in Proposition 2.3 become

√
Var(E[U|R]) ≤ 1√

2

∑
A�[|R|]

k|R|,A
(

C
(ln n)4

n3+α/d
+ Cε

(ln n)10+4ε

n3+2α/d

)1/2

≤C
(ln n)2

n3/2+α/2d
. (25)

Then (20) follows from (25), (24), and Proposition 2.1.

4.2. Proof of Proposition 4.2

The upper bound follows immediately from Proposition 4.3.
Recall the following result ([14, Corollary 2.4]) concerning the variance. Let X :=

(X1, . . . , Xn) ∈ En, where E is a Polish space. If X′ is an independent copy of X, and f : En →R

is measurable, with E
[
f (X)2

]
< ∞,

Var(f (X)) ≥
n∑

i=1

E
[(
E
[
�if
(
X′, X

)|X])2]. (26)

In our setting we take f = ϕ. Unlike in [14], the function ϕ is not symmetric, and the right-hand
side of (26) cannot be simplified. The lower bound provided by [14, Corollary 2.4] recovers
the correct order of growth of the variance, which is enough for our purposes. However, more
precise generic results are also available; see e.g. [1].

Let H be the realization of the hidden chain for X. By the law of total variance, Var(ϕ(X)) ≥
Var(ϕ(X)|H). Let X′ be an independent copy of X, given H. Note that, given H, (Xi)i=1,...,n and(
X′

i

)
i=1,...,n are independent random variables which are not identically distributed.

Applying (26) to ϕ(X|H), we obtain

Var(ϕ(X)|H) ≥
n∑

i=1

EH
X′

i

(
EH

X

[
ϕ
(
Xi)− ϕ(X)

])2
,
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where Xi = (X1, . . . , Xi−1, X′
i, Xi+1, . . . , Xn

)
, and EH indicates that H is given. (To simplify

notation in what follows we drop the H.) The difference from the proof in [14] is that now the
variables are no longer identically distributed. Write

EX
[
ϕ
(
Xi)− ϕ(X)

]=EX
[
ϕ
(
Xi)− ϕ

(
X(i))]−EX

[
ϕ(X) − ϕ

(
X(i))],

where X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn
)
. By Lemma 4.1,

EX
[
ϕ(X) − ϕ

(
X(i))]≤ cd,αn−1−α/d. (27)

We are left to study E
[
ϕ
(
Xi
)− ϕ

(
X(i)
)]

. Recall that

ϕ
(
Xi)− ϕ

(
X(i))=1{

X′
i∈K
}∑

j �=i

1{
Xj∈KC

}v
(
X′

i, Xj; X(i,j))
− 1{

X′
i∈KC

}∑
j �=i

1{
Xj∈K

}v
(
X′

i, Xj; X(i,j)).
Now, for the case X′

i ∈ KC (the other case being equivalent), we have∣∣∣∣∣EX,X′
i

[
− 1{

X′
i∈KC

}∑
j �=i

1{
Xj∈K

}v
(

X′
i, Xj; X(i,j)

)]∣∣∣∣∣
≥ EX′

i

[
1{

X′
i∈∂Kn−1/d

+
}∑

j �=i

EX

[
1{Xj∈K}v

(
X′

i, Xj; X(i,j)
)]]

,

since v
(
X′

i, Xj; X(i,j)
)≥ 0. Then

EX

[
1{

Xj∈K
}v
(
x, Xj; X(i,j))]]

≥EX(i,j)

[
c1

∫
y∈K

v
(
x, y; X(i,j))dy

]
≥c1Vol

(
B
(
x, βn−1/d)∩ K

)
inf

y : ||x−y||≤βn−1/d
EX(i,j)

[
v
(
x, y; X(i,j))],

using the independence after conditioning on H and the properties of the model. We want to
find an event that implies that v

(
x, y; X(i,j)

)≥ cn−1. One instance is when no point of X(i,j) falls
in B

(
y, 6βn−1/d

)
. Indeed, then B

(
y, 3βn−1/d

)⊂ V
(
y, X(i,j)

)
. The distance between y and x is

less than βn−1/d, and so there is z ∈ B
(
y, 3βn−1/d

)
, namely z = x + βn−1/d(x − y)/||x − y||,

such that

B
(
z, βn−1/d)⊂ V

(
x,
(
X(i,j), y

))⊂ B
(
y, 3βn−1/d)⊂ V

(
y; X(i,j)).

Then v
(
x, y; X(i,j)

)≥ Vol
(
B
(
z, βn−1/d

)= κdβ
dn−1. Finally,

inf
y : ||x−y||≤βn−1/d

EX(i,j)

[
v
(
x, y; X(i,j))]

≥κdβ
dn−1P

(
X(i,j) ∩ B

(
y, 6βn−1/d

)
= ∅
)

≥κdβ
dn−1(1 − c2β

dn−1)n
≥cd,βn−1,
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for some cd,β > 0 depending on the parameters of the model, the dimension d, and β. Then

EX

[
1{

Xj∈K
}v
(
x, Xj; X(i,j))]]≥ cd,βVol

(
B
(
x, βn−1/d))n−1.

Therefore, by the very definition of γ (K, r, β) and since the case X′
i ∈ K is symmetric,

EX′
i
EX

[(
ϕ
(
Xi)− ϕ

(
X(i))2]≥cd,β

(
c1

∫
∂Kn−1/d

+
Vol
(
B
(
x, βn−1/d)∩ K

)2
dx

+ c1

∫
∂Kn−1/d

−
Vol
(
B
(
x, βn−1/d)∩ Kc)2dx

)
=cd,β

(
n−2γ

(
K, n−1/d, β

)+ n−2γ
(
Kc, n−1/d, β

))
.

If the rolling ball condition (18) and the lower bound on ∂Kn−1/d
both hold, then

EX′
i
EX

[(
ϕ
(
Xi)− ϕ

(
X(i))2]≥ cd,βS−(K)γ (K, β)n−2−α/d,

which dominates the contribution (27) from E
[
ϕ(X) − ϕ

(
X(i)
)]

. Therefore, finally,

Var(ϕ(X)) ≥ c−
d,βS−(K)γ (K, β)n−1−α/d,

as desired.

