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Banach modules over C*-algebras (von Neumann algebras) that can be represented isometrically as operator
modules (normal operator modules, respectively) are characterised.

1991 Mathematics subject classification: 46L05, 46L10.

1. Introduction

It is well known that each Banach space X can be linearly isometrically embedded
into a commutative C*-algebra, hence X can be regarded as an operator space. If X
has some additional algebraic structure, we may ask whether an embedding can be
found which preserves this additional structure. For example, if X is a Banach algebra,
the criterion for X to have a bicontinuous isomorphic representation as an algebra of
operators on a Hilbert space was obtained in [20] (see also [3] and [5]). Here we shall
consider the case when X is a Banach bimodule over a pair of C*-algebras A and B.
Using the abstract characterisation of operator bimodules developed by Christensen,
Effros and Sinclair in [6] we show first that a normed A, B-bimodule can be represented
isometrically as an operator bimodule if and only if

\\axb + cyd\\ < ||fla* + ccl1/2max{||x||, ||y||}|l&*& + <**<*lll/2 (1.1)

for all a, c € A, x, y e X and b,d e B. Although the characterisation in [6] can be
extended to the case when A and B are general operator algebras (not necessarily C-
algebras), we will show by a finite dimensional example that the above isometric
characterisation cannot be extended to modules over general operator algebras.

If A and B are von Neumann algebras and X is a Banach A, B-bimodule, we may
ask under what conditions can X be represented isometrically as a normal operator
A, B-bimodule. More precisely, we would like to know when does there exist a Hilbert
space H, an isometry <D: X -»• B(W) and a pair of normal representations
n : A -»• B(W) and a : B -»• B(«) such that <D(axb) = re(a)4>(x)«r(fe) for all a e A, x e X
and b e B. In this case we shall simply say that X can be represented as a normal
operator A, B-bimodule. In the case of one-sided modules (say if B = C), we shall show
that a Banach /I-module X satisfying the condition (1.1) can be represented as a
normal operator 4-module if and only if for each x e X the mapping x H-> ||ax|| is
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lower semicontinuous on (the unit ball of) A in the weak* topology. We obtain a
similar condition for bimodules, but the role of A is played by the Haagerup tensor
product A <8>h B and the weak* topology is replaced by the topology which is induced
on A ®h B by all completely bounded bilinear forms on A x B which are normal in each
variable separately.

Given a von Neumann algebra A c X = B(K) and a norm closed ^4-submodule Y
in X the quotient module X/Y is not necessarily representable as a normal operator
module. A necessary condition for this is that Y is closed in the so called /1-topology
of X which was introduced in [12]. (We shall recall the definition of this topology in
Section 4.) But in general the condition that Y is a closed submodule of X in the A-
topology does not suffice for X/Y to be representable as a normal operator module.
However, if X 3 A is a von Neumann algebra and Y is the closure in the i4-topology
of an ideal in X, then we will show (as an application of the result mentioned in the
previous paragraph) that X/ Y can be represented as a normal operator A-module.

Throughout the paper we denote by Mmn(X) the set of all m x n matrices with the
entries in a set X (m, n e N) and we let Mn{X) = Mn,n(X), TZn(X) = Mhn(X) and
Cn(X) = M.n t(X) be the corresponding sets of square matrices, rows and columns.

2. A characterisation of operator modules among Banach modules

If A and B are operator algebras with contractive approximate identities {eM} and
{/,}, respectively, then by a Banach A, B-bimodule we mean a Banach space X which is
an A, B-bimodule satisfying ||axb|| < ||a||||x||||fr|| for all a e A, beB and x € X;
moreover we shall always assume that lim e^x — x — x lim /v for all x e X. Thus all the
modules here are essential, which by the Cohen Hewitt factorization theorem means
that AX = X = XB. If for each n e N the space Mn(X) is equipped with a norm || ||
such that the norm on M. i (X) = X coincides with the given norm on X and

(i) llflx&ll<IMI 11*11 ll&ll

for all a, be Mm(Q, x e Mn(X) and

(ii)

for all x e Mm(X) and y e Mn(X) (all m,n e N), then X can be regarded as an operator
space by the Ruan theorem [17, 9]. Moreover, if the condition (i) holds for all
a e Mn(A), b e Mn(B) and x e Mn(X) then we say that the bimodule multiplication
A x X x B ^* X is completely contractive. If A and B are C*-algebras and the
bimodule multiplication is completely contractive then X is an operator bimodule by a
result of Christensen, Effros and Sinclair [6]. This means that there exist a Hilbert
space H, a complete isometry $ : X -v B(H) and two faithful *-representations
n : A -+ B(H) and a : B ->• B(K) such that ®(axb) = 7r(a)<D(x)a(b) for all a e A, b e B
and x e X. (For basic notions concerning completely bounded mappings we refer to
[13] or [16].)
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Theorem 2.1. Let A, B be C-algebras and X a Banach A, B-bimodule. Then X can
be represented isometrically as an operator A, B-bimodule if and only if

\\axx,bx+a2x2b2\\ < ||fliar + a2a;ir/2max{||x,||, ||x2||}||*I*, + b*2b2\\
l/2 (2.1)

for all at e A, bt e B, x, e X (i = 1, 2). If this condition is satisfied then the minimal
operator A, B-bimodule norms on Mn{X) (n = 1, 2,...) are given by

\\x\\ = sup{||axfe|| : a e Kn(A), b e C(B), IMI < 1, ||*|| < 1}. (2.2)

Proof. If X is an operator A, B-bimodule, then in particular the module multi-
plication 1Z2(A) x M2{X) x C2(B) -> X is contractive, which implies the condition
(2.1).

