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We investigate fully developed turbulent flow in curved channels to explore the interaction
between turbulence and curvature-driven coherent structures. By focusing on two cases
of mild and strong curvature, we examine systematically the effects of the Reynolds
number through a campaign of direct numerical simulations, spanning flow regimes
from laminar up to the moderately high Reynolds number – based on bulk velocity
and channel height – of 87 000. Our analysis highlights the influence of curvature on the
friction coefficient, showing that flow transition is anticipated by concave curvature and
delayed by convex curvature. In the case of mild curvature, a frictional drag reduction
compared with plane channel flow is found in the transitional regime. Spectral analysis
reveals that the near-wall turbulence regeneration cycle is maintained in mildly curved
channels, while it is absent or severely inhibited on the convex wall of strongly curved
channels. Streamwise large-scale structures resembling Dean vortices are found to be
weakly dependent on the Reynolds number and strongly affected by curvature: increasing
curvature shifts these vortices towards the outer wall and reduces their size and coherence,
limiting their contribution to streamwise velocity fluctuations and momentum transport.
In the case of strong curvature, spanwise large-scale structures are also detected. These
structures are associated with large pressure fluctuations and the suppression of turbulent
stresses near the convex wall, where a region with negative turbulence production is
observed and characterised via quadrant analysis.
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1. Introduction
Turbulence bounded by curved walls is a key aspect of various engineering applications,
such as highly cambered aerofoils, turbo-machinery blades and cooling channels. In these
configurations, curvature alters significantly the turbulence structures, impacting friction,
heat transfer and flow stability. The spatially evolving and geometry-dependent nature of
these flows poses major challenges in developing a unified and comprehensive description
of curvature effects on turbulence, which can be achieved by considering the time-evolving
curved channel flow. Direct numerical simulations (DNS) of plane channel flow led to a
scientific breakthrough in the theory of wall-bounded turbulence through the pioneering
work of Kim, Moin & Moser (1987), and subsequent efforts at higher Reynolds numbers
were made by Lee & Moser (2015) and by Pirozzoli et al. (2021) for the circular pipe
flow. In a similar vein, we scrutinise the effect of the Reynolds number on flow in curved
channels, with the aim of providing a benchmark dataset for Reynolds-averaged Navier–
Stokes (RANS) and large-eddy simulations (LES) of turbulent flows over curved surfaces.

Compared with flat walls, surface curvature produces additional strain rates an order
of magnitude larger than what dimensional arguments would suggest (Bradshaw &
Young 1973). The laminar solution of the equations of motion indicates that the effects
of surface curvature (κ) on quantities such as the friction coefficient and boundary
layer thickness (δ) are of the order O(κδ). However, experimental measurements in
turbulent flow reveal much stronger effects, underscoring the direct impact of curvature
on turbulence. Rayleigh (1917) first investigated the stability of inviscid disturbances in
curved channel flow around its laminar solution, deducing flow stability as a balance
between the centrifugal force per unit mass (ρU 2/r , where U is the streamwise velocity
at distance r from the centre of curvature) and the radial pressure gradient (∂P/∂r ).
Specifically, he found that for flow over a concave surface the centrifugal force of the
displaced fluid element is greater than the centripetal pressure gradient, leading to flow
instability, whereas the reverse occurs for convex walls. This idea is known as ‘Rayleigh’s
criterion for centrifugal instability’, and was later supported by experimental evidence
(Wattendorf 1935; Eskinazi & Yeh 1956; Ellis & Joubert 1974). Using the narrow-gap
approximation, Dean (1928) showed analytically that fully developed flow between two
concentric cylinders becomes centrifugally unstable when the Reynolds number exceeds
a critical value, which decreases as the channel curvature increases. When the instability
sets in, large-scale secondary motions are generated in the form of streamwise-aligned
counter-rotating vortices, commonly referred to as Dean vortices. Due to these flow
structures, a downwash (upwash) motion is generated between a vortex pair, resulting
in a corresponding peak (trough) in the friction coefficient. Footprints of large-scale
streamwise-aligned vortices were found also in the turbulent regime: experiments on
curved duct flow (Brewster, Grosberg & Nissan 1959; Ellis & Joubert 1974; Hunt &
Joubert 1979) highlighted regular spanwise variations in mean velocity and friction
coefficient, which were considered evidence for the existence of Dean vortices-like
structures. Other experiments (Eskinazi & Yeh 1956; Ramaprian & Shivaprasad 1978;
Kobayashi et al. 1989), however, did not detect any spanwise variation.

The dynamics of streamwise vortices may be unsteady due to events of splitting and
merging, depending on channel curvature and Reynolds number. Through experiments in
a curved duct, Ligrani & Niver (1988) and Ligrani et al. (1994) observed the splitting of
vortex pairs, during which new vortices seem to emerge from the concave wall between
existing pairs. Splitting and merging phenomena were also detected by Alfredsson &
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Persson (1989) in channels with spanwise rotation and by Matsson & Alfredsson (1990)
in a channel with both curvature and rotation. The origin of this phenomenon was
investigated by Guo & Finlay (1991) who found that vortex splitting and merging in
curved channels are caused by Eckhaus instability, namely a secondary instability of
steady periodic flows (such as the Dean vortex flow) with respect to spanwise perturbations
(Eckhaus 1965).

Flow in curved channels is further complicated by secondary instabilities with respect
to streamwise perturbations. In fact, in numerical simulations of curved channels with roll
cells, Finlay, Keller & Ferziger (1988) observed a ‘wavy Dean vortex flow’ in the form
of travelling waves superposed on the secondary flow (the Dean vortices). Those authors
suggested that travelling waves are originated by a shear-layer instability induced by the
Dean vortices. Consistently, the stability analysis carried out by Yu & Liu (1991) identified
the inflectional profile of the mean velocity as the mechanism driving the secondary
instability. The same secondary instability was found also experimentally by Matsson &
Alfredsson (1990), who described it as a ‘wave train riding on the primary instability’
(Matsson & Alfredsson 1992).

The distinctive three-dimensional effects associated with concave curvature are absent
in the case of convex curvature, whose main effect is to reduce turbulence intensity
(Gillis & Johnston 1983). Indeed, So & Mellor (1973) found experimentally that the
turbulent stress decreases near the wall and vanishes approximately midway between the
convex surface and the edge of the velocity gradient layer. The reduction in turbulent
shear stress due to convex curvature leads to a shift of the zero-crossing point closer
to the convex wall. This asymmetry is associated with a displacement between the
locations where turbulent and viscous shear stresses vanish, giving rise to a region with
negative production of turbulent kinetic energy (TKE). This phenomenon was examined
by Eskinazi & Erian (1969), who related it to a local ‘energy reversal mechanism’,
whereby energy is transferred from turbulent fluctuations to the mean flow.

Despite the large amount of laboratory data available in the literature, the effects of
curvature on turbulence have neither been fully quantified nor understood. Due to the
narrow range of both Reynolds numbers and curvatures spanned by the experiments
conducted so far, it is difficult to draw general conclusions. Additionally, it is often unclear
whether the flow is fully developed, inflow conditions are free of disturbances and three-
dimensional effects due to sidewalls are negligible. The obvious candidate to understand
the flow physics in greater detail is DNS. The first major contribution from DNS was made
by Moser & Moin (1987), who studied fully developed turbulent flow at bulk Reynolds
number Reb = ubδ/ν = 5200 (where ub is the bulk velocity, δ the channel height and ν the
kinematic viscosity) in a curved channel with curvature radius rc/δ= 39.5 at the channel
centreline. They concluded that most turbulence quantities, except for the turbulent shear
stress, are equivalent on the convex and concave sides of the channel when scaled in
local wall units, inferring the existence of flow similarity. However, Nagata & Kasagi
(2004), who carried out several DNS of mildly (rc/δ= 39.5) to moderately (rc/δ = 2.5)
curved channel flow at Reb ≈ 4600, did not observe near-wall similarity, especially for
the strongest curvature considered. Contrary to previous studies, they suggested that large-
scale roll cells primarily contribute to turbulence production near the convex wall, rather
than the concave wall. Ambiguities in assessing the effects of large-scale structures may
arise from the use of periodicity conditions in the streamwise direction combined with
short computational domains, artificially enhancing their coherence. In addition, narrow
domains in the spanwise direction can constrain the wavelength of Dean-like vortices.
These issues were addressed by Brethouwer (2022), who employed DNS to investigate
fully developed turbulent flow in channels with mild (rc/δ = 30) to moderate (rc/δ = 3)
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Figure 1. Overview of previous experimental and computational studies of curved channel flow in terms of
bulk Reynolds number (Reb), and relative curvature radius (rc/δ). Crosses indicate the flow cases computed in
the present work.

curvature using significantly larger domains. The Reynolds number was increased to
Reb = 40 000, ensuring clear separation between near-wall turbulence scales and large-
scale streamwise vortices. Based on this improved set-up, velocity fluctuations in local
scaling turned out to collapse into a single curve in the viscous wall region, whereas
they were found to depend heavily on curvature in the outer layer. The contribution of
large-scale streamwise vortices to turbulence production was found to be substantial for
all curvatures considered, especially near the concave wall. Despite accurate data and
valuable insights on curvature effects on turbulence, that study was restricted to a single
Reynolds number and did not cover the case of strong wall curvature.

Given this background, in this work we aim to extend our understanding of turbulence
in curved channels by widening the range of Reynolds numbers and examining cases with
extreme curvature, thus filling existing gaps in the current literature. This is well illustrated
in figure 1, which reports an overview of the controlling flow parameters, namely bulk
Reynolds number (Reb) and relative curvature radius (rc/δ), from previous experimental
and computational studies of curved channel flow, along with our DNS. We investigate
the effects of channel curvature by focusing on two extreme cases, namely a mildly
(rc/δ = 40.5) and strongly (rc/δ= 1) curved channel. According to the definition proposed
by Hunt & Joubert (1979), these two cases correspond to ‘shear-dominated’ and ‘inertia-
dominated’ flows, respectively. For both cases, we examine the effect of the Reynolds
number – which has never been studied systematically for this flow configuration – by
carrying out a DNS campaign covering a wide range of flow regimes. Special attention
is paid to friction, specifically to how the changes in flow organisation and turbulence
structures induced by curvature affect its behaviour. This analysis reveals important
insights into the flow transition, which varies according to the type and magnitude of
curvature. In addition, we focus on characterising the secondary motions induced by
large-scale structures that develop in curved channel flow.

The paper is structured as follows: in § 2 we describe the numerical methodology used
for the analysis; in § 3 we present the main results of the DNS campaign, specifically,
the friction coefficient and flow transition are studied in § 3.1; the flow organisation is
explored through instantaneous velocity fields in § 3.2 and time-averaged velocity spectra
in § 3.3; streamwise large-scale structures are addressed in § 3.4, with a focus on splitting
and merging events in § 3.5, and on their role on velocity fluctuations in § 3.6; spanwise
large-scale structures are discussed in § 3.7, and their role on shear stress and pressure
fluctuations at the convex wall is analysed in § 3.8; the structure of the turbulent shear
stress is investigated in § 3.9 through a quadrant analysis, and a region with negative
production is observed and examined in § 3.10; finally, in § 4 we conclude with a discussion
of the results.
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Figure 2. Computational set-up for flow in mildly (a) and strongly (b) curved channels.

2. Methodology
The turbulent flow in curved channels is simulated in a computational domain bounded
by sectors of concentric cylinders, as shown in figure 2. The velocity components along
the streamwise (θ ), radial (r ) and spanwise (z) directions are denoted by u, v and w,
respectively. The flow is driven by a mean-pressure gradient (∂P/∂θ ), which is imposed
as a volumetric forcing to maintain constant mass flow rate in time. Numerical simulations
are carried out assuming periodicity conditions in the streamwise and spanwise directions,
so that the flow is fully developed.

