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Abstract. We say that a Kripke model is a GL-model (Gödel and Löb model) if the
accessibility relation ≺ is transitive and converse well-founded. We say that a Kripke model
is a D-model if it is obtained by attaching infinitely many worlds t1, t2, ..., and t� to a world t0
of a GL-model so that t0 � t1 � t2 � ··· � t� . A non-normal modal logic D, which was studied
by Beklemishev [3], is characterized as follows. A formula ϕ is a theorem of D if and only if
ϕ is true at t� in any D-model. D is an intermediate logic between the provability logics GL
and S. A Hilbert-style proof system for D is known, but there has been no sequent calculus. In
this paper, we establish two sequent calculi for D, and show the cut-elimination theorem. We
also introduce new Hilbert-style systems for D by interpreting the sequent calculi. Moreover,
we show that D-models can be defined using an arbitrary limit ordinal as well as �. Finally, we
show a general result as follows. Let X and X+ be arbitrary modal logics. If the relationship
between semantics of X and semantics of X+ is equal to that of GL and D, then X+ can be
axiomatized based on X in the same way as the new axiomatization of D based on GL.

§1. Introduction. We say that a Kripke model is a GL-model if the accessibility
relation ≺ is transitive and converse well-founded. Then, a D-model is obtained by
attaching infinitely many worlds t1, t2, ... (called ‘tail’), and t� (called ‘bottom’) to a
world t0 of a GL-model so that t0 � t1 � t2 � ··· � t� (Figure 1, Left). A non-normal
modal logic D, which was studied by Beklemishev [3], is characterized as follows. A
formula ϕ is a theorem of D if and only if ϕ is true at the bottom of any D-model.1
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2 RYO KASHIMA ET AL.

Figure 1. (Left) D-model by Beklemishev. (Right) New D-model.

D is a provability logic as follows. A formula ϕ is a theorem of D if and only if
any ϕ∗ is true in the standard model of arithmetic where ϕ∗ is obtained from ϕ by
interpreting the modal operator � as the provability predicate of a c.e. extension of
Peano Arithmetic that is Σ1-sound but not sound. In this paper, we do not argue D from
the perspective of provability logics, but we consider D as an interesting modal logic
which is non-normal (not closed under the necessitation rule) and has simple Kripke-
style semantics. We establish sequent calculi, cut-elimination, and new Hilbert-style
axiomatizations for D; furthermore, we show that we can define D-models using an
arbitrary limit ordinal � as well as � (Figure 1, Right).

D is closely related to the well-known provability logics GL and S (see, e.g., [5, 12]
for the basic results on GL and S)2. A Hilbert-style proof system for GL is known
as K + �(�ϕ→ϕ)→�ϕ. A Hilbert-style proof system for S (we call this system SH)
is as follows. The axioms are all theorems of GL and all formulas �ϕ→ϕ; and sole
inference rule is modus ponens. Then a Hilbert-style proof system for D (we call this
system DH) is known to be obtained from SH by restricting ϕ in the axiom scheme
�ϕ→ϕ to be ⊥ or ��∨�� (see [3]). Therefore D is an intermediate logic between GL
and S.

As for sequent calculi, GL has been well studied (see, e.g., [8] and its references),
and S has been studied in [2, 9, 10]. But there has been no sequent calculi for D. The
sequent calculus for S in [2, 9, 10] was inspired by the Hilbert-style system SH; so
one may try to make a sequent calculus for D based on the system DH. However, this
attempt does not seem to work well because the axiom �(��∨��)→(��∨��) does
not seem to be translatable into a rule of sequent calculi.

In this paper, we establish sequent calculi for D so that the completeness with
respect to D-models naturally holds. A key idea of our calculi is the use of three kinds
of sequents. While Kushida [10] used two kinds of sequents to make the calculus for
S, we add one more kind. We call the three kinds ‘GL-sequents’, ‘S-sequents’, and
‘D-sequents’; these respectively correspond to the truth at the GL-model, at the tail,
and at the bottom in Figure 1. Moreover, as the names suggest, these correspond to
the provability of GL, S, and D, respectively.