Conversely, if the condition (2.1) holds, then for each n define a norm on Mn(X)
by (2.2). It is easy to verify that (2.2) indeed defines a norm on Mn(X). The fact that
||x|| = 0 implies x — 0 follows since AXB ^ 0 (recall that we have assumed that all the
modules here are essential). Moreover, it follows directly from (2.2) that the multi-
plication Mmn(A) x Mn(X) x Mnm(B) -*• Mm(X) is contractive and consequently (since
X is essential A, B-bimodule) the multiplication Mm<n(C) x Mn{X) x Mn.m(C) -> Mm(X)
is also contractive for all m, n e N. This implies in particular that

max{||xI||,||x2||}<||x1©x2|| (2.3)

for all X;,6 Mn.{X), where n, eN, i = l,2. (To see this, note for example, that
x\ =[I,0](xl(Bx2)[I,0]T, where I e Mni(C) is the identity matrix.) It remains to be
shown that the equality holds in (2.3) for then X will be an operator module by [6].

So, let a = [a,, a2] e Hnx+ni(A) and b — [fc,, b2]
T e Cni+n2(B) be any contractions, where

a, e 7£n((/l) and b(;e Cm(B) (i = 1, 2). Suppose first that A and B are von Neumann
algebras and let a' = u*\a*\ and b,, = u,|/>j| be the usual polar decompositions, hence
|fl;i = (atf)1'2 e A, u, 6 Tlni{A), \b,\ = (b*fc,)1/2 e B, v, € Cni(B) and lk|| = 1 = ||Vf||. Then
for arbitrary x, e Mni{X) (i= 1, 2) we have

+a2x2b2\\ = IHfllKu^o,)^,! + \a'2\(.u2x2v2)\b2\\\

< IIKI2 + |a5l2H1/2max{||tt1xIi>1||. ||u2>:2u21|}|||fe,|2 + |fc2|
2||l/

||l/2 < max{||x,||, ||x2||},

where for the first inequality we have used (2.1) and for the second inequality we have
used the definition (2.2) of the norms on Mn(X). Since this holds for all contractions
a e fcnx+m(A) and b e Cni+I12(B) it follows from the definition (2.2) of the norm in
Mnx+ni{X) that ||x, ©x2|| < max{||x,||, ||x2||}. This proves that equality holds in (2.3) if
A and B are von Neumann algebras. If A and B are general C*-algebras, then note that
for each e e (0, 1) we have b, = (fil^HIM'"' and y,|b,|e e C^B) since \b{\' can be
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approximated by polynomials in \bj\ with the zero constant term. Using a similar
decomposition for a* and letting e -> 0 at the end one can easily modify the above
proof to the setting of general C*-algebras. •

Corollary 2.2. A left Banach module X over a C'-algebra A is isometrically
isomorphic to an operator A-module if and only if

K x , +<i2x2|| < \\a,a\^a2a'2\\
x'\\\x,\\2 + ||x2||

2)1/2 (2.4)

for all at e A and x, e X (i — 1, 2). A similar result holds also for right modules.

Proof. If the condition (2.4) is satisfied for all at e A and x, € X then for all
A,, A2 e C we have

A2a2x2|| < Warf +a2a*2\\
l/\\Xl\

2\\xl\\
2 + \12\

2\\X2\\
2)2)1'2

Thus by Theorem 2.1 AT is isometric to an operator A-module. This proves the
corollary in one direction, the proof of the converse is trivial. •

An operator A, B-bimodule X on which the operator space structure satisfies (2.2)
will be called a minimal operator A, B-bimodule (of a given Banach A, B-bimodule X).

For example, if A and B are C*-subalgebras of B(W) with cyclic vectors, then B(W)
(and consequently any subbimodule of B(H)) is a minimal operator A, B-bimodule. To
see this, let x e Mn(B(7i)), denote by £0 and ^0 the cyclic vectors for A and B
(respectively) and choose unit vectors £ = (a,£0,... , an£0) and r\ = (btf0,..., bnn0) in H"
such that (x»/, £) approximates ||x||. Then, using an approximate variant of the polar
decompositions a — u\a\ and b — v\b\, where a — (a, , . . . , an)

T e Cn(A) and
b — (fe,,..., bn)

T e Cn(B) (as in [18, p. 48]), it follows easily that ||u*xu|| approximates
||x||, where u* and v are contractions in Tln(A) and Cn{B) (respectively).

As another example, each C*-algebra A is easily seen to be a minimal A, A-operator
bimodule and so is any closed two-sided ideal J in A and also the quotient bimodule
A/J.

Perhaps the simplest example of a Banach module over a C-algebra A ^ C which
does not satisfy the condition (2.4) is the dual space A" with the usual module structure
(namely {ap){b) = p(ba), a,beA, p e A'). With p e AM a nontrivial projection and
Pi,p2€ A" normal states on Ats with the support p and pL (respectively), we have
IIPP, +P±P}\\ = 2, but \\pp' + pV*ll1/2(IIP,ll2 + ||p2||

2)l/2 = V2. Hence A* does not satisfy
the condition (2.4) as y4BB-module, which easily implies that A3 can not satisfy (2.4) as
/4-module either. In the case A = M2(C) the fact A" with the standard dual operator
space structure is not an operator /1-module was observed by Blecher in [2].