Remark 4.1. Let us expand a bit on another potential application of our generic framework,
namely the occupancy problem as studied in [10]. To set up the notation, (Z1, . . . , Zn) is an
aperiodic, irreducible, and time-homogeneous (hidden) Markov chain that transitions between
different alphabets. To each alphabet is associated a distribution over the collection of all pos-
sible letters, giving rise to the observed letters (X1, . . . , Xn). We assume that the number of
alphabets is finite but that the number of total letters is �αn�, for some fixed α > 0. One studies
W := f (X1, . . . , Xn)—the number of letters that have not appeared among the X1, . . . , Xn.
Then an analysis as in the proof of Theorem 3.1 leads to the following:

dK

(
W −EW√

Var(W)
,N
)

≤ C

(
n(ln n)3√
Var(W)3

+ n1/2(ln n)4

Var(W)

)
,

where Var(W) is a function of n, N is the standard normal distribution, and C > 0 is a constant
depending on the parameters of the model but not on n. As mentioned at the beginning of
the section, the study of the precise order of growth of the variance of W, in our dependent
framework, is not within the scope of the current paper. For the i.i.d. case one can show (see
e.g. [8]) that Var(W) ∼ (αe−1/α − (1 + α)e−2/α

)
n as n → ∞.

5. Technical results

5.1. Bounds on terms involving �ih

Recall the setting of Proposition 2.2 and Proposition 2.3. Let (Z, X) be a hidden Markov
model and let the latent chain Z be irreducible and aperiodic, with finite state space S . Assume
that Z is started at the stationary distribution.

We start by establishing a technical result regarding Z.
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First, note that there exist K ≥ 1 and ε ∈ (0, 1) such that

P
(
Zn = s, Zn+K = s′)≥ ε,

and thus,

P
(
Zn+K = s′)≥ ε, P

(
Zn+K = s′|Zn = s

)≥ ε (28)

for all n ≥ 1 and s, s′ ∈ S .

Lemma 5.1. Let K ≥ 1 and ε ∈ (0, 1) be as in (28), and let (Zi)i≥1 be an irreducible and
aperiodic Markov chain with finite state space S . Then

P
(
Zj+K �= s1, Zj+2K �= s2, . . . , Zj+tK �= st

)≤ (1 − ε)t (29)

for any t ≥ 1, j ≥ 1, and (s1, . . . , st) ∈ S t.

Proof. We show (29) by induction. The case t = 1 follows from (28). Next, for
(s1, . . . , st+1) ∈ S t+1,

P
(

Zj+K �= s1, Zj+2K �= s2, . . . , Zj+(t+1)K �= st+1

)
=

∑
s′1 �=s1,...,s′n+1 �=st+1

P
(

Zj+K = s′
1, . . . , Zn+1 = s′

t+1

)
=

∑
s′1 �=s1,...,s′n+1 �=st+1

P
(

Zj+(t+1)K = s′
t+1|Zj+K = s′

1, . . . , Zj+tK = s′
t

)
· P
(

Z1 = s′
1, . . . , Zj+tK = s′

t

)
=

∑
s′1 �=s1,...,s′n+1 �=st+1

P
(

Zj+(t+1)K = s′
t+1|Zj+tK = s′

t

)
P
(

Zj+K = s′
1, . . . , Zj+tK = s′

t

)
=

∑
s′1 �=s1,...,s′t �=st

P
(

Zj+(t+1)K �= st+1|Zj+tK = s′
t

)
P
(

Zj+K = s′
1, . . . , Zj+tK = s′

t

)
≤(1 − ε)

∑
s′1 �=s1,...,s′t �=sn

P
(

Zj+K = s′
1, . . . , Zj+tK = s′

t

)
=(1 − ε)P

(
Zj+K �= s1, . . . , Zj+tK �= st

)
≤(1 − ε)t+1,

where we have used the Markov property, (28), and finally the induction hypothesis. This
suffices for the proof of (29), and thus the proof of the lemma is complete. �

Let f : An →R be Lipschitz, i.e., be such that |f (x) − f (y)| ≤ c
∑n

i=1 1xi �=yi for every x, y ∈
An, where c > 0. Let R = (R0, . . . , R|S|(n−1)

)
be a vector of independent random variables,

and let h be the function such that

f
(
X1, . . . , Xn

) d= h
(
R0, . . . , R|S|(n−1)

)
.
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Let R′ be an independent copy of R. The next result provides a tail inequality that is key for
Proposition 2.2.

Proposition 5.1. Let K > 0 and ε > 0 be as in (28). Then

P(|�ih(R)| ≥ cx) ≤ C(1 − ε)x/K (30)

for any x ∈N, where C > 0 depends on the parameters of the model but neither on n nor on x.

Proof. The sequence of instructions Ri := (
R0, . . . , R′

i, . . . , R|S(n−1)|
)

may give rise to a
different realization (Z′, X′) of the hidden Markov model, as compared to (Z, X), the one
generated by R. The two models are not independent. In particular, if instruction Ri deter-
mines

(
Zj, Xj

)
and R′

i determines
(
Z′

j, X′
j

)
, then

(
Zk, Xk

)= (Z′
k, X′

k

)
for k < j. Let s be the

smallest nonnegative integer (possibly s = ∞) such that Zj+s = Z′
j+s. Then for any k > j + s,(

Zk, Xk
)= (Z′

k, X′
k

)
as well. Finally, if k ∈ {j, . . . , j + s − 1}, the pairs

(
Zk, Xk

)
and

(
Z′

k, X′
k

)
are independent. We show next that for K ≥ 1 as in (28), and any t ∈N,

P(s ≥ tK) ≤ (1 − ε)t. (31)

Indeed,

P(s > tK) ≤ P
(

Zj+K �= Z′
j+K, Zj+2K �= Z′

j+2K, . . . , Zj+tK �= Z′
j+tK

)
=

∑
(s1,...,st)∈S t

P
(

Zj+K �= s1, Z′
j+K = s1, . . . , Zj+tK �= st, Z′

j+tK = st

)
.

By independence,

P
(

Zj+K �= s1, Z′
j+K = s1, . . . , Zj+tK �= st, Z′

j+tK = st

)
= P

(
Zj+K �= s1, . . . , Zj+tK �= st

)
P
(

Z′
j+K = s1, . . . , Z′

j+tK = st

)
,

and thus by Lemma 5.1

P(s > tK) ≤
∑

(s1,...,st)

(1 − ε)tP
(

Z′
j+K = s1, . . . , Z′

j+tK = st

)
≤ (1 − ε)t,

as desired.
Let E(t) be the event

E(t) :=
{

Xj+K �= X′
j+K, Xj+2K �= X′

j+2K, . . . , Xj+tK �= X′
j+tK

}
.

