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A remark on characterizing inner product
spaces via strong three-point homogeneity

Sujit Sakharam Damase and Apoorva Khare

Abstract. We show that a normed linear space is isometrically isomorphic to an inner product space if
and only if it is a strongly n-point homogeneous metric space for any (or every) n ⩾ 3. The counterpart
for n = 2 is the Banach–Mazur problem.

Normed linear spaces and inner product spaces are central to much of mathematics, in
particular, analysis and probability. The goal of this short note is to provide a “metric”
characterization that we were unable to find in the literature, of when the norm in a
linear space arises from an inner product. This characterization is classical in spirit,
is in terms of a “strong” three-point homogeneity property that holds in all inner
product spaces, and is adjacent to a well-known open question.

Two prevalent themes in the early 20th century involved exploring metric geom-
etry – e.g., when a (finite or) separable metric space isometrically embeds into the
Hilbert space of square-summable sequences �2 ∶= �2(N) – and exploring when a
normed linear space (B, ∥ ⋅ ∥) is Hilbert, i.e., ∥ ⋅ ∥2 arises from an inner product on B.
See, e.g., [3, 9, 11, 12, 14–18, 20, 25]; additional works on the latter theme can be found
cited in [15]. There have also been books – see, e.g., [5, 8, 10, 13] – as well as later
works. This note, while squarely in the latter theme, is strongly inspired by the former
theme – in which it is worth mentioning the Mathematics Kolloquium [23] of Karl
Menger and others in Vienna, from 1928- to 1936. This long-running lecture series saw
contributions in metric geometry and related areas by Menger, Gödel, von Neumann,
and others, and led to new developments in metric embeddings, metric convexity,
fixed point theory, and more. The goal of our work is to provide such a distance-
geometric characterization of an inner product.

We begin with some results from the latter theme. Jordan and von Neumann
showed in [16] that the norm in a real or complex linear space B comes from an inner
product if and only if the parallelogram law holds in B; they also showed the (real
and) complex polarization identity in loc. cit. We collect this and other equivalent
conditions for the norm ∥ ⋅ ∥ in a real or complex linear space B to arise from an inner
product.
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2 S. S. Damase and A. Khare

Theorem 1 Suppose (B, ∥ ⋅ ∥) is a real or complex inner product space. Its norm arises
from an inner product if and only if any of the following equivalent conditions holds (for
the last two, we work only over R):
(IP1) (Jordan and von Neumann [16]) ∥ f + g∥2 + ∥ f − g∥2 = 2(∥ f ∥2 + ∥g∥2) for all

f , g ∈ B. (The parallelogram law; it originally appears in the authors’ work with
Wigner (see [17, p. 32].)

(IP2) (Ficken [11]) If f , g ∈ Bwith ∥ f ∥ = ∥g∥, then ∥α f + βg∥ = ∥β f + αg∥ for all real
α, β.

(IP3) (Day [9]) If f , g ∈ B with ∥ f ∥ = ∥g∥ = 1, then ∥ f + g∥2 + ∥ f − g∥2 = 4. (The
parallelogram law, but only for rhombi.)

(IP4) (James [15], when dimB ⩾ 3.) For all f , g ∈ B, ∥ f + αg∥ ⩾ ∥ f ∥ for all scalars
α, if and only if ∥g + α f ∥ ⩾ ∥g∥ for all scalars α. (Symmetry of Birkhoff–James
orthogonality.)

(IP5) (Lorch [20], over R.) There exists a fixed constant γ′ ∈ R/{0,±1}1 such that
whenever f ′ , g′ ∈ B with ∥ f ′∥ = ∥g′∥, we have ∥ f ′ + γ′g′∥ = ∥g′ + γ′ f ′∥.

(IP6) (Lorch [20], over R.) There exists a fixed constant γ ∈ R/{0,±1} such that
whenever f , g ∈ B with ∥ f + g∥ = ∥ f − g∥, we have ∥ f + γg∥ = ∥ f − γg∥.