Remark. If X is a Banach A, B-bimodule satisfying the condition (2.1) (where A
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and B are C*-algebras) then there is also a maximal operator A, B-bimodule structure
on X, given by ||[x, ;] | | = sup ||[O(x(iy)]|| ([*,,;] e Mn(X)), where the supremum is over all
contractive A, B-bimodule homomorphisms from X into B(7i) (where H is a Hilbert
space on which A and B are represented, so that B(W) is an A, B-bimodule). This is
completely analogous to the definition of a maximal operator space of a normed space
(see [4] and [14]) and one can express these maximal norms for modules in a similar
intrinsic way as in [14, 2.1], but we shall not study this maximal operator module
structure here.

In the rest of this section we show by an example that for a non selfadjoint operator
algebra A the condition (2.4) is not always sufficient for a Banach ^-module to have
an isometric representation as an operator module. The appropriate module in the
example is a finite dimensional Hilbert space. As a byproduct we shall find in the first
two paragraphs of the example a very simple unital contractive representation of an
operator algebra which is not completely contractive. (The first example of such a
representation was found by Arveson in [1].) The example itself is not needed in the
rest of the paper, so it may be skipped.

Example 2.3. Let p e l , p > 1 and let n > p be an integer. Let A c Mn+l(C) be
the (commutative) algebra of all matrices of the form

a 0 1

» a / J '
where a e C, / i s the n x n identity matrix and v eC is an arbitrary vector. Let
cp : A -»• Mn+l(C) be the homomorphism defined by

4: :D-[: * - ] •
where vT is the transpose of v. It is easy to verify that \\(p\\ — 1. Let X = C"+1 and define
the /4-module structure on X by

a o x = <p(a)x (a e A,x e X).

Since <p is a unital contractive homomorphism, X is an essential Banach A-module.
Let {e,,: i = 1,...,«} be the standard basis of C" (regarded as the space of columns)

and define E, e A by

E,=

Then
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\\[El
1/2 1/2

and
II 1/2

since £(£?" a r e mutually orthogonal projections. (Observe from this that the represen-
tation cp is not completely contractive if p = 1 and n > 2, in fact in this case <p is not
even 2-contractive.) If (x, xn) e (C"+1)" is a unit vector at which the operator
[E[,..., E^] attains its norm, we have

i= l i=i

I 1/2 1/2

hence the module multiplication A x X -> X can not be completely contractive for
any operator structure on X such that the norm on X coincides with the given one.
Now we are going to show that nevertheless the condition (2.4) is satisfied if p is
chosen appropriately.

Given two elements

fa, 0 "1 fa, 0 1
a, = and a2 — \

in A, the norm of the matrix axa\ + a2a\ can be computed explicitly. We assume that

If P = 0 the computation is easier and is left to the reader. To facilitate the
computation put

-
P

and ^
P

Then

and

— a, w, — a2w2, = a2w, + a, w2

(2.5)
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To compute the norm of the matrix in (2.5), let e, and e2 be two orthogonal unit
vectors such that w, = ye, and w2 = \iex + ve2, where y, p and v are scalars with y > 0
and v > 0. Then the matrix in (2.5) is unitarily equivalent to the direct sum of the
matrix

i 0
(2.6)

y

JLv v2 + 1

a n d the (n — 2) x (n — 2) ident i ty m a t r i x . Pu t

r = l | w , | | 2 = y2 and s = ||w2||2 = |//|2 + v2.

T h e charac te r i s t i c po lynomia l of t he m a t r i x (2.6) is (deno t ing z = 1 — A)

F(z) - z3 + (r + s)z2 + (rs - r - y2|// |2)z - (rs - y2\\i?).

Let

G(z) = z3 + (r + s)z2 + r(s - \)z - rs = (z + s)(z2 + rz - r),

which is just the special case of F{z) when y/i = 0. The smallest zero of G is
min{—s, — j(r 4- Vr2 + 4r)}. Evidently G(z) < F(z) if z < 0. Since for z —>• —oo we have
F(z) < 0 and G(z) < 0, the smallest zero of F must be less than or equal to the smallest
zero of G. Since the norm of the matrix in (2.5) is the same as the norm of the matrix
(2.6), which is equal to its largest eigenvalue (A = 1 — z), we see that

\\a{a{a\ max js ,^ (2.7)

To prove that the condition (2.4) is satisfied, let x( e X (i = 1,2) be such that
l|x,||2 + Ilx2||

2 < 1. Then we have

o x, + a2 o x2|| <

Using the previous notation, one easily computes that

(2.8)

atf =fi[l +|(^+ 5) ^ J

and
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IMflXfli)* + (P(.a2)cp(a2y\\ = p Jl + JL(r + s + V(r + *)2 + 4pr)j. (2.9)

Now to prove that the condition (2.4) is satisfied, it suffices by (2.8) to show that
||<p(a,)<p(a,)* + <p(a2)<p(a2)'\\ < \\a,a* + a2a*2\\. For this, by (2.7) and (2.9) it suffices to
show that for some p > 0 (which determines the choice of the map q> and the module
X) the inequality

— [r + s + y/(r + s)2 + Apr] < max{s, t} (2.10)
2p

holds for all r, s > 0, where t = i (r + vV + 4r). It is possible to prove (by a tedious
computation) that (2.10) is true if we choose p — 2, but the proof is much simpler if we
choose a larger p. So let p = 4 and suppose that the inequality (2.10) is not true. Then
both s and t are smaller than the left side of (2.10), hence so must be the convex
combination ^s + \t. Thus we have

s)2 + 16r) < \{2r + 2s + 4jr),
s

which implies (after a simplification) that r + Z-Jr2 + 4r < 4^/r, but this is clearly
impossible for r > 0.

