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Abstract
Let R be a commutative ring. One may ask when a general R-module P that satisfies 𝑃⊕𝑅 � 𝑅𝑛 has a free summand
of a given rank. M. Raynaud translated this question into one about sections of certain maps between Stiefel varieties:
if 𝑉𝑟 (A𝑛) denotes the variety GL(𝑛)/GL(𝑛− 𝑟) over a field k, then the projection 𝑉𝑟 (A𝑛) → 𝑉1 (A

𝑛) has a section
if and only if the following holds: any module P over any k-algebra R with the property that 𝑃 ⊕ 𝑅 � 𝑅𝑛 has a free
summand of rank 𝑟 − 1. Using techniques from A1-homotopy theory, we characterize those n for which the map
𝑉𝑟 (A

𝑛) → 𝑉1 (A
𝑛) has a section in the cases 𝑟 = 3, 4 under some assumptions on the base field.

We conclude that if 𝑃 ⊕ 𝑅 � 𝑅24𝑚 and R contains the field of rational numbers, then P contains a free summand
of rank 2. If R contains a quadratically closed field of characteristic 0, or the field of real numbers, then P contains
a free summand of rank 3. The analogous results hold for schemes and vector bundles over them.

1. Introduction

Suppose R is a commutative ring, and 𝑛, 𝑟 are integers satisfying 0 ≤ 𝑟 ≤ 𝑛. An R-module P is stably
free of type (𝑛, 𝑟) if there exists an isomorphism of R-modules:

𝑃 ⊕ 𝑅𝑛−𝑟 � 𝑅𝑛. (1)

The most important nontrivial instance is that of 𝑟 = 𝑛 − 1, since any isomorphism (1) entails an
isomorphism

(𝑃 ⊕ 𝑅𝑛−𝑟−1) ⊕ 𝑅 � 𝑅𝑛,

so that 𝑃 ⊕ 𝑅𝑛−𝑟−1 is stably free of type (𝑛, 𝑛 − 1). In a sense that is made precise in [22, Théorème
6.5], a general stably free module of type (𝑛, 𝑛 − 1) does not admit a free summand of large rank, and
is a fortiori not free.

We set up some notation. Let k be a commutative base ring. The letter k may be omitted from the
notation where no confusion can arise. Fix a pair of integers (𝑛, 𝑟) where 0 ≤ 𝑟 ≤ 𝑛. As set out in [22],
there is a commutative k-algebra 𝐴𝑛,𝑛−𝑟 and a stably free module 𝑃𝑛,𝑛−𝑟 of type (𝑛, 𝑟) over 𝐴𝑛,𝑛−𝑟 that
is universal: for any commutative k-algebra R and any stably free R-module P of type (𝑛, 𝑟), there is a
ring homomorphism 𝐴𝑛,𝑛−𝑟 → 𝑅 such that 𝑃 � 𝑅 ⊗𝐴𝑛,𝑛−𝑟 𝑃𝑛,𝑛−𝑟 as R-modules.
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There exists a sequence of positive integers called James numbers and written 𝑏2, 𝑏3, . . . , which
were defined by James [16], and calculated by [9] and [1]. Explicitly, they are described by their p-adic
valuations, 𝑣𝑝 , for all primes p:

𝑣𝑝 (𝑏𝑞) =

{
max

{
𝑠 + 𝑣𝑝 (𝑠)

��� 1 ≤ 𝑠 ≤ �
𝑞−1
𝑝−1 �

}
, if 𝑞 ≥ 𝑝;

0 otherwise.

The first few James numbers may easily be listed:

𝑏2 = 2; 𝑏3 = 𝑏4 = 233 = 24; 𝑏5 = 26325 = 2880.

The following is the module-theoretic content of [22, Théorème 6.5].
Theorem (Raynaud). If k is a field of characteristic 0, then the universal stably free module 𝑃𝑛,𝑛−1 of
type (𝑛, 𝑛 − 1) does not admit a free summand of rank 𝑞 − 1, except possibly if 𝑏𝑞 | 𝑛.

This result does not make any assertion about the situation when 𝑏𝑞 | 𝑛. It is well known that if n is
even (viz. divisible by 𝑏2), then 𝑃𝑛,𝑛−1 admits a free summand of rank 1, as is shown in Example 4.2
below. The cases of larger q are more obscure.

In this paper, we prove the following. This is the module-theoretic content of Theorem 8.1.
Theorem. Suppose R is a commutative ring containing Q. Let n be a natural number. If P is a stably
free module of type (24𝑛, 24𝑛 − 1), then P admits a free summand of rank 2. If R contains a subfield of
R that has a unique quadratic extension (up to isomorphism), then P admits a free summand of rank 3.

The result also applies with a k-scheme X playing the part of the k-algebra R. In this case, the stably
free module becomes a stably trivial vector bundle.
Remark 1.1. The condition on R in the second part of the theorem above is satisfied if R contains a
characteristic-0 quadratically closed field F. To see why, we argue as follows. The field F contains a
quadratically closed subfield E consisting of algebraic numbers, and E may be embedded in C. Let i
denote a square root of −1 ∈ C, and let 𝑧 ↦→ 𝑧 denote ordinary complex conjugation. The subfield of E
fixed by conjugation is 𝐸 ′ = 𝐸 ∩ R. We claim that 𝐸 ′ meets the conditions of the theorem.

By construction, 𝐸 ′ ⊆ R. When viewed as a vector space over 𝐸 ′, the field E decomposes as a
direct sum of eigenspaces for complex conjugation, so that we see 𝐸 = 𝐸 ′ ⊕ 𝑖𝐸 ′, which implies that
𝐸 = 𝐸 ′(𝑖). Since E is quadratically closed, we deduce that it is the unique quadratic extension of 𝐸 ′, up
to isomorphism.

Geometry

The methods of [22] are geometric and homotopy-theoretic, and so too are the methods of this paper.
We specialize to the case where the base ring k is a field of characteristic 0.

If 𝑎 ≤ 𝑏 are natural numbers, we embed the group scheme GL(𝑎) into GL(𝑏) by

𝐴 ↦→

[
𝐼𝑏−𝑎 0

0 𝐴

]
.

We let

𝑉𝑟 (A
𝑛) = GL(𝑛)/GL(𝑛 − 𝑟)

denote the Stiefel variety. There is a canonical projection 𝜌 : 𝑉𝑟 (A𝑛) → 𝑉1(A
𝑛).

The ring 𝐴𝑛,𝑛−𝑟 that we referred to previously is the coordinate ring of 𝑉𝑟 (A𝑛), and 𝑃𝑛,𝑛−𝑟 is a
module over it. As a special case of [22, Proposition 2.4], the map 𝜌 : 𝑉𝑟 (A𝑛) → 𝑉1(A

𝑛) has a section
if and only if 𝑃𝑛,𝑛−1 has a free summand of rank 𝑟 − 1. Therefore, the question of whether all stably
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free modules of type (𝑛, 𝑛 − 1) (over k-algebras) admit free summands of rank 𝑟 − 1 is equivalent to the
following:
Question 1.2. Does the morphism of k-schemes 𝜌 : 𝑉𝑟 (A𝑛) → 𝑉1(A

𝑛) admit a section?
James answered the topological analogue of this question in [16]: if 𝑊𝑟 (C

𝑛) denotes the complex
Stiefel manifold of orthonormal r-frames in C𝑛, then projection onto the first frame 𝜌C : 𝑊𝑟 (C

𝑛) →

𝑆2𝑛−1 has a continuous section if and only if n is divisible by the integer 𝑏𝑟 .
Using Steenrod operations in étale cohomology, Raynaud showed that, over a characteristic 0 field k,

the map 𝜌 : 𝑉𝑟 (A𝑛) → 𝑉1(A
𝑛) does not have a section if n is not divisible by 𝑏𝑟 (this is the geometric

content of [22, Théorème 6.5] above).

