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Abstract Rewriting and 1-Dimensional

Polygraphs

We begin by discussing 1-polygraphs, which are simply directed graphs, thought
of here as abstract rewriting systems: they consist of vertices, which represent
the objects of interest, and arrows, which indicate that we can rewrite one object
into another. After formally introducing those in Section 1.1, we will see in
Section 1.2 that they provide a notion of presentation for sets, by generators and
relations. Of course, presentations of sets are of little interest in themselves,
but they are merely used here as a gentle introduction to some of the main
concepts discussed in this work: in particular, we introduce the notion of Tietze
transformations which generate the equivalence between two presentations of
the same set. In this context, an important question consists in deciding when
two objects are equivalent, i.e., represent the same element of the presented set.
In order to address it, we develop the theory of abstract rewriting systems in
Section 1.3. Most notably, we show that when the rewriting system satisfies the
two properties of termination and confluence, equivalence classes of objects
admit a unique canonical representative, the normal form, and equivalence of
objects can thus be decided by comparing the associated normal forms. Finally,
in Section 1.4, we detail the more advanced method of decreasing diagrams,
which can be used to show confluence in the absence of termination.

1.1 The Category of 1-Polygraphs

A 0-polygraph is simply another name for a set. Since there is not much to do
with those, we move on to 1-polygraphs.

1.1.1 Definition. A 1-polygraph 𝑃 consists of a 0-polygraph 𝑃0, whose ele-
ments are called 0-generators, together with a set 𝑃1 of 1-generators and two
functions 𝑠𝑃0 , 𝑡

𝑃
0 : 𝑃1 → 𝑃0 respectively associating to each 1-generator its
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4 1-Dimensional Polygraphs

source and target 0-cell. We often write ⟨ 𝑃0 | 𝑃1 ⟩ for such a polygraph and
𝑎 : 𝑥 → 𝑦 for a 1-generator 𝑎 in 𝑃1 such that 𝑠𝑃0 (𝑎) = 𝑥 and 𝑡𝑃0 (𝑎) = 𝑦. A
1-polygraph 𝑃 is finite when both 𝑃0 and 𝑃1 are.

The notion of 1-polygraph is simply another name for the notion of graph,
by which we always mean a directed multigraph, which we sometimes also call
a 1-graph. Indeed, a polygraph 𝑃 as above is a graph with 𝑃0 as set of vertices
𝑃1 as set of edges, an edge 𝑎 ∈ 𝑃1 having 𝑠𝑃0 (𝑎) as source and 𝑡𝑃0 (𝑎) as target.
Thus, any terminology pertaining to oriented graphs, such as the notion of path,
immediately applies to 1-polygraphs.

1.1.2 Example. The directed graph

𝑥
𝑎 //

𝑏
// 𝑦

𝑐

��
𝑧

(1.1)

can be encoded as the 1-polygraph 𝑃 with 𝑃0 = {𝑥, 𝑦, 𝑧}, 𝑃1 = {𝑎, 𝑏, 𝑐} and

𝑠0 (𝑎) = 𝑠0 (𝑏) = 𝑥, 𝑡0 (𝑎) = 𝑡0 (𝑏) = 𝑦, 𝑠0 (𝑐) = 𝑡0 (𝑐) = 𝑦,
which can be more concisely denoted as

𝑃 = ⟨ 𝑥, 𝑦, 𝑧 | 𝑎 : 𝑥 → 𝑦, 𝑏 : 𝑥 → 𝑦, 𝑐 : 𝑦 → 𝑦 ⟩ .

1.1.3 The category of 1-polygraphs. A morphism 𝑓 : 𝑃 → 𝑄 between
1-polygraphs 𝑃 and 𝑄 consists of a pair of functions 𝑓0 : 𝑃0 → 𝑄0 and
𝑓1 : 𝑃1 → 𝑄1 respectively sending the 0- and 1-cells of 𝑃 to those of 𝑄
and preserving sources and targets:

𝑠𝑄0 ◦ 𝑓1 = 𝑓0 ◦ 𝑠𝑃0 , 𝑡𝑄0 ◦ 𝑓1 = 𝑓0 ◦ 𝑡𝑃0 .
We write Pol1 for the category of 1-polygraphs and their morphisms. Again,
this is simply another name for the usual category of directed graphs and their
morphisms.

1.2 Presenting Sets

A 1-polygraph 𝑃 can be seen as a presentation of a set 𝑋 , in the following
sense. Each element 𝑥 of 𝑃0 denotes an element 𝑥 of 𝑋 , in such a way that
each element of 𝑋 has at least one “name” in 𝑃0, and each element 𝑎 : 𝑥 → 𝑦

in 𝑃1 represents the renaming of 𝑥 by 𝑦. The elements of 𝑃0 and 𝑃1 are often
respectively called generators and relations.
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1.2 Presenting Sets 5

1.2.1 P-congruence. The 𝑃-congruence ≈𝑃 associated with a 1-polygraph 𝑃
is the smallest equivalence relation on 𝑃0 such that 𝑥 ≈𝑃 𝑦 for every 1-generator
𝑎 : 𝑥 → 𝑦 in 𝑃1.

1.2.2 The presented set. The set 𝑃 presented by a 1-polygraph 𝑃 is the set
𝑃0/≈𝑃 obtained by quotienting 𝑃0 by the 𝑃-congruence ≈𝑃 , what we usually
simply write 𝑃0/𝑃1. More generally, a set 𝑋 is presented by a 1-polygraph 𝑃
when 𝑋 is isomorphic to 𝑃, and in this case 𝑃 is called a presentation of 𝑋 .
Geometrically speaking, 𝑋 amounts to the set of connected components of the
graph 𝑃.