Problem. Let A be a unital (non-selfadjoint) operator algebra and X a left Banach
^-module. Suppose that

l/2

for all finite sets {a,,.. . , aj c A and {x,, . . . , x j c X. Is then X necessarily
isometrically isomorphic to an operator module?

3. Normal modules

Throughout this section A and B will be von Neumann algebras and X an operator
A, B-bimodule.

If A!" as a Banach bimodule is a dual of some Banach B, v4-bimodule Y (in the sense
that X is the dual Banach space of Y and {axb, y) = {x, by a) for all a e A, be B,
x e X and y e Y), then we can introduce in Y the so called Li-matrically normed
structure by ||j>|| = sup{|(x, y)|:x e Mn(X), \\x\\ < 1} for all ye Mn(Y), where (x,y> :=
2Z";=i (xi.y yjj) w 'th xi,i an<^ yi.j t n e entries of x and y, respectively (see [8]). The
bimodule multiplication B x Y x A -+ Y is then easily seen to be completely
contractive, hence so is the bimodule multiplication AxXxB—^X if X carries the
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new Loo-matrically normed structure defined by ||x||' = sup{|(x, y)\ : y e Mn(Y), \\y\\ < 1}
for x G Mn(X). Obviously ||x||' < ||x|| for all x e Mn{X) and the equality holds here if
n=\, hence by the minimality of (X, || ||), the equality must hold for all n. It follows
that X as an operator A, B-bimodule is the dual of Y in the sense of [8] and we shall
call such a bimodule X a dual minimal operator A, B-bimodule. We do not assume in
general that for all x e X the maps

a H-+ ax and b *—» xb (3-1)

from A and B, respectively, to X are weak* to weak* continuous. If the maps (3.1)
are weak* to weak* continuous then by [8, Theorem 3.5] X is a normal dual operator
A, B-bimodule in the sense that there exist a Hilbert space H, a complete weak*
continuous isometry <D: AT —>- B(H) and faithful normal unital representations
n: A -+ B(W) and a : B -»• B(H) such that

O(axb) = n(a)<&(x)a(b) for all a e A, b e B and x e X. (3.2)

A general (not necessarily dual) operator A, B-bimodule X will be called normal if there
exist a complete isometry O and representations n and a as above, except that now
we do not require that <b is continuous in the weak* topology (there is no such
topology on X now).

If X is a normal operator A, B-bimodule then clearly for each x e X the mappings

a ^ \\ax\\ and b i-> ||xft|| (3.3)

are lower semicontinuous in the weak* topology of A and B, respectively.

Question. Is the lower semicontinuity of the maps (3.3) a sufficient condition for
a minimal operator A, B-bimodule X to be normal?

For general (not necessarily minimal) operator bimodules it is natural to require in
this problem the lower semicontinuity of the mappings defined by (3.3) on Mn(A) and
Mn(B) for all x G Mn(X) and all n. We shall see below that the answer to the above
question is affirmative in the case of one-sided modules (that is, if A or B is C). In the
case of bimodules we have to replace the semicontinuity of the maps (3.3) by an
apparently stronger condition, to guarantee the normality of bimodules, but we do not
have any concrete example of a minimal A, B-operator bimodule X for which the maps
(3.3) are lower semicontinuous and X is not normal. Before proceeding with formal
theorems, we shall now indicate how the results of [8] imply that the answer to the
above question is affirmative if X is a dual bimodule.

If X is any dual operator space, then by [8, Theorem 3.3] X can be represented
isometrically and weak* continuously as a weak* closed subspace of B(W) for some
Hilbert space H; if in addition X is a dual operator A, B-bimodule, then an argument
in the proof of Theorem 3.4 in [8, p. 150] shows that there exist a Hilbert space H, a
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weak* homemorphic complete isometry d>: X ->• B(7i) and two (not necessarily
normal) unital representations n : A -> B(W) and a : B -*• B(H) such that (3.2) holds.
We now replace n and a with their restrictions to the invariant subspaces

and H2 = [<J>(X)'H], respectively, and regard <D(X) as a subspace in
Then the left and the right annihilator of <b(X) in B(W,) and B(W2)

(respectively) is 0. We claim that the two representations n and a are necessarily
normal if the mappings (3.3) are lower semicontinuous, hence X is a normal dual
operator A, B-bimodule. In fact, to prove that, say, n is normal, it suffices to show that
for each normal state co on B(H,) the state con on A is normal, which is equivalent to the
condition that for each net of projections {ev} in A increasing to the identity 1 the net
{a)7t(ev)} converges to con(l) = 1 (see e.g. [10]). Thus, it suffices to show that the limit/of the
increasing net of projections {n(ev)} in B(H,) is equal to 1. For each x e X we have that
/x<D(x) e <D(A0 (since 0>{X) is weak* closed in B(W2,W,)), hence /x<D(x) = 0>(x0) for
some x0 6 X. Since ||evx0|| = ||<D(evx0)|| = ||rt(ev)(D(x0)|| = \\n(e,)f^(x)\\ = 0 for all v, it
follows from the assumed semicontinuity of the norm that x0 = 0. Thus/x<D(x) = 0 for
all xe X, which implies / x = 0 since the left annihilator of O(X) in B(H,) is 0. This
proves that / = 1, as required. So n and a are now normal representations and
consequently X is a normal operator A, B-bimodule.