Indeed, that every inner product space satisfies these properties is immediate,
while the implications (IP5) ⇐⇒ (IP6) 
⇒ (IP2) were shown by Lorch; and that
(IP1), (IP2), (IP3), (IP4) imply that ∥ ⋅ ∥2 arises from an inner product were shown by
the respectively named authors above.

All of these characterizations of an inner product use the norm and the vector space
structure (over R or C) on B. The goal of this note is to isolate the inner product using
the metric in B but avoiding both the additive structure and the (real or complex)
scalar multiplication. Thus, our result is in the spirit of both of the aforementioned
classical themes: characterizing inner products in normed linear spaces, while using
metric geometry alone.

1 The main result and its proof

To state our result, first recall from [27] or even [4, p. 470] that for an integer n ⩾ 1,
a metric space (X , d) is n-point homogeneous if given two finite subsets Y , Y ′ ⊆ X
with ∣Y ∣ = ∣Y ′∣ ⩽ n, any isometry T ∶ Y → Y ′ extends to an isometry ∶ X → X. We will
require a somewhat more restrictive notion.

Definition 2 A metric space (X , d) will be termed strongly n-point homogeneous if
given subsets Y , Y ′ ⊆ X with ∣Y ∣ = ∣Y ′∣ ⩽ n, each isometry T ∶ Y → Y ′ can be extended
to an onto isometry ∶ X ↠ X.

We now motivate our main result (and the above definition via onto isometries).
It seems to be folklore that the Euclidean space Rk is n-point homogeneous for all n
– and more strongly, satisfies that every isometry between finite subsets Y , Y ′ ⊆ R

k ,

1We correct a small typo in Lorch’s (IP5) in [20]: he stated γ′ ≠ 0, 1 but omitted excluding−1; but clearly
γ′ = −1 “works” for every normed linear space B and all vectors f ′ , g′ ∈ B, since ∥ f ′ − g′∥ = ∥g′ − f ′∥.
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Characterizing inner product spaces via strong three-point homogeneity 3

upon pre- and post-composing with suitable translations in order to send 0 to 0,
extends to an orthogonal linear map ∶ Rk → R

k .

Remark 3 While not central to our main result, we will explain below why this
property also holds for infinite subsets of (Rk , ∥ ⋅ ∥2); a weakening of it was termed
the free mobility postulate by Birkhoff [4, pp. 469–470]. However, this postulate is
not satisfied by any infinite-dimensional Hilbert space for infinite subsets. This was
already pointed out in 1944 by Birkhoff in loc. cit.; for a specific counterexample,
see, e.g., the proof of [28, Theorem 11.4] in �2, where the left-shift operator sending
Y ∶= {(xn)n⩾0 ∈ �2 ∶ x1 = 0} onto Y ′ ∶= �2 is an isometry that does not extend to
(1, 0, 0, . . . ).

Returning to our motivation: in fact all inner product spaces satisfy this “orthog-
onal extension property” for all pairs of isometric finite subsets Y , Y ′, as we explain
below. Here, we are interested in the converse question, i.e.,
(a) if this “orthogonal extension property” (with Y , Y ′ finite) characterizes inner

product spaces (among normed linear spaces); and
(b) if yes, then how much can this property be weakened without disturbing the

characterization – and if it can in fact be weakened to use metric geometry alone.
(In an arbitrary normed linear space, we necessarily cannot use orthogonality or
inner products; but we also want to not use the vector space operations either.)

This note shows that indeed (a) holds. Moreover, (b), we can indeed weaken the
orthogonal extension property to (i) replacing the orthogonal linear map by merely
an onto isometry – not necessarily linear a priori – and (ii) working with three-point
subsets Y , Y ′. More precisely, we have the following theorem.