The in-house code used for DNS, which solves the incompressible Navier–Stokes
equations in cylindrical coordinates, stems from a previous solver developed by Verzicco
& Orlandi (1996) and used for DNS of pipe flow by Orlandi & Fatica (1997). The switch
from the pipe set-up to the curved channel was attained by implementing two main
modifications to the code. The first is the addition of an inner cylinder (the inner wall
of the channel) concentric to the outer cylinder. The second is the change in direction of
the mean-pressure gradient, which is imposed along the azimuthal direction (θ ), namely
the streamwise direction of the curved channel. In this respect, we note that the pressure
term in the streamwise momentum equation is (∂P/∂θ)/r , with constant ∂P/∂θ , hence
the volumetric forcing varies along the radial direction. The spatial discretisation is based
on second-order finite-difference schemes, which are implemented in the classical marker-
and-cell framework (Harlow & Welch 1965). The pressure is located at the cell centres,
whereas the velocity components are at the cell faces, thus removing odd–even decoupling
phenomena and guaranteeing discrete conservation of the total kinetic energy in the
inviscid limit (Pirozzoli 2023). The governing equations are advanced in time by means
of a hybrid third-order low-storage Runge–Kutta algorithm, whereby the diffusive terms
are handled implicitly and the convective terms explicitly. Further details regarding the
numerical methods implemented in the code can be found for example in Pirozzoli et al.
(2021). The code was adapted to run on clusters of graphic accelerators (GPUs), using
a combination of CUDA Fortran and OpenACC directives, and relying on the CUDA
libraries for efficient execution of fast Fourier transforms.

The flow field is controlled by two parameters, namely the bulk Reynolds number,
Reb, and the radius of curvature at the centreline, rc/δ. To investigate the effect of both
parameters, we split the simulation campaign in two main groups: (i) shear-dominated flow
with mild curvature (rc/δ = 40.5), and (ii) inertia-dominated flow with strong curvature
(rc/δ= 1). Throughout the paper, we will refer to the first group as R40 and to the second
group as R1. Within each group, we vary the Reynolds number from Reb = 25 up to
87 000. The domain extends in the radial direction from r = ri (inner wall), to r = ro (outer
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wall), where ro − ri = δ and rc = (ri + ro)/2. To compare cases with different values of
the curvature radius, we consider the y-coordinate, aligned with the radial direction and
origin shifted at the inner wall, i.e. y = yi = r − ri . In all cases, the computational domain
has a streamwise length Lθ /δ = 2π along the centreline, meaning that for the R1 cases the
domain covers a full circumference (see figure 2). The spanwise width is set to Lz/δ = 4
for the R40 cases, and it is doubled for R1 cases, in order to minimise the influence of
spanwise periodicity on the large-scale structures. The effects of the domain sizes on the
simulations results are assessed in appendix A. Domain sizes, number of grid points and
grid spacings are listed in table 1, along with the resulting friction Reynolds number at the
inner (Reτ,i = uτ,iδ/2ν) and outer wall (Reτ,o = uτ,oδ/2ν). Distinction between the inner
and outer wall is necessary as the friction velocity changes depending on the wall at which
it is evaluated. A global friction velocity can also be defined based on the mean-pressure
gradient, as shown in previous works (e.g. Moser & Moin 1987; Brethouwer 2022). Inner,
outer and global friction velocities are defined, respectively, as

uτ,i =
√
ν
∂U

∂r
|ri
, uτ,o =

√
ν
∂U

∂r
|ro
, uτ,g =

√
u2
τ,i r

2
i + u2

τ,or2
o

2r2
c

, (2.1)

where uτ,g is derived in appendix B.
Throughout the paper, we will use two types of normalisation: local wall scaling,

based on uτ,i and uτ,o (denoted with the ‘plus’ superscript), and global wall scaling,
based on uτ,g (denoted with the ‘star’ superscript). Capital letters denote flow properties
averaged in the homogeneous spatial directions and in time, and lower-case letters denote
instantaneous values. Hence, u = U + u′, where u′ is the fluctuation from the mean.
Brackets denote the averaging operator (with subscripts indicating the space coordinates
over which averaging is done) and the overline is reserved for temporal averages, namely
u = 1

T

∫ t2
t1

udt , where the averaging period is T = t2 − t1. The grid spacings in local wall
scaling (r+

o 
θ and
r+
o ) listed in table 1 are evaluated at the outer wall, which is the most

critical as the wall shear stress is higher and the grid spacing in the streamwise direction is
larger. All simulations are run up to t1 = 600δ/ub, sufficient to reach a statistically steady
state, and further for T = 600δ/ub to ensure convergence of statistics, which is verified in
appendix C.

3. Results

3.1. Friction coefficient and flow transition
The friction coefficient is a key parameter for characterising the transition from laminar to
turbulent flow in curved channels. According to the various definitions of friction velocity
given in (2.1), we define local friction coefficients at the inner and at the outer wall, as
well as a global friction coefficient,

C f,i = 2
(

uτ,i
ub

)2

, C f,o = 2
(

uτ,o
ub

)2

, C f,g = 2
(

uτ,g
ub

)2

, (3.1)

shown in figure 3 as a function of the bulk Reynolds number. The global friction (in the
inset) is related to the mean-pressure gradient (B3), hence to the power expenditure to
drive the flow. For comparison with the plane channel, we also report the friction law for
laminar flow, C f = 12/Reb (dashed line in the inset), and the logarithmic friction relation,
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Mild curvature (R40): rc/δ = 40.5, Lθ /δ× Lz/δ = 2π × 4
Reb Reτ,i Reτ,o Nθ × Nr × Nz r+

o 
θ ×
r+ ×
z+

25 6 6 129 × 65 × 129 0.6 × 0.01 × 0.4
50 9 9 129 × 65 × 129 0.9 × 0.01 × 0.5
100 12 12 129 × 65 × 129 1.2 × 0.01 × 0.8
150 15 15 129 × 65 × 129 1.5 × 0.01 × 0.9
200 17 17 129 × 65 × 129 1.7 × 0.01 × 1.0
250 19 19 129 × 65 × 129 1.9 × 0.01 × 1.2
500 28 31 129 × 65 × 129 3.1 × 0.01 × 2.0
750 35 40 129 × 65 × 129 4.0 × 0.02 × 2.5
1000 41 50 129 × 65 × 129 5.0 × 0.01 × 3.1
1500 51 65 161 × 97 × 161 5.2 × 0.01 × 3.2
2000 61 78 193 × 97 × 193 5.2 × 0.01 × 3.3
2500 69 92 225 × 97 × 225 5.3 × 0.02 × 3.3
3000 82 112 257 × 129 × 257 5.6 × 0.01 × 3.5
4000 103 143 321 × 129 × 321 5.8 × 0.01 × 3.6
5000 139 170 321 × 145 × 353 6.8 × 0.01 × 3.8
7500 211 241 449 × 145 × 449 6.9 × 0.02 × 4.3
10 000 270 305 513 × 161 × 513 7.7 × 0.02 × 4.8
20 000 506 583 769 × 205 × 1025 9.8 × 0.03 × 4.6
30 000 720 839 1153 × 261 × 1537 9.4 × 0.03 × 4.4
40 000 922 1085 1409 × 303 × 1793 9.9 × 0.03 × 4.8
87 000 1824 2177 3073 × 489 × 3585 9.1 × 0.03 × 4.8

Strong curvature (R1): rc/δ = 1.0, Lθ /δ× Lz/δ = 2π × 8
Reb Reτ,i Reτ,o Nθ × Nr × Nz r+

o 
θ ×
r+ ×
z+
25 8 5 129 × 65 × 129 0.8 × 0.01 × 0.7
50 11 8 129 × 65 × 129 1.1 × 0.01 × 1.0
75 14 10 129 × 65 × 129 1.5 × 0.01 × 1.3
100 16 12 129 × 65 × 129 1.8 × 0.01 × 1.5
150 20 15 129 × 65 × 129 2.2 × 0.01 × 1.9
200 23 18 129 × 65 × 129 2.6 × 0.01 × 2.2
250 26 21 129 × 65 × 129 3.0 × 0.01 × 2.6
500 39 35 129 × 65 × 129 5.1 × 0.01 × 4.4
750 49 47 161 × 65 × 193 5.5 × 0.02 × 3.9
1000 58 58 193 × 97 × 257 5.7 × 0.01 × 3.6
1500 73 79 225 × 97 × 289 6.7 × 0.01 × 4.4
2000 86 98 225 × 129 × 385 8.2 × 0.01 × 4.0
2500 98 115 289 × 129 × 449 7.6 × 0.01 × 4.1
3000 110 132 385 × 129 × 513 6.5 × 0.01 × 4.1
4000 132 165 449 × 145 × 513 6.9 × 0.01 × 5.1
5000 152 193 449 × 145 × 769 8.1 × 0.02 × 4.0
7500 199 263 577 × 145 × 961 8.6 × 0.02 × 4.4
10 000 244 327 641 × 161 × 1153 9.6 × 0.04 × 4.5
20 000 403 563 1153 × 205 × 2049 9.2 × 0.03 × 4.4
30 000 551 784 1665 × 261 × 2817 8.8 × 0.02 × 4.4
40 000 697 995 2049 × 303 × 3585 9.2 × 0.02 × 4.4
87 000 1362 1952 4097 × 489 × 7169 9.0 × 0.02 × 4.4

Table 1. Flow parameters for DNS: bulk Reynolds number, friction Reynolds number at the inner and
outer wall, number of grid points and grid spacing in inner units in the streamwise, radial and spanwise
directions, respectively. The title line reports curvature radius and domain extension in the streamwise (along
the centreline) and spanwise directions.
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Figure 3. Friction coefficient as a function of the bulk Reynolds number for the R40 flow cases (a) and R1 flow
cases (b). Red circles denote the local friction coefficient at the inner wall (C f,i ), blue circles at the outer wall
(C f,o), black circles in the insets denote the global friction coefficient (C f,g); dashed lines denote the analytical
friction law for laminar flow (red for the convex wall, blue for the concave wall, black for the plane channel),
black solid lines the logarithmic friction relation for plane channel flow (3.2). A magnified view of the friction
trend for the R40 flow cases is shown in panel (c).

√
2

C f
= 1

k

[
ln

(
Reb

2

√
C f

2

)
− 1

]
+ A (3.2)

(solid line), obtained by Zanoun, Nagib & Durst (2009) from the logarithmic law of the
wall, with log-law constants k = 0.41, A = 5.17.

In the turbulent regime, the friction at the outer wall is consistently higher than at
the inner wall due to increased turbulence intensity. For the R40 flow cases (figure 3a),
the friction coefficient of a plane channel at the same flow rate (black solid line) lies
approximately midway between the values at the two walls of the curved channel and is
comparable to the global friction. In contrast, for the R1 flow cases (figure 3b), the inner-
wall friction is significantly lower than that of an equivalent plane channel. However, the
global friction is higher and aligns with the plane channel only for Reb ≥ 40 000.