2 Following [3, 6, 14], we use the name S, while it is called GLS in [5, 9, 10], G∗ in [4], and G ′

in [12].
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CUT-FREE SEQUENT CALCULI FOR THE PROVABILITY LOGIC D 3

Strictly speaking, we give two sequent calculi, called D2
seq and D3

seq. The latter calculus
D3

seq is cut-eliminable, and the former calculus D2
seq is not fully cut-eliminable but has

the subformula property (we call this property ‘analytic’). We show semantic cut-
elimination for both calculi (i.e., completeness of cut-free D3

seq and analytic D2
seq) and

syntactic cut-elimination for D3
seq. These semantic arguments are extensions of that for

S in [9], and the syntactic cut-elimination is reduced to that for S by [10].

Remark 1.1. A proof in D3
seq has three layers with three kinds of sequents, and the

syntactic cut-elimination for the bottom layer (with D-sequents) is reduced to that for the
middle layer (with S-sequents). Similar arguments—a proof has layered structure and
the cut-elimination for the lower layer is reduced to that for the upper layer—are found
in [11].

Then, two new Hilbert-style proof systems (we call these D2
H and D3

H) for D are
obtained by interpreting the sequent calculi D2

seq and D3
seq, respectively. Here, not only

the existing system DH but also the new systems D2
H and D3

H have ‘all theorems of
GL’ as their axioms; so it is natural to argue a generalization as follows. Let L be an
arbitrary modal logic, and let DH[L], D2

H[L], and D3
H[L] be the Hilbert-style systems

obtained from DH, D2
H, and D3

H, respectively, by replacing the axioms ‘theorems of
GL’ with ‘theorems of L’. On the other hand, let F be a class of Kripke frames, and
let ‘D[F ]-model’ denote any Kripke model described as Figure 1 in which ‘GL-model’
is replaced with ‘F-model’. Then we show the following:

If L is characterized by F and if a certain condition is satisfied, then
the following conditions are equivalent: (1) ϕ is true at the bottom of
any D[F ]-model. (2) ϕ is a theorem of D2

H[L]. (3) ϕ is a theorem of
D3

H[L].

This statement is just the completeness theorem of D2
H and D3

H if L = GL and F is
the class of transitive and converse well-founded frames. It seems that the condition
‘ϕ is a theorem of DH[L]’ is not equivalent to the above three conditions. This fact
shows that the new proof systems—D2

H, D3
H, and the two sequent calculi—well reflect

the essence of the modal logic D, and that the new systems are more natural than the
existing system DH.

The structure of this paper is as follows. In Section 2, we present results that are
known or will be shown in later sections. In Section 3, we recall the sequent calculi for
GL and S, and we introduce two sequent calculi D2

seq and D3
seq. In Section 4, we give

syntactic arguments on the sequent calculi. In Section 5, we show the semantic cut-
elimination. In Section 6, we introduce Hilbert-style systems D2

H and D3
H. In Section 7,

we show the general result on D2
H[L] and D3

H[L].

§2. Preliminaries and results. Formulas are constructed from propositional vari-
ables, propositional constant ⊥, logical operator →, and modal operator �. The other
operators are defined as abbreviations as usual. The letters p, q, ... denote propositional
variables and the letters ϕ,�, ... denote formulas. The set of propositional variables is
called PropVar and the set of formulas is called Form. Parentheses are omitted as, for
example, �ϕ∧�→��∨� = ((�ϕ)∧�)→((��)∨�).
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4 RYO KASHIMA ET AL.

Hilbert-style proof systems GLH, SH, and DH are known as follows, where the
subscript H denotes ‘Hilbert-style’.

Axioms of GLH: Tautologies, �(ϕ→�)→(�ϕ→��), and �(�ϕ→ϕ)→�ϕ.

Rules of GLH:
ϕ→� ϕ
� (modus ponens) and

ϕ
�ϕ (�).

Axioms of SH: Theorems of GLH and �ϕ→ϕ.
Rule of SH: Modus ponens.
Axioms of DH: Theorems of GLH,¬�⊥, and�(�ϕ∨��)→�ϕ∨��.
Rule of DH: Modus ponens.

The symbol � denotes provability as usual. We have (GLH � ϕ) =⇒ (DH � ϕ) =⇒
(SH � ϕ), but the converse does not hold in general; for example, �p→p is provable
in SH but not provable in DH. Note that neither DH nor SH has the inference rule (�).
For example, we have DH � ¬�⊥ but DH 
� �¬�⊥.

A Kripke model 〈W,≺, V 〉 consists of a non-empty set W of worlds, an accessibility
relation ≺ ⊆W ×W , and a valuation V :W × PropVar → {true, false}. The domain
of V is extended toW × Form by the following:

V (w,⊥) = false.
V (w,ϕ→�) = true ⇐⇒ V (w,ϕ) = false or V (w,�) = true.
V (w,�ϕ) = true ⇐⇒ (∀w′ � w)(V (w′, ϕ) = true).