Method

The method of proof in this paper is to convert the algebro-geometric problem of Question 1.2 to
a problem in A1-homotopy theory. This mimics how an analogous question about vector bundles on
topological spaces has been fully solved by the methods of homotopy theory and the calculation of
certain periodicities, by [16], [26], [9] and [1]. The structure of the topological argument is to reduce
the problem to determining whether a certain class in 𝜋2𝑛−2 (𝑊𝑟−1(C

𝑛−1)) vanishes, which then may be
calculated using techniques developed by Adams.

The analogous obstruction in A1-homotopy theory is defined in Notation 7.1. In Proposition 7.2,
we show that the existence of a section is equivalent to the vanishing of the obstruction. One direction
of this is trivial. To construct the section knowing that the obstruction vanishes, however, we use the
Lindel–Popescu Theorem ([18]) about homotopy invariance of algebraic vector bundles, an observation
of [22, Proposition 2.4], and the result of [7, Theorem 2.4.2] which relates abstract morphisms in the
A1-homotopy category to naive homotopy classes of morphisms of schemes.

Having converted the problem to one in A1-homotopy theory, we now solve it in Propositions 7.4
and 7.7 by using realization methods: comparing the global sections of A1-homotopy sheaves of spaces
with the homotopy groups of their real- or complex-realizations. For the Stiefel varieties at issue, we
can prove that the comparison maps in question are isomorphisms. In this way, we show that the answer
to the algebraic question is ‘the same’ as the answer for complex vector bundles.

The major inputs are the calculations of the stable homotopy sheaves of spheres by [23] and [24] and
the Freudenthal suspension theorem of [2], by which we can understand unstable A1-homotopy sheaves
of spheres, from which we can calculate the unstable A1-homotopy sheaves of Stiefel varieties.

Finally, to establish the stronger form of our main theorem when k is quadratically closed, or is a
subfield of R admitting only one quadratic extension, we use an argument from [16], now applied to the
A1-homotopy sheaves.

Positive and mixed characteristic

The morphism 𝜌 : 𝑉𝑟 (A
𝑛) → 𝑉1 (A

𝑛) may be defined over Z, and over Z the spaces 𝑉𝑟 (A
𝑛) still

represent stably free modules. In Proposition 7.4, we prove that when 𝑟 = 3 and 𝑛 = 24𝑚, the base-
change morphism 𝜌 over Q has a section. In particular, this means that 𝜌 has a section over Z[ 1

𝑁 ],
where N is some positive integer: only finitely many primes need to be inverted in order to construct
the section. We remark that a priori the integer N may depend on n.

In particular, we can declare that for any given 𝑛 = 24𝑚, there exists some integer N so that if R
is a ring in which N is invertible and P is a stably free R-module of type (𝑛, 𝑛 − 1), then P has a free
summand of rank 2. We do not know the smallest possible positive integer N, although 𝑁 = 6 is a
plausible conjecture.

One might also wonder whether the methods used to prove Proposition 7.4 can be made to work over
a prime field F𝑝 of characteristic p. There are two difficulties: most seriously, the main results [23] and
[24] do not fully determine the homotopy groups in question: the p-torsion is not determined, since the
exponential characteristic of the ground field must be inverted throughout.

https://doi.org/10.1017/fms.2025.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.39


4 S. Gant and B. Williams

Secondly, the complex realization functor must be replaced by ℓ-étale realization (see, for example,
[15]), which takes values in ℓ-complete spaces or pro-spaces where ℓ ≠ 𝑝. We expect our obstructions
to lie in groups isomorphic to Z/(24) contingent on a strengthening of [23] and [24] that holds without
inverting the exponential characteristic. Therefore, we will have to use realization for the primes 2, 3,
which implies that the constraint 𝑝 ≠ 2, 3 is probably unavoidable.

2. Homotopy-theory conventions and notation

For the rest of the paper, we work over a field k of characteristic 0. Other restrictions may be imposed
on k from time to time. Unless otherwise stated, all schemes appearing are k-schemes. The category
of motivic spaces over k is sPre(Sm𝑘 ), the category of simplicial presheaves of sets on Sm𝑘 , which
is itself the category of smooth finite type separated k-schemes. We use the homotopy theory of [20].
The notation H(𝑘) is used for the homotopy category. A pointed object consists of an object X and a
morphism Spec 𝑘 → 𝑋 . There is a homotopy theory of pointed objects, and the associated homotopy
category is denoted H(𝑘)•. The notation 𝑋+ is used to denote the addition of a disjoint basepoint to X.

2.1. Homotopy sheaves

The paper makes extensive use of the A1-homotopy theory of spheres. If 𝑝, 𝑞 are nonnegative integers,
then we define

𝑆𝑝+𝑞𝛼 = 𝑆𝑝+𝑞,𝑞 = 𝑆𝑝 ∧ (A1
𝑘 \ {0})

∧𝑞 ,

where 𝑆𝑝 is the ordinary simplicial sphere.
If X is a pointed object of sPre(Sm𝑘 ), then we write

𝝅𝑝+𝑞𝛼 (𝑋) = 𝝅𝑝+𝑞,𝑞 (𝑋)

for the Nisnevich sheaf associated to the functor

Smop
𝑘 → Set : 𝑈 ↦→ [𝑈+ ∧ 𝑆𝑝+𝑞𝛼, 𝑋] .

When 𝑝 ≥ 1, then 𝝅𝑝+𝑞𝛼 (𝑋) is a sheaf of groups, and of abelian groups if 𝑝 ≥ 2.
The symbols KMW

𝑛 and KM
𝑛 will be used for the unramified sheaves constructed in [19, Section 3.2].

We make use of the contraction A ↦→ A−1, for which we refer to [19, p. 33] and [19, Theorem 6.13],
which implies that

𝝅𝑝+𝑞𝛼 (𝑋)−1 � 𝝅𝑝+(𝑞+1)𝛼 (𝑋).

2.2. Naive homotopy

If X is a k-scheme, we write 𝑗0, 𝑗1 : 𝑋 → 𝑋 × A1
𝑘 for the closed inclusions at 0, 1, respectively.

Two morphisms 𝑓0, 𝑓1 : 𝑋 → 𝑌 are said to be naively homotopic if there is a morphism
𝐻 : 𝑋 × A1

𝑘 → 𝑌 such that 𝐻 ◦ 𝑗0 = 𝑓0 and 𝐻 ◦ 𝑗1 = 𝑓1.

2.3. Pointed homotopy

If X, Y are objects of sPre(Sm𝑘 ), then we will write {𝑋,𝑌 } for the set of morphisms 𝑋 → 𝑌 in the
homotopy category H(𝑘). If X and Y are pointed objects of sPre(Sm𝑘 ), then the notation [𝑋,𝑌 ] will
be used to denote the set of morphisms 𝑋 → 𝑌 in H(𝑘)•. There is a natural bijection

{𝑋,𝑌 } ↔ [𝑋+, 𝑌 ] .
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Proposition 2.1. Suppose 𝑋,𝑌 are two pointed objects of sPre(Sm𝑘 ), and Y is A1-simply-connected.
The natural map

[𝑋,𝑌 ] → {𝑋,𝑌 }

is a bijection.