1.2.3 Example. In Example 1.1.2, the relation ≈𝑃 identifies 𝑥 and 𝑦, and the
presented set is the set with two elements, corresponding to the equivalence
classes {𝑥, 𝑦} and {𝑧}.
More abstractly, the set presented by a 1-polygraph 𝑃 can be characterized by
the following universal property:

1.2.4 Lemma. For any set 𝑋 and function 𝑓 : 𝑃0 → 𝑋 such that 𝑓 (𝑥) = 𝑓 (𝑦)
for every 1-generator 𝑎 : 𝑥 → 𝑦 in 𝑃1, there exists a unique function 𝑓 : 𝑃→ 𝑋

such that 𝑓 ◦ 𝑞 = 𝑓

𝑃0

𝑞

��

𝑓
// 𝑋

𝑃
𝑓

??

,

where 𝑞 : 𝑃0 → 𝑃 is the function sending an element to its equivalence class.

1.2.5 Tietze transformations. At this point, a natural question to ask is: when
do two polygraphs present the same set? For instance, the set with two elements
can also be presented by the polygraph

𝑥
𝑑 // 𝑥′ 𝑒 // 𝑦 𝑧 (1.2)

which looks quite different from (1.1), and it is not obvious how the two are re-
lated. This question was first studied by Tietze for presentations of groups [345],
as we shall see in Chapter 5, but similar results already hold for plain sets as
we now explain.

We call elementary Tietze transformations the following operations trans-
forming a 1-polygraph 𝑃 into a 1-polygraph 𝑄:

(T1) adding a definable generator: given 𝑥 ∈ 𝑃0, 𝑦 ∉ 𝑃0, and 𝑎 ∉ 𝑃1, we define

𝑄 = ⟨ 𝑃0, 𝑦 | 𝑃1, 𝑎 : 𝑥 → 𝑦 ⟩ ,
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6 1-Dimensional Polygraphs

(T2) adding a derivable relation: given 𝑥, 𝑦 ∈ 𝑃0 and 𝑎 ∉ 𝑃1 such that 𝑥 ≈𝑃 𝑦,
we define

𝑄 = ⟨ 𝑃0 | 𝑃1, 𝑎 : 𝑥 → 𝑦 ⟩.
A Tietze transformation from 𝑃 to 𝑄 is a zigzag of elementary Tietze transfor-
mations, i.e., a finite sequence of polygraphs (𝑃𝑖)0⩽𝑖⩽𝑛 with𝑃0 = 𝑃 and𝑃𝑛 = 𝑄,
together with, for each index 0 ⩽ 𝑖 < 𝑛, an elementary Tietze transformation
either from 𝑃𝑖 to 𝑃𝑖+1 or from 𝑃𝑖+1 to 𝑃𝑖. The Tietze equivalence is the smallest
equivalence relation on 1-polygraphs, identifying any two polygraphs related
by an elementary Tietze transformation and closed by isomorphism; otherwise
said, two polygraphs are Tietze equivalent when there exists a Tietze transfor-
mation between them, up to isomorphism.

1.2.6 Lemma. Two Tietze equivalent 1-polygraphs present isomorphic sets.

Proof. By induction on the length of Tietze transformations, it is enough to
show that two polygraphs 𝑃 and𝑄 related by an elementary Tietze transforma-
tion present the same set. Using the same notations as above, in the case of the
transformation (T1), we have

𝑄 = (𝑃0 ⊔ {𝑦})/≈𝑄 = ((𝑃0 ⊔ {𝑦})/(𝑥 ≈ 𝑦))/≈𝑃 = 𝑃0/≈𝑃 = 𝑃,

where 𝑥 ≈ 𝑦 denotes the smallest equivalence relation identifying 𝑥 and 𝑦. In
the case of the transformation (T2), the relations generated by 𝑃1 and 𝑄1 are
the same and we have

𝑄 = 𝑄0/≈𝑄 = 𝑃0/≈𝑃 = 𝑃. □

We will see in Theorem 1.2.12 that the converse also holds: these operations
exactly axiomatize when two finite 1-polygraphs are presenting the same set.

1.2.7 Example. Using the above lemma, one can deduce that the two poly-
graphs (1.1) and (1.2) present the same set, by building a series of Tietze
transformations relating them:

𝑥
𝑎 //

𝑏
// 𝑦

𝑐

��
𝑧

(T2)
f 𝑥

𝑎 //

𝑏
// 𝑦 𝑧

(T2)
f 𝑥

𝑎 // 𝑦 𝑧

(T1)
⇝ 𝑥′ 𝑥

𝑑oo 𝑎 // 𝑦 𝑧
(T2)
⇝ 𝑥′

𝑒

66𝑥
𝑑oo 𝑎 // 𝑦 𝑧

(T2)
f 𝑥′

𝑒

66𝑥
𝑑oo 𝑦 𝑧.

In the first step, 𝑦 ≈ 𝑦 can be shown without resorting to the relation 𝑐 : 𝑦 → 𝑦

(this is because, by definition, ≈ is an equivalence relation), and therefore the
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1.2 Presenting Sets 7

relation ℎ can be removed using the Tietze transformation (T2) backward. Other
steps can be justified similarly. Of course, in this case, it is very easy to compute
the sets presented by the two polygraphs (1.1) and (1.2) and to see that they are
isomorphic (both have two elements), but it will no longer be the case when
generalizing to higher dimensions.

1.2.8 Backward Tietze transformations. A Tietze transformation is a zigzag
of elementary Tietze transformations. It can alternatively be seen as a sequence
of elementary Tietze transformations or the following transformations, that we
call backward elementary Tietze transformations, corresponding to using an
elementary Tietze transformation in the “backward direction”:

(T1) removing a definable generator: given a polygraph 𝑃 of the form

𝑃 =
〈
𝑃′0, 𝑥

�� 𝑃′1, 𝑎 : 𝑥 → 𝑦
〉
,

where 𝑥 does not occur in any relation of 𝑃′1, we define

𝑄 =
〈
𝑃′0

�� 𝑃′1 〉
,

(T2) removing a derivable relation: given a polygraph 𝑃 of the form

𝑃 =
〈
𝑃0

�� 𝑃′1, 𝑎 : 𝑥 → 𝑦
〉
,

we define

𝑄 =
〈
𝑃0

�� 𝑃′1 〉
whenever 𝑥 ≈𝑄 𝑦.