Theorem 4 Suppose (B, ∥ ⋅ ∥) is a nonzero real or complex normed linear space. Then,
∥ ⋅ ∥2 arises from an inner product – real or complex, respectively – if and only if B is
strongly n-point homogeneous for any (equivalently, every) n ⩾ 3.

Remark 5 Below, we will provide additional equivalent – and a priori weaker –
conditions to add to Theorem 4 in characterizing an inner product (see Theorems 12
and 15).

To the best of our ability – and that of a dozen experts – we were unable to find such
a result proved in the literature. Before proceeding to its proof, we discuss the assertion
for n = 1, 2. If n = 1, then Theorem 4 fails to hold, since every normed linear space B
is strongly one-point homogeneous: given x , y ∈ B, the translation z ↦ z + y − x is an
onto isometry sending x to y.

If instead n = 2, then one is asking if there exists a (real) linear space (B, ∥ ⋅ ∥)
with ∥ ⋅ ∥2 not arising from an inner product, such that given any f , f ′ , g , g′ ∈ B
with ∥ f ′ − f ∥ = ∥g′ − g∥, every isometry sending f , f ′ to g , g′, respectively, extends
to an onto isometry of B. By pre- and post-composing with translations, one can
assume f = g = 0 and ∥ f ′∥ = ∥g′∥; now one is asking if every real normed linear
space with transitive group of onto-isometries fixing 0 (these are called rotations) is

Downloaded from https://www.cambridge.org/core. 26 Nov 2025 at 12:45:03, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


4 S. S. Damase and A. Khare

isometrically isomorphic to an inner product space. Thus, we come to the well-known
Banach–Mazur problem [2] – which was affirmatively answered by Mazur for finite-
dimensional B [21], has counterexamples among non-separable B [24], and remains
open for infinite-dimensional separable B. (This is also called the Mazur rotations
problem; see the recent survey [6].) This is when n = 2; and the n ⩾ 3 case is Theorem 4.

Remark 6 Given the preceding paragraph, one can assume in Theorem 4 that B
is infinite-dimensional, since if dimB < ∞, then strong three-point homogeneity
implies strong two-point homogeneity, which by Mazur’s solution [21] to the Banach–
Mazur problem implies B is Euclidean. That said, our proof of Theorem 4 works
uniformly over all normed linear spaces, and we believe is simpler than using the
Banach–Mazur problem (which moreover cannot be applied for all B).

Proof of Theorem 4 We begin by proving the real case. We first explain the forward
implication, starting with B ≅ (Rk , ∥ ⋅ ∥2) for an integer k ⩾ 1. As is asserted (without
proof) on [4, p. 470], Rk is n-point homogeneous for every n ⩾ 1; we now show that it
is moreover strongly n-point homogeneous – in fact, that it satisfies the “orthogonal
extension property” above.

Let Y , Y ′ ⊆ R
k , and let T ∶ Y → Y ′ be an isometry. By translating Y and Y ′,

assume 0 ∈ Y ∩ Y ′ and T(0) = 0. Then, T extends to an orthogonal self-isometry T̃ of
(Rk , ∥ ⋅ ∥2).

This claim can be proved from first principles and is likely folklore (e.g., see, a
skeleton argument in [5, Section 38]). However, for self-completeness, we present a
detailed sketch via a “lurking isometry” argument, along with some supplementary
remarks. For full details, see [19, Theorem 22.3] and its proof.

The first step is to note that vectors y0 , . . . , yn in an inner product space are linearly
dependent if and only if their Gram matrix G ∶= (⟨y i , y j⟩)n

i , j=0 is singular, since

v ∶=
n
∑
j=0

c j y j = 0 
⇒ Gc = 0 
⇒ c∗Gc = 0 
⇒ ∥v∥2 = 0.(1.1)

∎

This simple fact yields several noteworthy consequences; we mention two here,
without proof. The first is an 1841 result by Cayley [7] (during his undergraduate days).