Proof. We work in theA1-injective model category. There is nothing to be lost in assuming X is cofibrant
and Y is fibrant.

There is a cofibre sequence of pointed objects

𝑆0 → 𝑋+ → 𝑋. (2)

We write Hom for the mapping object of sPre(Sm𝑘 ) and Hom• for its pointed analogue. Apply
Hom•(−, 𝑌 ) to (2) to obtain an A1-homotopy fibre sequence:

Hom•(𝑋,𝑌 ) → Hom (𝑋,𝑌 ) → 𝑌 .

Since Y is assumed simply-connected, the result may be deduced by taking global sections of 𝜋0 applied
to this fibre sequence. �

3. Stiefel varieties

3.1. Some notation

We frequently adopt the functor-of-points approach to k-schemes. That is, a k-scheme Y represents a
contravariant functor on the category Sch𝑘 of k-schemes

ℎ𝑌 : Schop
𝑘 → Set, ℎ𝑌 (𝑋) = MorSch𝑘 (𝑋,𝑌 ).

In fact, we may restrict the source of the functor to the category of affine k-schemes, or equivalently to
k-algebras:

ℎ𝑌 : 𝑘-Alg → Set, ℎ𝑌 (𝑅) = MorSch𝑘 (Spec 𝑅,𝑌 ).

The assignment 𝑌 ↦→ ℎ𝑌 yields a full embedding of Sch𝑘 in the category of functors 𝑘-Alg → Set,
[12, Proposition VI-2]. As a consequence, we will abuse notation and write ‘Y’ when ‘ℎ𝑌 ’ is technically
correct. Furthermore, we will specify k-schemes Y by describing their functors of points 𝑅 ↦→ 𝑌 (𝑅),
and we will define morphisms of k-schemes 𝑌 → 𝑌 ′ by giving the associated natural transformation of
functors.

3.2. Definitions

If 𝑟 ≤ 𝑛 are two natural numbers, then we define 𝑉𝑟 (A
𝑛) to be the affine k-scheme representing the

functor

𝑅 ↦→
{
(𝐴, 𝐵) ∈ (Mat𝑟×𝑛 (𝑅))2 | 𝐴𝐵𝑇 = 𝐼𝑟

}
. (3)

This is a closed subscheme of Mat2𝑟×𝑛, and is therefore affine. We consider 𝑉𝑟 (A𝑛) as a pointed object
of sPre(Sm𝑘 ) with basepoint given by the k-rational point

( [
𝐼𝑟 0

]
,
[
𝐼𝑟 0

] )
.
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Remark 3.1. The spaces 𝑉𝑟 (A
𝑛) are a kind of Stiefel variety. The obvious projection furnishes an

A1-equivalence from 𝑉𝑟 (A
𝑛) to the k-scheme 𝑉 ′

𝑟 (A
𝑛) representing the functor

𝑅 ↦→
{
𝐴 ∈ Mat𝑟×𝑛 (𝑅) | ∃𝐵 ∈ Mat𝑟×𝑛 (𝑅), s.t. 𝐴𝐵𝑇 = 𝐼𝑟

}
,

which might be considered the true Stiefel variety. There is a morphism 𝑝 : 𝑉𝑟 (A𝑛) → 𝑉 ′
𝑟 (A

𝑛) given by
forgetting the choice of B. One may cover 𝑉 ′

𝑟 (A
𝑛) by Zariski-open subschemes U so that the morphism

𝑝 |𝑝−1 (𝑈 ) : 𝑝−1 (𝑈) → 𝑈 is isomorphic to the projections 𝑈 × A(𝑛−𝑟 )𝑟 → 𝑈, that is, p is a Zariski-
locally trivial, smooth morphism with affine-space fibres, and therefore by a standard argument, p is an
A1-equivalence (see, for example, [3, Lemma 2.4]).

By forgetting the bottom 𝑟 − 𝑟 ′ rows, we obtain a pointed morphism 𝜌𝑟 ,𝑟 ′ : 𝑉𝑟 (A𝑛) → 𝑉𝑟 ′ (A
𝑛). This

will be written 𝜌 when there is no risk of ambiguity.
Two cases of 𝑉𝑟 (A𝑛) have notation of their own:

𝑉1(A
𝑛) = 𝑄2𝑛−1, 𝑉𝑛 (A

𝑛) = GL(𝑛).

We remark that 𝑄2𝑛−1 is A1-homotopy equivalent to A𝑛 \ {0} � 𝑆𝑛−1+𝑛𝛼.
If we embed GL(𝑛 − 𝑟) in GL(𝑛) in the lower-right position

𝐴 ↦→

[
𝐼𝑟

𝐴

]
,

then we arrive at a quotient presentation 𝑉𝑟 (A
𝑛) = GL(𝑛)/GL(𝑛 − 𝑟).

If F is R or C, we denote the Stiefel manifold of orthonormal r-frames in F𝑛 by 𝑊𝑟 (F
𝑛).

3.3. Fibre sequences

Using results from [19, Chapter 6] and [19, Proposition 8.11], we have a diagram of pointed spaces

GL(𝑛 − 𝑟) → GL(𝑛) → 𝑉𝑟 (A
𝑛)

𝑓
→ 𝐵GL(𝑛 − 𝑟) → 𝐵GL(𝑛) (4)

in which any three consecutive terms form an A1-homotopy fibre sequence.
From here, standard homotopy theory (e.g., [14, Proposition 6.3.6]) implies that the induced sequence

of quotients

𝑉𝑠 (A
𝑛−𝑟+𝑠) → 𝑉𝑟 (A

𝑛)
𝜌
→ 𝑉𝑟−𝑠 (A

𝑛) (5)

is an A1-homotopy fibre sequence whenever 𝑛, 𝑟, 𝑠 are integers satisfying 0 ≤ 𝑠 < 𝑟 ≤ 𝑛.

Proposition 3.2. The space 𝑉𝑟 (A𝑛) is A1-(𝑛 − 𝑟 − 1)-connected.

Proof. In the case where 𝑟 = 1, we use the A1-equivalence 𝑉1(A
𝑛) � 𝑆𝑛−1+𝑛𝛼. The sphere is 𝑛 − 2-

connected by results of Morel ([19, Theorem 6.38]).
The general result now follows by induction on r, using the 𝑠 = 1 case of (5). �

Corollary 3.3. Suppose 𝑛, 𝑟 are natural numbers satisfying 𝑟 ≤ 𝑛 − 2. Then for any pointed object X of
sPre(Sm𝑘 ), the natural map

[𝑋,𝑉𝑟 (A
𝑛)] → {𝑋,𝑉𝑟 (A

𝑛)}

is a bijection.