1.2.9 Remark. Given an elementary Tietze transformation from 𝑃 to𝑄, there is
an obvious inclusion of𝑃 into𝑄 that induces a morphism of 1-polygraphs𝑃→ 𝑄.
However, for a backward elementary Tietze transformation from 𝑃 to 𝑄 there
is no canonical morphism 𝑃→ 𝑄. For instance, consider the transformation

𝑥
𝑎 //

𝑏
// 𝑦

𝑐

��
𝑧

(T2)
⇝ 𝑥

𝑎 //

𝑏
// 𝑦 𝑧.

The only reasonable choice would be to send the 1-generator 𝑐 : 𝑦 → 𝑦 to an
identity on 𝑦, which is not possible with a morphism of 1-polygraph (those
send 1-generators to 1-generators). This is one of the reasons why we take the
elementary Tietze transformations (as opposed to the backward ones) as more
primitive.
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8 1-Dimensional Polygraphs

1.2.10 Minimal presentations. It can be noted that Tietze transformations
consisting only of elementary transformations (T1) and (T2) make the presen-
tations larger (in terms of number of generators and relations), whereas those
consisting only of (T1) and (T2) make them smaller. We thus sometimes re-
spectively call Tietze expansions and Tietze reductions these two families of
Tietze transformations and say that a polygraph 𝑃 Tietze expands (resp. Tietze
reduces) to a polygraph 𝑄 if 𝑄 can be obtained from 𝑃 by applying a series of
Tietze expansions (resp. Tietze reductions). One may wonder if, by applying
only the second kind of transformations, we eventually always reach a minimal
presentation with respect to both generators and relations, and whether two
such minimal presentations are necessarily isomorphic. We will see that it is
indeed the case for finite polygraphs. First, note that a 1-polygraph 𝑃 without
relations (i.e., 𝑃1 = ∅) is always minimal.

1.2.11 Lemma. Any finite 1-polygraph 𝑃 Tietze reduces to a polygraph iso-
morphic to ⟨ 𝑃 | ⟩.
Proof. By induction on the cardinal of 𝑃1, we show that we can remove a
1-generator using Tietze transformations, unless 𝑃1 is empty. Suppose that 𝑃
contains a non-directed cycle, i.e., a non-empty non-directed path from a
0-generator 𝑥 to itself. We can assume that this path does not use the same
edge twice; otherwise, we can choose a smaller cycle. Given a 1-generator
𝑎 : 𝑥 → 𝑦 occurring in this cycle, there exists a non-directed path from 𝑥 to 𝑦
that is not using 𝑎. Therefore, we can apply a Tietze transformation (T2) to
remove 𝑎. Otherwise, there is no cycle, and consider a maximal non-directed
path in 𝑃. Since 𝑃 is finite and acyclic, this path will end by a 1-generator
𝑎 : 𝑥 → 𝑦 such that either 𝑥 or 𝑦 is incident to no other edge. Therefore, we can
use a Tietze transformation (T1) to remove 𝑥 or 𝑦, along with 𝑎. □

In the case of finite 1-polygraphs, the above lemma implies the converse of
Lemma 1.2.6:

1.2.12 Theorem. Two finite 1-polygraphs present isomorphic sets if and only
if they are Tietze equivalent.

Proof. Suppose given two polygraphs 𝑃 and𝑄 such that 𝑃 ≃ 𝑄. By the previous
lemma, 𝑃 is Tietze equivalent to ⟨ 𝑃 | ⟩, and similarly 𝑄 is Tietze equivalent
to ⟨ 𝑃 | ⟩. Finally, the presentations ⟨ 𝑃 | ⟩ and ⟨ 𝑄 | ⟩ are easily seen to be
Tietze equivalent because 𝑃 and 𝑄 are isomorphic. □

1.2.13 Remark. Note that, given the above definition of Tietze transformations,
the previous theorem does not generalize to infinite presentations. For instance,
the 1-polygraphs ⟨ 𝑥 | ⟩ and ⟨ 𝑥𝑖 | 𝑎𝑖 : 𝑥𝑖 → 𝑥0 ⟩𝑖∈N both present the set with
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1.3 Abstract Rewriting Systems 9

one element but are not Tietze equivalent since we can only add or remove a
finite number of relations using Tietze equivalences (the notation on the right
means that 𝑖 ranges over N both in generators 𝑥𝑖 and relations 𝑎𝑖). In order to
overcome this counter-example, one might be naively tempted to allow infinite
sequences of Tietze transformations between 1-polygraphs, but this does not
preserve presented sets. For instance, consider the 1-polygraph

⟨ 𝑥𝑖 , 𝑦 | 𝑎𝑖 : 𝑥𝑖+1 → 𝑥𝑖 , 𝑏𝑖 : 𝑥𝑖 → 𝑦 ⟩𝑖∈N ,

i.e., the graph

𝑥0

𝑏0
��

𝑥1
𝑎0oo

𝑏1
~~

𝑥2
𝑎1oo

𝑏2

vv

· · ·𝑎2oo

𝑏3

tt𝑦

,

presenting the set with one element. Using Tietze transformations, any finite
number of relations 𝑏𝑖 can be removed from the polygraph, since they are
derivable. However, if we remove all of them the resulting polygraph presents
the set with two elements.

In order to account for infinite presentations, the notion of Tietze equivalence
has to be generalized as follows. Firstly, we say that a 1-polygraph 𝑃 Tietze
expands to 𝑄 if there is a transfinite sequence of elementary Tietze expansions
from 𝑃 to𝑄; secondly, we define Tietze equivalence as the smallest equivalence
relation containing Tietze expansions. Two (not necessarily finite) 1-polygraphs
are Tietze equivalent in this sense if and only if they present isomorphic sets.
We do not dwell further on infinite polygraphs, because we are mostly interested
in finite polygraphs in this book; details can be found in [178].

