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A DISCRETE CALCULUS OF VARIATIONS ALGORITHM

H.H.TAN AND R.B .POTTS

An algorithm which has been developed to solve the problem of determining an optimal
path of the hand of a robot is applied to various classical problems in the calculus of
variations.

1. INTRODUCTION

In a recent paper [6] an algorithm has been described which gives a general and
efficient solution to the problem of determining an optimal path of the hand or end
effector of a robot manipulator subject to a variety of geometric, kinematic and dynamic
constraints. The algorithm is based on a discrete form of the Lagrange equations of
motion for the manipulator [1, 3, 4].

To test the algorithm it has been applied to several classical calculus of variations
problems for which the solutions are known. It is the purpose of this paper to report
the success of the algorithm when applied to these and to illustrate its potential use for
a wide class of optimisation problems.

2. OPTICAL REFLECTION

The optical problem of reflection of light from a surface will be used to introduce
notation and the general features of the discrete algorithm. Figure 1 illustrates the
situation. A ray of light from A(ai,a2) to 5(6^62) in a uniform medium in the upper
half of the qi,q2 plane is reflected at R(r,0) on the boundary q2 = 0 of a denser
medium. According to optical theory, the actual path of the light ray is that which
minimises the total passage time from A to B, and from this the reflection law —
straight line rays with angle of incidence equal to angle of reflection — can be readily
deduced.

Suppose a possible path, in general allowed to be curved, is incident at point R
on the surface. Discretise the path by introducing L + 1 knots, k — 0, . . . , £ , on the
segment AR and a further M knots, k — L + l,... ,L + M, on the segment RB . For
each of the L intervals on the segment AR, the passage time is assumed to be At, and
for each of the M intervals on the segment RB, Au, so that the total passage time,
which has to be minimised, is

(2.1) Z =LAt+MAu.
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Figure 1 : A ray of light from A{a\,a2) to #(&i,62) in a
uniform medium is reflected at R on the boundary q2 = 0.
The optimal solution gives straight lines AR* and R*B with
the angle of incidence equal to the angle of reflection. The
dashed lines indicate the initial solution taken for the discrete
algorithm.

Suppose the coordinates of the path at each knot k are denoted by qp(k), k =
0 , . . . , L + M, with p = 1, 2. The displacements are denoted by the forward differences

(2.2) Aqp(k) = qp{k + 1) - qp{k) k = 0, . . . , L + M - 1.

Basic to the discrete path planner algorithm is the use of the approximate trapezoidal
or smoothing formulae used extensively by Greenspan [2]
for k = ! , . . . , £ - 1

qp(k) = -qp(k -

(2.3)
fc-i

«=0

and for k = L + l,...,L + M

qp(k) = -qp(k -

(2.4) = ( - l ) f c - L

u]-J Aqp(k -

fc-l

The speed of light throughout the uniform medium above the reflecting surface is
constant so that

(2.5) = C
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The problem of determining the optimum ray path from A to B via a point on the
reflecting surface is now expressed as a nonlinear program. The 7 + 2(L + M) program
variables are At,Au,r,qp(O),qp(L),Aqp(k) for k = 0 , . . . , L + M — 1, p — 1,2. The
initial and final points are given with qp(0) = ap, qp(L + M) — bp. The linear objective
function to be minimised is given by (2.1). The constraints to be satisfied are the linear
relations

L-i

(2.6) y£Aq1(k) = r-a1,
fc=0

L+M-l

(2.7) Y, Aft(fc) = 6 1 - r ,
k=L

L-\

(2.8) Y, Aq2{k) =-a2,
fc=0

L+M-l

(2.9) J2 A « (* ) = *a>
k=L

and the L + M + 1 nonlinear relations (2.5), the nonlinearity arising from the necessity
to introduce (2.3) and (2.4).

The NLP can be solved using sequential linear programming (SLP), sequential
quadratic programming (SQP) or the augmented Lagrangian method and in particular
the NPSOL and MINOS packages [5] were used. These techniques require the Jacobian
matrix formed by the partial derivatives of the nonlinear expressions, in this case only
(2.5), with respect to the program variables. These derivatives are simple to evaluate.
The NLP algorithms require an initial solution, if possible feasible, and a simple such
choice is to assume straight line paths AR and RB.

A particular test of the algorithm was run with the following data :

C = 1, ai = -0.5, a2 - 0.5, 6i = b2 = 0.5.

From a cold start with L = M = 5, the initial solution was chosen with At = Au =
0.1, r = -0 .3 , and straight line segments from A to R and R to B with

and

Aq1(k) = {b1-r)/M, Aq2{k)=b2/M, k = L,...,£ + M - 1.

The initial values of the velocity variables were chosen to be

gi(0) = 0.3714, ?2(0) = -0.9285, qi(L) = 0.8480, q2{L) = 0.5300.
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With the use of the NPSOL package, the expected theoretical result of straight line
paths AR* and R*B with R* — (0,0) was obtained with about 6 figure accuracy and
with a CPU time of 10 seconds on a VAX-11/785 computer.