Lemma 7 Let (X = {x0 , . . . , xn}, d) be a finite metric space, and Ψ ∶ X → �2 an
isometry. Then, the vectors Ψ(X) are affine linearly-dependent (i.e., lie in an (n − 1)-
dimensional affine subspace) if and only if the Cayley–Menger matrix of X is singular:

CM(X)(n+2)×(n+2) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 d2
01 d2

02 ⋯ d2
0n 1

d2
10 0 d2

12 ⋯ d2
1n 1

d2
20 d2

21 0 ⋯ d2
2n 1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
d2

n0 d2
n1 d2

n2 ⋯ 0 1
1 1 1 ⋯ 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, where d i j = dX(x i , x j).

(1.2)
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Characterizing inner product spaces via strong three-point homogeneity 5

The second consequence is used below, but also underlies the global positioning
system (GPS) “trilateration” – i.e., that every point on say an Euclidean plane P is
uniquely determined by its distances from three non-collinear points in P. More
generally, we have the following.

Proposition 8 Fix y0 = 0, . . . , yn ∈ �2. The following are equivalent for y ∈ �2:
(1) y is (uniquely) determined by its distances from y0 , . . . , yn .
(2) y is in the span of y1 , . . . , yn .

(See, e.g., [19, Proposition 22.7].) Returning to the proof of the orthogonal extension
property for Rk : fix a maximal linearly independent subset {y1 , . . . , yr} in Y. Then,
we claim, so is {T(y1), . . . , T(yr)}. Indeed, by polarization we have

2⟨y i , y j⟩ = ∥y i − 0∥2
2 + ∥y j − 0∥2

2 − ∥y i − y j∥
2
2

= ∥T(y i) − T(0)∥2
2 + ∥T(y j) − T(0)∥2

2 − ∥T(y i) − T(y j)∥
2
2 = 2⟨T(y i), T(y j)⟩

(1.3)

for 1 ⩽ i , j ⩽ r. Thus, the Gram matrix of the T(y i) equals that of the y i , and hence
is invertible as well; so by (1.1), the T(y j) are linearly independent too. Moreover, for
any other y ∈ Y , the Gram matrix of y, y1 , . . . , yr is singular by (1.1), hence, so is the
Gram matrix of T(y), T(y1), . . . , T(yr) by (1.3).

Next, we claim that the linear extension T̃ of T from {y1 . . . , yr} to span
R
(Y)

(hence, mapping into span
R
(Y ′)) agrees with T on Y. Indeed, by maximality one

writes y ∈ span
R
(Y) as∑r

j=1 c j(y)y j and T(y) ∈ span
R
(Y ′) as∑r

j=1 c′j(y)T(y j); then
(1.3) and Proposition 8 show that c j ≡ c′j on Y (for all j). Hence, T̃ ≡ T on Y.

It also follows from (1.3) that T̃ preserves lengths, hence is injective. Finally,
choose orthonormal bases of the orthocomplements in R

k of span
R
(Y) and of

T̃ (span
R
(Y)), and map the first of these bases (within span

R
(Y)⊥) bijectively onto

the second; then extend T̃ to all of R
k by linearity. Direct-summing these two

orthogonal linear maps yields the desired extension of T to a linear self-isometry T̃
of (Rk , ∥ ⋅ ∥2).

This linear orthogonal map T̃ is necessarily injective on R
k , hence surjective as

well. This shows the orthogonal extension property for all (possibly infinite) isometric
subsets Y , Y ′ ⊆ R

k , and hence the forward implication in the main result for B ≅ R
k .