We will see that Lemma 1.2.11 does not generalize in dimensions higher
than 1, where arbitrary finite sequences of Tietze transformations, interleaving
Tietze reductions and expansions, might be required in order to show that two
polygraphs present the same object. However, an analogous of Theorem 1.2.12
will still hold, but its proof has to be carried over differently, as explained in
Chapter 5.

1.3 Abstract Rewriting Systems

The orientations of the relations do not really matter in a 1-polygraph, with
respect to the presented set: if we reverse an edge, the presented set is the same.
This is easily shown using the following series of Tietze transformations:
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10 1-Dimensional Polygraphs

〈
𝑃0

�� 𝑃′1, 𝑥 → 𝑦
〉 (T2)
⇝

〈
𝑃0

�� 𝑃′1, 𝑥 → 𝑦, 𝑦 → 𝑥
〉 (T2)
⇝

〈
𝑃0

�� 𝑃′1, 𝑦 → 𝑥
〉
,

which are based on the fact that≈ is an equivalence relation and thus symmetric.
However, the orientations can still be useful to decide equality between

generators, i.e., answer the following question:

Given two generators, do they represent the same element of the presented
set? Or, equivalently, are they related by ≈?

We will see that in good cases, one can come up with canonical representatives
of equivalence classes under ≈, in such a way that the representative of an
arbitrary generator can easily be computed. In those situations, the equivalence
of two generators can be tested by checking whether their representatives are
equal or not. In order to come up with representatives, we use the orientation of
the 1-generators. Given two 0-generators 𝑥 and 𝑦 such that there is a 1-generator
𝑎 : 𝑥 → 𝑦, we have 𝑥 ≈ 𝑦, and the orientation of the 1-generator will be
interpreted as indicating that 𝑦 is a “more canonical” representative than 𝑥 in the
equivalence class under ≈. With respect to this, the “most canonical” elements,
which are called normal forms, are good candidates for being representatives of
equivalence classes with good properties: under reasonable assumptions, it can
be shown that every class admits exactly one such representative. This point of
view is the starting point of rewriting theory [20, 342].

1.3.1 Terminology and notations. We have seen that a 1-polygraph 𝑃 is
simply another name for a graph. Since people in rewriting theory like to think
about it from a different point of view, they give it yet another name and call it an
abstract rewriting system. In this context, the elements of 𝑃0 are called objects
and those of 𝑃1 are called rewriting rules (or rewriting steps). A rewriting path
is simply a path, i.e., a sequence

𝑥0
𝑎1 // 𝑥1

𝑎2 // 𝑥2
𝑎3 // . . .

𝑎𝑛 // 𝑥𝑛

of composable rewriting steps. The 0-cells 𝑥0 and 𝑥𝑛 are respectively called the
source and target of the path, and we write 𝑓 : 𝑥 ∗→ 𝑦 for a path 𝑓 from 𝑥 to 𝑦.
One also writes 𝑥 → 𝑦 (resp. 𝑥 ∗→ 𝑦) when there exists a rewriting step (resp.
a rewriting path) from 𝑥 to 𝑦, and the notation 𝑥 ∗↔ 𝑦 is often used instead
of 𝑥 ≈ 𝑦.

1.3.2 Normal forms. A 0-cell 𝑥 ∈ 𝑃0 is a normal form when there is no rule
𝑎 : 𝑥 → 𝑦 in 𝑃1 with 𝑥 as source.
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We can distinguish the following situations concerning normal forms in
equivalence classes under ≈ of 0-cells in a polygraph 𝑃: we say that 𝑃 has

– the existing normal form property when every equivalence class contains
at least one normal form; i.e., for every 𝑥 ∈ 𝑃0 there exists a normal form
𝑦 ∈ 𝑃0 such that 𝑥 ∗↔ 𝑦;

– the unique normal form property when every equivalence class contains
at most one normal form; i.e., for every normal form 𝑥, 𝑦 ∈ 𝑃0, 𝑥 ∗↔ 𝑦

implies 𝑥 = 𝑦; and
– the canonical form property when every equivalence class contains exactly

one normal form, called the canonical representative of the class; i.e., it
satisfies both the existing and the unique normal form property.

1.3.3 Example. Consider the following 1-polygraphs:
𝑥 // 𝑦 dd 𝑥 𝑦oo // 𝑧 𝑥 𝑦oo // 𝑧hh

(1) (2) (3)
(1) and (3) have the unique normal form property, (2) and (3) have the existing
normal form property, and (3) has the canonical form property.

We are interested here in providing practical conditions on 𝑃 that ensure
that the canonical form property holds, as well as that we are able to efficiently
compute the canonical form associated to the class of a 0-cell. We will see that
termination of a 1-polygraph implies the existing normal form, that confluence
implies the unique normal form property, and moreover that confluence can be
checked locally for terminating 1-polygraphs.

1.3.4 Normalizability. A polygraph is normalizing when every 0-cell 𝑥 re-
writes to a normal form. We sometimes write �̂� for an arbitrary choice of such
a normal form. From the definition, we deduce the following result.

1.3.5 Lemma. A normalizing 1-polygraph has the existing normal form prop-
erty.

The converse does not hold, as illustrated in Example 1.3.20.

1.3.6 Termination. In practice, in order to show that a 1-polygraph is normal-
izing, one often uses the following property. A 1-polygraph 𝑃 is terminating (or
well-founded or noetherian or strongly normalizing) when there is no infinite
sequence of rewriting steps

𝑥0
𝑎1 // 𝑥1

𝑎2 // 𝑥2
𝑎3 // · · · .

For instance, in Example 1.3.3, (2) and (3) are terminating but not (1).
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12 1-Dimensional Polygraphs

Starting from a 0-cell 𝑥 in a terminating 1-polygraph, we can define a se-
quence of 0-cells by induction by 𝑥0 = 𝑥, and 𝑥𝑖+1 is the target of an arbitrary
rewriting rule 𝑥𝑖 → 𝑥𝑖+1 with 𝑥𝑖 as source; we stop if there is no such rewriting
rule. Termination ensures that this process will end after a finite number of
steps, and the last 0-cell 𝑥𝑛 is necessarily a normal form. We have just shown
the following.