To comment more clearly on the friction trend in the laminar and transitional regime,
it is useful to consider the mean velocity profiles at representative Reynolds numbers, as
reported in figure 4. At low Reynolds number, the flow in a curved channel is laminar and
the velocity profile can be derived analytically as

U (r)= αr − β

r
− r ln r, (3.3)
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Figure 4. Mean streamwise velocity (U/ub) at various Reynolds numbers for the R40 flow cases (a) and R1
flow cases (b). Black dashed lines refer to the Poiseuille profile, black circles to the velocity profile for laminar
curved channel flow (3.3).

where

α= r2
o ln ro − r2

i ln ri

r2
o − r2

i

, β = r2
i r2

o ln(ro/ri )

r2
o − r2

i

. (3.4)

In the R40 flow cases, the laminar velocity profile is nearly identical to the parabolic profile
of plane channel flow, meaning that the shear stress distribution is almost symmetrical. As
the curvature increases, the pressure gradient in the radial direction becomes stronger and
the location of maximum velocity shifts towards the inner wall. As a result, the shear
stress is larger at the inner wall than at the outer wall. In the laminar regime, the friction
coefficient at the two walls can be determined analytically from (3.3), thus obtaining

dU (r)

dr
= α + β

r2 − ln r − 1. (3.5)

For the R40 flow cases, we find C f,i ≈ 12.03/Reb, hence nearly identical to plane
Poiseuille flow, and C f,o ≈ 11.83/Reb. In contrast, in the R1 flow cases the friction
coefficient at the inner wall, C f,i ≈ 18.34/Reb, is approximately twice as at the outer
wall, C f,o ≈ 9.04/Reb. Flow transition occurs when the Reynolds number attains a critical
value at which centrifugal instability sets in and Dean vortices form, similarly to the
Taylor vortices in flow between two rotating cylinders (Taylor 1923). Here, the critical
Reynolds number is defined as the point where the friction coefficient deviates from the
laminar trend by at least 2 %, an amount higher than the uncertainty of time-averaged
measurements. For the R40 flow cases the critical Reynolds number is Reb ≈ 250, which
is in good agreement with the value of 228.5 found by Finlay et al. (1988), whereas for
the R1 flow cases transition starts earlier, at Reb ≈ 50. The transitional regime is greatly
affected by curvature, with convex curvature (inner wall) tending to stabilise the flow,
and concave curvature (outer wall) having the opposite effect. This is particularly evident
in the R40 flow cases: at Reb = 1000, the flow near the inner wall is laminar, as visible
from the mean velocity profile in figure 4(a). In contrast, secondary motions are generated
near the outer wall, which results in stronger momentum exchange. The peak velocity then
shifts towards the outer wall, resulting in higher friction. At Reb = 4000, the flow near the
outer wall is fully turbulent (as will be shown later through flow visualisations), whereas
the velocity profile near the inner wall remains close to the laminar state. Hence, mild
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Figure 5. Mean shear rate (Sδ/ub) at various Reynolds numbers for the R40 flow cases (a) and R1 flow cases
(b). Circles denote the analytical profile for the laminar case.

convex curvature tends to delay transition, as plane channel flow becomes turbulent at
Reb ≈ 2600 (Yimprasert et al. 2021). Due to this stabilising effect, the transitional flow
regime near the inner wall extends well into the range of Reynolds numbers for which
fully turbulent flow is expected in plane channels. As a result, the global friction in the
range 3000 ≤ Reb ≤ 10 000 is less than predicted from (3.2), as clearly shown from the
magnified view in figure 3(c). This deviation reaches its maximum at Reb = 4000, with
a drag reduction of 12.2 % with respect to the plane channel data (Orlandi, Bernardini
& Pirozzoli 2015). By increasing the Reynolds number to 5000, the flow near the inner
wall undergoes abrupt transition to a fully turbulent state, as indicated by the jump in
the friction trend indicated by red circles in figure 3(a). This type of transition from
laminar to turbulent regime is typical of canonical wall flows (see e.g. Patel & Head
1969), however, it quite different than at the outer wall, where transition is facilitated by
centrifugal instabilities and occurs more smoothly.

For the R1 flow cases, friction in the laminar regime is higher at the inner wall.
By increasing the Reynolds number, the velocity profiles tend to flatten at the outer
wall, where friction increases. Turbulence is inhibited near the inner wall, and friction
deviates less markedly from the laminar trend. An inversion occurs past Reb ≈ 1000,
whereby friction at the outer wall becomes higher that at the inner wall. Flow transition
is facilitated by strong channel curvature, and it occurs smoothly at both walls. At
the outer wall, the different transition from canonical wall flows is due to centrifugal
(primary) instabilities. As we will show, in the R1 flow cases secondary motions
associated with centrifugal instabilities do not reach the inner wall, and transition is
affected by streamwise (secondary) instabilities, which lead to the formation of large-scale
cross-stream structures.

In figure 5 we show the mean shear rate, S = dU/dr − U/r . Similar to the case of the
plane channel, the location where the mean shear vanishes can be used to define a bound
for the regions of influence of the two walls. In the R40 flow cases (figure 5a) the shear
rate profile is nearly symmetrical, hence this location coincides roughly with the channel
centreline, with exception of the case Reb = 1000, for which it occurs at y/δ ≈ 0.71. In
contrast, for the R1 flow cases (figure 5b) the shear rate profile is strongly asymmetrical,
the zero crossing shifting towards the inner wall and approaching it as the Reynolds
number increases. Hence, the region of influence of the inner wall is much narrower
than for the outer wall. In case of strong curvature, the shear rate profile exhibits a local
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Figure 6. Instantaneous streamwise velocity fields in a cross-stream plane for the R40 flow cases at Reb = 1000
(a), 4000 (b), 20 000 (c), 87 000 (d). The flooded contours range from 0.2 ub (blue) to 1.2 ub (red).

maximum near the outer wall and a local minimum near the inner wall, corresponding
to inflectional points of the mean velocity profiles. This showcases the presence of shear
layers that can support inflectional instabilities.

3.2. Flow visualisations
The previous discussion on flow transition can be visualised through the instantaneous
fields of streamwise velocity in cross-stream and wall-parallel planes, which we show in
figures 6 and 7 for the R40 flow cases and in figures 8 and 9 for R1 flow cases. As for
the R40 flow cases, the cross-stream and longitudinal planes at Reb = 1000, shown in
figures 6(a) and 7(a), highlight the onset of two symmetric large-scale ejections carrying
low-speed fluid from the outer wall towards the channel core. These secondary motions are
generated by two pairs of counter-rotating roll cells, which resemble closely Dean vortices.
The inner-wall flow region is almost unaffected by these vortices, as one can see from
figure 7(b). Figures 6(b) and 7(c), depicting the cross-stream and longitudinal planes at
Reb = 4000, show that fine-scale ejections and organised structures of momentum streaks
characterise the outer wall, from which one can infer that the flow is fully turbulent. Traces
of the streamwise vortices appear as streamwise-aligned bands of high-speed fluid near the
inner wall, as visible in figure 7(d). Being centrifugally stable, the inner-wall flow region is
still transitional, as no clear signs of turbulent activity appear. The cross-stream planes at
Reb = 20 000 and 87 000 (figure 6c,d) show clear signs of streaky patterns at both walls.
Overlaying the small scales of turbulence, streamwise large-scale structures are found near
the outer wall, whose footprint appears in the wall-parallel planes of figures 7(e) and 7(g)
as wide regions of alternating high and low speed fluid. These large-scale regions fill
the entire streamwise extent of the domain, and their spanwise width is comparable to the
channel height, hence two pairs of roll cells are present. The influence of the latter is found
to extend to the inner wall at high Reynolds numbers. In fact, low-speed regions at the outer
wall, corresponding to large-scale ejections, are found at the same spanwise location as
high-speed regions at the inner wall, corresponding to large-scale sweeps (figure 7f,h).

Cross-stream visualisations show clearly how the region with higher momentum shifts
towards the inner wall for the R1 flow cases (figure 8), as expected from the mean
velocity profiles (figure 4). As well as for the R40 flow cases, signatures of streamwise
roll cells are visible as large-scale ejections from the outer wall, although they are now
more numerous and chaotic. As displayed in the wall-parallel plane of figure 9(a), streaky
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Figure 7. Instantaneous fields of streamwise velocity fluctuations for the R40 flow cases in wall-parallel planes
near the outer (a,c,e,g) and inner wall (b,d,f,h) at y+ ≈ 12. The panels correspond to Reb = 1000 (a,b), 4000
(c,d), 20 000 (e,f ), 87 000 (g,h). The flooded contours range from −0.3 ub (blue) to 0.3 ub (red). Streamwise
and spanwise coordinates are shown in both outer units (rcθ/δ, z/δ), and local wall units (rcθ

+, z+), where the
streamwise domain extent is measured at the centreline. Mean flow goes from left to right.

structures appear to be quite distinct at the outer wall at Reb = 1000, confirming that
increasing curvature promotes the transition to turbulence. Figure 9(c,e,g) show that
momentum streaks at the outer wall exhibit a wavy pattern with a streamwise wavelength
comparable to the domain size. This pattern resembles the ‘undulating Dean vortex flow’
found by Finlay et al. (1988), which is likely associated with inflectional instabilities of the
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Figure 8. Instantaneous streamwise velocity fields in a cross-stream plane for the R1 flow cases at Reb = 1000
(a), 4000 (b), 20 000 (c), 87 000 (d). The flooded contours range from 0.4 ub (blue) to 1.5 ub (red). Only half
of the domain is shown.

wall-normal velocity profile (Le Cunff & Bottaro 1993), as evidenced by figures 4(b) and
5(b). The streaks are wider for the R1 flow cases than for R40, whereas streamwise large-
scale structures are narrower, making the distinction between fine-scale turbulence and
large-scale structures less clear cut. In fact, streamwise roll cells do not clearly show up in
the wall-parallel planes of fluctuating streamwise velocity. This, however, does not convey
that they are absent: as we shall see, in case of strong curvature these secondary motions
are organised differently and mainly impact the wall-normal velocity. As visible from
the wall-parallel planes shown in figure 9(b,d,f ), the inner-wall flow region is devoid of
turbulent structures, or nearly so for the highest Reynolds number (figure 9h), whereas it is
characterised by the presence of large-scale structures elongated in the spanwise direction.
The latter are visible in the form of alternating regions of high and low speed fluid aligned
along the spanwise with length comparable to δ. The streamwise extent of each pair of
spanwise structures is approximately πδ, meaning that the computational domain can fit
two pairs, with exception of the case Reb = 4000, at which the streamwise wavelength
seems slightly shorter.

3.3. Velocity spectra
A clearer understanding of the energetic relevance of the various scales of motions can
be achieved from inspecting the spectra of the velocity fluctuations. Spectra of both
streamwise and wall-normal velocity fluctuations are presented, the former to detect large-
scale structures typical of plane channel flows (Lee & Moser 2015), whereas the latter are
instrumental in revealing the presence of streamwise roll cells (Dai, Huang & Xu 2016).
Figures 10 and 11 display the premultiplied spectra of streamwise velocity fluctuations in
the spanwise (k∗

z E∗
uu) and streamwise (k∗

θ E∗
uu) directions as a function of the distance from

the wall for R40 and R1 flow cases, respectively. For clarity, we refer to the distance from
the inner wall as yi = y, and from the outer wall as yo = δ − y), both displayed on the
left-hand vertical axis. The distance from the inner and outer wall is also reported on the
right-hand vertical axis in local wall units, y+

i and y+
o , respectively.

In the R40 flow cases a primary energy peak appears in the spanwise spectra
(figures 10a–c and 11a–c) near both walls at y+

i ≈ y+
o ≈ 12, λ+z ≈ 100, which is the typical

signature of the regeneration cycle of momentum streaks (Hamilton, Kim & Waleffe
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Figure 9. Instantaneous fields of streamwise velocity fluctuations for the R1 flow cases in wall-parallel planes
near the outer (a,c,e,g) and inner wall (b,d,f,h) at y+ ≈ 12. The panels correspond to Reb = 1000 (a,b), 4000
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Figure 10. Premultiplied spectra of streamwise fluctuating velocity as a function of spanwise wavelength,
k∗

z E∗
uu , (a–c) and of streamwise wavelength, k∗
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uu , (d–f ) as the wall distance varies for the R40 flow cases.

The panels correspond to Reb = 4000 (a,d), 20 000 (b,e), 87 000 (c,f ). Wall distance from the inner and outer
wall, spanwise and streamwise wavelengths are reported in outer units (yi/δ, yo/δ, λz/δ, λθ /δ), and in local
wall units (y+

i , y+
o , λ+z , λ+θ ), respectively. Dashed lines mark wavelength and wall distance of the energy peak

associated with streamwise large-scale structures.

1995). An exception is the case at Reb = 4000: the inner-wall primary peak is nearly
absent, confirming the inferences from flow visualisations. From the streamwise spectra
(figures 10d–f and 11d–f ) we note that the streaks-related peak is at λ+θ ≈ 800, meaning
that the mean wavelength of momentum streaks is slightly shorter than the typical value of
plane channel flows, namely λ+x ≈ 1000 (Monty et al. 2009). A secondary peak appears in
the spanwise spectra farther from walls, at yi ≈ yo ≈ 0.1δ at Reb = 4000 (figures 10a and
11a), and yi ≈ yo ≈ 0.2δ at Reb = 20 000 (figures 10b and 11b) and 87 000 (figures 10c
and 11c). As seen from the intersection of the dashed lines, the energy of the peaks
is concentrated at λz/δ≈ 2. If the domain contains n pairs of roll cells, we expect
to find a peak in the spanwise spectra at λz = Lz/n, where Lz = 4δ for the R40 flow
cases. Flow visualisations indeed revealed the presence n = 2 roll cells pairs, hence we
interpret these peaks as the footprint of streamwise large-scale structures. A third peak
at λz/δ≈ 1 appears faintly at Reb = 20 000, and sharply emerges at Reb = 87 000. This
peak corresponds to n = 4 pairs of streamwise cells, indicating that roll cells with various
sizes could be present, which we will investigate below. The streamwise spectra reveal
that the scales of motion with the maximum streamwise wavelength, λθ = Lθ = 2π , are
quite energetic, suggesting that the streamwise vortices span the whole domain along the
streamwise direction.