Proof. This follows from Proposition 2.1 using the connectivity calculation of Proposition 3.2. �
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3.4. Interpretation as spaces of stably free modules

The k-scheme 𝑉𝑟 (A𝑛) represents a space of matrices as laid out in (3). Given a pair of matrices (𝐴, 𝐵)
satisfying 𝐴𝐵𝑇 = 𝐼𝑟 , we may form the split short exact sequence of R-modules:

0 𝑃 𝑅𝑛 𝑅𝑟 0.𝜄

𝐴

𝐵𝑇

(6)

Therefore, (𝐴, 𝐵) determine an R-module 𝑃 = ker(𝐴), up to isomorphism over 𝑅𝑛, along with an
isomorphism 𝑃 ⊕ 𝑅𝑟 → 𝑅𝑛, given by 𝜄 + 𝐵𝑇 . Conversely, given an R-module P and an isomorphism
𝑓 : 𝑃 ⊕ 𝑅𝑟 → 𝑅𝑛, we may produce a morphism 𝐵𝑇 = 𝑓 |𝑅𝑟 and 𝐴 = proj2 ◦ 𝑓 −1. This allows us to say
that 𝑉𝑟 (A𝑛) represents the functor that assigns to a ring R the set of equivalence classes of pairs (𝑃, 𝑓 )
where P is an R-module and 𝑓 : 𝑃 ⊕ 𝑅𝑟 → 𝑅𝑛 is an isomorphism: two pairs (𝑃, 𝑓 ) and (𝑃′, 𝑓 ′) being
equivalent when there exists an isomorphism ℎ : 𝑃 → 𝑃′ for which the diagram

𝑃 ⊕ 𝑅𝑟

𝑅𝑛

𝑃′ ⊕ 𝑅𝑟

ℎ⊕id𝑅𝑟

𝑓

𝑓 ′

(7)

is commutative. In this language, the morphism 𝜌 : 𝑉𝑟 (A𝑛) → 𝑉𝑟 ′ (A
𝑛) takes a pair (𝑃, 𝑓 ) to (𝑃 ⊕

𝑅𝑟−𝑟
′
, 𝑓 ).

The preceding discussion concerns the functor represented by the k-scheme𝑉𝑟 (A𝑛) on the category of
commutative k-algebras, viz., on affine k-schemes. On the category of all k-schemes,𝑉𝑟 (A𝑛) represents
the functor

𝑋 ↦→
{
𝐴 ∈ Mat𝑟×𝑛 (Γ(𝑋,O𝑋 )) | ∃𝐵 ∈ Mat𝑟×𝑛 (Γ(𝑋,O𝑋 )), s.t. 𝐴𝐵𝑇 = 𝐼𝑟

}
,

since 𝑉𝑟 (A
𝑛) is itself affine and therefore 𝑉𝑟 (A

𝑛) (𝑋) = 𝑉𝑟 (A
𝑛) (Spec Γ(𝑋,O𝑋 )) by reference to

[13, II, Exercise 2.4], for instance.
The matrices A and B of global sections of O𝑋 allow us to set up a split short exact sequence

0 P O𝑛
𝑋 O𝑟

𝑋 0,𝜄

𝐴

𝐵𝑇

as in the affine case,. Therefore, the k-scheme 𝑉𝑟 (A
𝑛) represents the functor that assigns to a k-

scheme X the set of equivalence classes of pairs (P , 𝑓 ), where P is a locally free O𝑋 -module and
𝑓 : P⊕O𝑟

𝑋 → O𝑛
𝑋 is an isomorphism. Two pairs (P , 𝑓 ) and (P ′, 𝑓 ′) are equivalent when a commutative

diagram analogous to (7) exists. Note that the sheaves P of O𝑋 -modules appearing here are necessarily
coherent.

On 𝑉𝑟 (A
𝑛) itself, there exists a tautological O𝑋 -module Ptaut and a tautological isomorphism 𝑓taut :

Ptaut ⊕O𝑟
𝑉𝑟 (A𝑛)

→ O𝑛
𝑉𝑟 (A𝑛)

. Since 𝑉𝑟 (A𝑛) is an affine variety, we may alternatively view the above as a
tautological module 𝑃taut and a tautological isomorphism in the category of modules over the coordinate
ring of 𝑉𝑟 (A𝑛).

4. Homotopy sections

Definition 4.1. Consider the morphism 𝜌 = 𝜌𝑟 ,1 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1. A homotopy section of 𝜌 is a
morphism 𝜓 : 𝑄2𝑛−1 → 𝑉𝑟 (A

𝑛) in H(𝑘) with the property that 𝜌 ◦ 𝜓 = id𝑄2𝑛−1 in H(𝑘). Similarly, a
pointed homotopy section of 𝜌 is a morphism 𝜙 : 𝑄2𝑛−1 → 𝑉𝑟 (A

𝑛) in H(𝑘)• with the property that
𝜌 ◦ 𝜙 = id𝑄2𝑛−1 in H(𝑘)•.
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Example 4.2. When n is even, there is a well-known section of 𝜌2,1 in the category of k-schemes given by

((𝑎1, . . . , 𝑎𝑛), (𝑏1, . . . , 𝑏𝑛)) ↦→

( [
𝑎1 𝑎2 · · · 𝑎𝑛−1 𝑎𝑛
−𝑏2 𝑏1 · · · −𝑏𝑛 𝑏𝑛−1

]
,

[
𝑏1 𝑏2 · · · 𝑏𝑛−1 𝑏𝑛
−𝑎2 𝑎1 · · · −𝑎𝑛 𝑎𝑛−1

] )
.

This section gives rise to a pointed homotopy section of 𝜌2,1.

Proposition 4.3. Let R be a regular ring of essentially finite type over k. Suppose 𝑓0, 𝑓1 : Spec 𝑅 →

𝑉𝑟 (A
𝑛) are naively homotopic. Write 𝑃0 and 𝑃1 for the represented stably free modules. Then 𝑃0 � 𝑃1

as R-modules.

Proof. Let 𝐻 : Spec 𝑅[𝑡] → 𝑉𝑟 (A
𝑛) be the naive homotopy. By pulling the tautological Ptaut back

to Spec 𝑅[𝑡] along H, we obtain a stably free 𝑅[𝑡]-module 𝑃𝐻 . The stably free modules 𝑃𝑖 are then
obtained as 𝑃𝑖 � 𝑅 ⊗𝑅 [𝑡 ] 𝑃𝐻 using the two evaluation homomorphisms 𝑒0 : 𝑡 ↦→ 0 and 𝑒1 : 𝑡 ↦→ 1.

Since R is regular, the Lindel–Popescu theorem, specifically the main result of [18], implies that
𝑃0 � 𝑃1. �

Proposition 4.4. Suppose 𝑟, 𝑛 are positive integers such that 𝜌 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1 has a homotopy
section. Suppose X is a k-scheme and P is a sheaf of O𝑋 -modules on X with the property that P ⊕O𝑋 �
O𝑛
𝑋 . There exists a sheaf Q of O𝑋 -modules and an isomorphism Q ⊕ O𝑟−1

𝑋 � P .

Proof. Fix an isomorphism 𝑓 : P⊕O𝑋 → O𝑛
𝑋 . The pair (P , 𝑓 ) determines a morphism ℎ : 𝑋 → 𝑄2𝑛−1,

and 𝑓 : P ⊕ O𝑋 → O𝑛
𝑋 is pulled back from the tautological isomorphism over 𝑄2𝑛−1. Therefore, it

suffices to produce Qtaut over 𝑄2𝑛−1 so that Qtaut ⊕ O𝑟−1
𝑄2𝑛−1

� Ptaut. That is, we may suppose that
𝑋 = 𝑄2𝑛−1 and P = Ptaut.