Note that P(E(t)) ≤ P(s ≥ tK) ≤ (1 − ε)t. In particular, if |h(R) − h(Ri)| ≥ cx, where c > 0 is
the Lipschitz constant of the associated function f , then s ≥ x, as there are at least x positions k
such that Xk �= X′

k. Thus,

P
(|h(R) − h

(
Ri)| ≥ cx

)≤ P(E(�x/K�))

≤ C(1 − ε)x/K, (32)

https://doi.org/10.1017/apr.2021.40 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.40


554 C. HOUDRÉ AND G. KERCHEV

where C > 0 depends on the parameters of the model but not on x. This suffices for the proof
of (30). �
We now turn to the proof of Proposition 2.2.

Proof of Proposition 2.2. Let Et be the event that |h(R) − h(Ri)| ≥ tK. Then

E|h(R) − h
(
Ri)|r =E|h(R) − h

(
Ri)|r1Et +E|h(R) − h

(
Ri)|r1Ec

t
.

Recall that |g(x)| ≤ cn for all x ∈An, and then |h(R) − h(Ri)| ≤ 2cn. Using (32),

E|h(R) − h(Ri)|r ≤ (2cn)rP(Et) + (ctK)rP(Ec
t )

≤ (2cn)r(1 − ε)t + (ctK)r. (33)

Let t = −rln n/(ln (1 − ε)) > 0. Then

E|h(R) − h
(
Ri)|r ≤ (2c)r +

(
− crK

ln (1 − ε)

)r

(ln n)r. (34)

The order of the bound is optimal for t such that

(1 − ε)t ≤
(

ln n

n

)r

, (35)

or

t ≥ − r(ln n − ln (ln n))

ln (1 − ε)
;

it follows that

E|h(R) − h
(
Ri)|r ≤ (2c)r +

(
− crK

ln (1 − ε)

)r

(ln n − ln (ln n))r,

and the right-hand side has the same order of growth as (34).
If the growth order of (1 − ε)t is larger than the one in (35), the bound on the second term

in (33) is of larger order as well.
Then E|�ih(R)|r ≤ C1(ln n)r, for C1 > 0 depending on the parameters of the model and r.

The first part of Proposition 2.2 is established.
For the upper bound on the central moments of f (X), recall the following generalizations of

the Efron–Stein inequality (see [12, 16]): for r ≥ 2,

(
E|h(R) −Eh(R)|r)1/r ≤ r − 1

21/r

⎛⎝|R|−1∑
i=0

(
E|h(R) − h

(
Ri)|r)2/r

⎞⎠1/2

,

and for r ∈ (0, 2),

(
E|h(R) −Eh(R)|r)1/r ≤ 1√

2

⎛⎝|R|−1∑
i=0

E
∣∣h(R) − h

(
Ri)∣∣2⎞⎠1/2

.
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Then, for all r > 0,

E|h(R) −Eh(R)|r ≤
(

max

{
1√
2
,

r − 1

21/r

})r (
(|S|(n − 1) + 1)C(ln n)2

)r/2

≤C2nr/2(ln n)r,

where C2 > 0 is a function of |S| and r. �
Remark 5.1. (i) Recall that in the independent setting, there is a single stack, or equivalently,
the state space of the latent chain consists of a single element. Then for s as defined in the first
paragraph of the above proof, P(s > 1) = 0. Thus we can take tK = 2, and since P(Et) ≤ P(s ≥
tk) = 0, (33) becomes

E|h(R) − h
(
Ri)|r ≤ (2c)r,

which recovers the independent case.
(ii) Note that the bound on the central moments also follows from using an exponential
bounded difference inequality for Markov chains proved by Paulin [15]. This holds for the
general case when X is a Markov chain (not necessarily time-homogeneous) taking values in a
Polish space  = 1 × · · · × n, with mixing time τmin. Then, for any t ≥ 0,

P(|f (X) −E[f (X)]| ≥ t) ≤ 2 exp

( −2t2

||c∗||2τmin

)
,

where f is such that

|f (x) − f (y)| ≤
n∑

i=1

ci1xi �=yi ,

for any x, y ∈Rn and some c∗ = (c1, . . . , cn) ∈Rn, and where ||c∗||2 =∑n
i=1 c2

i .

5.2. Proof of Proposition 2.3

In this section we no longer require the underlying function f to be Lipschitz.
Let U := ∑

∅⊆A�[|R|] k|R|,AUA/2 for a general family of square-integrable random variables
UA(R, R′). From [2, Lemma 4.4],√

Var(E[U|R]) ≤1

2

∑
∅⊆A�[|R|]

√
Var(E[UA|R])

≤1

2

∑
∅⊆A�[|R|]

√
E[Var(UA|R′)].

As in [14], this inequality will be used for both UA = TA(h) and UA = T ′
A(h). A major differ-

ence from the setting in [14, Section 5] is that the function h is not symmetric; i.e., if σ is a
permutation of {0, . . . , |S|(n − 1)}, it is not necessarily the case that h

(
R0, . . . , R|S|(n−1)

)=
h
(
Rσ (0), . . . , Rσ (|R|(n−1))

)
. Indeed, each variable in R is associated with a transition at a partic-

ular step and from a particular state. Fix A � [|R|] and let R̃ be another independent copy of R.
Introduce the substitution operator

S̃i(R) = (R0, . . . , R̃i, . . . , R|R|
)
.
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Recall that from the Efron–Stein inequality,

Var
(
UA|R′)≤ 1

2

|R|−1∑
i=0

E
[(

�̃iUA(R)
)2|R′],

where �̃iUA(R) = UA
(
S̃i(R)

)− UA(R).
Then,

√
Var(E[U|R]) ≤ 1√

8

∑
∅⊆A�[|R|]

k|R|,A

√√√√|R|−1∑
i=0

E
[
�̃iUA

]2. (36)

Recall also that UA =∑j/∈A �jh(R)a(�jh(XA)), where the function a is either the identity, or
a(·) = | · |. Then

|R|−1∑
i=0

E
[
�̃iUA

]2 =
|R|−1∑
i=0

∑
j,k/∈A

E
[∣∣�̃i

(
�jh(R)a

(
�jh
(
RA)))∣∣

× |�̃i
(
�kh(R)a

(
�kh

(
RA)))∣∣]. (37)

Fix 0 ≤ i ≤ |R| − 1, and note that for j /∈ A,

�̃i
(
�jh(R) − a

(
�jh
(
RA)))

= �̃i
(
�jh(R)

)
a
(
�jh
(
RA)+ �jh

(
S̃i(R)

)
�̃i
(
a
(
�jh
(
RA))). (38)

Then, using |�̃ia(·)| ≤ |�̃i(·)|, the summands in (37) are bounded by

4 sup
Y,Y ′,Z,Z′

E|�̃i
(
�jh(Y)

)
�jh
(
Y ′)�̃i

(
�kh(Z)

)
�kh

(
Z′)∣∣, (39)

where Y , Y ′, Z, Z′ are recombinations of R, R′, R̃; i.e., Yi ∈
{
Ri, R′

i, R̃i
}
, for i ∈ [0, |R| − 1].