As for the R1 flow cases (figure 11) the primary peak in the spanwise spectra due to
momentum streaks appears on the outer wall only, suggesting that the near-wall turbulence
regeneration cycle still takes place at the outer wall (figure 11a–c). As noted in flow
visualisations, streaky structures have a greater spanwise wavelength than the R40 flow
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FThe panels correspond to Reb = 4000 (a,d), 20 000 (b,e), 87 000 (c,f ). Wall distance from the inner and outer
wall, spanwise and streamwise wavelengths are reported in outer units (yi/δ, yo/δ, λz/δ, λθ /δ), and in local
wall units (y+

i , y+
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associated with spanwise large-scale structures.

cases, which is approximately λ+z ≈ 120. Their streamwise wavelength is instead shorter,
approximately λ+θ ≈ 500, as visible from the streamwise spectra (figure 11d–f ). The
absence of a primary peak near the inner wall in the spanwise spectra highlights the
stabilising effect of convex curvature. More specifically, the near-wall peak is absent at
Reb = 4000 (figure 11d), starts to form at Reb = 20 000 (figure 11e), and only becomes
visible at Reb = 87 000 (figure 11f ). This trend, which is also found in the streamwise
spectra, suggests that the inhibiting effect of convex curvature on turbulence becomes
gradually less intense as the Reynolds number increases. In contrast to the R40 flow cases,
never does a secondary peak emerge in the spanwise spectra near the outer wall. This
implies that the streamwise roll cells, if present, have a negligible effect on the streamwise
velocity fluctuations. A secondary peak is instead present near the inner wall at λz/δ≈ 2,
which moves closer to the wall (in δ units) as Reb increases. This peak cannot be related
to streamwise roll cells for two reasons: (i) they are most intense at the outer wall, yet no
secondary peak is detected there, and (ii) the spanwise wavelength of streamwise vortices
must be shorter, as one can infer from figure 8 and as we will show more clearly below.
Rather, we can ascribe this peak to the presence of spanwise large-scale structures. To
substantiate this statement, we consider the streamwise energy spectra, which highlight
energetic modes near the inner wall at long wavelengths: λθ /δ ≈ 2π/3 at Reb = 4000
(figure 11d) and λθ /δ ≈ π at 20 000 (figure 11e) and 87 000 (figure 11f ), as marked by
the dashed lines. These energy peaks cannot be related either to turbulence structures,
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Figure 12. Premultiplied spectra of fluctuating wall-normal velocity (k∗
z E∗

vv) as a function of the spanwise
wavelength and wall distance for the R40 flow cases (a–c) and R1 flow cases (d–f ). The panels correspond
to Reb = 4000 (a,d), 20 000 (b,e), 87 000 (c,f ). Wall distance from the inner and outer wall and spanwise
wavelength are reported in outer units (yi/δ, yo/δ, λz/δ) and local wall units (y+

i , y+
o , λ+z ), respectively. Dashed

lines mark the wavelength and wall-distance of the energy peak related to streamwise large-scale structures.

which are absent or strongly inhibited near the inner wall, or to streamwise roll cells,
as we have just seen through the spanwise spectra that they do not affect streamwise
velocity fluctuations. However, flow visualisations in wall-parallel planes near the inner
wall (figure 9b,d,f ) revealed the presence of spanwise structures, organised in pairs with
a streamwise length of approximately πδ. The wavelength of these peaks corresponds
to n = Lθ /λθ = 3 pairs of eddies at Reb = 4000 and n = Lθ /λθ = 2 pairs at 20 000 and
87 000. Hence, we interpret the energy peaks in the streamwise spectra as the signature of
cross-flow structures. Moreover, the spanwise size of these structures is comparable to δ,
explaining the peaks in the spanwise spectra at λz/δ ≈ 2.

In figure 12 we show the premultiplied spectral densities of wall-normal velocity
fluctuations in the spanwise direction (k∗

z E∗
vv). In the R40 flow cases (figure 12a–c) energy

peaks related to near-wall turbulent structures form at y+
i ≈ y+

o ≈ 50, λ+z ≈ 100, except for
the inner wall at Reb = 4000, in agreement with the flow visualisations. Two secondary
peaks in the channel core, more prominent at Reb = 87 000, highlight the presence of
energetic modes with λz/δ ≈ 1 and λz/δ≈ 2 at yo/δ≈ 0.3. Following the same reasoning
about the streamwise velocity spectra, we trace these energetic modes to streamwise roll
cells, which generate large-scale radial sweeps and ejections.

The effect of strong curvature on the energy distribution of the wall-normal velocity
fluctuations (figure 12d–f ) is rather striking. Contrary to the streamwise velocity spectra,
the energy content is now much higher in the case of strong curvature, which points to
substantial structural changes. No distinct peak is observed in the inner part of the channel,
which conveys that the spanwise large-scale structures that we noted above have no impact
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(on average) on the wall-normal velocity fluctuations. A prominent energy peak is located
at yo ≈ 0.3δ, λz ≈ 0.8δ, marked by the intersection of the dashed lines. This energetic
mode is not present in plane channel flow (see e.g. Cho, Hwang & Choi 2018) and cannot
be related to cross-flow structures, which are more intense near the inner wall. Hence, we
interpret them as the signatures of streamwise roll cells. This would mean that the typical
configuration of streamwise large-scale structures consists of n = Lz/λz = 10 pairs of roll
cells (with Lz = 8, λz = 0.8δ), which we will ascertain in the following.

3.4. Streamwise large-scale structures
Flow visualisations and energy spectra reveal the presence of streamwise large-scale
structures, which are akin to the Dean vortices observed in laminar flow (Dean 1928). To
understand how these structures depend on curvature and Reynolds number and how they
affect the flow field, we separate the coherent contribution from the underlying turbulence,
where coherence is intended in the sense given by Hussain (1986). For that purpose we use
the triple decomposition of Hussain & Reynolds (1970), whereby a generic field variable,
ϕ(θ, r, z, t), is decomposed as

ϕ(θ, r, z, t)=Φ(r)+ ϕ̃(r, z, t)+ ϕ′′(θ, r, z, t), (3.6)

where Φ is the space average over the homogeneous directions (θ , z) and time (t),

ϕ̃(r, z, t)= 〈ϕ(θ, r, z, t)〉θ −Φ(r), (3.7)

is the coherent contribution from the streamwise vortices, 〈ϕ(θ, r, z, t)〉θ is the average
over the streamwise direction, and

ϕ′′(θ, r, z, t)= ϕ(θ, r, z, t)− 〈ϕ(θ, r, z, t)〉θ (3.8)

is the instantaneous turbulent fluctuation. The total fluctuation is then ϕ′ = ϕ̃ + ϕ′′. The
instantaneous streamwise-averaged fields (ϕ̃) are then averaged over time to extract the
coherent contribution, namely ϕ̃. One should note that, in principle, the averages defined
in (3.7) would be zero in infinitely long domains, and their long-time averages would also
tend to zero. Hence, the coherent motions herein considered refer to a finite streamwise
length associated with the extent of the computational domain (here, Lθ = 2πδ), and to
a finite time horizon, here taken to be 600δ/ub. Whereas the intensity of those coherent
motions is inevitably affected by these choices (see appendix D), the conclusions regarding
the influence of Reynolds number and wall curvature still stand.

In figure 13 we show the Stokes stream function for streamwise-coherent motions (ψ̃),
defined such that w̃= ∂ψ̃/∂r , ṽ = −∂ψ̃/∂z. The overlaid flooded contours represent the
mean coherent streamwise velocity (ũ). In addition, we report the spanwise distribution of
the mean shear at the inner and outer wall,

τ+
w,i (z)=

ν

u2
τ,i

∂〈u〉θ
∂r

|ri
, τ+

w,o(z)=
ν

u2
τ,o

∂〈u〉θ
∂r

|ro
. (3.9)

In the R40 flow cases (figure 13a–c) two pairs of counter-rotating vortices appear which
nearly span the whole channel thickness and with a spanwise wavelength λz/δ ≈ 2, which
is in agreement with the energy spectra in figure 10. Streamwise roll cells with the same
size were detected by Moser & Moin (1987). The spanwise inhomogeneity due to these
secondary eddies has a strong impact on the distribution of the wall shear stress. Indeed,
large-scale ejections are generated between any pair of counter-rotating vortices (blue
contours), where low-speed fluid is diverted away from the wall, and local friction attains
a minimum. Correspondingly, large-scale sweeps generate at the opposite wall whereby
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Figure 13. Mean Stokes stream function (ψ̃) for streamwise-coherent disturbances in an (r, z)-plane overlaid
to flooded contours of coherent streamwise velocity (ũ), for the R40 flow cases (a–c) and for the R1 flow cases
(d–f ). The panels correspond to Reb = 4000 (a,d), 20 000 (b,e), 87 000 (c,f ). Positive values of ψ̃ (solid lines)
indicate a clockwise-rotating roll cell, and vice versa for negative values (dashed lines). The flooded contours
range from −1.5 uτ,g (blue) to 1.5 uτ,g (red). Each panel shows the spanwise distribution of the mean shear
stress at the two walls, τ+

w,i (z) and τ+
w,o(z), defined in (3.9). Only half of the domain is shown for the R1 flow

cases.

high-speed fluids is pushed towards the wall (red contours), causing local increase of wall
friction. This tendency is clearer as the Reynolds number increases, as one can infer from
the spanwise distribution of the local wall shear, which shows excursions of approximately
10 % at Reb = 4000 (figure 13a) and Reb = 20 000 (figure 13b), and reaching up to 20 %
at Reb = 87 000 (figure 13c).

As for the R1 flow cases (figure 13d–f ), the number of pairs of counter-rotating vortices
increases to approximately 10 (only five are visible as half of the domain is shown). Hence,
the spanwise wavelength of the roll cells is λz/δ≈ 0.8, which again corresponds to what
found from the spectral analysis in figure 12. Spanwise shortening of the streamwise
roll cells is also observed in rotating channel flows, in which similar vortices develop
on account of Coriolis forces (Matsson & Alfredsson 1990). Through DNS of rotating
channel flow, Brethouwer (2017) found that the size of the streamwise roll cells is smaller
at higher rotation numbers (the rotation number in rotating channel flow is the counterpart
of the curvature ratio in curved channels), in agreement with previous numerical studies
(Kristoffersen & Andersson 1993; Yang & Wu 2012). In addition, Brethouwer (2017) found
that the size of the roll cells is independent of the Reynolds number, which is also the case
here. Due to strong channel curvature, the roll cells are pushed towards the outer wall
and cannot fill the entire channel thickness. Hence, the flow region near the inner wall
(say, y/δ < 0.2) is not affected, as seen in the spanwise distribution of the wall shear,
which is nearly flat. As for the shear at the outer wall, spanwise excursions of τ+

w,o(z) have
a maximum amplitude of approximately 4 % at Reb = 4000 (figure 13d) and Reb = 20 000
(figure 13e), whereas they are very small at Reb = 87 000 (figure 13f ), at which the effect
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Figure 14. Time history of the premultiplied spanwise energy spectra of fluctuating streamwise velocity
(k∗

z E∗
uu) for the R40 flow case at Reb = 87 000, at y/δ = 0.8. The black dashed lines correspond to λz/δ = 2

and λz/δ = 1, at which the expected number of streamwise vortices are indicated on the right vertical axis.
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Figure 15. Coherent stream function (ψ̃) at the time instants marked by the red dashed lines in figure 14, for
the R40 flow case at Reb = 87 000.

of the streamwise vortices is outweighed by turbulence. The reason why the outer-wall
shear stress is barely affected by streamwise vortices is their unsteadiness. The coherent
stream function shows indeed that roll cells are less organised in the R1 flow cases than
in R40, and on average they do not affect the streamwise velocity. Nonetheless, the impact
of those eddies on the instantaneous flow is certainly not negligible in the case of strong
curvature. The strength of streamwise large-scale structures can be quantified in terms of
the maximum amplitude of the coherent wall-normal velocity (Canton et al. 2016), which
results in max|ṽ|/ub ≈ 6 % for the R40 flow cases, nearly independent of the Reynolds
number. Streamwise vortices in the R1 flow cases are much stronger, their strength being
max|ṽ|/ub ≈ 20 % at Reb = 4000 and 12 % at 87 000.