If instead B is an infinite-dimensional inner product space, and T an isometry
between Y , Y ′ ⊂ B of common size at most n, first pre- and post-compose by trans-
lations to assume 0 ∈ Y ∩ Y ′ and T(0) = 0. Now let B0 ≅ (Rk , ∥ ⋅ ∥2) be the span of
Y ∪ Y ′. By the above analysis, T ∶ Y → Y ′ extends to an orthogonal operator on B0,
which we still denote by T; as B0 is a complete subspace of B, by the “projection
theorem” (or from first principles) we get B = B0 ⊕B

⊥
0 . Now the bijective orthogonal

map T ∣B0 ⊕ Id∣B⊥0 completes the proof of the forward implication – for any n ⩾ 1.
We next come to the reverse implication; now n ⩾ 3. From the definitions, it suffices

to work with n = 3. Moreover, the cases of dimB = 0, 1 are trivial since B is then an
inner product space, so the reader may also assume dimB ∈ [2,∞] in the sequel, if
required.
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6 S. S. Damase and A. Khare

We work via contradiction: let (B, ∥ ⋅ ∥) be a nonzero three-point homogeneous
normed linear space, with ∥ ⋅ ∥2 not induced by an inner product. Then, Lorch’s
condition (IP5) fails to hold for any γ′ ∈ R/{0,±1}. Fix such a scalar γ′; then there exist
vectors f ′ , g′ ∈ B with ∥ f ′∥ = ∥g′∥ but ∥ f ′ + γ′g′∥ ≠ ∥g′ + γ′ f ′∥. In particular, 0, f ′ , g′
are distinct. Now let Y = Y ′ = {0, f ′ , g′}, and consider the isometry T ∶ Y → Y ′ which
fixes 0 and interchanges f ′ , g′. By hypothesis, T extends to an onto isometry ∶ B→ B,
which we also denote by T. But then T is affine-linear by the Mazur–Ulam theorem
[22], hence is a linear isometry as T(0) = 0. This yields

∥ f ′ + γ′g′∥ = ∥ f ′ − (−γ′)g′∥ = ∥T( f ′) − T(−γ′g′)∥ = ∥g′ + γ′ f ′∥,

which provides the desired contradiction, and proves the reverse implication.

Remark 9 An alternate argument to the one provided above (for the reverse
implication) goes as follows. By the parallelogram law (IP1), it suffices to show every
plane P ⊆ B is Euclidean. Suppose 0 ≠ f , g ∈ P with ∥ f ∥ = ∥g∥; then, the isometry of
{0, f , g} that fixes 0 and exchanges f , g extends to an onto isometry of B. By Mazur–
Ulam [22], T is affine-linear (hence linear as T(0) = 0), and thus sends P onto itself. But
then ∥α f + βg∥ = ∥T(α f + βg)∥ = ∥β f + αg∥ for all α, β ∈ R. By Ficken’s result (IP2)
for P, P is Euclidean. We note that this argument is somewhat more involved than the
one above, as it makes use of (i) Ficken’s characterization (IP2), which as Lorch wrote
[20] is a priori more involved than Lorch’s (IP5); and (ii) the parallelogram law (IP1),
which our argument does not use (nor did Lorch).2

The above analysis proves the real case; now suppose (B, ∥ ⋅ ∥) is a nonzero
complex normed linear space. The forward implication follows from the real case,
since (B, ∥ ⋅ ∥) is also a real normed space – which we denote by B∣R. For the same
reason, in the reverse direction, we obtain that B∣R is isometrically isomorphic to a
real inner product space: ∥ f ∥ =

√
⟨ f , f ⟩R for a real inner product ⟨⋅, ⋅⟩R on B∣R and

all f ∈ B∣R. Now the complex polarization trick of Jordan–von Neumann [16] gives
that

⟨ f , g⟩ ∶= ⟨ f , g⟩R − i⟨i f , g⟩R(1.4)

is indeed a complex inner product on B satisfying: ∥ f ∥ =
√
⟨ f , f ⟩ for all f.