The set of all linear functionals on the Haagerup tensor product A ®h B which (as
bilinear forms on A x B) are normal in each variable separately will be denoted by
Bir(/4, B). (We refer to [18] and [4] for the definition of the Haagerup tensor product.
An explicit characterisation of functionals in Bil"(/1, B) can be found in [7], but we shall
nod need this characterisation here.) The topology on A <8>* B determined by the family
of seminorms w H-> |9(W)| (3 e Bir(/1, B)) will be called the normal weak topology.

Given a Banach A, B-bimodule Y, let Y be the Banach B, X-subbimodule of the dual
bimodule Y" consisting of all functionals co on Y such that for each y e Y the two maps
a i-* co{ay) and b»-+ co(yb) on A and B (respectively) are normal. We shall need the
following simple lemma (a variant of which for one-sided modules has been proved
already in [12]).

Lemma 3.1. If Z is a subbimodule of a Banach A, B-bimodule Y then each co e Z
can be extended to some 6 e Y such that \\6\\ = ||co||.

Proof. Let <j) be any linear extension of co to Y such that ||</>|| = ||<y|| and for each
x e X put 9(x) — (^Onor0> 1). where <j>x : A x B -*• C is the bilinear map defined by
4>x[a, b) = 4>(axb) and (cj)x)nor is the part of <j>x which is normal in each variable
separately. This normal part is defined in the following way: first we extend <$>x to a
bilinear form \ji on A"3 x Bta which is normal in each variable separately, where Ast and
Bts are the universal von Neumann algebras of the von Neumann algebras A and B
(such an extension is possible and unique by [18, Lemma 3.3.2]); then we define (0x)nor

by (<£x)nor(
a> b) = i//(pa, qb), where p and q are the central projections in Am and Bct

(respectively) such that A £* pAM and B ^ qBm (see [10, Section 10.1] for more details
about this projections if necessary). It is now easy to verify that the so defined map 9
has the required properties. •
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We shall denote Y by Y. If X is an operator A, B-bimodule, then X is an operator
A, B-bimodule and the natural map i : X -*• X is a completely contractive homo-
morphism of bimodules. Then X is a normal operator A, B-bimodule if and only if i is
a complete isometry. This is proved in [12] for one-sided modules, but the proof for
bimodules is the same. If X carries the minimal operator A, B-bimodule structure and i
is an isometry, then of course i must be a complete isometry.

Recall that each element in the Haagerup tensor product A ®h B can be written in
the form £ " , a< ® k =: a O b, where a (b, respectively) is an infinite row (column) with
the entries in A(B) such that the series £ ~ , a,a* ( £ " , b*bt) is norm convergent.

Proposition 3.2. Let A and B be von Neumann algebras and X an operator A, B-
bimodule. Then X is a normal operator A, B-bimodule if and only if for each n e N and
each x e Ma(X) the function

px : MU{A) ®" Mn(B) -* R, px{a Qb)= \\axb\\

is lower semicontinuous in the normal weak topology of MM) ®h Mn(B). If X is a
minimal operator A, B-bimodule then it suffices to require the above condition for n = 1
only.

Proof. For simplicity of notation we shall prove the theorem for minimal
bimodules, the proof for general bimodules is essentially the same. If X is normal, we
may assume that X, A and B are contained in B(H) for some Hilbert space H and the
algebraic operations in A, B and X coincide with the usual operations in B(H). Then
for each normal functional co on B(W) and each x e X the functional

9 : A (g)*1 B ->• K, &(a ® b) = co(axb)

is clearly normal in each variable a and b separately, hence 9 6 Bir(/1, B). If {a, Q bv]
is a net in A <&h B converging to an element a O b in the normal weak topology, then in
particular Iim9(as Obv) = 9(aQ b). This implies (since co can be any normal linear
functional on B(H)) that the net [avxbv) converges to axb in the weak* topology of
B(H), hence ||axb|| < liminf, ||avxbj, which proves the required semicontinuity of the
function px.

Assume now that all the functions px are lower semicontinuous in the normal weak
topology of A 0* B. To prove that X is a normal A, B-bimodule, it suffices by the
remarks preceding the proposition to show that the natural map i : X ->• X is an
isometry. By hypothesis for each x e X the set

S = {we A®h B:px(w) < 1}

is closed in the normal weak topology and clearly S is also convex and balanced.
Assume that x ^ 0 and let e > 0. Since px{\ ® 1) = ||x||, the element ^ 1 ® 1 is not in S,
hence by the geometric variant of the Hahn-Banach theorem there exists
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9 e Bi\°(A, B) such that \9(w)\ < 1 for each w e S and 9(^ 1 ® 1) > 1. This implies that
|9(w)| < px(w) for each w e A®h B and 9(1 <8> 1) > f~j. Thus, we can define a functional
i/f on the subbimodule AxB of X by