3.5. Splitting and merging events
The eduction procedure based on triple decomposition allowed to quantify the statistical
organisation of streamwise large-scale structures. However, the energy spectra highlighted
the presence of multiple peaks at large wavelengths, which are particularly evident for the
R40 flow case at Reb = 87 000 (figure 10). Multiple peaks suggest either the coexistence
of large-scale structures of different sizes, or the occurrence of splitting and merging
events. To clarify this point, we inspect the time history of the spanwise energy spectra of
streamwise velocity fluctuations, shown in figure 14 for the R40 flow case at Reb = 87 000,
at the wall distance where the peak of the energy associated with the streamwise vortices
occurs. A time window from tub/δ= 1000 to 1120 was selected for the analysis and
we took six subsequent snapshots of ψ̃ , shown in figure 15, at intervals of 20δ/ub
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Figure 16. Time history of the premultiplied spanwise energy spectra of fluctuating wall-normal velocity
(k∗

z E∗
vv) for the R1 flow case at Reb = 87 000, at y/δ = 0.7. The black dashed lines correspond to λz/δ = 0.73,

λz/δ = 0.80 and λz/δ = 0.89, at which the expected number of streamwise vortices are indicated on the
right-hand vertical axis.
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Figure 17. Coherent stream function (ψ̃) at the time instants marked by the red dashed lines in figure 16 for the
R1 flow case at Reb = 87 000. Only half of the domain is shown.

marked by the red dashed lines in figure 14. From tub/δ ≈ 1000 to 1040 most energy
is clustered around λz/δ= 1, hence n = 4 pairs of vortices would be expected (the number
of vortices pairs is indicated on the right-hand vertical axis). However, the snapshots of
ψ̃ at tub/δ ≈ 1010 (figure 15a) and 1030 (figure15b) reveal the occurrence of n = 3 pairs.
In this respect, we note that the roll cells are not uniform in size, as the pair centred at
z/δ≈ 0.5 has a wavelength λz/δ ≈ 2, whereas the two remaining pairs have a wavelength
λz/δ ≈ 1. A possible explanation is that the two pairs of small-size vortices are stronger
than the large-size one, hence more energy is concentrated at λz/δ = 1. A vortex-merging
event is observed between tub/δ ≈ 1050 and 1090. Figures 15(c) and 15(d) depict that the
pair of smallest vortices located at z/δ≈ 3 decrease in size and strength, as the isolines of
the stream function get sparser. This process continues until the smallest pair is embedded
within the adjacent clockwise rotating vortex (figure 15e), which appears more regular and
strong at tub/δ ≈ 1110 (figure 15f ). From tub/δ ≈ 1080 on, the energy peak is clustered
around λz/δ = 2 and, as expected, n = 2 pairs of roll cells are found.

The results obtained for the R1 flow case at Reb = 87 000 are presented in figure 16,
which reports the time evolution of the spanwise spectra of the wall-normal velocity at
the peak position of energy associated with the streamwise vortices. The time window
under scrutiny is half as for the R40 flow case, and the six subsequent snapshots of ψ̃ ,
shown in figure 17, are sampled at intervals of 10δ/ub instead of 20 on account of stronger
unsteadiness in cases with strong curvature. The time evolution of the spectra shows that
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the energy peak is clustered around λz/δ≈ 0.89 from tub/δ= 1055 to 1065. Consistently,
figure 17(a) displays nine vortices in the region under scrutiny (n = 9 pairs are present
in the whole domain). This configuration seems to be unstable because of the lack of
organisation of the vortex pair located at z/δ ≈ 1, and because two anticlockwise vortices
are adjacent straddling z/δ≈ 2. At tub/δ = 1070 the energy peak shifts at λz/δ ≈ 0.8,
indeed the related figure 17(b) shows that a new clockwise rotating vortex emerged at
z/δ ≈ 2.2 fitting in between the two anticlockwise rotating vortices and increasing the
number of vortices to 10 (i.e. n = 10). The number of vortex pairs increase further to n = 11
at tub/δ≈ 1080, as visible in figure 17(c), and the energy peak decreases accordingly
to λz/δ≈ 0.73. From tub/δ ≈ 1085 to 1105 the energy peak settles at λz/δ ≈ 0.8, and
figures 17(d) and 17(e) highlight that the vortex configuration consists of n = 10 pairs.
The energy peak shifts again to λz/δ ≈ 0.73 at tub/δ = 1110. Figure 17(f ) shows that the
main vortices are still 10, however, small secondary vortices tend to split off from the
primary ones, bringing more energy to smaller scales. In the case of strong curvature, the
transitions from one vortex configuration to the other can be attributed to the unsteady
dynamics of the vortices, which can be inferred from their spanwise motions, distorted
shapes and different sizes, rather than to splitting and merging phenomena, which could
not be clearly identified.

3.6. Role of streamwise vortices on velocity fluctuations
In figure 18 we show the root-mean-square (r.m.s.) of the streamwise (figure 18a,b) and
wall-normal (figure 18c,d) velocity fluctuations, as well as the turbulent shear stress
(figure 18e,f ). Total fluctuations are reported along with the contributions due to the
streamwise vortices, which we have determined by taking the r.m.s. of the coherent
contribution (3.7) along the spanwise direction and in time. For the R40 flow cases, the
streamwise velocity fluctuations (figure 18a) are higher at the outer than at the inner wall.
As made clear from the increased intensity of the coherent fluctuations, this asymmetry
is mainly due to the streamwise vortices, which are stronger near the outer wall. An
exception is the case at Reb = 4000 (green line), in which the coherent contribution at
the outer wall is comparable to that at the inner wall. In general, the coherent contribution
is approximately half of the total. The peak of the coherent contribution occurs between
y/δ ≈ 0.8 and y/δ ≈ 0.9, corresponding to a bump in the profile of the total fluctuations.
As for the R1 flow cases, the profiles of streamwise velocity fluctuations (figure 18b)
show a near-wall peak on the concave side comparable to that of the corresponding R40
flow cases, and little contribution from coherent fluctuations. The profile of the velocity
fluctuations is almost flat in the channel core, and the near-wall peak on the convex side
is very different from the case with mild curvature, extending much farther from the wall.
Wall-normal velocity fluctuations (figure 18c) are only relevant in the channel core, with a
peak at y/δ ≈ 0.7. For the R1 flow cases (figure 18d) fluctuations of wall-normal velocity
are up to two limes larger than the streamwise velocity. Substantial contribution is found to
be provided by the coherent fluctuations, which also attain a peak at y/δ ≈ 0.7, as observed
in the velocity spectra.

As for the turbulent shear stress, it is nearly symmetrical in fully turbulent R40 flow
cases (figure 18e), resembling the case of a plane channel (see e.g. Kim et al. 1987).
However, two differences should be noted: (i) the point of zero crossing is shifted towards
the inner wall at y/δ ≈ 0.4, and (ii) the peak value increases near the outer wall and
decreases near the inner wall. The effect of convex curvature is particularly evident at
Reb = 4000, at which the zero crossing is even closer to the inner wall. The coherent
turbulent stress is approximately half of the total at y/δ ≈ 0.8, pointing to significant
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Figure 18. Profiles of r.m.s. streamwise (a,b) and wall-normal (c,d) velocity fluctuations and mean turbulent
shear stress (e,f ) at various Reynolds numbers for the R40 flow cases (a,c,e) and R1 flow cases (b,d,f ). Solid
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contribution of streamwise vortices to momentum transport. Similar conclusions were also
reached by Moser & Moin (1987) and Brethouwer (2022). The effects of strong curvature
are shown in figure 18(f ). In the channel core, where viscous effects are negligible,
the turbulent stress profile becomes quadratic rather than linear, as after the analytical
distribution of the total shear stress (C2). As seen in the inset of figure 18(f ), the peak
value is greatly reduced near the inner wall, which aligns with the findings of So &
Mellor (1973) in experiments of turbulent boundary layers over a convex surface. The
reduction in turbulent shear stress at the inner wall is not only due to the stabilising
effect of convex curvature but also results from the influence of spanwise large-scale
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structures, as will be discussed below. The coherent Reynolds stress is negligible and
vanishes entirely near the inner wall, as the streamwise vortices are displaced towards
the outer wall (see § 3.4). This analysis demonstrates that strong curvature significantly
alters the role of streamwise-aligned coherent structures in turbulence. Specifically, their
contribution to wall-normal fluctuations becomes substantially larger than to streamwise
fluctuations, while their contribution to momentum transport is suppressed.

3.7. Spanwise large-scale structures
Visualisations of the flow near the inner wall of strongly curved channels (figure 9)
revealed the presence of alternating regions with positive/negative velocity fluctuations
elongated along the spanwise direction. Those wavy patters are the footprint of spanwise
large-scale structures, which are originated from streamwise instabilities (Finlay et al.
1988) and which are convected at the mean flow speed (Matsson & Alfredsson 1992).
As we did for the streamwise vortices, we exploit triple decomposition to separate the
effects of the cross-stream structures from those of turbulence. A generic field variable,
ϕ(θ, r, z, t), is decomposed as

ϕ(θ, r, z, t)=Φ(r)+ ϕ̂(θ, r, t)+ ϕ′′′(θ, r, z, t), (3.10)

where

ϕ̂(θ − tuc/r, r, t)= 〈ϕ(θ, r, z, t)〉z −Φ(r), (3.11)

is the spanwise-coherent contribution, 〈ϕ(θ, r, z, t)〉z is the average along the spanwise
direction, and ϕ′′′(θ, r, z, t) is the instantaneous turbulent fluctuation. Since spanwise-
aligned structures are advected with the flow, phase alignment is required to educe the
associated coherent contribution. Hence, the time averages are evaluated by shifting
consecutive spanwise-averaged field by an angle 
tsuc/rc, where 
ts is the sampling
interval, set equal to a time unit, and uc is the convection velocity of coherent disturbances.
The convection velocity was estimated from the analysis of the wavenumber-frequency
spectra of the streamwise velocity fluctuations for the R1 flow case at Reb = 4000,
resulting in uc ≈ 0.67ub (see appendix E), which is comparable to the value of uc ≈ 0.80ub
found in experiments (Matsson & Alfredsson 1992). Moreover, the convection velocity
in inner units is u+

c ≈ 11, which is similar to the mean speed of the near-wall energy-
containing eddies (Kim & Hussain 1993; Jimenez et al. 2001). This value of uc was
also considered for the flow cases at higher Reynolds number, as it was found to ensure
maximum coherence in time.

In figure 19 we show the mean Stokes stream function for spanwise-coherent motions
(ψ̂), defined such that v̂ = (∂ψ̂/∂θ)/r , û = −∂ψ̂/∂r , overlaid to flooded contours of
the mean coherent pressure ( p̂) in the (θ, r)-plane. Alternating high- and low-pressure
regions are observed, marking the presence of spanwise large-scale structures. Those
are organised into three pairs of roll cells at Reb = 4000 (figure 19a), whereas only
two pairs are found at Reb = 20 000 (figure 19b) and 87 000 (figure 19c). Although the
radial extent of the spanwise structures is comparable to δ, they are most intense near the
inner wall and weaker towards the outer wall. The stream function shows that the cross-
stream structures have an irregular shape and tend to split up at high Reynolds number.
This more chaotic organisation yields reduced strength of the spanwise structures, as
measured in terms of the magnitude of the coherent streamwise velocity, max|û|. Indeed,
we found max|û|/ub ≈ 9 % at Reb = 4000 and max|û|/ub ≈ 7 % at 20 000 and 87 000,
hence spanwise large-scale structures are approximately half as strong as the streamwise
ones (see § 3.4). The centres of the roll cells are approximately at the same location as
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Figure 19. Mean stokes stream function (ψ̂) for spanwise-coherent disturbances, overlaid to flooded contours
of the mean coherent pressure ( p̂) in a (θ, r)-plane for the R1 flow cases at Reb = 4000 (a), 20 000 (b), 87 000
(c). The flooded contours range from −0.3u2

τ,g (blue) to 0.3u2
τ,g (red). Positive values of ψ̂ (solid lines), indicate

a clockwise-rotating roll cell, associated with negative coherent pressure (blue contours), whereas negative
(dashed lines) correspond to anticlockwise rolls and positive coherent pressure (red contours). The mean flow
is clockwise.
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Figure 20. Profiles of r.m.s. pressure fluctuations (a) and mean turbulent stress near the inner wall (b) at various
Reynolds numbers, for the R1 flow cases. Solid lines refer to total fluctuations and dashed lines refer to coherent
fluctuations due to spanwise large-scale structures (the latter are denoted with the hat symbol).

the local minima of the mean shear rate (figure 5), supporting the idea that the spanwise
structures may originate from a shear-layer instability (Finlay et al. 1988; Yu & Liu 1991).