By hypothesis, there exists a morphism 𝜓 : 𝑄2𝑛−1 → 𝑉𝑟 (A
𝑛) in H(𝑘) with the property that

𝜌 ◦ 𝜓 = id𝑄2𝑛−1 . Using [7, Theorem 2.4.2], we may suppose that 𝜓 is a morphism in the category of
k-schemes and that there exists a naive A1-homotopy

𝐻 : 𝑄2𝑛−1 × A
1 → 𝑄2𝑛−1

for which 𝐻0 = 𝜌 ◦ 𝜓 and 𝐻1 = id𝑄2𝑛−1 .
The morphism 𝜓 : 𝑄2𝑛−1 → 𝑉𝑟 (A

𝑛) classifies a pair (Q, 𝑔) where 𝑔 : Q ⊕ O𝑟
𝑄2𝑛−1

� O𝑛
𝑄2𝑛−1

. The
composite 𝜌 ◦ 𝜓 classifies the pair (Q ⊕ O𝑟−1

𝑄2𝑛−1
, 𝑔). The existence of the naive A1 homotopy implies

that Q ⊕ O𝑟−1
𝑄2𝑛−1

is isomorphic to P , using Proposition 4.3. �

Remark 4.5. The topological analogues of the maps considered above, that is, 𝜌C : 𝑊𝑟 (C
𝑛) → 𝑊1(C

𝑛)

and 𝜌R : 𝑊𝑟 (R
𝑛) → 𝑊1(R

𝑛), are Serre fibrations. This means that homotopy sections of these
continuous functions may be deformed to give strict sections, by a lifting argument. The luxury of
deforming a homotopy section to a strict section is unavailable to us in the A1-homotopy theory.

In spite of the previous remark, the proposition below can be proved.

Proposition 4.6. Let 𝑛, 𝑟 be positive integers satisfying 𝑟 ≤ 𝑛 − 2. The following are equivalent

1. The morphism 𝜌 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1 has a section in the category of k-schemes;
2. The morphism 𝜌 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1 has a homotopy section;
3. The morphism 𝜌 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1 has a pointed homotopy section.

Proof. The implications 1 ⇒ 2 and 3 ⇒ 2 are obvious.
(2 ⇒ 1). If a homotopy section of 𝜌 exists, then Proposition 4.4 asserts that the universal projective

module 𝑃𝑛,𝑛−𝑟 has a free summand of rank 𝑟 − 1. It follows from [22, Proposition 2.4] that a section of
𝜌 exists in the category of k-schemes.

(2 ⇒ 3). One may restate Condition 3 as saying that the class of the identity map is in the image of

[𝑄2𝑛−1, 𝑉𝑟 (A
𝑛)]

𝜌∗
−→ [𝑄2𝑛−1, 𝑄2𝑛−1] .
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Since 1 ≤ 𝑟 ≤ 𝑛 − 2, both 𝑉𝑟 (A
𝑛) and 𝑄2𝑛−1 are A1-simply connected by Proposition 3.2, so that

Corollary 3.3 implies that the vertical arrows in the commuting square below are bijections

[𝑄2𝑛−1, 𝑉𝑟 (A
𝑛)] [𝑄2𝑛−1, 𝑄2𝑛−1]

{𝑄2𝑛−1, 𝑉𝑟 (A
𝑛)} {𝑄2𝑛−1, 𝑄2𝑛−1}.

�

𝜌∗

�

𝜌∗

Condition 2 asserts that the class of the identity map is in the image of the lower arrow, so that Condition
3 follows. �

5. Realization

We refer the reader to [11] for the foundational theory of topological realizations.
We give an overview to fix notation. There are functors

◦ Suppose 𝑖 : 𝑘 ↩→ C is an embedding of k inC. There exists complex realization, a functorℭ : H(𝑘)• →
H•, which is the composite of 𝑖∗ and the complex realization of [11].

◦ Suppose 𝑖 : 𝑘 ↩→ R is an embedding of k inR. There exists real realization, a functorℜ : H(𝑘)• → H•,
which is the composite of 𝑖∗ and the real realization of [11].

These realization functors have the following properties:

◦ They are compatible with the H•-module structure on source and target (i.e., ℭ(𝐾 ∧ 𝑋) � 𝐾 ∧ℭ(𝑋)
for a pointed simplicial set K, and similarly for the real realization).

◦ Their values on the quotient schemes 𝑉𝑟 (A𝑛) = GL(𝑛)/GL(𝑛 − 𝑟) are known. Specifically,

ℭ(𝑉𝑟 (A
𝑛)) � 𝑊𝑟 (C

𝑛), ℜ(𝑉𝑟 (A
𝑛)) � 𝑊𝑟 (R

𝑛).

◦ They take the groups GL(𝑛) to groups.
◦ Their values on the spheres 𝑆𝑝+𝑞𝛼 are known. Specifically,

ℭ(𝑆𝑝+𝑞𝛼) � 𝑆𝑝+𝑞 , ℜ(𝑆𝑝+𝑞𝛼) � 𝑆𝑝 .

Similarly, their values on the motivic Hopf maps of [10] are known:

ℭ(𝜂) = 𝜂top, ℭ(𝜈) = 𝜈top;
ℜ(𝜂) = 2, ℜ(𝜈) = 𝜂top.

◦ There are equivalences

ℭ(𝐵 GL(𝑛)) � 𝐵GL(𝑛;C), ℜ(𝐵GL(𝑛)) � 𝐵 GL(𝑛;R).

Assume 𝑝 ≥ 1 is an integer. There are homomorphisms of groups, natural in X:

𝝅𝑝+𝑞𝛼 (𝑋) (𝑘) = [𝑆𝑝+𝑞𝛼, 𝑋] → [𝑆𝑝+𝑞 ,ℭ(𝑋)] = 𝜋𝑝+𝑞 (ℭ(𝑋))

𝝅𝑝+𝑞𝛼 (𝑋) (𝑘) = [𝑆𝑝+𝑞𝛼, 𝑋] → [𝑆𝑝 ,ℜ(𝑋)] = 𝜋𝑝 (ℜ(𝑋)).
(8)

5.1. Exactness of realization

The realization functors we consider do not preserve homotopy fibre sequences in general. Nonetheless,
when applied to the sequences of (5), they produce homotopy fibre sequences. As a consequence, we can
use realization to produce commutative diagrams of homotopy groups. We give the formal statement in
the case of complex realization only. The other case is similar.
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Proposition 5.1. Complex realization ℭ produces a commutative diagram of long exact sequences of
homotopy groups:

· · · 𝝅𝑝+𝑞𝛼 (𝑉𝑠 (A
𝑛−𝑟+𝑠)) (𝑘) 𝝅𝑝+𝑞𝛼 (𝑉𝑟 (A

𝑛)) (𝑘) 𝝅𝑝+𝑞𝛼 (𝑉𝑟−𝑠 (A
𝑛)) (𝑘) 𝝅𝑝−1+𝑞𝛼 (𝑉𝑠 (A

𝑛−𝑟+𝑠)) (𝑘) · · ·

· · · 𝜋𝑝+𝑞 (𝑊𝑠 (C
𝑛−𝑟+𝑠)) 𝜋𝑝+𝑞 (𝑊𝑟 (C

𝑛)) 𝜋𝑝+𝑞 (𝑊𝑟−𝑠 (C
𝑠)) 𝜋𝑝+𝑞−1 (𝑊𝑠 (C

𝑛−𝑟+𝑠)) · · · .