•Kaxfc) = 9(a O b)

and we have \\j/{axb)\ < \\axb\\ for all aQbe A®h B (hence ||iAH < 1) and \jiix) > f̂ .
Since 9 e BilCT(/4, B), the functional ip is in (/4xB)~. By Lemma 3.1 i/̂  can be extended to
a functional in X without increasing the norm. Since e > 0 in this argument was
arbitrary, we see that the natural contraction i : X -*• X must indeed be isometric. •

Theorem 3.3. A left operator module X over a von Neumann algebra A is normal if
and only if for each n eN, x e Mn(X) and each net [ev] of projections in Mn(A)
converging to the identity 1 the equality

holds. Moreover, if A is a-finite, it suffices to check this condition for increasing
sequences of projections in A instead of general nets. If X is a minimal left operator A-
module, then it suffices to require the condition for n = \ only.

Proof. Again, for simplicity of notation we shall consider only minimal modules.
We need only to prove the sufficiency of the above condition for X to be normal. By
Proposition 3.2 (applied to the A, C-bimodule X) it suffices to show that for each
x e X the function

px : A - * R, px(a) = \\ax\\

is lower semicontinuous in the weak* topology of A, which is equivalent to the
requirement that the convex set S = {a e A : \\ax\\ < 1} is weak* closed in A. By the
Krein-Smulian theorem [15] it suffices to prove that the intersection of S with each
closed ball A, in A with the centre 0 and radius r is weak* closed or, equivalently,
closed in the *-strong operator topology of Ar. So, let {av} be a net in S n Ar converging
to an element a e Ar in the *-strong operator topology. Using the noncommutative
Egoroff theorem (see [19]), it follows that each strong neighbourhood U of the identity
1 in A contains a projection eu e A such there is a sequence {auk} c [ay] for which
the sequence {evavk : k = 1, 2,...} converges to eua in the norm topology. This implies
that Heyflxll < 1 since Hay fcx|| < 1 for all k. Since the projections eu (U a neighbour-
hood of 1 in the strong operator topology) form a net converging to 1, it follows now
from the hypothesis of the Theorem that ||ax|| < 1, which concludes the proof that S
is weak* closed in A.

If A is (j-finite, we may choose a sequence of basic neighbourhoods Un of 1 in the
strong topology of the ball A, and then for each n a projection en — eUn e Un as above.
In addition, we may require that en+l > en for each n. Indeed, assuming inductively that
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e ,en and a sequence {ak} c. {a,} have been already constructed such that the
sequence {ea(ak — a)} is norm convergent to 0 as k -*• oo, we apply the Egoroff theorem
to the sequence {e^(ak - a)(ak - a)*e^}teN in the von Neumann algebra e^Ae% to find
an appropriate subprojection f <e^ and a subsequence of [ak], and then we put
en+i = £n +/• Then it follows as in the previous paragraph that the set S is weak*
closed. •

4. Quotient modules

Throughout this section A will be a von Neumann algebra.
If X is an operator /1-module we can define the so called A-topology on X by the

family of seminorms

sjx) = inf{o;(afl-)
l/2|M| : x = ay, a e TZn(A), y 6 Cn(X), n e N}, (4.1)

where co is any normal positive linear functional on A. It is proved in [12] that (4.1)
is indeed a seminorm and that in (4.1) it suffices to take n = 1 and y e X, a e A with
0<a< 1, without changing the value of sm. This implies that the /l-topology is
independent of the norms on Mn(X) for n > 1. The fact that X is an operator module
is required only to prove that the quantities (4.1) are indeed seminorms and to establish
some useful properties of this topology.

The continuous linear functionals in the /l-topology of X are just the norm bounded
functionals 6 on X such that for each x e X the functional a >-> 0(ax) is normal on A
(see [12]). As in the previous section, we denote the set of all such functionals by X.
This characterisation of continuous functionals implies that for each normal dual
operator /1-module X and each submodule Y of X the closure of Mn(Y) in the A4n(A)-
topology of Mn(X) is equal to Mn(?

A), where Y* is the closure of Y in the /l-topology
ofX.

The question, which we would like to discuss in this section is the following.

Question. Let AT be a normal dual operator /1-module and Y a norm closed
submodule of X. Under what conditions is the quotient operator module X/Y
normal?

If X/Y is normal then for each x e X the map

a^aw \\ax + Y\\

must be lower semicontinuous in the weak* topology of A by Section 3. (Of course
the same semicontinuity condition must hold also for the analogous maps defined on
Mn(A) for all x e Mn(X) and n = 1,2 ) In particular, for each x 6 X the left ideal

[a e A : ax e Y] = aj'(O)
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in A must be weak* closed. By [12, 2.1, 5.3] the condition that this ideals are weak*
closed for all x e X is equivalent to the requirement that Y is closed in the A-topology
of X (such submodules Y are called strong in [11]). Thus, a necessary condition for
X/Y to be a normal operator A-module is that Y is closed in X in the A-topology. In
certain special circumstances this condition is also sufficient for X/Y to be normal.

Proposition 4.1. Let A be a a-finite von Neumann algebra contained in a concrete
C*-algebra X c B(7i) and let J be a norm closed two-sided ideal of X. Suppose that X
contains the closure Y of J in the A-topology. (This is satisfied, for example, if X is a von
Neumann algebra since the A-topology is stronger than the weak* topology.) Then X/Y
is a normal operator left A-module.