Figure 20(a) displays the distributions of the r.m.s. pressure fluctuations for the R1 flow
cases, and includes the contribution of coherent fluctuations due to the spanwise structures,
which are obtained from the spanwise-coherent contribution according to (3.11). Near
the inner wall, pressure fluctuations attain a peak which is twice as high as the outer
wall at Reb = 4000, and almost four times as high at Reb = 87 000. The impact of the
spanwise-aligned structures on pressure fluctuations is substantial, as the peak value of the
coherent contribution near the inner wall is approximately one third of the total. Another
effect of spanwise structures, which is related to the increase of pressure fluctuations,
is the suppression of the turbulent shear stress. This can be ascertained in figure 20(b),
where we show the total turbulent stress (solid lines) and the coherent turbulent stress
due to spanwise structures (dashed lines). The coherent turbulent shear stress yields a
negative contribution, conveying that the spanwise structures tend to suppress ejections
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Figure 21. The JPDF of wall shear stress and pressure fluctuations at the inner wall, P(τw ′, pw ′), for the R1
flow cases at Reb = 4000 (a), 20 000 (b) and 87 000 (c).

and sweeps near the inner wall. A similar result was reported by Kuwata (2022) simulating
a turbulent flow over high-aspect-ratio streamwise ribs, in which case the spanwise large-
scale structures (originated by a Kelvin–Helmholtz instability) were found to increase
locally pressure fluctuations and suppress the turbulent shear stress.

3.8. Role of spanwise structures on wall shear and pressure
Suppression of the turbulent shear stress associated with spanwise-coherent structures
was found to yield frictional drag reduction by many authors (Koumoutsakos 1999;
Fukagata, Kasagi & Sugiyama 2005; Mamori & Fukagata 2011). In addition, experiments
on turbulent boundary layers revealed that characteristic and identifiable variation of
the wall pressure accompanies the advection of large organised structures, which are
responsible for variation of the wall shear stress (Thomas & Bull 1983). To understand
whether spanwise large-scale structures play a role in reducing drag at the inner wall,
we then investigate if strong pressure fluctuations due to the spanwise-coherent structures
have a footprint on friction at the inner wall. For that purpose, we preliminarily verify
whether those quantities are correlated by inspecting the joint probability density function
(JPDF) of the wall shear stress and of the fluctuating pressure at the inner wall, which we
report in figure 21. Strong positive correlation emerges at Reb = 4000 (figure 21a) and
Reb = 20 000 (figure 21b), at which flow near the inner wall is dominated by spanwise-
coherent structures. This correlation becomes less distinct at Reb = 87 000 (figure 21c), at
which turbulent fluctuations start reach down to the near-wall region. Hence, the effect of
spanwise-coherent structures at the inner wall is to enhance pressure fluctuations, which
are strongly correlated with shear stress fluctuations.

Strong fluctuations of the wall shear can contribute to friction reduction at the inner
wall by increasing the number of backflow events. This insight is supported by the
PDF of the wall shear stress reported in figure 22. The mildly curved cases, in which
spanwise-coherent structures are not detected, can serve as a comparison. In addition, in
table 2 we list the probability of backflow events. In the R40 flow cases (figure 22a) the
PDFs of the wall shear stress at the inner and the outer wall are nearly identical, with
increasing probability of large values of positive shear as the Reynolds number increases.
Backflow events are very rare, with probability not exceeding 0.3 %. The picture is quite
different for the R1 flow cases (figure 22b). At the outer wall (solid lines), the probability
of negative shear is lower than in the R40 flow cases. As evidenced by the increased
probability of sweep motions on the concave wall (see § 3.9), we ascribe this backflow
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Figure 22. Probability density function (PDF) of the wall shear stress, P(τ+
w ), at various Reynolds numbers

for flow cases R40 (a) and R1 flow cases (b). Dashed lines refer to the inner wall and solid lines refer to the
outer wall.

inhibition to the strong secondary flow pushing high-speed fluid towards the wall. Hence,
the flow on the concave side is less prone to separate, as backflow probability decreases
with flow acceleration (Zaripov et al. 2023). A similar reduction in backflow events was
observed in the outer bend of a toroidal pipe by Chin et al. (2020), who attributed it to
a similar mechanism, suggesting an analogy between the effects of concave curvature
and favourable pressure gradient. In contrast, the tails of the PDF widen at the inner
wall (dashed lines), showcasing the amplification of wall-shear fluctuations induced by
spanwise-coherent structures. The widening of the negative tail corresponds to an increase
in backflow events at the inner wall, where their probability exceeds 4 %.

Further insights into the relationship between wall pressure and wall shear are provided
in figure 24, where we show the streamwise distribution of the coherent pressure and
of the coherent shear stress at the inner wall, both normalised by their maximum
value. Streamwise inhomogeneity induced by spanwise-coherent structures imposesa clear
imprint on the wall pressure (blue lines), which features peaks and troughs corresponding
to the high- and low-pressure regions observed in figure 19. The coherent wall shear
stress (red lines) also features peaks and troughs, which we explain as follows. The
coherent streamwise velocity of a clockwise-rotating roll cell (positive values of the stream
function in figure 19) opposes the mean flow near the inner wall, reducing locally the
streamwise velocity and hence the wall shear. Anticlockwise rotating roll cells act in
the opposite way. The small-scale oscillations of the wall shear stress superposed to the
large-scale ones at Reb = 87 000 (figure 22c) are due to turbulent activity, which explains
reduced correlation between wall shear and wall pressure (see figure 21). The effects of
spanwise-coherent structures on the flow field can be further characterised by analysing
the phase shift between the wall shear stress and the wall pressure. The wavy pressure
distribution generates local pressure gradients in the streamwise direction, which tend
to accelerate and decelerate the fluid and result in alternating regions with high and
low wall shear stress. Looking back at figure 19, one can see that high-pressure regions
correspond to anticlockwise rotating eddies, and vice versa for the low-pressure regions.
Hence, between any pair of counter-rotating eddies where the flow is locally subjected to
an adverse pressure gradient (u′ < 0) high-speed fluid is pushed towards the inner wall
(v′ < 0). Between any neighbouring pair, there is a favourable pressure gradient (u′ > 0)
and simultaneously low-speed fluid is diverted away from the inner wall (v′ > 0). In both
cases, the combination of these motions yields to −u′v′ < 0, explaining why spanwise
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Reb rc/δ P(τ+
w,i < 0) P(τ+

w,o < 0)

4000 40.5 0.05 0.08
20 000 40.5 0.23 0.22
87 000 40.5 0.36 0.22
4000 1.0 4.38 0.10
20 000 1.0 3.92 0.09
87 000 1.0 4.50 0.16

Table 2. Probability of backflow events at the two walls at various Reynolds numbers, for the R40
(rc/δ = 40.5) and R1 (rc/δ = 1) flow cases.

0 0
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Figure 23. Streamwise distribution of mean coherent shear stress (τ̂ w,i , red lines), and mean coherent pressure
( p̂w,i , blue lines) at the inner wall, for the R1 flow cases at Reb = 4000 (a), 20 000 (b), 87 000 (c). Both
quantities are normalised by their maximum value.

structures make a negative contribution to the production of Reynolds shear stress, which
we have highlighted in figure 20(b).

3.9. Quadrant analysis
To provide a quantitative basis for the above analysis, we consider the JPDF of streamwise
and wall-normal fluctuations, P(u′, v′), defined such that

− u′v′ =
∫ +∞

−∞
u′v′ P(u′, v′)du′dv′, (3.12)

where the covariance integrand, u′v′ P(u′, v′), is a measure of the contribution of each pair
of u′ and v′ to the turbulent shear stress (Wallace & Brodkey 1977). Each quadrant of the
(u′, v′) plane corresponds to a class of motions, specifically Q2 and Q4 quadrant events
correspond to ‘ejections’ (u′ < 0 and v′ > 0) and ‘sweeps’ (u′ > 0 and v′ < 0), yielding
positive contribution to the overall turbulent shear stress, whereas Q1 and Q3 quadrants
correspond to ‘outward interactions’ (u′ > 0 and v′ > 0), and ‘inward interactions’ (u′ < 0
and v′ < 0), which yield negative contribution to it.

In figures 23 and 25 we show flooded contours of P(u′, v′) superimposed to isolines
of u′v′ P(u′, v′) for the R40 and R1 flow cases, respectively. The JPDF is evaluated in
wall-parallel planes near the outer and the inner wall at y+ ≈ 12. In plane channel flow,
this location is the ‘balance point’ where the contributions of ejections and sweeps are
equal (Kim et al. 1987). In the R40 flow cases, the JPDF at the outer wall (figures 23a–
c and 25a–c) has a roughly elliptical shape with major axis inclined along the Q2 and
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Figure 24. The JPDF of streamwise and wall-normal velocity fluctuations, superimposed to flooded contours
of the covariance integrand, near the outer wall (a–c) and the inner wall (d–f ) at y+ ≈ 12, for the R1 flow cases.
The panels correspond to Reb = 4000 (a,d), 20 000 (b,e), 87 000 (c,f ).

Q4 quadrants, pointing to high probability of sweeps and ejections. Similar observations
apply to the fully turbulent R40 flow cases near the inner wall (figure 25e,f ), and also for
the R1 flow cases near the outer wall (figure 23a–c). However, strong curvature seems
to increase the probability of sweeps more than ejections, which can be inferred from
the shift of the JPDF peak towards the Q4 quadrant. As previously noted, this tendency
is associated with strong secondary motions that transport high-velocity fluid from the
channel core towards the outer wall, increasing near-wall velocity and thereby suppressing
the formation of regions with negative velocity (see figure 22). The scenario is different at
the inner wall. In the R40 flow case at Reb = 4000, as depicted in figure 25(d), the peak
probability is mainly concentrated in the Q2 and Q3 quadrants, and to a lesser extent in
the Q4 quadrant, on account of stronger, less probable values of u′ and v′. The roughly
circular shape of the JPDF at the inner wall in the R1 flow cases (figure 23d–f ) points to
the suppression of the negative correlation between u′ and v′ which is typical of near-wall
turbulent flow. In addition, the covariance integrand highlights that the contribution to the
turbulent stress is not dominated by the Q2 and Q4 motions, but rather strong contributions
also come from Q1 and Q3 motions.

The same results are quantified in table 3, where we list the integrated contributions to
the turbulent shear stress from each quadrant, at y+ ≈ 12. For the R40 fully turbulent flow
cases the results are comparable to experimental results for plane channel flow (Wallace,
Eckelmann & Brodkey 1972), namely the contribution of both ejections and sweeps is
approximately 70 %, whereas inward and outward interactions each contribute negatively
by approximately 20 %. At Reb = 4000, the Q2 contribution near the inner wall reduces
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Figure 25. The JPDF of streamwise and wall-normal velocity fluctuations, superimposed to flooded contours
of the covariance integrand, near the outer wall (a–c) and near the inner wall (d–f ) at y+ ≈ 12, for the R40 flow
cases. Thehe panels correspond to Reb = 4000 (a,d), 20 000 (b,e), 87 000 (c,f ).

to 30 %, which is comparable to the Q1 contribution but opposite in sign, whereas the Q4
contribution exceeds 110 % of the shear stress. Combining this value with the shape of
the JPDF in figure 25(d), one can infer that larger, energetic but infrequent motions are the
main contributors to the turbulent shear stress. These strong sweeps can be attributed to the
streamwise vortices pushing the high-speed mean flow from the channel core towards the
inner wall. As for the R1 flow cases, the quadrant contributions at the outer wall are similar
to those of the R40 flow cases, except for greater contribution of ejections as compared
with sweeps. Hence, the most probable motions (i.e. sweeps, as visible in figure 23) do
not contribute as much to the turbulent shear stress as the ejections, see table 3. At the
inner wall, the fractional contributions of the outward (Q1) and inward (Q3) interactions
exceeds half the contributions of ejections (Q2) and sweeps (Q4). This result confirms that
the spanwise large-scale structures, which were found to generate Q1 and Q3 motions in
§ 3.8, dampen the turbulent shear stress on the convex side of strongly curved channels.