3. OPTICAL REFRACTION

A similar test of the optimal path planner was performed for the problem of optical

refraction. The reflection problem was modified by choosing below the boundary 92 = 0

a uniform medium of different density and taking B within this medium so that 62 < 0.

The modifications to the formulation are straightforward with the right hand side of

the velocity constraints set to the appropriate values.

A particular test of the algorithm was run with

ax = -0.5, a2 = 0.5, 61 = Vs/G, b2 = -0.5

and with the refractive index of the medium above the interface q2 = 0 equal to 1 and
that below equal to \/2. For a test run with L = M = 5, the initial values taken were :

At = Au = 0.1,r = -0.3,Aqi(k) - (r - a^/L, Aq2(k) - -a2/L,k = 0,...,L-l

and

, Aq2{k) = b2/M, k = L,... ,L + M - 1.

The initial values of the velocity variables were taken as :

qi{0) = 0.3714, q2{0) = -0.9285, q^L) = 0.5389, q2{L) = -0.4578.

With NPSOL, the expected result of straight line paths from A to R* and R* to B

with R* = (0)0) was obtained with 6 figure accuracy and a CPU time of 17 seconds.

4. BRACHISTOCHRONE PROBLEM

As a third test of the algorithm, the classic brachistochrone problem was considered
— determine the path OB in the vertical qi,q2 plane (see Figure 2) giving minimum
travel time for a frictionless particle starting from rest and acted upon by gravity. To
be specific, if B = (IT, —2), the path is the cycloid

(4.1) ?i(<) ~t-sint, q2(i) = -1 + cosi,

with travel time equal to TT . The effect of gravity forces the nonlinear constraint

(4.2) q\ +q\ + 2q2 = 0.
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B(frr2)

Figure 2: In the brachistochrone problem a frictionless particle
falls under the action of gravity from O at rest to a given
point B. The dashed line is the straight path taken as the
initial solution for the discrete algorithm; the curved path is
the optimal solution, portion of a cycloid.

The discrete path planner takes the following form of an NLP with 2L + 1 variables
At and Aqp(k) for k = 0,... ,L - 1, p = 1,2 :

0

L-1

(4.3) minimise Z = At,
L-1

(4.4) subject to } ^ Agi(fc) = n,

(4.5)

The values of qp(k) are given by (2.3), with qp(0) = 0, and the values of q2(k) by

Jfe-J

(4.7) q2(k) =
«=o

Again a convenient initial solution for the NLP algorithm is the straight line path OB
with

(4.8) Aqi{k)=n/L, Aq2{k) = -2/L,

The result for L = 5, obtained with a CPU time of 7.5 seconds, is shown in Figure
2. The travel time is 3.188 compared to the theoretical value n. For L = 10, the graph
of the solution, obtained with a CPU time of 26.9 seconds, is indistinguishable from the
cycloid, and the travel time is now 3.153.
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5. MINIMUM SURFACE OF REVOLUTION AREA

As a final example consider the problem of determining the minimum surface of
•revolution area which in a simple case is formulated as the determination of the function
q2 = 92(91) such that

(5.1) /= /
Jo

is a minimum subject to

(5.2) 92(0) = 1, ga(l)=coshl.

The analytic solution is

(5.3) ^2= cosh ?!, I* = - + -sinh2.

In the usual way, the path is discretised into L intervals by taking A91 = 1/L.
The L +1 variables for the nonlinear program are Aq2(k), k = 0, . . . , L — 1 and 92(0).
The remaining derivatives are given by the smoothing formulae

(5.4) q'2(k + l) = -q2(k) + 2LAq2(k), k = 0,...,L-l.

The objective function to be minimised is taken as a discrete approximation to the
integral / given by (5.1). For example, the trapezoidal rule gives, apart from a factor

(5.5) Z = ft(0)[l + 92(0)2]i + 2
1

The constraints are the linear relation

(5.6) ]T] Ag2(
0

and the non-negativity relations

(5.7) 92(^)^0, k = l,...,L-l.

The initial solution was taken as

Aq2(k) = [-l + coshl]/L, k = 0,...,L-l, q'2(0) = - 1 + cosh 1.

For a test run using NPSOL and with L = 10, about 3 figure accuracy was obtained
with a CPU time of 7 seconds. For L — 20 about 4 figure accuracy was obtained with
a CPU time of 34 seconds.
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6. DISCUSSION

The numerical solution of problems in calculus of variations can be difficult because
a potentially large function space has to be searched in order to find a good approxima-
tion to the function optimising the objective function. Practical problems in robotics
involve functions of six variables corresponding to a robot's six degrees of freedom, and
the 'curse of dimensions' has frustrated some attempts at solving optimal path planning.
An algorithm which has been used successfully in robotics [6] has been applied in this
paper to solve several classical calculus of variations problems. The algorithm has been
proved to be applicable to general problems with various objectives and constraints.
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