Next, as in [14], we bound each type of summand appearing in (37).
If i = j = k, and using �̃i

(
�i(·)

)= �i(·), (39) is bounded by

4 sup
Y,Y ′,Z,Z′

E|�ih(Y)�ih
(
Y ′)�ih(Z)�ih

(
Z′)| ≤ 4E|�ih(R)|4.

If i �= j �= k, we can switch R̃i and R′
i, and Y is still a recombination. Then (39) is equal to

4 sup
Y,Y ′,Z,Z′

E
[
�i
(
�jh(Y)

)
�jh
(
Y ′)�i

(
�kh(Z)

)
�kh

(
Z′)]

≤ 4 sup
Y,Y ′,Z,Z′

E
[
1�i,jh(Y)�=0

(|�jh(Y)| + |�jh
(
Yi)|)|�jh

(
Y ′)|

× 1�i,kh(Z)�=0
(|�kh(Z)| + |�kh

(
Zi)|)|�kh

(
Z′)|]

≤ 16 sup
Y,Y ′,Z,Z′

E
[
1
�i,jh(Y)�=0,�j,kh

(
Y ′
)
�=0

|�jh(Z)|2|�kh
(
Z′)|2], (40)

where the last step follows from the Cauchy–Schwarz inequality.
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If i �= j = k, (39) is equal to

4 sup
Y,Y ′,Z,Z′

E|�̃i
(
�j
(
h(Y)

)
�jh
(
Y ′)�̃i

(
�j
(
h(Z)

)
�jh
(
Z′)|

= 4 sup
Y,Z

E|�̃i
(
�j
(
h(Y)

)2
�jh(Z)2|

= 4 sup
Y,Z

E|�j
(
�i
(
h(Y)

)2
�jh(Z)2|

≤ 16 sup
Y,Z,Z′

E|1�i,jh(Y)�=0�ih(Z)2�jh
(
Z′)2|, (41)

where we have exchanged R̃i and R′
i and used the Cauchy–Schwarz inequality as in (40).

Similarly, if i = j �= k, the bound is

4 sup
Y,Y ′,Z,Z′

E|�̃i
(
�i
(
h(Y)

)
�ih
(
Y ′)�̃i

(
�k
(
h(Z)

)
�kh

(
Z′)|

= 4 sup
Y,Y ′,Z,Z′

E|�ih(Y)�ih
(
Y ′)�i

(
�k
(
h(Z)

)
�kh

(
Z′)|

= 4 sup
Y,Z,Z′

E|�ih(Y)2�i
(
�k
(
h(Z)

)
�kh

(
Z′)|

≤ 8 sup
Y,Z,Z′

E|1�i,kh(Y)�=0�ih(Z)2�kh
(
Z′)2|. (42)

Finally, if i = k �= j, the bound is by symmetry

4 sup
Y,Y ′,Z,Z′

E|�̃i(�j(h(Y))�jh(Y ′)�̃i(�i(h(Z))�ih
(
Z′)|

≤ 8 sup
Y,Z,Z′

E|1�i,jh(Y)�=0�ih(Z)2�jh
(
Z′)2|. (43)

Combining (40), (41), (42), and (43) in (37), we finally get

|R|−1∑
i=0

E
[
�̃iUA

]2
≤ 16

|R|−1∑
i=0

∑
j,k/∈A

(
1i=j=kE|�ih(R)|4 + 1i �=j �=kB|R|(h)

+ (1i �=j=k + 1i=k �=j
)
B(k)

|R|(h) + (1i �=j=k + 1i=j �=k
)
B(j)

|R|(h)

)
,

where

B|R|(h) := sup
Y,Y ′,Z,Z′

E
[
1
�i,jh(Y)�=0,�j,kh

(
Y ′
)
�=0

∣∣�jh(Z)
∣∣2∣∣�kh

(
Z′)|2],

B(k)
|R|(h) := sup

Y,Z,Z′
E
∣∣1�i,jh(Y)�=0�ih(Z)2�jh

(
Z′)2∣∣,

B(j)
|R|(h) := sup

Y,Z,Z′
E
∣∣1�i,kh(Y)�=0�ih(Z)2�kh

(
Z′)2∣∣.

This suffices for the proof of Proposition 2.3.
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Remark 5.2. As observed in [6], the terms involving �ih(R) in (4) and (5) can be removed,
leaving only the variance terms. Here is a different way to establish this fact for the particular
framework we consider in Section 3. Recall that the expressions on the right-hand sides of (4)
and (5) are bounds on terms of the form

E
∣∣g′

t(W) − g′
t(W)T

∣∣+ ∣∣E[gt(W)W − g′
t(W)T

]∣∣,
where |g′

t| ≤ 1 and |gt(W)W − g′
t(W)| = |1W≤t − P(N ≤ t)| ≤ 1 (see [14] and [3]). First, note

that ∣∣g′
t(W) − g′

t(W)T
∣∣≥ ∣∣g′

t(W)T
∣∣− 1

and

1 ≥ ∣∣gt(W)W − g′
t(W)

∣∣≥ ∣∣gt(W)W
∣∣− 1.

Then, by the triangle inequality and the above,∣∣gt(W)W − g′
t(W)T

∣∣≤ ∣∣gt(W)W
∣∣+ ∣∣g′

t(W)T
∣∣≤ ∣∣g′

t(W) − g′
t(W)T

∣∣+ 3.

Let E
∣∣g′

t(W) − g′
t(W)T

∣∣≤ f (n) for some function f , with f (n) → ∞ and such that for
σ 2 = σ 2(n), f (n)/σ 2 → 0. Then∣∣E[gt(W)W − g′

t(W)T
]|/σ 3 ≤ Cf (n)/σ 2,

for some constant C > 0 that does not depend on n. Therefore, the asymptotic behavior of
the bounds in (4) and (5) is given by the terms corresponding to E|g′

t(W) − g′
t(W)T|, i.e., the

terms involving the variance. This modification of the method is also valid in our framework
and would ‘improve’ our results. However, it does not have a significant effect on the rates
obtained in our applications in Section 3, and so we will not pursue it any further here.