1.3.7 Lemma. A terminating 1-polygraph is normalizing.

The converse does not hold, as illustrated in Example 1.3.20.
In practice, the termination of a 1-polygraph 𝑃 can be shown using the

following lemma. We recall that a poset (𝑁, ≼) is well-founded when every
decreasing sequence 𝑛1 ≽ 𝑛2 ≽ . . . is eventually stationary: there exists 𝑘 ∈ N
such that for every 𝑖, 𝑗 ∈ N with 𝑖 ⩾ 𝑗 ⩾ 𝑘 one has 𝑛𝑖 = 𝑛 𝑗 . Equivalently, the
poset is well-founded when there exists no infinite strictly decreasing sequence
𝑛1 ≻ 𝑛2 ≻ . . . of elements of 𝑁 . The typical example of such an order is (N, ⩽),
or any ordinal.

1.3.8 Lemma. Given a rewriting system 𝑃 the following statements are equiv-
alent.

1. The rewriting system 𝑃 is terminating.

2. There exists a well-founded order on 𝑃0 such that 𝑥 ≻ 𝑦 for every 1-generator
𝑎 : 𝑥 → 𝑦 in 𝑃1.

3. There exists a function 𝑓 : 𝑃0 → 𝑁 , where 𝑁 is a well-founded poset, such
that 𝑓 (𝑥) > 𝑓 (𝑦) for every 1-generator 𝑎 : 𝑥 → 𝑦 in 𝑃1.

Proof. Suppose that 𝑃 is terminating. Then the preorder relation on 𝑃0 defined
by 𝑥 ≽ 𝑦 whenever 𝑥 ∗→ 𝑦 is a well-founded partial order that shows that 1
implies 2, and taking 𝑓 : 𝑃0 → 𝑃0 to be the identity shows that 2 implies 3.
Finally, 3 implies 1, for if there was an infinite reduction sequence in 𝑃, the
image of the objects under 𝑓 would be an infinite strictly decreasing sequence
of elements of 𝑁 . □

1.3.9 Well-founded induction. Suppose given a predicate P on the 0-cells of
a terminating polygraph 𝑃. In order to show that P holds all the elements of 𝑃0,
it is often useful to use the following well-founded induction principle: if

∀𝑥 ∈ 𝑃0,
( (∀𝑦 ∈ 𝑃0, 𝑥 → 𝑦 implies P (𝑦)) implies P(𝑥)) (1.3)

then ∀𝑥 ∈ 𝑃0, P(𝑥) holds.
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1.3 Abstract Rewriting Systems 13

1.3.10 Proposition. If 𝑃 is a terminating 1-polygraph then the well-founded
induction principle holds.

Proof. By contradiction, suppose that the well-founded induction principle
does not hold: there is a predicate P, such that the hypothesis (1.3) holds but
not the conclusion, i.e., P(𝑥0) does not hold for some 𝑥0 ∈ 𝑃0. By repeated use
of (1.3), we can construct a family (𝑥𝑖)𝑖∈N of elements of 𝑃0 such that P(𝑥𝑖)
does not hold for any 𝑖 ∈ N, and 𝑥0 → 𝑥1 → · · · . This contradicts the fact
that 𝑃 is terminating. □

1.3.11 Quasi-termination. Following [111], we introduce the following vari-
ant of the termination condition. We say that a 1-polygraph 𝑃 is quasi-termi-
nating if every sequence (𝑥𝑖)𝑖∈N of 0-cells, with 𝑥𝑖 → 𝑥𝑖+1 for every index 𝑖 ∈ N,
contains an infinite number of occurrences of the same 0-cell: there exists a
0-cell 𝑥 such that for every 𝑖 ∈ N, there exists 𝑗 > 𝑖 such that 𝑥 𝑗 = 𝑥.

Let 𝑃 be a 1-polygraph. A 0-cell 𝑥 is called a quasinormal form if for
any rewriting step 𝑥 → 𝑦, there exists a rewriting path from 𝑦 to 𝑥. If 𝑃 is
quasi-terminating, any 0-cell 𝑥 rewrites to a quasi-normal form. Note that this
quasi-normal form is neither irreducible nor unique in general. We say that 𝑃
is quasi-convergent if it is confluent and it quasi-terminates.

1.3.12 Example. The following 1-polygraph

𝑥 // 𝑦
''
𝑧hh

is quasi-terminating and quasi-convergent. Both 𝑦 and 𝑧 are quasi-normal forms.

The above termination and normalizability conditions ensure the existing
normal form property. We now investigate conditions implying the unique
normal form property.

1.3.13 Joinability. Two 0-cells 𝑥, 𝑦 ∈ 𝑃0 of a polygraph 𝑃 are joinable when
there exists 0-cell 𝑧 such that there are rewriting paths 𝑓 : 𝑥 ∗→ 𝑧 and 𝑔 : 𝑦 ∗→ 𝑧:

𝑥

∗ ��

𝑦.
∗��

𝑧

1.3.14 The Church–Rosser property. A 1-polygraph 𝑃 has the Church–
Rosser property when any two 0-cells 𝑥, 𝑦 ∈ 𝑃0 which are equivalent are
joinable:

𝑥

∗ ��

oo ∗ // 𝑦.
∗��

𝑧
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14 1-Dimensional Polygraphs

1.3.15 Proposition. A 1-polygraph with the Church–Rosser property has the
unique normal form property.

Proof. Suppose given two normal forms 𝑥 and 𝑦 such that 𝑥 ≈ 𝑦. By the
Church–Rosser property, there exists a 0-cell 𝑧 and rewriting paths 𝑥 ∗→ 𝑧 and
𝑦
∗→ 𝑧. Since 𝑥 and 𝑦 are normal forms, these two paths are necessarily empty,

and thus 𝑥 = 𝑦. □

The converse property is not true, as illustrated by the 1-polygraph

𝑥 𝑦oo // 𝑧 dd

where 𝑥 and 𝑧 are equivalent but cannot be rewritten to a common 0-cell, even
though there is a unique normal form 𝑥.