Proof. By Theorem 3.3 it suffices to show that for each m = l , 2 . . . , each
x e Mm(X) and each increasing sequence of projections/, G Mm(A) converging to 1 the
equality

a := lim ||/nx|| = ||x||

holds, where x e Mm(X/Y) = Mm(X)/M.m(Y) is the coset of x. As we have already
noted in the beginning of this section, M.m(Y) is just the closure of Mm(J) in the
A4m04)-topology; moreover, since Mm(J) is a two-sided ideal in Mm(X), we may
restrict our attention (for simplicity of notation) to the case m = 1, the proof for
general m is the same. For each n let en=fn—fn_{ (where /0 := 0), so that
{en : n — 1, 2, . . .} is an orthogonal sequence of projections in A with the sum 1 and
/„ = Yl"=i ej- Choose any ft > a. Since ||/nx|| < /?, for each n there exists an yn =fnyn e Y
such that ||/nx — y j | < /? and the sequence yn is bounded.

We claim that for each n there exists an orthogonal sequence {enj :j— 1,2,...} of
projections in A such that

oo

enJ = en and enjyk € J for all n, j , k = 1, 2

To see this, we first note that the closure in the A-topology of the two-sided ideal J
in X is necessarily a norm closed right ideal in X. (This can easily be proved directly
and follows also from [12, 2.2 and 5.3].) Hence the element z := ££1 , 2~kyky'k is in Y.
Consequently enz e Y for each n and by [12, 2.2 and 5.3] there exists an orthogonal
sequence {enj :j— 1,2,...} of projections in A with sum en such that enjz 6 J for each

j . Then enjzenj e J, hence enjyky*kenj e J for all k, hence enjyk e J for all n, j , k since J
is a two-sided ideal in X. (We have used the well known fact that w'w e J implies
w e J for w e X, where J may be any norm closed two-sided ideal in a C*-algebra X.)
This proves the claim.

For each n let pn = Ylt+j<n ei.j> s o t n a t {pn
 : " = 1 > 2, • • •} is an increasing sequence of pro-

jections in A converging to 1. Then we have pnyn e J and ||pn(x — yn)\\ < ||/n(x — yn)\\ < $
for all n, hence
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\\pnx + J\\<p. (4.2)

Put qn — pn — pn_i (with p0 = 0) and xn = qnx. We shall construct inductively a sequence
of elements zn = qnzn e J such that

|H>,.-z,.)|</? (4.3)

for all n. Since the series £ x i converges in the strong operator topology and x, = <j,x,
and z, = qjZj, where the qt's are mutually orthogonal projections, (4.3) will imply that
the series 5Zz, converges strongly to an element z (namely, the partial sums of the
series XXxi ~~z.) a r e bounded in norm by P and the terms x, — zt have mutually
orthogonal ranges). Since q{z = zf e Y and Y is closed in the A-topology, it follows
from [12] that z e Y. (Alternatively, it is not hard to show directly that the partial
sums of the series J^z, converge to z in the /1-topology.) Since z e Y and (4.3) implies
that ||x - z\\ < P, it follows that ||x|| < p. But this holds for all P > a, hence
11*11 < a (= lim ||/nx||), which will prove the required lower semicontinuity. So it remains
to construct the required sequence {z, : i = 1,2,...}.

Suppose by induction that we have already constructed the elements zt — q,zx € J
for i = 1, . . . , n — 1 such that

11 , . - z,.)| < p.

Put b = £Xi ' (* . - z,)*(x, - z,), so that 0<b < p2. Denote by v the coset in X/J of an
element v e X. F rom (4.2) it follows that

hence x*xn < p2 — b. Therefore we can lift xn to an element vn e X such that v*nvn < p2 - b
(see [10, p. 290]). Finally, let zn = xn - vn. Then zn e J and (xn - zn)'(xn - zn) < p2 - b.
By the definition of b this implies that || X™=i(xi — z,)|| < P (since the elements x, - z,
have mutually orthogonal ranges), which concludes the proof. •

Since in the special case X c A (where the X-topology and the weak* topology have
the same closed convex sets) and in the case A = C and X arbitrary (where the A-
topology is just the norm topology) the condition that Y is closed in the /1-topology is
also sufficient for X/Y to be normal, we might expect naively (encouraged by
Proposition 4.1) that this may be so in general. But the following example shows that
there exist normal operator modules Y c B(/C) (/C a Hilbert space) over lx such that
the ^-module B(/C)/y is not normal although (surprisingly) the module T /7 is
normal, where Y is the closure of Y in the weak* topology of B(/C).
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Example 4.2. Let Ti. be any infinite dimensional Hilbert space and H°° — H<B>t2.
Let tx act on £2 in the usual way and let A = \n®loo<z B(H°°). Then X :- B(H°°) is a
normal operator left 4-module. Let Y = K(W)°° c B(H°°) be the usual €M-direct sum
of countably many copies of the ideal K(H) of all compact operators on H. Clearly Y
is a left /1-submodule of X and we claim that Y is closed in the /1-topology of X. To
see this, let {e, : i e N} be the set of minimal projections in A with the sum 1. Observe
that for each x e X the condition that e,x 6 Y for all i e N implies that x e Y; by [12,
2.1 and 5.3] (or directly) this implies that Y is closed as required.