5.3. Proof of Proposition 3.1

Recall that

B|R|(h) := sup
Y,Y ′,Z,Z′

E
[
1
�i,jh(Y)�=0,�j,kh

(
Y ′
)
�=0

|�jh(Z)|2|�kh
(
Z′)|2], (44)

where the supremum is taken over recombinations of R and its independent copies R′ and R′′.
Let E be the event that at least one of the perturbations of the instructions in (44) yields a

difference in more than K points. By Proposition 5.1, there is ε > 0 such that P(E) ≤ (1 − ε)K .
Then, by the Lipschitz property of h,

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|2]

= E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E

]
+E

[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21Ec

]
≤ E

[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21Ec

]
+ Cn4(1 − ε)K

≤ CK4E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec

]
+ Cn4(1 − ε)K . (45)
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If S(Y) is the set of points generated by the instructions Y and S(Yi)—the set of points generated
by Y after the perturbation of Yi—let

S1 := S(Y)�S
(
Yi),

where � is the symmetric difference operator. Similarly, let

S2 := S(Y)�S
(
Yj),

S3 := S(Y ′)�S
((

Y ′)i),
S4 := S(Y ′)�S

((
Y ′)j).

Note that, conditioned on Ec, |Si| ≤ 2K for i = 1, 2, 3, 4. Furthermore, if s1 ∩ s2 = ∅ for all
(s1, s2) ∈ (S1, S2), then �i,jh(Y) = 0. Then

1�i,jh(Y) ≤
∑

(s1,s2)∈(S1,S2)

1s1∩s2 �=∅.

This bound is meaningful if the sets S1 and S2 are disjoint sets of random variables.
Conditioned on Ec, this is the case if |i − j| ≥ |S|K. We introduce events E1, E2, and E3 cor-
responding to 0, 1, or 2 of the conditions {|i − j| ≥ |S|K, |j − k| ≥ |S|K} holding, respectively.
The events E1, E2, and E3 are deterministic. Then we have

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec

]=E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec

(
1E1 + 1E2 + 1E3

)]
.

First we use the trivial bound 1�i,jh(Y)�=0,�j,kh(Y ′)�=0 ≤ 1 to get

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec 1E1

]
≤ 1E1 . (46)

Then, for the term with 1E3 ,

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec 1E3

]
≤ 1E3E

⎡⎣ ∑
(s1,s2)∈(S1,S2)

∑
(s3,s4)∈(S3,S4)

1s1∩s2 �=∅,s3∩s4 �=∅

⎤⎦ .

To bound E
[
1s1∩s2 �=∅,s3∩s4 �=∅

]
, we condition on s2, s3, and the values of all hidden variables H.

Then, since S1 and S4 are disjoint, we have independence:

E
[
1s1∩s2 �=∅,s3∩s4 �=∅

]=E[E[1s1∩s2 �=∅,s3∩s4 �=∅|s2, s3, H]]

=E
[
E
[
1s1∩s2 �=∅|s2, s3, H

]
E
[
1s1∩s2 �=∅|s2, s3, H

]]
≤
(

cMV2

n

)2

.

Therefore,

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec 1E3

]
≤ 1E3 CK4/n2 (47)

for some C > 0 independent of K and n, where we have used that |Si| ≤ 2K for i = 1, 2, 3, 4.
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Finally, for the term with E2, we may assume that |i − j| ≥ |S|K, since the case |j − k| ≥
|S|K is identical. Write, using the trivial bound on 1�j,kh(Y ′) �= 0,

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec 1E2

]≤ 1E3E

⎡⎣ ∑
(s1,s2)∈(S1,S2)

1s1∩s2 �=∅

⎤⎦ .

Next, as before,

E
[
1s1∩s2 �=∅

]=E
[
E[1s1∩s2 �=∅|s2, H]

]≤ cMV2

n
.

Then

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=01Ec 1E2

]≤ 1E2 CK2/n. (48)

Combining (45), (46), (48), and (47), we get the following bound on (44):

B|R|(h) ≤ C
(

1E1 K4 + 1E2 K6/n + 1E3 K8/n2 + n4(1 − ε)K
)

.

Then,

|R|−1∑
i=0

∑
j,k/∈A

1i �=j �=kB|R|(h)

≤C
(

nK5 + n2K7/n + n3K8/n2 + n7(1 − ε)K
)

≤Cn(ln n)8,

when we choose K = cln n for a suitable c > 0, independent of n.

5.4. Proof of Proposition 3.2

As in the proof of Proposition 5.1, the sequence of instructions Ri may give rise to a different
realization (Z′, X′). Indeed, if the instruction Ri determines

(
Zj, Xj

)
and R′

i determines
(
Z′

j, X′
j

)
,

it is possible that
(
Zj, Xj

) �= (Z′
j, X′

j

)
. Let s ≥ 0 be the smallest integer (possibly s = ∞) such

that Zj+s = Z′
j+s. Then, as in (31), there is ε > 0 such that for K ∈N,

P(s ≥ K) ≤ (1 − ε)K .

Fix K, and let E be the event corresponding to {s ≥ K}. Using the trivial bound |h(R)| ≤ n, and
thus |�ih(R)| ≤ 2n, we have

E|�ih|t = E
[|�ih|t1E

]+E
[|�ih|t1Ec

]
≤ (2n)t(1 − ε)K +E

[|�ih|t1Ec
]
. (49)

Let S(R) be the set of points generated by the sequence of instructions R, and let S(Rj) be
the points generated by R after the perturbation of Rj. Set S = S(R)�S(Rj) for the symmetric
difference and Sc = S(R) ∩ S(Rj). Note that Ec implies that |S| ≤ 2K. Furthermore,

|�ih| ≤
∑
s∈S

∑
x∈Sc

1s∩x �=∅,
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and

|�ih|t ≤
∑

(s1,...,st)∈St

∑
(x1,...,xt)∈(Sc)t

t∏
j,�=1

1sj∩x� �=∅,

To estimate (49), we need to evaluate

E

[
t∏

j,�=1

1sj∩x� �=∅

]
,

and to do so we proceed as in [14] by studying the shape of the relations of (sj, x�)j,�∈{1,...,t}.
Identify the set (sj, x�)j,�∈{1,...,t} with the edges of the graph G whose vertices correspond

to (sj)j∈{1,...,t} and (x�)�∈{1,...,t}. In particular, if sj1 = sj2 for some j1 �= j2, we identify them
with the same point in the graph G. Conditioned on the realization of the hidden chain Z,
we have independence. Then, if G is a tree, fix a root and condition recursively on vertices
at different distances from the root. By the restrictions on the volume of the grain and the
sampling distribution,

E

⎡⎣ t∏
j,�=1

1sj∩x� �=∅
∣∣∣∣Z = zn

⎤⎦≤
(

cMV2

n

)|E(G)|
,

where |E(G)| is the number of edges in the graph G. Furthermore,

E

⎡⎣ t∏
j,�=1

1sj∩x� �=∅

⎤⎦≤
(

cMV2

n

)|E(G)|
.