†

𝜕

𝜕

(9)

Proof. The lower sequence is exact because there is a homotopy fibre sequence

𝑊𝑠 (C
𝑛) → 𝑊𝑟 (C

𝑛) → 𝑊𝑟−𝑠 (C
𝑛).

In (9), commutativity of the squares other than the one marked with a dagger † follows from the naturality
of the homomorphism in (8). The square marked with the dagger is not a priori induced by a map of
schemes. Nonetheless, it can be factored

𝝅𝑝+𝑞𝛼 (𝑉𝑟−𝑠 (A
𝑛)) (𝑘) 𝝅𝑝+𝑞𝛼 (𝐵GL(𝑛 − 𝑟 + 𝑠)) (𝑘) 𝝅𝑝−1+𝑞𝛼 (GL(𝑛 − 𝑟 + 𝑠)) (𝑘) 𝝅𝑝−1+𝑞𝛼 (𝑉𝑠 (A

𝑛−𝑟+𝑠)) (𝑘)

𝜋𝑝+𝑞 (𝑊𝑟−𝑠 (C
𝑛)) 𝜋𝑝+𝑞 (𝐵GL(𝑛 − 𝑟 + 𝑠;C)) 𝜋𝑝+𝑞−1 (GL(𝑛 − 𝑟 + 𝑠;C)) 𝜋𝑝+𝑞−1 (𝑊𝑠 (C

𝑛−𝑟+𝑠)) .

�

∗

�

The identification 𝝅𝑝+𝑞𝛼 (𝐵GL(𝑛 − 𝑟 + 𝑠)) (𝑘) = 𝝅𝑝−1+𝑞𝛼 (GL(𝑛 − 𝑟 + 𝑠)) (𝑘) is made as follows: there
is a canonical map

𝑆1 ∧ 𝐺 → 𝐵𝐺 (10)

so that any morphism 𝑆𝑝+𝑞𝛼 → 𝐺 yields a morphism 𝑆𝑝+1+𝑞𝛼 → 𝑆1 ∧ 𝐺 → 𝐵𝐺 by composition.
When 𝐺 = GL(𝑛 − 𝑟 + 𝑠), the adjoint to 𝑆1 ∧ 𝐺 → 𝐵𝐺 is an A1-weak equivalence by [19, Theorem
6.46], so that indeed we obtain the asserted identification.

Complex realization of (10) yields a similar map 𝑆1 ∧ 𝐺 (C) → 𝐵𝐺 (C), so that the square marked
with an asterisk ∗ also commutes. �

6. Constant homotopy sheaves

Fix a subfield 𝑖 : 𝑘 ↩→ C. Throughout this section, n denotes a natural number.

Definition 6.1. Suppose X is a pointed motivic space over k, and 𝝅𝑝+𝑞𝛼 (𝑋) is a strictly A1-invariant
homotopy sheaf. We will say that 𝝅𝑝+𝑞𝛼 (𝑋) has the constant (resp. surjective, injective) realization
property if the map

𝝅𝑝+𝑞𝛼 (𝑋) (𝑘) → 𝜋𝑝+𝑞 (ℭ(𝑋))

is an isomorphism (resp. surjective, injective).

Remark 6.2. If instead we fix a subfield 𝑖 : 𝑘 ↩→ R, we may define the constant (resp. surjective,
injective) real realization property by using ℜ instead of ℭ.

Example 6.3. Let 𝑛 ≥ 4. The homotopy sheaves 𝝅𝑛 (𝑄2𝑛−1) may be partly calculated from the main
theorem of [23] and [2, Theorem 6.3.6]. There is an exact sequence

0 KM
𝑛+2/(24) 𝝅𝑛 (𝑄2𝑛−1) 𝝅𝑠1−𝑛𝛼 (kq) (11)

which becomes short exact after 𝑛 − 4-fold contraction. Furthermore, 𝝅𝑠1−3𝛼 (kq) is identified with a
sheaf GW3

4 as defined in [25] or [5] (see [6, Diagram 3.9]).
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Therefore, once we contract (11) 𝑛 + 1-times, we obtain a short exact sequence

0 KM
1 /(24) 𝝅𝑛+(𝑛+1)𝛼 (𝑄2𝑛−1) GW3

0 0𝑞 (12)

using the identities (GW𝑖
𝑗 )−1 = GW𝑖−1

𝑗−1 and GW𝑖
𝑗 = GW𝑖+4

𝑗 . By [27, Theorem 10.1], the sheaf GW3
0 is

constant on fields, with value 𝜂𝜂topZ/(2) – see, for instance, [23, p. 58].
The complex realization of 𝜂𝜂top is 𝜂2

top, which generates 𝜋2𝑛+1 (𝑆
2𝑛−1), so that 𝝅𝑛+(𝑛+1)𝛼 (𝑄2𝑛−1) has

the surjective realization property.
Remark 6.4. If we assume further that k is quadratically and cubically closed, so that KM

1 (𝑘)/(24) � 0,
then 𝝅𝑛+(𝑛+1)𝛼 (𝑄2𝑛−1) has the constant realization property.
Example 6.5. We may contract (12) one more time. Then we obtain

0 Z/(24) 𝝅𝑛+(𝑛+2)𝛼 (𝑄2𝑛−1) 0,

so that 𝝅𝑛+(𝑛+2)𝛼 (𝑄2𝑛−1) is constant with value Z/(24). It has the constant realization property, being
generated by the class of 𝜈, which realizes to give 𝜈top, which also generates 𝜋2𝑛+2 (𝑆

2𝑛−1).
Example 6.6. In this example, the symbol 𝜌 is used in the same sense as in [24]. Let 𝑛 ≥ 5. The homotopy
sheaves 𝝅𝑛+1 (𝑄2𝑛−1) may be partly calculated from the main theorem of [24] and [2, Theorem 6.3.6].
There is an exact sequence

0 𝐻1+𝑛,2+𝑛 (−)/(24) ⊕ KM
4+𝑛/(2) 𝝅𝑛+1(𝑄2𝑛−1) 𝝅𝑠2−𝑛𝛼 (kq),

and after 𝑛 + 2 contractions, this yields an isomorphism

KM
2 /(2) 𝝅𝑛+1+(𝑛+2)𝛼 (𝑄2𝑛−1).

� (13)

If 𝑘 ↩→ R is a field with a real embedding, then the class of {−1,−1} in KM
2 (𝑘)/(2) � H2

ét(𝑘;Z/(2))
corresponds to 𝜌2𝜈2 ∈ 𝝅𝑛+1+(𝑛+2)𝛼 (𝑄2𝑛−1) (𝑘). Similarly, after 𝑛 + 3 or 𝑛 + 4 contractions, the classes
of {−1} ∈ KM

1 (𝑘)/(2) and 1 ∈ Z/(2) correspond to 𝜌𝜈2 and 𝜈2.
Since the real realization of 𝜌 is the identity, and the real realization of 𝜈 is 𝜂top, we deduce that

𝝅𝑛+1+(𝑛+𝑑)𝛼 (𝑄2𝑛−1) has the constant real realization property when 𝑑 ∈ {2, 3, 4} and KM
4−𝑑 (𝑘)/(2) �

Z/(2).