2 A second proof: Lorch’s characterizations for complex linear
spaces

We next provide a second proof of the “reverse implication” of Theorem 4 for complex
linear spaces B = B∣C, which requires the complex version of Lorch’s condition (IP5)

2One can also see [8, Condition (2.8)], where Dan mentions the flip map of an isosceles triangle.
However, Dan requires the isometry T to be linear, which is strictly stronger than our characterization-
hypothesis of strong homogeneity. Moreover, this linearity assumption is indeed required by Dan, since
he mentions in the very next line that linearity can be dropped if B is assumed to be strictly convex
(see Theorem 13). In contrast, Theorem 4 makes no assumption either about the isometry T (other than
surjectivity) or about the normed linear space B.
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Characterizing inner product spaces via strong three-point homogeneity 7

above. Note that the above argument over R cannot immediately proceed verbatim
over C for two reasons:
(a) Lorch’s condition (IP5) needs to be verified as characterizing a complex inner

product.
(b) The Mazur–Ulam theorem does not go through over C – e.g., the isometry

η ∶ (z, w) ↦ (z, w) of the Hilbert space (C2 , ∥ ⋅ ∥2) sends (0, 0) to itself, but is
neither C-linear nor C-antilinear.

However, since η is R-linear on C
2, this reveals how to potentially fix (b) for a

second proof of the reverse implication: it suffices to use Lorch’s condition (IP5) for
γ′ still real – and avoiding 0,±1 as above – now for all vectors f ′ , g′ ∈ B∣C. If this
still characterizes a complex inner product, then one could continue the above proof
verbatim, using the Mazur–Ulam theorem for real normed linear spaces and replacing
the word “linear” twice by “R-linear” in the proof.

Thus, we need to verify if Lorch’s condition (IP5) characterizes a complex inner
product. More broadly, one can ask which of Lorch’s conditions (I1)–(I6) and (I′1) =
(IP5) in [20] – which characterized an inner product in a real normed linear space –
now do the same over C.

Theorem 10 (Lorch, [20]) Suppose B is a real normed linear space. Then, the norm
is induced by an inner product if and only if any of the following equivalent conditions
hold:
(I1) (Stated above as (IP6).) There exists a fixed constant γ ∈ R/{0,±1} such that

whenever f , g ∈ B with ∥ f + g∥ = ∥ f − g∥, we have ∥ f + γg∥ = ∥ f − γg∥.
(I′1) (Stated above as (IP5).) There exists a fixed constant γ′ ∈ R/{0,±1} such that

whenever f ′ , g′ ∈ B with ∥ f ′∥ = ∥g′∥, we have ∥ f ′ + γ′g′∥ = ∥g′ + γ′ f ′∥.
(I2) A triangle is isosceles if and only if two medians are equal:

f + g + h = 0, ∥ f ∥ = ∥g∥ 
⇒ ∥ f − h∥ = ∥g − h∥, ∀ f , g , h ∈ B.

(I3) For all f , g , h, k ∈ B,

f + g + h + k = 0, ∥ f ∥ = ∥g∥, ∥h∥ = ∥k∥ 
⇒ ∥ f − h∥ = ∥g − k∥ and
∥g − h∥ = ∥ f − k∥.

(I4) For all f1 , f2 ∈ B, the expression

ϕ( f1 , f2; g) = ∥ f1 + f2 + g∥2 + ∥ f1 + f2 − g∥2 − ∥ f1 − f2 − g∥2 − ∥ f1 − f2 + g∥2

is independent of g ∈ B.
(I5) If f , g ∈ B and ∥ f ∥ = ∥g∥, then ∥α f + α−1 g∥ ⩾ ∥ f + g∥ for all 0 ≠ α ∈ R.
(I6) For a fixed integer n ⩾ 3, and vectors f1 , . . . , fn ∈ B, we have

f1 +⋯+ fn = 0 
⇒ ∑
i< j
∥ f i − f j∥2 = 2n

n
∑
i=1
∥ f i∥2 .

In fact, these characterizations have since been cited and applied in many papers
that work over real linear spaces. The need to work over complex normed linear spaces
– as well as the fact that several characterizations in [9, 11, 16] before Lorch held
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8 S. S. Damase and A. Khare

uniformly over both R and C – provide natural additional reasons to ask if Lorch’s
conditions also characterize complex inner products.