Note that the same result holds if G is a graph without cycles, i.e., a collection of disjoint trees.
In general, G might have cycles. Let T be a subgraph of G that contains no cycles. Then

t∏
j,�=1

1sj∩x� �=∅ ≤
∏

e=(e1,e2)∈E(T)

1e1∩e2 �=∅,

where the product on the right-hand side runs over the edges e = (e1, e2) of the graph T with
e1 ∈ S and e2 ∈ Sc. Let |S| be the number of distinct vertices in (s1, . . . , st), and similarly let
|x| be the number for (x1, . . . , xt). The graph G is complete bipartite with |S| + |x| vertices.
We can find a subgraph T of G, also with |S| + |x| vertices and no cycles. Then

E[|�ih|t1Ec ] ≤ E

⎡⎣1c
E

∑
(s1,...,st)∈St

∑
(x1,...,xt)∈(Sc)t

t∏
j,�=1

1sj∩x� �=∅

⎤⎦

= E

⎡⎢⎢⎣1c
E

t∑
a,b=1

∑
(s1,...,st)∈St,

|S|=a

∑
(x1,...,xt)∈(Sc)t,

|x|=b

t∏
j,�=1

1sj∩x� �=∅

⎤⎥⎥⎦
≤ E

⎡⎣1c
E

t∑
a,b=1

Ct|S|a|Sc|b
(

cMV2

n

)a+b−1
⎤⎦

≤ CtK
r,
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where Ct > 0 is a constant depending on t, and where we have used that |S| ≤ 2K and |Sc| ≤ 2n.
Let K = cln n for a suitable c > 0; then (49) implies (15) as desired.

5.5. Proof of Proposition 3.3

As before, let E be the event that all perturbations of instructions in (44) propagate at
most K levels. We have that P(Ec) ≤ (1 − ε)K for some ε ∈ (0, 1). Using the trivial bound
|h(Y)| ≤ n,

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|2]

=E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E

]
+E

[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21Ec

]
≤E

[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E

]
+ 4n4(1 − ε)K . (50)

Let S(Yi) be the set of points generated by the sequence of instructions Y after the perturbation
of Yi. Let S be the set of all points in the expectation above, and furthermore let

S1 := S(Y)�S
(
Yi), S2 := S(Y)�S

(
Yj),

S3 := S
(
Y ′)�S

((
Y ′)j), S4 := S

(
Y ′)�S

((
Y ′)k),

S5 := S(Z)�S
(
Zj), S6 := S

(
Z′)�S

(
Zk),

where � is the symmetric difference operator. Conditioned on E, |Si| ≤ 2K for i = 1, . . . , 6
and |S| ≤ 10n.

Conditioned on E, if j − i ≤ |S|K, the perturbation in i might be propagating past the posi-
tion corresponding to the instruction j, leading to difficulties in the analysis of �i,jh(Y). This
is why we condition further on the events E1, E2, E3 corresponding respectively to 0, 1, or
2 of the conditions {|i − j| ≥ |S|K, |j − k| ≥ |S|K} holding true. Note that E1, E2, and E3 are
deterministic.

If E1 holds, we use the trivial bound 1�i,jh(Y)�=0,�j,kh(Y ′)�=0 ≤ 1, which leads to

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1E1

]
≤ E

[
|�jh(Z)|2|�kh

(
Z′)|21E1E1

]
≤ 1E1 CK4, (51)

using the Cauchy–Schwarz inequality.
Conditioned on E3, the sets S1, S2 ∪ S3, and S4 are pairwise disjoint. Next, in similarity to

an argument presented in [14], if s1 ∩ s = ∅ and s2 ∩ s = ∅ for all (s1, s2, s) ∈ (S1, S2, S), then
�i,jh(Y) = 0. Therefore,

1�i,jh(Y)�=0 ≤
∑

s1∈S1
s2∈S2

∑
s∈S

1s1∩s�=∅,s2∩s�=∅,

and also

1�j,kh(Y ′)�=0 ≤
∑

s3∈S3
s4∈S4

∑
s∈S

1s3∩s�=∅,s4∩s�=∅.
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Furthermore,

|�jh(Z)| ≤
∑

s5∈S5

∑
s∈S

1s5∩s�=∅

and

|�kh
(
Z′)| ≤∑

s6∈S

∑
s∈S

1s6∩s�=∅.

Therefore,

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1E3

]
≤E

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝ ∑

(s1,s2,s3,s4)∈(S1,S2,S3,S4)
(s′,s′′)∈S2

1s1∩s′ �=∅,s2∩s′ �=∅,

s3∩s′′ �=∅,s4∩s′′ �=∅

⎞⎟⎟⎟⎠

·
( ∑

s5∈S5

∑
s∈S

1s5∩s�=∅

)2( ∑
s6∈S6

∑
s∈S

1s6∩s�=∅

)2

1E1E3

⎤⎥⎥⎥⎦

≤E

⎡⎢⎢⎢⎢⎣
∑

(s1,...,s4)∈(S1,...,S4)
(s5,...,s8)∈S4

56

∑
(s′,s′′)∈S2(

s′5,...,s′8
)
∈S4

1s1∩s′ �=∅,s2∩s′ �=∅,

s3∩s′′ �=∅,s4∩s′′ �=∅

8∏
a,b=5

1sa∩s′b �=∅1E1E3

⎤⎥⎥⎥⎥⎦ , (52)

where S56 = S5 ∪ S6 and |S56| ≤ 4K, conditioned on E.
To evaluate the summand expression we use the graph representation. Let E� be the

event that there are � distinct points among s′, s′′, s′
5, . . . , s′

8, different from s1, . . . , s8.
Note that � ∈ [0, 6]. Conditioned on E�, we can find a subgraph with no cycles and � + 2
edges, of the graph with edges {{s1, s′}, {s2, s′}, {s3, s′′}, {s4, s′′}} ∪ {{sa, s′

b

}
: a, b ∈ [5, 8]}.