7. The existence of homotopy sections

Consider the homotopy long exact sequence of

𝑉𝑟−1(A
𝑛−1)

𝑖
→ 𝑉𝑟 (A

𝑛)
𝜌
→ 𝑄2𝑛−1.

A portion of this sequence appears below:

· · · 𝝅𝑛−1(𝑉𝑟 (A
𝑛)) 𝝅𝑛−1 (𝑄2𝑛−1) 𝝅𝑛−2 (𝑉𝑟−1(A

𝑛−1)) · · · .

KMW
𝑛

𝜌∗ 𝜕

(14)

Notation 7.1. Following [16], we denote the image of the identity map under

𝜕−𝑛 (𝑘) : 𝝅𝑛−1+𝑛𝛼 (𝑄2𝑛−1) (𝑘) = [𝑄2𝑛−1, 𝑄2𝑛−1] → 𝝅𝑛−2+𝑛𝛼 (𝑉𝑟−1(A
𝑛−1)) (𝑘)

by 𝛽𝑛𝑟 and call this element the obstruction.
The following proposition justifies this terminology.
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Proposition 7.2. Let n and r be integers with 2 ≤ 𝑟 ≤ 𝑛 − 2. The following are equivalent:

1. The morphism 𝜌1,𝑟 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1 admits a section in the category of k-schemes;
2. The morphism 𝜌1,𝑟 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1 admits a pointed homotopy section;
3. The map

𝜌1,𝑟 ∗ : 𝝅𝑛−1 (𝑉𝑟 (A
𝑛)) → 𝝅𝑛−1 (𝑄2𝑛−1) = KMW

𝑛

is surjective;
4. In the homotopy long exact sequence (14), the boundary map 𝜕 : 𝝅𝑛−1 (𝑄2𝑛−1) → 𝝅𝑛−2 (𝑉𝑟−1(A

𝑛−1))
vanishes;

5. The obstruction 𝛽𝑛𝑟 vanishes.

Proof. The equivalence of 1 and 2 is given by Proposition 4.6, and the other forward implications are
trivial. It remains to show 5 ⇒ 2.

Suppose the obstruction vanishes. Using [8, Lemma 5.1.3], we may identify 𝜕 with a specific element
of 𝝅𝑛−2+𝑛𝛼 (𝑉𝑟−1(A

𝑛−1)) (𝑘), which is tautologically 𝜕−𝑛 (𝑘) (id) = 𝛽𝑛𝑟 = 0. That is, 𝜕 = 0 as a morphism
of sheaves.

To construct a pointed homotopy section, we argue as follows. There is an A1-homotopy fibre
sequence

Ω𝑉𝑟 (A
𝑛) → Ω𝑄2𝑛−1

𝑓
→ 𝑉𝑟−1(A

𝑛−1),

and the map 𝜕 may be obtained by applying 𝝅𝑛−2+𝑛𝛼 to f. Letting j denote the adjoint of the identity
map in H(𝑘)•, we obtain a homotopy commutative diagram

𝑆𝑛−2+𝑛𝛼

Ω𝑉𝑟 (A𝑛) Ω𝑄2𝑛−1 𝑉𝑟−1(A
𝑛−1).

𝑗
𝜕

Ω(𝜌1,𝑟 ) 𝑓

Since 𝜕 is null, the dashed arrow may be constructed, and by adjunction, a pointed homotopy section of
𝜌𝑟 ,1 exists. �

Proposition 7.3. Let n and r be integers with 2 ≤ 𝑟 ≤ 𝑛−2. Let 𝑖 : 𝑘 ↩→ C be a fixed embedding. Suppose
that 𝝅𝑛−2+𝑛𝛼 (𝑉𝑟−1(A

𝑛−1)) has the injective realization property and that 𝜌(C) : 𝑊𝑟 (C
𝑛) → 𝑆2𝑛−1 has

a section. Then 𝜌 : 𝑉𝑟 (A𝑛) → 𝑄2𝑛−1 has a section.

Proof. Entirely analogously to Proposition 7.2, one deduces that 𝜌(C) : 𝑊𝑟 (C
𝑛) → 𝑆2𝑛−1 has a section

if and only if the boundary homomorphism 𝜕 (C) : 𝜋2𝑛−1 (𝑆
2𝑛−1) → 𝜋2𝑛−2 (𝑊𝑟−1(C

𝑛−1)) is 0 (i.e., if it
takes the class of the identity in 𝜋2𝑛−1 (𝑆

2𝑛−1) = Z to 0).
There is, therefore, a commutative diagram

𝝅𝑛−1+𝑛𝛼 (𝑄2𝑛−1) (𝑘) 𝝅𝑛−2+𝑛𝛼 (𝑉𝑟−1(A
𝑛−1)) (𝑘)

𝜋2𝑛−1 (𝑆
2𝑛−1) 𝜋2𝑛−2 (𝑊𝑟−1(C

𝑛−1)),

𝜕−𝑛 (𝑘)

ℭ ℭ

𝜕=0

from which it follows that 𝜕−𝑛 (𝑘) = 0, and therefore that 𝜌 has a section, by Proposition 7.2. �
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7.1. The case 𝑟 = 3

Proposition 7.4. Let 𝑛 ≥ 3 be an integer. Let 𝑘 = Q. Then 𝜌 : 𝑉3(A
𝑛) → 𝑄2𝑛−1 has a section if and

only if 𝑛 ≡ 0(mod 24).
Proof. Unless n is a positive multiple of 𝑏3 = 24, then the method of [22, Théorème 6.5] prevents 𝜌3,1
from having a section. Therefore, we assume n is a positive multiple of 24. In this case, [16] asserts that
a section of 𝑊3 (C

𝑛) → 𝑆2𝑛−1 exists. Therefore, we need only prove that 𝜋𝑛−2+𝑛𝛼 (𝑉2 (A
𝑛−1)) has the

injective realization property. In fact, it has the constant realization property.
We consider the long exact sequence of homotopy sheaves

𝝅𝑛−1+𝑛𝛼 (𝑄2𝑛−3)

𝝅𝑛−2+𝑛𝛼 (𝑄2𝑛−5) 𝝅𝑛−2+𝑛𝛼 (𝑉2 (A
𝑛−1)) 𝝅𝑛−2+𝑛𝛼 (𝑄2𝑛−3) = KMW

−2

𝝅𝑛−3+𝑛𝛼 (𝑄2𝑛−5) = KMW
−3

𝜕

×𝜂

�

The first sheaf appearing has the surjective realization property (Example 6.3), and the next sheaf has
the constant (a fortiori, injective) realization property (Example 6.5). The last two sheaves are both
isomorphic to the Witt sheaf by results of [19], and the map between them is the isomorphism ×𝜂, by
[4, Lemma 3.5].

It follows from an easy diagram chase that 𝝅𝑛−2+𝑛𝛼 (𝑉2(A
𝑛−1)) has the constant realization property.

We conclude by Proposition 7.3. �

7.2. The case 𝑟 = 4

First, we need a technical lemma concerning the obstruction.
Lemma 7.5. Let n and r be integers with 2 ≤ 𝑟 ≤ 𝑛, and suppose that 𝜓 : 𝑄2𝑛−1 → 𝑉𝑟−1(A

𝑛) is a
pointed homotopy section. Then the obstruction 𝛽𝑛𝑟 is the image of 𝜓 under the composition

𝝅𝑛−1+𝑛𝛼 (𝑉𝑟−1(A
𝑛)) (𝑘)

𝜕−𝑛 (𝑘)
−→ 𝝅𝑛−2+𝑛𝛼 (𝑄2(𝑛−𝑟+1)−1)) (𝑘)

(𝑖∗)−𝑛 (𝑘)
−→ 𝝅𝑛−2+𝑛𝛼 (𝑉𝑟−1(A

𝑛−1)) (𝑘).