3.10. Energy production reversal
The Q1 and Q3 motions contribute negatively to turbulent shear stress, hence they yield
negative contribution to the production of TKE, P = −u′v′S , where S = dU/dr − U/r
is the mean shear rate. Based on the analysis in § 3.9, we expect that TKE production
be reduced near the inner wall in flow cases with strong curvature. In figure 26(a) we
then show the TKE production for the R1 flow cases. Near the outer wall (solid lines) all
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Reb Q1 Q2 Q3 Q4

R40 outer wall
4000 −8.90 + 47.56 −7.90 + 69.24
20 000 −12.67 + 66.64 −10.10 + 56.13
87 000 −16.60 + 66.59 −11.63 + 61.64

R40 inner wall
4000 −30.76 + 31.38 −11.82 + 111.19
20 000 −14.10 + 63.82 −9.57 + 59.86
87 000 −17.26 + 63.75 −10.81 + 64.33

R1 outer wall
4000 −5.09 + 56.27 −2.43 + 51.29
20 000 −7.01 + 72.47 −7.09 + 41.64
87 000 −9.58 + 68.95 −9.51 + 50.14

R1 inner wall
4000 −75.25 + 115.39 −65.18 + 125.04
20 000 −60.01 + 95.88 −49.38 + 113.52
87 000 −39.40 + 59.72 −21.18 + 100.86

Table 3. Percent contribution of quadrants to turbulent shear stress (u′v′
Qi/u′v′), for the R40 and R1 flow

cases near the inner and outer wall, at y+ ≈ 12.
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Figure 26. (a) The TKE production (P+) near the outer wall (solid lines) and near the inner wall (dashed
lines). (b) Turbulent shear stress (−u′v′+, solid lines) and viscous shear stress (νS+, dashed lines) near the
inner wall. All quantities are reported in local wall units for the R1 flow cases.

distributions tend to collapse, especially at high Reynolds number, revealing that the flow
similarity is preserved near the outer wall. The peak production is located at y+ ≈ 12
(except at Reb = 4000, for which the peak occurs at y+ ≈ 9) and the peak value is
P+ ≈ 0.25, similar to plane channel flow (Kim et al. 1987; Laadhari 2002). In contrast,
TKE production near the inner wall (dashed lines) depends heavily on the Reynolds
number, implying that classical wall scaling no longer holds near highly convex surfaces.
Notably, a region appears where the production is negative, with an extent of 0.12δ at
Reb = 4000 and gradually reducing at higher Reynolds numbers. For the production to be
positive everywhere, the turbulent shear stress and the viscous shear stress must have the
same sign and vanish at the same location. This is not the case for the strongly curved
channel, as clearly illustrated in figure 26(b), which shows profiles of the turbulent shear
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stress, −u′v′+ (solid lines), and of the viscous shear stress, νS+ (dashed lines), near
the inner wall in the R1 flow cases. The displacement between the zero-crossings of the
turbulent shear stress and of the viscous shear is related to asymmetry of the mean velocity
profile (Beguier et al. 2005) and leads to a region of opposing shear where −u′v′+ < 0 and
νS+ > 0, hence P+ < 0.

As pointed out in § 3.1, the zero crossing of the mean shear marks the interface between
the two distinct flow structures developing at each wall. Straddling this interface there
is a diffusive transfer of shear stress from the outer- to the inner-wall region that has a
sign opposite to the locally produced shear stress, leading to negative net TKE production
(Hanjalić & Launder 1972). In the region with negative production local energy reversal
takes place, whereby energy is transferred from turbulent fluctuations to the mean flow
(Eskinazi & Erian 1969). Besides its physical significance, this result provides useful
caveat for use of RANS models for simulations of turbulent flows over convex walls. In
fact, standard eddy-viscosity models would clearly fail if turbulent shear stress and mean
shear do not go to zero at the same location.

4. Conclusions
We have investigated fully developed flow in a curved channel to get insight into turbulence
bounded by curved walls. This set-up showcases rich physics due to the interplay of fine-
scale turbulence with large-scale coherent structures driven by centrifugal instabilities,
which break the symmetry of the flow resulting in distinctly different behaviour near
convex and concave walls. We have focused on the effects of curvature by examining
two extreme cases, a mildly curved channel with radius of curvature rc/δ = 40.5 and a
strongly curved channel with rc/δ= 1, with δ the channel height. For each geometry, we
have studied the effect of Reynolds number (Reb) through an extensive series of DNS,
covering flow regimes from laminar up to the moderately high value of Reb = ubδ/ν =
87 000, where ub is the bulk velocity and ν the kinematic viscosity. Our analysis has
shown that in laminar flow the friction coefficient is higher at the convex wall, whereas
the opposite holds in the turbulent regime. Flow transition is anticipated by concave
curvature and delayed by convex curvature, thus preventing turbulence to fully develop
near the inner wall of strongly curved channels. For mild curvature, the global friction
based on the mean-pressure gradient is less than in plane channel flow at the same
flow rate within the range of ‘transitional’ Reynolds numbers 3000 ≤ Reb ≤ 10 000, with
a maximum frictional drag reduction of 12.2 % at Reb = 4000. This behaviour is not
observed in strongly curved channels, for which friction is higher than the planar case
in the transitional regime, and becomes roughly equivalent at Reb ≥ 40 000. Through
spectral analysis and flow field visualisations, we managed to detect the typical hallmarks
of the near-wall turbulence regeneration cycle at both walls in the case of mild curvature,
whereas wall turbulence is virtually suppressed on the convex side of strongly curved
channels. Clear footprints of streamwise- and spanwise-aligned large-scale structures were
also found.

Streamwise large-scale structures, originating from centrifugal instabilities and
reminiscent of the Dean vortices found in laminar flow, were identified through an eduction
scheme based on triple decomposition, which also allowed us to quantify their effects
on turbulence. Specifically, streamwise coherent structures were found to depend weakly
on Reynolds number and highly on the channel geometry. In case of mild curvature,
streamwise vortices modify the spanwise distribution of the wall shear and contribute
significantly to streamwise velocity fluctuations and turbulent shear stress, consistent with
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previous studies. For strong curvature, these vortices are displaced towards the outer wall,
becoming smaller in size and less stable, as we have shown by combined use of spectral
analysis and triple decomposition. As a consequence, the impact of streamwise roll cells
on the wall shear and momentum transfer is marginal, whereas the wall-normal velocity is
strongly affected.

Spanwise-aligned large-scale structures were also observed on the convex side of
strongly curved channels, leaving a footprint characterised by pressure disturbances
being advected downstream at approximately the mean flow speed. These structures
were analysed using triple decomposition and phase averaging, revealing their role in
amplifying pressure disturbances. This amplification correlates with large fluctuations
of the wall shear stress, which may contribute to friction reduction. The link between
enhanced pressure fluctuations and reduced wall friction is ascribed to the generation
of alternating favourable and adverse pressure gradients. These gradients interact with
upward and downward radial motions, respectively, leading to suppression of the turbulent
shear stress near the convex wall. This mechanism was further investigated and quantified
through quadrant analysis of streamwise and wall-normal velocity fluctuations, which
highlighted enhancement of inward and outward interactions (i.e. Q3 and Q1 motions),
resulting in the emergence of a region with negative turbulence production. The reduction
in size of streamwise vortices and the onset of spanwise structures – specific to strongly
curved channels and not observed in previous studies – suggest that the flow physics
undergo substantial changes when the curvature exceeds a critical threshold. Further study
encompassing a wider range of relative curvature is required to determine the exact value
at which these changes take place and the coherence of near-wall streaks on the inner wall
breaks down.

These results offer valuable information regarding the fundamental physics of flows over
curved walls, as well as for turbulence modelling, e.g. subgrid-scale models for LES and
RANS closures. We also believe that insights gained from analysis of curved channel flow
in a temporal setting may be relevant to understanding the case of spatially developing
boundary layers over convex and concave surfaces. In fact, our analysis has shown that the
interaction between the inner- and outer-wall regions is concentrated in the channel core,
whereas the inner-wall (outer-wall) region is dominated by convex (concave) curvature
effects.
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A. Effects of domain size
Six additional simulations have been carried out to verify aposteriori the adequacy of
the domain sizes used in the DNS campaign. Here, we consider the Reynolds number
Reb = 5000, which is the least to heave fully turbulent flow. As for the R40 flow cases,
from the baseline configuration (Lθ /δ= 2π , Lz/δ= 4) we have doubled and quadrupled
both Lθ (for fixed Lz) and Lz (for fixed Lθ ), by retaining the same grid spacing. As
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Figure 27. Mean streamwise velocity (U/ub) for the R40 flow cases (a) and R1 flow cases (b); r.m.s. profiles
of streamwise (green), wall-normal (blue) and spanwise (red) velocity fluctuations for the R40 flow cases (c)
and R1 flow cases (d). The Reynolds number is fixed at Reb = 5000 and the domain size is varied as marked,
case by case, by the different line types.

for the R1 flow cases, the streamwise extent of the domain covers a full circumference,
hence it was not increased. From Lz/δ= 8 used in the baseline DNS, the spanwise extent
was decreased to Lz/δ= 4 and increased to Lz/δ = 16. In figure 27 we show the mean
streamwise velocity (figure 27a,b) and the r.m.s. profiles of streamwise (green), wall-
normal (blue) and spanwise (red) velocity fluctuations (figure 27c,d) for both the R40
flow cases (figure 27a,c) and R1 flow cases figure 27(b,d). One will see that all the profiles
obtained with the different combinations of domain size (marked by the different line
types) nearly collapse to a single line, showing that the domain size used in the DNS
campaign is adequate.

B. Global friction velocity
The derivation of the global friction velocity has been shown by Brethouwer (2022)
starting from the mean momentum balance, yet we believe that it may be instructive to
illustrate briefly how it relates to the mean-pressure gradient. The analytical expression of
the streamwise pressure gradient as a function of the shear stresses at the two walls can
be derived in the simplest way from the balance of moments of forces about the centre of
curvature, which, referring to the sketch of figure 28, reads∫ ro

ri

(
−P − ∂P

∂θ

θ + P

)
rdr +

(
τw,i r

2
i + τw,or2

o

)

θ = 0. (B1)
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δ

ro
ri

τw,i

τw,o
U

P + ∂P/∂θ 	θ

	θ

P

Figure 28. Sketch of the curved channel flow.

Hence, recalling that rc = (ro + ri )/2 and δ = ro − ri , we obtain

− dP

dθ
= τw,i r2

i + τw,or2
o

rcδ
. (B2)

To define a global friction velocity, uτ,g , an equivalent length of the curved channel
must be defined. Considering the length of the channel at the centreline, Lθ = rc
θ , one
obtains

− 1
ρrc

dP

dθ
= 2

u2
τ,g

δ
⇒ u2

τ,g = u2
τ,i r

2
i + u2

τ,or2
o

2r2
c

(B3)

where u2
τ,i = τw,i/ρ and u2

τ,o = τw,o/ρ.

C. Convergence of flow statistics
Whether the statistics are well-converged can be verified by comparing the analytical
profile of the total shear stress with the DNS results. As shown by Brethouwer (2022),
starting from the mean momentum equation in streamwise direction for the curved channel
flow, which reads

0 = − 1
ρr

∂P

∂θ
+ ν

(
1
r

∂U

∂r
− U

r2 + ∂2U

∂r2

)
−
(
∂uv

∂r
+ 2

r
uv

)
, (C1)

one can derive the following equation for the total shear stress distribution

τ(r)= r2
i τw,i (r

2
o − r2)+ r2

oτw,o(r
2
i − r2)

2r2rcδ
. (C2)

In figure 29 we show the analytical profile of the total shear stress (circles) and the
DNS results at the corresponding Reynolds numbers (solid lines). The DNS results
effectively collapse to the analytical profile, which corroborates that satisfactory statistical
convergence is achieved.