We quickly explain why this does hold. Indeed, Lorch’s characterizations them-
selves involve real scalars, so even if one starts with a complex normed linear space
B, one still obtains a real inner product ⟨⋅, ⋅⟩R on B = B∣R. Now the discussion around
(1.4) recovers the complex inner product from ⟨⋅, ⋅⟩R. This yields the following.

Theorem 11 (“Complex Lorch”) A complex nonzero normed linear space (B, ∥ ⋅ ∥)
is isometrically isomorphic to a complex inner product space if and only if any of the
following conditions of Lorch [20] holds: (I1) = (IP6), (I′1) = (IP5), or (I2), . . . , (I6) –
now stated verbatim in B, with the constants γ, γ′ , α still being real.

In particular, this provides a second proof of one implication in Theorem 4 over C.

3 Isosceles triangle characterization:weaker notions of
homogeneity

Note that the arguments in Section 1 in fact show a strengthening of Theorem 4.
Namely, continuing the discussion preceding Theorem 4, the “orthogonal extension
property” can be weakened to strong three-point homogeneity, and even weaker –
wherein one only works with Y = Y ′ the vertices of an isosceles triangle in B (with
the two equal sides of specified length).

Theorem 12 The following are equivalent for a nonzero real/complex normed linear
space (B, ∥ ⋅ ∥).
(1) ∥ ⋅ ∥2 arises from an (real or complex) inner product on B.
(2) If Y , Y ′ ⊂ B are finite subsets, with ∣Y ∣ = ∣Y ′∣, then any isometry ∶ Y → Y ′ – up to

pre- and post-composing by translations – extends to an R-linear onto isometry
∶ B→ B.

(3) B is strongly n-point homogeneous for any (equivalently, every) n ⩾ 3.
(4) Given an isosceles triangle in B with vertex set Y = Y ′ = {0, f ′ , g′} such that

∥ f ′∥ = ∥g′∥ = 1, the isometry ∶ Y → Y ′ that fixes 0 and flips f ′ , g′ extends to an
onto isometry of B.

Indeed, we showed above that (4) 
⇒ (1) 
⇒ (2) (as the f ′ , g′ in Lorch’s
condition (IP5) can be simultaneously rescaled), while (2) 
⇒ (3) 
⇒ (4) is
trivial. To see why one cannot assert C-linearity in the second statement, let

B = (C2 , ∥ ⋅ ∥2), Y = {(0, 0), (1, 0), (i , 0)}, Y ′ = {(0, 0), (1, 0), (0, 1)},

and let T ∶ Y → Y ′ fix (0, 0) and (1, 0), and send (i , 0) to (0, 1). Then, T necessarily
cannot extend to a C-linear map. Also note that akin to Theorem 4, here too the final
three assertions each characterize inner products using (isosceles) metric geometry
alone, and without appealing to the vector space structure in B.

We conclude by exploring two weakenings of the notion of “strong” n-point
homogeneity that was used to characterize when B is an inner product space. The
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first question is to ask if one can work with “usual” n-point homogeneity, i.e., if
one can remove the “onto” part of that definition. Note that in the literature, the
requirement of extending subset-isometries to onto-isometries of the whole (metric)
space is perhaps more natural than merely into-isometries, given their appearance in
well-known results and open problems in the Banach space literature – the Mazur–
Ulam theorem [22], the Banach–Mazur problem [2, 21], and Tingley’s problem [26]
among others – and also given the folklore fact that this holds for all inner product
spaces and in our results above. Now having studied the “onto” picture in detail, the
first question (above) is natural.

To answer it, note that the proof of Theorem 4 required the “onto” hypothesis solely
to invoke the Mazur–Ulam theorem. This hypothesis can thus be bypassed, at a cost.

Theorem 13 Suppose (B, ∥ ⋅ ∥) is a nonzero real or complex normed linear space that
is moreover strictly convex:

∥a + b∥ = ∥a∥ + ∥b∥ 
⇒ a, b ∈ B are linearly dependent.