Proof. There is a map of A1-homotopy fibre sequences

𝑄2(𝑛−𝑟+1)−1 = 𝑉1(A
𝑛−𝑟+1) 𝑉𝑟 (A

𝑛) 𝑉𝑟−1(A
𝑛)

𝑉𝑟−1(A
𝑛−1) 𝑉𝑟 (A

𝑛) 𝑄2𝑛−1.

𝑖

𝑖 𝜌

𝜌

𝑖 𝜌

In particular, the diagram

𝝅𝑛−1+𝑛𝛼 (𝑉𝑟−1(A
𝑛)) (𝑘) 𝝅𝑛−2+𝑛𝛼 (𝑄2(𝑛−𝑟+1)−1) (𝑘)

𝝅𝑛−1+𝑛𝛼 (𝑄2𝑛−1) (𝑘) 𝝅𝑛−2+𝑛𝛼 (𝑉𝑟−1(A
𝑛−1)) (𝑘)

(𝜌∗)−𝑛 (𝑘)

𝜕−𝑛 (𝑘)

(𝑖∗)−𝑛 (𝑘)

𝜕−𝑛 (𝑘)

commutes. Then

((𝑖∗)−𝑛 (𝑘) ◦ 𝜕−𝑛 (𝑘)) (𝜓) = (𝜕−𝑛 (𝑘) ◦ (𝜌∗)−𝑛 (𝑘)) (𝜓) = 𝜕−𝑛 (𝑘) (id𝑉1 (A𝑛) ) = 𝛽𝑛𝑟 ,

as desired. �
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Remark 7.6. In Proposition 7.7 below, the case of quadratically closed k is redundant because of the
argument of Remark 1.1. We include this case here because the proof is short, and we expect the same
proof to apply when k is a quadratically closed field of characteristic greater than 3.
Proposition 7.7. Let 𝑛 ≥ 4 be an integer and k be a subfield of C satisfying one of the following:
1. k is quadratically closed.
2. k is a subfield of R and admits a unique quadratic extension (up to isomorphism).
Then the map 𝜌4,1 : 𝑉4(A

𝑛) → 𝑄2𝑛−1 has a section if and only if 𝑛 ≡ 0(mod 24).
Proof. As in the 𝑟 = 3 case, the method of [22, Théorème 6.5] allows us to assume that n is a positive
multiple of 𝑏4 = 24. Let 𝜓 : 𝑉1(A

𝑛) → 𝑉3(A
𝑛) be a pointed homotopy section (which exists by

Proposition 7.4), and consider the sequence

𝝅𝑛−1+𝑛𝛼 (𝑉3 (A
𝑛)) (𝑘)

𝜕−𝑛 (𝑘)
−−−−−→ 𝝅𝑛−2+𝑛𝛼 (𝑄2(𝑛−3)−1) (𝑘)

(𝑖∗)−𝑛 (𝑘)
−−−−−−−→ 𝝅𝑛−2+𝑛𝛼 (𝑉3 (A

𝑛−1)) (𝑘). (15)

We claim that (𝜕−𝑛 (𝑘)) (𝜓) = 0. With the help of Proposition 7.2 and Lemma 7.5, the result follows from
this claim. Note that the middle group in (15) is in the stable range (Example 6.6) and coincides with
the corresponding stable homotopy group of the motivic sphere spectrum 𝝅2+3𝛼 (1) (𝑘) = K𝑀

1 (𝑘)/(2)
(compare (13)).

If k is quadratically closed, we have K𝑀
1 (𝑘)/(2) = 0 by assumption, so there is nothing left to be done.

For the second case, real realization induces the commuting diagram

𝝅𝑛−1+𝑛𝛼 (𝑉3 (A
𝑛)) (𝑘) 𝝅𝑛−2+𝑛𝛼 (𝑄2(𝑛−3)−1)) (𝑘) 𝝅𝑛−2+𝑛𝛼 (𝑉3(A

𝑛−1)) (𝑘)

𝜋𝑛−1 (𝑊3 (R
𝑛)) 𝜋𝑛−2 (𝑆

𝑛−4) 𝜋𝑛−2 (𝑊3 (R
𝑛−1)).

𝜕−𝑛 (𝑘)

ℜ

(𝑖∗)−𝑛 (𝑘)

ℜ ℜ

𝜕 𝑖R∗

(16)

Under the left vertical map, the class of the section 𝜓 : 𝑄2𝑛−1 → 𝑉3(A
𝑛) is taken to the class of a

section 𝑆𝑛−1 → 𝑊3(R
𝑛). It follows from [16, p. 2.1] that the element

𝑖R∗ ◦ 𝜕 ◦ℜ(𝜓) = (𝑖R∗ ◦ℜ ◦ 𝜕−𝑛 (𝑘)) (𝜓)

is the obstruction to the existence of a section of 𝜌R : 𝑊4(R
𝑛) → 𝑆𝑛−1. This obstruction vanishes by

[17, Proposition 1.1]. Moreover, the source and target of the middle realization map in (16) are in the
stable range, so by the assumption and Example 6.6, the middle realization map is an isomorphism.
Consequently, to prove the claim, it suffices to show that 𝑖R∗ : 𝜋𝑛−2 (𝑆

𝑛−4) → 𝜋𝑛−2 (𝑊3 (R
𝑛−1)) is

injective.
A portion of the long exact sequence in homotopy groups associated with the homotopy fibre sequence

𝑆𝑛−4 𝑖R
−→ 𝑊3 (R

𝑛−1)
𝜌(R)
−−−−→ 𝑊2(R

𝑛−1)

is

𝜋𝑛−2 (𝑆
𝑛−4)

𝑖R∗
−−→ 𝜋𝑛−2 (𝑊3 (R

𝑛−1))
𝜌R∗
−−→ 𝜋𝑛−2 (𝑊2 (R

𝑛−1))
𝜕
→ 𝜋𝑛−3 (𝑆

𝑛−4).

The isomorphisms 𝜋𝑛−2 (𝑊3 (R
𝑛−1)) � Z/2 ⊕ Z/2 and 𝜋𝑛−2 (𝑊2 (R

𝑛−1)) � Z/(2) can be read from the
tables of [21], from which we conclude that 𝑖R∗ is injective. �

8. The main result

Proposition 4.4 and Propositions 7.4 and 7.7 have the following immediate consequence, which is the
main result of this paper.
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Theorem 8.1. Suppose X is a scheme over a subfield k of C and P is a sheaf of O𝑋 -modules with the
property P ⊕ O𝑋 � O24𝑛

𝑋 for some positive integer n. Then there exists a sheaf of O𝑋 -modules Q such
that

P � Q ⊕ O2
𝑋 .

Suppose further that k is quadratically closed or is a subfield of R that admits a unique quadratic
extension (up to isomorphism). Then there is a sheaf of O𝑋 -modules Q′ and an isomorphism

P � Q′ ⊕ O3
𝑋 .
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