In the following, we present more “local” properties which imply the Church–
Rosser property, and thus the unique normal form property.

1.3.16 Branchings. In a 1-polygraph 𝑃, a pair (𝑎, 𝑎′) of coinitial 1-generators
𝑎 : 𝑥 → 𝑦 and 𝑎′ : 𝑥 → 𝑦′ in 𝑃 is called a local branching; a pair ( 𝑓 , 𝑓 ′) of
coinitial rewriting paths 𝑓 : 𝑥 ∗→ 𝑦 and 𝑓 ′ : 𝑥 ∗→ 𝑦′ is called a branching. The
0-cell 𝑥 is called the source of the branching.

1.3.17 Confluence. A branching ( 𝑓 , 𝑓 ′) as above is confluent when 𝑦 and 𝑦′
are joinable:

𝑥
∗
��

∗
  

𝑦

∗ ��

𝑦′.

∗��
𝑧

In this situation, we say that the branching is confluent. A 1-polygraph is
confluent (resp. locally confluent) when every branching (resp. local branching)
is confluent. Note that a confluent 1-polygraph is necessarily locally confluent.

The above confluence conditions can be summarized graphically as follows:

𝑦

∗ ��

oo ∗ // 𝑦′

∗��
𝑧

𝑥
∗
��

∗
��

𝑦

∗ ��

𝑦′

∗��
𝑧

𝑥

��   

𝑦

∗ ��

𝑦′.

∗��
𝑧

Church–Rosser confluence local confluence

1.3.18 Proposition. A 1-polygraph has the Church–Rosser property if and only
if it is confluent.
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1.3 Abstract Rewriting Systems 15

Proof. The left-to-right direction is immediate. For the right-to-left direction,
suppose that 𝑥 and 𝑦 are two equivalent 0-cells: this means that there exists
rewriting paths 𝑓𝑖 : 𝑦𝑖

∗→ 𝑥𝑖 and 𝑔𝑖 : 𝑦𝑖
∗→ 𝑥𝑖+1 in 𝑃, with 0 ⩽ 𝑖 < 𝑛, where

𝑥0 = 𝑥 and 𝑥𝑛 = 𝑦, forming a diagram as below (ignoring the dotted arrows, 𝑧
and 𝑧′):

𝑦0
𝑓0

∗��
𝑔0

∗ ��

𝑦1
𝑓1

∗��
𝑔1

∗ ��

𝑦2
𝑓2

∗��

· · · 𝑦𝑛−2
𝑔𝑛−2

∗ ��

𝑦𝑛−1
𝑓𝑛−1

∗��
𝑔𝑛−1

∗ ��
𝑥0

∗ ..

𝑥1 𝑥2 · · · 𝑥𝑛−1

∗ ��

𝑥𝑛.

∗��
𝑧′
ih

𝑧∗
oo

c

By induction on 𝑛 ∈ N, we show that 𝑥0 and 𝑥𝑛 can be joined. The result is
immediate when 𝑛 = 0, and otherwise the diagram can be completed as above
using the confluence hypothesis for c and the induction hypothesis for ih. □

As a direct corollary, we deduce:

1.3.19 Lemma. A confluent 1-polygraph has the unique normal form property.

Confluence is difficult to show in practice, whereas local confluence is much
more tractable. Clearly confluence of a rewriting system implies its local con-
fluence, and one could hope that both properties are equivalent. This is however
not the case: local confluence does not imply confluence in general illustrated
by the following example attributed by Hindley to Kleene, see [188, Figure 6b]
and [342, Section 1.2].

1.3.20 Example. Consider the following 1-polygraph:

𝑥′ 𝑥oo ((
𝑦gg // 𝑦′.

It is locally confluent (it is easy to check all the possible cases), but not confluent:
we have 𝑥 ∗→ 𝑥′ and 𝑥 ∗→ 𝑦′, but there is no 0-cell to which both 𝑥′ and 𝑦′
rewrite.

In the previous example, it can be noted that the rewriting system is not termi-
nating since there is a directed cycle between the vertices 𝑥 and 𝑦. It was shown
in a famous lemma by Newman [290], also known as the diamond lemma, that
local confluence and confluence are equivalent when restricting to terminating
rewriting systems, thus providing us with simple ways of checking for their
confluence.

1.3.21 Lemma. A terminating 1-polygraph is confluent if and only if it is
locally confluent.
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16 1-Dimensional Polygraphs

Proof. We show the right-to-left direction, the other one being immediate.
We say that a 1-polygraph is confluent (resp. locally confluent) at a 0-cell 𝑥
when every branching (resp. local branching) with 𝑥 as source is joinable.
By well-founded induction, whose use is justified by Proposition 1.3.10 based
on the hypothesis that the 1-polygraph is terminating, we show that the local
confluence property at a vertex 𝑥 implies the confluence property at 𝑥. The base
cases are immediate. Otherwise, we have a diagram of the form

𝑥

�� ��

𝑦1
∗
�� ∗ ��

lc 𝑦′1
∗��

∗
��

𝑦

∗ ��

ih 𝑦′′

∗��

ih 𝑦′

∗

��

𝑧

∗ ��
𝑧′

which can be closed using the local confluence hypothesis for lc and the induc-
tion hypothesis for ih (which provides confluence at 𝑦1 and 𝑦′1,
respectively). □

1.3.22 Remark. Showing termination and local confluence is the most usual
way of proving that an abstract rewriting system is confluent, but it is not the
only one. We refer to standard rewriting textbooks for other properties which
imply confluence [20, 342]. For instance, an abstract rewriting system has the
diamond property when for every pair of coinitial rewriting steps 𝑎 : 𝑥 → 𝑦

and 𝑏 : 𝑥 → 𝑦′ there exists a pair of cofinal rewriting steps (i.e., rewriting paths
of length one) 𝑎′ : 𝑦 → 𝑥 and 𝑏′ : 𝑦′ → 𝑥. Graphically,

𝑥

��   

𝑦

��

𝑦′.