Indeed, note that there are at least 3 different points among s1, . . . , s4. Next, if there are
x points present among s′, s′′ and � − x points among s′

5, . . . , s′
8, we can find a subgraph

with no cycles with at least � − x edges among {{sa, s′
b

}
: a, b ∈ [5, 8]} and x + 2 edges among

{{s1, s′}, {s2, s′}, {s3, s′′}, {s4, s′′}}.
Then, if we further condition on the values of the hidden variables H, we get, by

independence,

E

⎡⎣1s1∩s′ �=∅,s2∩s′ �=∅,

s3∩s′′ �=∅,s4∩s′′ �=∅

8∏
a,b=5

1sa∩s′b �=∅1E1E3 1E�

∣∣∣∣H
⎤⎦≤ 1E3

(
cMV2

n

)�+2

.

Then (52) is further bounded by

1E3

6∑
�=0

(4K)8
(

6

�

)
(10n)�

(
cMV2

n

)�+2

≤ 1E3 CK8n−2, (53)

for some C > 0 independent of n and K.
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Finally, assume that E2 holds and that |i − j| ≥ |S|K. The case |j − k| ≥ |S|K is identical.
As above, using the trivial bound 1�j,kh(Y ′)�=0 ≤ 1,

E
[
1�i,jh(Y)�=0,�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1E2

]
≤E
[
1�i,jh(Y)�=0|�jh(Z)|2|�kh

(
Z′)|21E1E2

]
≤E

⎡⎢⎢⎣
⎛⎜⎜⎝ ∑

(s1,s2)∈(S1,S2)
s′∈S

1s1∩s′ �=∅,s2∩s′ �=∅

⎞⎟⎟⎠
⎛⎝∑

s5∈S5

∑
s∈S

1s5∩s�=∅

⎞⎠2 ⎛⎝∑
s6∈S6

∑
s∈S

1s6∩s�=∅

⎞⎠2

1E1E2

⎤⎥⎥⎦

≤E

⎡⎢⎢⎢⎢⎣
∑

(s1s2)∈(S1,S2)
(s5,...,s8)∈S4

56

∑
s′∈S(

s′5,...,s′8
)
∈S4

1s1∩s′ �=∅,s2∩s′ �=∅
8∏

a,b=5

1sa∩s′b �=∅1E1E2

⎤⎥⎥⎥⎥⎦ . (54)

If we condition on E� and the values of the hidden variables H, we get

E

[
1s1∩s′ �=∅,s2∩s′ �=∅

8∏
a,b=5

1sa∩s′b �=∅1E1E2 1E�
|H
]

≤ 1E2

(
cMV2

n

)�+1

,

since in this case s1 and s2 are distinct and we can find a subgraph with � + 1 edges and no
cycles.

Then (54) is bounded by

1E2

6∑
�=0

(4K)6
(

6

�

)
(10n)�

(
cMV2

n

)�+1

≤ 1E2 CK6n−1, (55)

for some C > 0.
We get the following bound on B|R|(h) using (50), (51), (55), and (53):

B|R|(h) ≤ C
(

1E1 K4 + 1E2 K6/n + 1E3 K8/n2 + n4(1 − ε)K
)

.

Then,

|R|−1∑
i=0

∑
j,k/∈A

1i �=j �=kB|R|(h)

≤C
(

nK6 + n2K7/n + n3K8/n2 + n7(1 − ε)K
)

≤Cn(ln n)8,

where we have chosen K = cln n for a suitable c > 0, independent of n.

5.6. Proof of Lemma 4.1

To simplify computations, we introduce the process X′ defined as

X′ =
⋃

m∈Zd

(X + m).
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Unlike in the independent setting in [14], here the law of X′ is invariant only under integer-
valued translations. Note that, almost surely, X′ has exactly n points in any cube [t, t + 1]d,
where t ∈R. Let Tx = {[y, y + 1]d : y ∈Rd, x ∈ [y, y + 1]d

}
. Define Rk(x; X) as

Rk(x; X) := sup
T∈Tx

Rk(x; X′ ∩ T).

Note that if x ∈ [0, 1]d, then [0, 1]d ∈ Tx and so Rk(x; X′) ≥ Rk(x; X). When the Xi are sampled
independently and uniformly, as in [14], it is the case that Rk(x; X′) does not depend on the
position of x. However, in the hidden Markov model case we need to find a further bound on
Rk(x; X′).

For that purpose, consider the cube K0 := [ − 1/2, 1/2]d of volume 1 centered at 0 ∈Rd.
Let BA be the open ball of Rd centered at 0 and of volume A < 1, to be chosen later. Next,
let X̃ = (0, X̃1, . . . , X̃n−1

)
be such that X̃i ∈ K0 for all i = 1, . . . , n − 1. Furthermore, for any

Lebesgue-measurable T ⊆ K0, set

P
(
X̃i ∈ T

)= cm|T ∩ BA| + cM|T ∩ Bc
A|

for all i ∈ 1, . . . , n − 1, where | · | now denotes the Lebesgue measure of the corresponding
sets. If A = (cM − 1)/(cM − cm), then the above is a well-defined positive measure on K0. From
the restrictions of the hidden Markov model, if R̃k = Rk(0; X̃),

Rk(x; X) ≤ R̃k.

Indeed, R̃k represents the worst-case scenario where the remaining points of X are least likely
to be distributed in the volume closest to x.

Then,

EUq
k (i) ≤EXi,X̃

[
1d(Xi; ∂K)≤R̃k

R̃qd
k

]
≤ S+(K)EX̃

[
R̃qd+α

k

]
, (56)

where we have used the upper bound on Vol(∂Kr).
To estimate E

[
R̃qd+α

k

]
, note that if R̃k ≥ r, there will be an open ball of radius r/2k in K0

containing no points of X̃. Moreover, there will be sd ∈ (0, 1), depending only on the dimen-
sion d, such that every ball of radius 2k contains a cube of side length sdr/k of the form
[g − sdr/2k, g + sdr/2k], where g ∈ (sdr/k)Zd. Then, if sdr/k < 1,

P(R̃k ≥ r) ≤P(∃g ∈ (sdr/k)Zd : X̃ ∩ [g − sdr/2k, g + sdr/2k
]= 0)

≤#
{
g : g ∈ (sdr/k)Zd ∩ [ − r, r]d}P(X̃ ∩ [− sdr/2k, sdr/2k

]= 0)

≤ kd

(sd)d

(
1 − cm(sdr/k)d)n−1.