Let {En : n — 1, 2,...} be a set of orthogonal projections in K(H) with the sum 1.
Let x € X (= MaoCH)) be defined by the operator matrix

\n 0 0
£ , 0 0

x = £2 0 0

We claim that the function a i-> ||ax|| is not lower semicontinuous in the weak*
topology of A, where x is the coset of x in X/Y, hence X/Y is not a normal operator
left /4-module. To see this, let /„ = e, + . . . + en e A; thus /„ is the diagonal operator
matrix in M0O(B(H)) which has 1 on the first n diagonal positions and 0 on the
remaining positions. Clearly the sequence {/„} converges to 1 strongly. Since for each
c e K(H) the operator c — c 0 0 © 0 © ... is in Y, we have ||/nx|| < ||/n(x — c)\\ for each
c e K(H). By choosing for c the projection c = E, + . . . + £„, it follows that

for all n — 1, 2 On the other hand we shall now compute that ||x|| > y/2, which will
prove that the map a >-* \\ax\\ is not lower semicontinuous in the weak* topology of A
since / „ / 1. Indeed, for each y e Y the norm of the operator matrix x — y is greater
than or equal to the norm of its first column, hence

\\x-y\\> 11/2

where d e K.(H) is the first component of y. Since the norm of an operator dominates
the norm of the corresponding coset in the Calkin algebra, it follows from the last
estimate that ||x|| > -Jl (in fact ||x|| = V2 since ||x|| = -Jl).

Although the operator /4-module X/Y is not normal, it follows from Proposition
4.1 that B(Ti.y°/Y is normal (at least if H is separable), and here B(H)°° is just the
weak* closure of Y.

Acknowledgements. The author is grateful to M. Hladnik for reading the
preliminary version of this paper.

https://doi.org/10.1017/S0013091500020113 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020113


THE MINIMAL OPERATOR MODULE OF A BANACH MODULE 207

REFERENCES

1. W. B. ARVESON, Subalgebras of C-algebras, Ada Math. 123 (1969), 141-224.

2. D. P. BLECHER, The standard dual of an operator space, Pacific J. Math. 153 (1992),
15-30.

3. D. P. BLECHER, A completely bounded characterisation of operator algebras, Math. Ann.
303 (1995), 227-239.

4. D. P. BLECHER and V. I. PAULSEN, Tensor products of operator spaces, / Fund. Anal.
99 (1991), 262-292.

5. D. P. BLECHER, Z.-J. RUAN and A. M. SINCLAIR, A characterisation of operator algebras,
J. Fund. Anal. 89 (1990), 188-201.

6. E. CHRISTENSEN, E. G. EFFROS and A. SINCLAIR, Completely bounded multilinear maps
and C*-algebraic cohomology, Invent. Math. 90 (1987), 279-296.

7. E. G. EFFROS and A. KISHIMOTO, Module maps and Hochschild-Johnson cohomology,
Indiana Univ. Math. J. 36 (1987), 257-276.

8. E. G. EFFROS and Z.-J. RUAN, Representation of operator bimodules and their
applications, J. Operator Theory 19 (1988), 137-157.

9. E. G. EFFROS and Z.-J. RUAN, On the abstract characterisation of operator spaces, Proc.
Amer. Math. Soc. 119(1993), 579-584.

10. R. V. KADISON and J. R. RINGROSE, Fundamentals of the theory of operator algebras,
Vols. 1, 2 (Academic Press, London, 1983, 1986).

11. B. MAGAJNA, Strong operator modules and the Haagerup tensor product, Proc. London
Math. Soc. 74 (1997), 201-240.

12. B. MAGAJNA, A topology for operator modules over W*-algebras, / Fund. Anal. 154
(1998), 17-41.

13. V. I. PAULSEN, Completely bounded maps and dilations (Research Notes in Math., Vol.
146, Pitman, London, 1986).

14. V. I. PAULSEN, The maximal operator space of a normed space, Proc. Edinburgh Math.
Soc. 39 (1996), 309-323.

15. G. K. PEDERSEN, Analysis now (Graduate Texts in Math. 118, Springer-Verlag, Berlin,
1989).

16. G. PISIER, Similarity problems and completely bounded maps (Lecture Notes in Math.
1618, Springer-Verlag, Berlin, 1996).

17. Z. J. RUAN, Subspaces of C-algebras, J. Fund. Anal. 76 (1988), 217-230.

18. A. M. SINCLAIR and R. R. SMITH, Hochschild cohomology of von Neumann algebras
(London Math. Soc. Lecture Note Series, Vol. 203, Cambridge Univ. Press, Cambridge, 1995).

19. M. TAKESAKI, Theory of operator algebras I (Springer-Verlag, New York, 1979).

https://doi.org/10.1017/S0013091500020113 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020113


208 BOJAN MAGAJNA

20. N. T. VAROUPOULOS, A theorem on operator algebras, Math. Scand. 37 (1975), 173-182.

Note. After this paper had been submitted for publication we received an unpublished
manuscript from B. E. Johnson in which he also obtained a characterisation of Banach
bimodules over a C-algebra that can carry the structure of operator bimodules, but his method
is completely different from the proof of Theorem 2.1.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LJUBLJANA
JADRANSKA 19
LJUBLJANA 1000
SLOVENIA
E-mail address: Bojan.Magajna@fmf.uni-lj.si

https://doi.org/10.1017/S0013091500020113 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020113