��
𝑧

In this case, the abstract rewriting system is always confluent (this can be shown
using a variant of the proof of Lemma 1.3.21) even if it is not terminating.

1.3.23 Convergence. A 1-polygraph is convergent when it is both terminating
and confluent.

1.3.24 Proposition. A convergent 1-polygraph has the canonical form property.
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Proof. Suppose given a convergent 1-polygraph. Since it is terminating, it is
normalizing by Lemma 1.3.7 and thus has the existing normal form property
by Lemma 1.3.5. Since it is confluent, Lemma 1.3.19 ensures that it also has
the unique normal form property. □

1.3.25 Remark. A polygraph can have the canonical form property without
being convergent:

𝑥
((
𝑦gg // 𝑧.

Here, all the 0-cells are equivalent and 𝑧 is the only normal form, which shows
the canonical form property. The polygraph is not terminating (there is a cycle
between 𝑥 and 𝑦) and thus not convergent.

1.3.26 Deciding equality. Give a finite 1-polygraph 𝑃, the equality deci-
sion problem, or the word problem, for 𝑃 consists in answering the following
question:

Given two 0-cells 𝑥, 𝑦 ∈ 𝑃0, do we have 𝑥 ≈ 𝑦?
Since we only consider only finite 1-polygraphs, this problem is decidable,
meaning that there is a program which takes 𝑃, 𝑥 and 𝑦 as input and outputs
whether 𝑥 ≈ 𝑦 holds or not. Namely, we can implement a program which will
construct all acyclic paths starting from 𝑥, which are in finite number, and check
whether one of those paths ends at 𝑦. We will see that if we assume additional
properties on 𝑃, this can be performed much more efficiently.

When the 1-polygraph 𝑃 has the canonical form property, the equivalence
class of 𝑥 (resp. 𝑦) contains a unique normal form denoted �̂� (resp. �̂�), and we
have 𝑥 ≈ 𝑦 if and only if we have �̂� = �̂�. In this case, the equality decision
problem can be decided by comparing normal forms. In particular, in the case
where the 1-polygraph is convergent, we have seen in Proposition 1.3.24 that it
has the canonical form property, and moreover the normal form �̂� associated to
a 0-cell 𝑥 can be computed easily. A maximal path starting from 𝑥

𝑥 = 𝑥0
𝑎0 // 𝑥1

𝑎1 // 𝑥2
𝑎2 // · · · 𝑎𝑛−1 // 𝑥𝑛

exists because 𝑃 is terminating, and the fact that it is maximal means that its
target is a normal form, i.e., 𝑥𝑛 = �̂�. In order to decide whether 𝑥 and 𝑦 are
equivalent, we can thus use the normal form algorithm which consists in

1. rewriting 𝑥 as much as possible in order to obtain a normal form �̂�, and
similarly compute a normal form �̂� for 𝑦; and

2. checking whether �̂� = �̂� holds or not.
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18 1-Dimensional Polygraphs

Formally, this is justified as follows:

1.3.27 Proposition. In a convergent 1-polygraph, two 0-cells 𝑥 and 𝑦 are
equivalent if and only if they have the same normal form: 𝑥 ≈ 𝑦 if and only if
�̂� = �̂�.

Proof. Since the polygraph is terminating, it is normalizing by Lemma 1.3.7:
𝑥 rewrites to a normal form �̂�, and similarly 𝑦 rewrites to a normal form �̂�. If
�̂� = �̂�, then clearly 𝑥 and 𝑦 are equivalent:

𝑥
∗ // �̂� �̂� 𝑦.∗oo

Conversely, suppose that 𝑥 and 𝑦 are equivalent, and thus that �̂� and �̂� are also
equivalent:

�̂� 𝑥
∗oo oo ∗ // 𝑦 ∗ // �̂�.

The confluence of the polygraph implies that it has the Church–Rosser property
by Proposition 1.3.18, and thus the unique normal form property by Proposi-
tion 1.3.15. Since �̂� and �̂� are equivalent normal forms, we deduce that they are
equal. □

1.3.28 Deciding confluence. As a direct corollary of the above proposition,
we also have a practical method for checking whether a terminating 1-polygraph
is confluent (and thus convergent):

1.3.29 Proposition. A terminating 1-polygraph is confluent if and only if for
every local branching 𝑥 → 𝑦 and 𝑥 → 𝑧, we have �̂� = 𝑧.

1.4 Decreasing Diagrams

The main method we have seen so far in order to show the confluence of a
1-polygraph is provided by Newman’s lemma (Lemma 1.3.21), which requires
supposing termination of the polygraph. As a more advanced topic, we explain
here the method of decreasing diagrams, introduced by van Oostrom [350], see
also [342, Section 14.2], which can be used in order to show the confluence of
a 1-polygraph which is non-terminating. Stronger versions of this method have
been introduced more recently [126, 351].

1.4.1 Multisets. Given a set 𝐴, a multiset on 𝐴 is a function 𝜇 : 𝐴→ Nwhich
is null almost everywhere, i.e., the set {𝑎 ∈ 𝐴 | 𝜇(𝑎) ≠ 0} is finite. The set
𝐴 is called the domain of the multiset. Given an element 𝑎 ∈ 𝐴, the natural
number 𝜇(𝑎) is called its multiplicity in the multiset: 𝜇 should be thought of
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1.4 Decreasing Diagrams 19

as a collection of elements of 𝐴 where each element 𝑎 occurs 𝜇(𝑎) times. We
denote by 𝐴♯ the set of all multisets on 𝐴.