Then, ∥ ⋅ ∥2 arises from a (real or complex, respectively) inner product if and only if B is
n-point homogeneous for any (every) n ⩾ 3 – equivalently, if the flip map on the vertices
of each isosceles triangle extends to a self-isometry of B.

In particular, this reveals yet another equivalent condition to the inner product
property: B is strictly convex and (“usual”) three-point homogeneous.

Proof The reverse implication over R follows from the corresponding part of
Theorem 4, using Baker’s result [1] that the Mazur–Ulam theorem does not require the
surjectivity hypothesis if B is strictly convex. The reverse implication over C is now
shown as in Theorem 4; and the forward implication follows from Theorem 4. ∎

We formulate the natural question corresponding to the remaining case.

Question 14 Suppose B is a (real) normed linear space that is not strictly convex
(in particular, not strongly three-point homogeneous or equivalently an inner product
space). Can B be three-point homogeneous? (To start, one can assume B separable and
complete.)

We end by answering a natural question that arises from Theorem 12(4). Note that
(strong) n-point homogeneity concerns subsets Y , Y ′ of size at most n. However,
Theorem 12(4) shows that one can work with subsets of size exactly n = 3. Given
Theorem 4, one can ask if subsets of size exactly 4, or any fixed integer > 4, will suffice
to isolate an inner product. Our final result provides an affirmative answer, thereby
adding to Theorem 12.

Theorem 15 The conditions in Theorem 12 are further equivalent to:
(5) For any fixed 3 ⩽ n < ∞, every isometry T ∶ Y → Y ′ of n-point subsets Y , Y ′ ⊆ X

extends to an onto isometry of B.
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Proof Clearly (2) 
⇒ (5). Conversely, it suffices to assume (5) and show The-
orem 12(1). We follow the proof of Theorem 4: if ∥ ⋅ ∥ is not induced by an inner
product, there exist γ′ ∈ R/{0,±1} and f ′ , g′ ∈ B with ∥ f ′∥ = ∥g′∥, but ∥ f ′ + γ′g′∥ ≠
∥g′ + γ′ f ′∥. Thus, 0, f ′ , g′ are distinct.

There are now two cases. First, if g′ = − f ′ , then the flip map extends to the onto
isometry T ≡ −idB. Else f ′ , g′ are R-linearly independent, so their R-span is a real
normed plane P ⊆ B, say. As all norms on R

2 are equivalent, (P, ∥ ⋅ ∥) is linearly bi-
Lipschitz – hence homeomorphic – to (R2 , ∥ ⋅ ∥2).

We now claim that the “equidistant locus in P” – i.e., the locus Z f ′ , g′ ∶= {h ∈ P ∶
∥h − f ′∥ = ∥h − g′∥} is uncountable. Indeed, if this is not true then Z f ′ , g′ is at most
countable, so P/Z f ′ , g′ is homeomorphic to a countably-punctured Euclidean plane,
hence is path-connected. As the function

φ ∶ P → R; h ↦ ∥h − f ′∥ − ∥h − g′∥

is continuous on P/Z f ′ , g′ , and switches signs from f ′ to g′, it must vanish at an
“intermediate” point in P/Z f ′ , g′ . This contradiction shows the claim.

Finally, as n ⩾ 3, choose distinct points h1 , . . . , hn−3 ∈ Z f ′ , g′/{0}, and define Y , Y ′
via:

Y = Y ′ ∶= {0, f ′ , g′ , h1 , . . . , hn−3}.

Let T ∶ Y → Y ′ interchange f ′ , g′ and fix all other points in Y. By hypothesis, T
extends to an onto isometry of B. Now repeating the proof of Theorem 4, it follows
that B is a real inner product space. Finally, if B was a complex linear space then the
discussion around (1.4) reveals the complex inner product structure. ∎
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