D. Assessment of the triple decomposition
The streamwise large-scale vortices are not necessarily coherent over the entire extent
of the domain, and unsteady splitting and merging events may also take place (see
§ 3.5). Consequently, the coherent contribution from the streamwise vortices defined in
(3.6) would approach zero as the domain length (Lθ ) approaches infinity. This effect
is illustrated in figure 30(a), where the r.m.s. profiles of coherent streamwise velocity
(ũ∗

rms) are plotted for the R40 flow case at Reb = 10 000, using different values of Lθ .
As expected, the intensity of coherent fluctuations decreases for longer domains.
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Figure 29. Mean profile of the total shear stress (τ ∗) at various Reynolds numbers for the R40 flow cases (a)
and R1 flow cases (b). Circles denote the analytical profile (C2).
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Figure 30. (a) The r.m.s. profiles of coherent streamwise velocity fluctuations for the R40 flow case at Reb =
10 000 for various domain lengths. (b) Kinetic energy of time-averaged coherent motions (solid lines) and
time-averaged kinetic energy of coherent motions (dashed lines) scaled by the initial value as a function of
the averaging time period. (c) The r.m.s. profiles of coherent wall-normal velocity fluctuations for the R1 flow
case at Reb = 10 000 for various averaging periods. (d) Total (solid lines) and coherent (dashed lines) turbulent
shear stress for the R40 flow case at Reb = 40 000, compared with the results obtained by Brethouwer (2022)
for rc/δ = 30 at Reb = 40 000.
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Figure 31. (a) Wavenumber-frequency spectra of the fluctuating streamwise velocity, E∗
uu(kθ , ω), for the R1

flow case at Reb = 4000; (b) E∗
uu(ω) at kθ δ = 3. The wall distance is fixed at y/δ = 0.09.

Another aspect to take into account is that the streamwise vortices are free to move in
the spanwise direction, whereby the time-averaged coherent contribution would approach
zero as the averaging period (T ) approaches infinity. This effect is assessed in figure 30(b),
where we show the kinetic energy associated with the time-averaged coherent motions,
defined as Ẽk = 〈(ũ2 + ṽ

2 + w̃
2
)/2〉r,z as a function of T (solid lines). The time-averaging

is carried out over incremental time periods from T = 1δ/ub to T = 1000δ/ub. The
temporal decay of Ẽk is evident, occurring more rapidly in the R1 flow case due
to increased unsteadiness of streamwise vortices. However, the time-averaged kinetic
energy of coherent motions, defined as Ẽk = 〈(ũ2 + ṽ2 + w̃2)/2〉r,z is nearly constant for
increasing T (dashed lines), implying that the variance of (3.6) is independent of the
averaging period. The same conclusion can be drawn from figure 30(c), which shows
the r.m.s. profiles of coherent wall-normal velocity (ṽ∗

rms) for the R1 flow case at at
Reb = 10000. All profiles, obtained using different values of T , are nearly overlapping.

The present results obtained with Lθ = 2πδ for the R40 flow case at Reb = 40 000 are
compared with those reported in Brethouwer (2022) for the flow in a curved channel with
similar wall curvature (rc/δ = 30) at the same Reynolds number. As shown in figure 30(d),
the profiles of the turbulent shear stress are virtually overlapping (solid lines) and, despite
the curvature is not identical, the coherent contribution is comparable (dashed lines).

E. Estimation of the convection velocity
In figure 31(a) we show the wavenumber-frequency spectra of the streamwise velocity
fluctuations, E∗

uu(kθ , ω), for the R1 flow case at Reb = 4000. The wall distance is kept
fixed at y/δ = 0.09, which is the peak location of k∗

θ E∗
uu related to spanwise structures

(see figure 11). An energy peak appears in the spectral density at the wavenumber
kθ δ ≈ 3 (marked by the vertical dashed line) corresponding to λθ /δ ≈ 2π/3, which is the
wavelength of spanwise structures at Reb = 4000 (see figure 11). As seen in figure 31(b),
showing E∗

uu(ω) fixed the wavenumber at kθ δ = 3, the energy peak is at the angular
frequency ω≈ 2ub/δ. Hence, the convection velocity of spanwise structures can be
estimated as uc =ω/kθ ≈ 0.67ub.
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HANJALIĆ, K. & LAUNDER, B.E. 1972 Fully developed asymmetric flow in a plane channel. J. Fluid Mech.

51 (2), 301–335.
HARLOW, F.H. & WELCH, J.E. 1965 Numerical calculation of time-dependent viscous incompressible flow

of fluid with free surface. Phys. Fluids 8 (12), 2182–2189.
HUNT, I.A. & JOUBERT, P.N. 1979 Effects of small streamline curvature on turbulent duct flow. J. Fluid

Mech. 91 (4), 633–659.
HUSSAIN, A.K.M.F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303–356.
HUSSAIN, A.K.M.F. & REYNOLDS, W.C. 1970 The mechanics of an organized wave in turbulent shear flow.

J. Fluid Mech. 41 (2), 241–258.
JIMENEZ, J., UHLMANN, M., PINELLI, A. & KAWAHARA, G. 2001 Turbulent shear flow over active and

passive porous surfaces. J. Fluid Mech. 442, 89–117.
KIM, J. & HUSSAIN, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A:

Fluid Dyn. 5 (3), 695–706.
KIM, J., MOIN, P. & MOSER, R.D. 1987 Turbulence statistics in fully developed channel flow at low Reynolds

number. J. Fluid Mech. 177, 133–166.
KOBAYASHI, M., MAEKAWA, H., TAKANO, T., UCHIYAMA, N., KUBOTA, M. & KOBAYASHI, Y. 1989

Two-dimensional turbulent flow in a curved channel. JSME Intl J. Ser. 32 (3), 324–331.
KOUMOUTSAKOS, P. 1999 Vorticity flux control for a turbulent channel flow. Phys. Fluids 11 (2), 248–250.
KRISTOFFERSEN, R. & ANDERSSON, H.I. 1993 Direct simulations of low-Reynolds-number turbulent flow

in a rotating channel. J. Fluid Mech. 256, 163–197.
KUWATA, Y. 2022 Dissimilar turbulent heat transfer enhancement by Kelvin–Helmholtz rollers over high-

aspect-ratio longitudinal ribs. J. Fluid Mech. 952, A21.
LAADHARI, F. 2002 On the evolution of maximum turbulent kinetic energy production in a channel flow. Phys.

Fluids 14 (10), L65–L68.
1007 A28-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

52
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.52


Journal of Fluid Mechanics

LE CUNFF, C. & BOTTARO, A. 1993 Linear stability of shear profiles and relation to the secondary instability
of the dean flow. Phys. Fluids A: Fluid Dyn. 5 (9), 2161–2171.

LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J.
Fluid Mech. 774, 395–415.

LIGRANI, P.M., LONGEST, J.E., KENDALL, M.R. & FIELDS, W.A. 1994 Splitting, merging and spanwise
wavenumber selection of dean vortex pairs. Exp. Fluids 18 (1-2), 41–58.

LIGRANI, P.M. & NIVER, R.D. 1988 Flow visualization of dean vortices in a curved channel with 40 to 1
aspect ratio. Phys. Fluids 31 (12), 3605–3617.

MAMORI, H. & FUKAGATA, K. 2011 Drag reduction by streamwise traveling wave-like Lorenz force in channel
flow. J. Phys.: Conf. Ser. 318 (2), 022030.

MATSSON, O.J.E. & ALFREDSSON, P.H. 1990 Curvature-and rotation-induced instabilities in channel flow.
J. Fluid Mech. 210, 537–563.

MATSSON, O.J.E. & ALFREDSSON, P.H. 1992 Experiments on instabilities in curved channel flow. Phys.
Fluids A: Fluid Dyn. 4 (8), 1666–1676.

MATSUBARA, K. & MIURA, T. 2017 Spatially advancing turbulent flow and heat transfer in a curved channel
at friction-velocity-based Reynolds number 550. Intl J. Heat Mass Transfer 108, 2433–2443.

MONTY, J.P., HUTCHINS, N., NG, H.C.H., MARUSIC, I. & CHONG, M.S. 2009 A comparison of turbulent
pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431–442.

MOSER, R.D. & MOIN, P. 1987 The effects of curvature in wall-bounded turbulent flows. J. Fluid Mech. 175
(1), 479–510.

NAGATA, M. & KASAGI, N. 2004 Spatio-temporal evolution of coherent vortices in wall turbulence with
streamwise curvature. J. Turbul. 5 (1), 017.

ORLANDI, P., BERNARDINI, M. & PIROZZOLI, S. 2015 Poiseuille and Couette flows in the transitional and
fully turbulent regime. J. Fluid Mech. 770, 424–441.

ORLANDI, P. & FATICA, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid
Mech. 343, 43–72.

PATEL, V.C. & HEAD, M.R. 1969 Some observations on skin friction and velocity profiles in fully developed
pipe and channel flows. J. Fluid Mech. 38 (1), 181–201.

PIROZZOLI, S. 2023 Searching for the log law in open channel flow. J. Fluid Mech. 971, A15.
PIROZZOLI, S., ROMERO, J., FATICA, M., VERZICCO, R. & ORLANDI, P. 2021 One-point statistics for

turbulent pipe flow up to Reτ ≈ 6000. J. Fluid Mech. 926, A28.
RAMAPRIAN, B.R. & SHIVAPRASAD, B.G. 1978 The structure of turbulent boundary layers along mildly

curved surfaces. J. Fluid Mech. 85 (2), 273–303.
RAYLEIGH, J.W.S. 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93 (648), 148–154.
SO, R.M.C. & MELLOR, G.L. 1973 Experiment on convex curvature effects in turbulent boundary layers. J.

Fluid Mech. 60 (1), 43–62.
TAYLOR, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc.

Lond. A 223, 289–343.
THOMAS, A.S.W. & BULL, M.K. 1983 On the role of wall-pressure fluctuations in deterministic motions in

the turbulent boundary layer. J. Fluid Mech. 128 (-1), 283–322.
VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for three-dimensional incompressible flows

in cylindrical coordinates. J. Comput. Phys. 123 (2), 402–414.
WALLACE, J.M. & BRODKEY, R.S. 1977 Reynolds stress and joint probability density distributions in the

u − v plane of a turbulent channel flow. Phys. Fluids 20 (3), 351–355.
WALLACE, J.M., ECKELMANN, H. & BRODKEY, R.S. 1972 The wall region in turbulent shear flow. J. Fluid

Mech. 54 (1), 39–48.
WATTENDORF, F.L. 1935 A study of the effect of curvature on fully developed turbulent flow. Proc. R. Soc.

Lond. A 148 (865), 565–598.
YANG, Y.T. & WU, J.Z. 2012 Channel turbulence with spanwise rotation studied using helical wave

decomposition. J. Fluid Mech. 692, 137–152.
YIMPRASERT, S., KVICK, M., ALFREDSSON, P.H. & MATSUBARA, M. 2021 Flow visualization and skin

friction determination in transitional channel flow. Exp. Fluids 62 (2), 1–16.
YU, X. & LIU, J.T.C. 1991 The secondary instability in Görtler flow. Phys. Fluids A: Fluid Dyn. 3 (8),

1845–1847.
ZANOUN, E.S., NAGIB, H. & DURST, F. 2009 Refined c f relation for turbulent channels and consequences

for high-re experiments. Fluid Dyn. Res. 41 (2), 021405.
ZARIPOV, D., LI, R., LUKYANOV, A., SKRYPNIK, A., IVASHCHENKO, E., MULLYADZHANOV,

R. & MARKOVICH, D. 2023 Backflow phenomenon in converging and diverging channels. Exp. Fluids
64 (1), 9.

1007 A28-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

52
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.52

	1. Introduction
	2. Methodology
	3. Results
	3.1. Friction coefficient and flow transition
	3.2. Flow visualisations
	3.3. Velocity spectra
	3.4. Streamwise large-scale structures
	3.5. Splitting and merging events
	3.6. Role of streamwise vortices on velocity fluctuations
	3.7. Spanwise large-scale structures
	3.8. Role of spanwise structures on wall shear and pressure
	3.9. Quadrant analysis
	3.10. Energy production reversal

	4. Conclusions
	A. Effects of domain size
	B. Global friction velocity
	C. Convergence of flow statistics
	D. Assessment of the triple decomposition
	E. Estimation of the convection velocity
	References