We write ∅ for the empty multiset on 𝐴, i.e., the constant function ∅ : 𝐴→ N
equal to 0. Given two multisets 𝜇 and 𝜈 on 𝐴, their union or sum is the
multiset 𝜇⊔𝜈 on 𝐴 such that (𝜇⊔𝜈) (𝑎) = 𝜇(𝑎) +𝜈(𝑎) for every element 𝑎 ∈ 𝐴.
The operation ⊔ equips 𝐴♯ with a structure of commutative monoid, with ∅ as
neutral element, which characterizes multisets over 𝐴. Given an element 𝑎 ∈ 𝐴,
we often write {𝑎} for the multiset with 𝑎 as only element. Given two multisets
𝜇 and 𝜈, we say that 𝜇 is included in 𝜈, what we write 𝜇 ⊑ 𝜈 when 𝜇(𝑎) ⩽ 𝜈(𝑎)
for every 𝑎 ∈ 𝐴. This is the case precisely when there is a multiset 𝜇′ such that
𝜇 ⊔ 𝜇′ = 𝜈. This relation makes 𝐴♯ into a poset which is well-founded.

A partial order ⩽ on a set 𝐴 induces an order ⩽♯ on 𝐴♯, called its multiset
extension, defined by 𝜇 ⩽♯ 𝜈 if and only if

∀𝑏 ∈ 𝐴, 𝜇(𝑏) > 𝜈(𝑏) implies ∃𝑎 ∈ 𝐴, 𝑎 > 𝑏 and 𝜇(𝑎) < 𝜈(𝑎).
Let us spell it out: for 𝜇 to be smaller than 𝜈, it is fine to have more 𝑏’s as
long as 𝜈 has more of something greater than 𝑏. The following result is due to
Dershowitz and Manna [112]:

1.4.2 Proposition. Given a well-founded poset (𝐴, ⩽), its multiset extension
(𝐴♯, ⩽♯) is also well-founded.

1.4.3 Labeled 1-polygraphs. A labeled 1-polygraph (𝑃,L, ⩽, ℓ) consists of

— a 1-polygraph 𝑃,
— a set L of labels equipped with a well-founded ordering ⩽, and
— a function ℓ : 𝑃1 → L associating a label to each rewriting step.

1.4.4 Lexicographic maximum measure. Let (𝑃,L, ⩽, ℓ) be a fixed labeled
1-polygraph. We write L∗ for the sets of words over L, i.e., finite sequences of
elements ofL. The empty word is noted 1, and the concatenation of two words𝑤
and 𝑤 is noted 𝑤𝑤′: these operations equip the sets of words with a structure of
monoid. Following [350, Definition 3.1], we define the lexicographic maximum
measure ∥𝑤∥ of a word 𝑤 ∈ L∗ as the multiset defined inductively by

∥1∥ = ∅, ∥𝑙𝑤∥ = {𝑙} ⊔ ∥𝑤≮𝑙 ∥.
Above, 𝑤≮𝑙 is the subword of 𝑤 whose letters are not strictly below 𝑙, which is
formally defined by induction by

1≮𝑙 = 1, (𝑎𝑤)≮𝑙 =
{
𝑤≮𝑙 if 𝑎 < 𝑙,
𝑎𝑤≮𝑙 otherwise.

https://doi.org/10.1017/9781009498968.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009498968.003


20 1-Dimensional Polygraphs

Informally, the multiset ∥𝑤∥ thus consists of the letters of 𝑤 which are not
dominated by some letter on their left.

The measure ∥ · ∥ is extended to the set of finite rewriting paths of 𝑃 by
setting, for every rewriting path 𝑎1 . . . 𝑎𝑛,

∥𝑎1 . . . 𝑎𝑛∥ = ∥ℓ(𝑎1) . . . ℓ(𝑎𝑛)∥,
where ℓ(𝑎1) . . . ℓ(𝑎𝑛) is the product in the monoid L∗. Finally, the measure
∥ · ∥ is extended to the set of finite branchings (𝑎, 𝑏) of 𝑃, by setting

∥(𝑎, 𝑏)∥ = ∥𝑎∥ ⊔ ∥𝑏∥.

1.4.5 Decreasing diagrams. A diagram of rewriting paths of the form

𝑓

��

𝑔
//

𝑔′

��

𝑓 ′
//

is decreasing if

∥ 𝑓 𝑓 ′∥ ⩽♯ ∥ 𝑓 ∥ ⊔ ∥𝑔∥ and ∥𝑔𝑔′∥ ⩽♯ ∥ 𝑓 ∥ ⊔ ∥𝑔∥.
In the case where 𝑓 = 𝑎 and 𝑔 = 𝑏 are both 1-generators, it can be shown that
the diagram is decreasing if and only if it is of the form

𝑎

��

𝑏 //

𝑔′

��

𝑎′

��

ℎ1

��

𝑓 ′
//

𝑏′
//

ℎ2
//

(1.4)

where

— 𝑙 < ℓ(𝑎) for every label 𝑙 of a rewriting step in 𝑓 ′,
— 𝑙 < ℓ(𝑏) for every label 𝑙 of a rewriting step in 𝑔′,
— 𝑎′ is either an identity or a rewriting step labeled by ℓ(𝑎),
— 𝑏′ is either an identity or a rewriting step labeled by ℓ(𝑏), and
— 𝑙 < ℓ(𝑎) or 𝑙 < ℓ(𝑏) for every label 𝑙 of a transition in ℎ1 (resp. in ℎ2).

A labeled 1-polygraph is locally decreasing when every local branching (𝑎, 𝑏)
can be completed as a locally decreasing diagram (1.4). We can now recall
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van Oostrom’s theorem [350, Theorem 3.7], whose proof follows the one of
Newman’s Lemma 1.3.21:

1.4.6 Theorem. A locally decreasing 1-polygraph is confluent.

This method is complete, in the sense that given a 1-polygraph with countably
many 0-cells which is confluent, there is always a way to choose a well-
founded poset L of labels so that the polygraph is locally decreasing [342,
Theorem 14.2.32]. Moreover, we can always choose the set L = {0, 1} with
0 < 1 as a set of labels, see [122].
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