If, on the other hand, sdr/k ≥ 1, then X̃ ∩ [g − sdr/2k, g + sdr/2k] = X̃ and P
(
R̃k ≥ r

)= 0.
Using 1 − x ≤ e−x, for any u > 0 we have

E
[
R̃(0, X̃)u]= ∫ ∞

0
P
(
R̃(0, X̃) ≥ r1/u)dr

≤cd,k

∫ ∞

0

(
1 − cm

(
sdr1/u/k

)d)n−1
dr

≤cd,k

∫ ∞

0
exp

(
− cm(n − 1)

(
sdr1/u/k

)d)
dr

≤cd,k,u(n − 1)u/d
∫ ∞

0
exp

(− rd/u)dr.
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Applying the above in (56) yields

EUq
k (i) ≤ cd,k,qd+αS+(K)n−q−α/d,

where cd,k,qd+α > 0 depends only on the parameters of the transition probabilities of the hidden
chain and on d, k, and qd + α, but neither on n nor on i.

5.7. Proof of Proposition 4.5

We analyze

B|R|(h) := sup
Y,Y ′,Z,Z′

E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|2], (57)

where as before the supremum is taken over recombinations Y , Y ′, Z, Z′ of R, R′, R′′. Let E be
the event that all perturbations of the instructions in (57) propagate at most T levels. There is
ε > 0, depending only on the parameters of the models, such that P(Ec) ≤ (1 − ε)T .

As before, conditioned on E, if |j − i| ≤ |S|K, the perturbation in i might be propagating
past the position corresponding to the instruction j, leading to difficulties in the analysis of
�i,jh(Y). This is the reason for conditioning further on the events E1, E2, E3 corresponding
respectively to 0, 1, or 2 of the conditions {|i − j| ≥ |S|K, |j − k| ≥ |S|K} holding. Note that
E1, E2, and E3 are deterministic.

In this setting, we also study the event that all Voronoi cells are small. For that purpose, as
in [14], we introduce the event �n(X), given by

�n(X) :=
(

max
1≤j≤n

R
(
Xj; X

)≤ n−1/dρn

)
,

where ρn = (ln n)1/d+ε′
for ε′ sufficiently small. Then, after conditioning on the realization of

the hidden chain, a proof as in [14, Lemma 6.8] leads to

nη(1 − P(�n(X))) → 0 (58)

as n → ∞, for all η > 0.
We now estimate B|R|(h). Write

E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|2]

=E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21Ec

]
+E

[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�c

n

]
+E

[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n 1E1

]
+E

[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n 1E2

]
+E

[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n 1E3

]
. (59)
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Using |�jh(Z)|, |�kh
(
Z′)| ≤ 1, we get that the first two terms in (59) are bounded by

P(Ec) + P(�c
n). Next,

E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n1E1

]
≤1E1E

[
|�jh(Z)|2|�kh

(
Z′)|21E1�n

]
≤C1E1 T4n−4−2α/dρ4d

n , (60)

where we have used the Cauchy–Schwarz inequality.
Next, define as before

S1 := S(Y)�S
(
Yi), S2 := S(Y)�S

(
Yj),

S3 := S(Y ′)�S
((

Y ′)j), S4 := S(Y ′)�S
((

Y ′)k).
Further, let S0 = S(Y) ∩ S

(
Yi
)∩ S

(
Yj
)

and S′
0 = S

(
Y ′)∩ S

((
Y ′)j)∩ S

((
Y ′)k). By

Proposition 4.4(ii), it follows that conditioned on �n,

1�i,jh(Y)�=0 ≤
∑

s1∈S1,s2∈S2

1dS0 (s1,∂K)≤2n−1/dρn
1dS0 (s2,∂K)≤2n−1/dρn

1dS0 (s1,s2)≤2n−1/dρn
.

Conditioned on E3, the sets S1, S2 ∪ S3, and S4 are pairwise disjoint:

E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n 1E3

]
≤ C1E3 T4n−4−2α/dρ4d

n E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=01E1�n

]
.

By conditioning on the realization of all hidden chains H, we obtain

E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=01E1�n

]
=E
[
E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=01E1�n |H

]]
≤E

⎡⎢⎢⎢⎣E
⎡⎢⎢⎢⎣ ∑

s1∈S1,s2∈S2
s′1∈S3,s′2∈S4

1
dS0

(
s′1,∂K

)
≤2n−1/dρn

1dS0 (s1,s2)≤2n−1/dρn
1

dS′
0

(
s′1,s′2
)
≤2n−1/dρn

1E1�n |H

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦

≤EE

[ ∑
s2∈S2,s′1∈S1

1
dS0

(
s′1,∂K

)
≤2n−1/dρn

1E1�n

E

[ ∑
s1∈S1,s′2∈S4

1dS0 (s1,s2)≤2n−1/dρn
1

dS′
0

(
s′1,s′2
)
≤2n−1/dρn

∣∣∣∣s′
1, s2

]∣∣∣∣H
]

.

Now, conditioned on H, s′
1, and s2, we have independence in the innermost expectation.

Therefore, the above is bounded by

E

[ ∑
s2∈S2,s′1∈S1

1
dS0

(
s′1,∂K

)
≤2n−1/dρn

1E1�n4T22dn−2ρ2d
n

]
≤ CT4n−2ρ2d

n n−α/dρα
n .
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Then,

E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n1E3

]
≤ C1E3 T8n−6−3α/dρ6d+α

n . (61)

Finally, for the event E2, assuming that |i − j| ≥ |S|K, the other case being identical, we
have

E
[
1�i,jh(Y)�=01�j,kh(Y ′)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n1E2

]
≤E
[
1�i,jh(Y)�=0|�jh(Z)|2|�kh

(
Z′)|21E1�n 1E2

]
≤C1E2 T6n−5−3α/dρ5d+α

n . (62)

Using (59), (60), (62), and (61) leads to

B|R|(h) ≤C
(

(1 − ε)T + P
(
�c

n

)+ 1E1 T4n−4−2α/dρ4d
n

+ 1E2 T6n−5−3α/dρ5d+α
n + 1E3 T8n−6−3α/dρ6d+α

n

)
.

Then,

|R|−1∑
i=0

∑
j,k/∈A

1i �=j �=kB|R|(h)

≤C
(

n3(1 − ε)T + n3P
(
�c

n

)+ T6n−3−2α/dρ4d
n + T7n−3−3α/dρ5d+α

n + T8n−3−3α/dρ6d+α
n

)
≤C
(
n−3−2α/d(ln n)10+4ε′)

,

where we have chosen K = cln n, for a suitable c > 0, independent of n, using also (58) and
the definition of ρn.
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