〈W,≺〉 is called the Kripke frame of this model, and 〈W,≺, V 〉 is called a Kripke
model based on the frame 〈W,≺〉. We say that a formula ϕ is true at a world w if
V (w,ϕ) = true.

A Kripke frame 〈W,≺〉 is called a GL-frame if ≺ is converse well-founded (i.e., there
is no infinitely ascending sequence x1 ≺ x2 ≺ x3 ··· ) and transitive. A Kripke model
based on a GL-frame is called a GL-model. The completeness of GLH is well-known
as below (see, e.g., [5]).

Proposition 2.1 (Completeness of GLH). The following are equivalent:

• GLH � ϕ.
• ϕ is true at any world of any GL-model.

To describe the semantics for SH and DH, we need further definitions.

Definition 2.2. Let � be a limit ordinal. We say that a frame 〈W +,≺+〉 is a �-extension
of 〈W,≺〉 if the following two conditions hold for some t0 ∈W .

W + =W � {tα | 0 < α ≤ �}.
≺+ = ≺ ∪ {(tα, t	) | 0 ≤ 	 < α ≤ �} ∪ {(tα, x) | 0 < α ≤ � and (t0, x) ∈ ≺}.

(Refer to Figure 1, in which the ellipse is 〈W,≺〉.) The infinite set {tα | 0 < α < �} is called
the tail and the world t� is called the bottom of this frame. If a valuation V + coincides
with V for any worlds in W, then we say that the Kripke model M+ = 〈W +,≺+, V +〉
is a �-extension of M = 〈W,≺, V 〉. Moreover, M+ is called a constant or a strongly
constant �-extension of M if the following condition holds, respectively.

Constant: (∀p ∈ PropVar)(∀α, 	 < �)(V+(tα, p) = V+(t	 , p)).
Strongly constant: (∀p ∈ PropVar)(∀α, 	 ≤ �)(V+(tα, p) = V+(t	 , p)).
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CUT-FREE SEQUENT CALCULI FOR THE PROVABILITY LOGIC D 5

We say that a formula ϕ is eventually always true in the tail of M+ if (∃α < �)(α <
∀	 < �)(V (t	 , ϕ) = true).

The following proposition is easy to be proved. This will be used implicitly in this
paper.

Proposition 2.3. If 〈W +,≺+, V +〉 is a �-extension of 〈W,≺, V 〉, then for any world
w ∈W and any formula ϕ, we have V +(w,ϕ) = V (w,ϕ).

The completeness of SH is described below, which will be proved in Section 5.

Proposition 2.4 (Completeness of SH). Let � be a limit ordinal. The following are
equivalent:

(s1) SH � ϕ.
(s2) ϕ is true at the bottom of any strongly constant �-extension of any GL-model.
(s3) ϕ is eventually always true in the tail of any (strongly) constant �-extension of

any GL-model.
(s4) ϕ is eventually always true in the tail of any �-extension of any GL-model.

Remark 2.5. The completeness of SH has been expressed in several different statements
in [3, 4, 6, 9, 14], but all of them are essentially included in the � = � case of
Proposition 2.4. In this paper, we extend it to arbitrary limit ordinals.

Remark 2.6. The limit ordinal � is arbitrarily fixed at the beginning of Proposition 2.4.
On the other hand, we can consider propositions in which � is bound at each sentence; for
example, there are two variants of the condition (s2) as follows:

(s2+) ϕ is true at the bottom of any strongly constant �′-extension of
any GL-model, for any limit ordinal �′.
(s2–) ϕ is true at the bottom of any strongly constant �′-extension of
any GL-model, for some limit ordinal �′.

The conditions (s2+), (s2–), and (s2) are equivalent for any �, because we have the
following implications.

(s2+) =⇒ (s2–)
Prop 2.4
=⇒ (s1)

Prop 2.4
=⇒ (s2+).

So, from now on, we will not mention conditions like (s2+) or (s2–) (except for a condition
in Theorem 7.7).

The completeness of DH is described below, which will be proved in Sections 5 and 6.

Proposition 2.7 (Completeness of DH). Let � be a limit ordinal. The following are
equivalent:

(d1) DH � ϕ.
(d2) ϕ is true at the bottom of any constant �-extension of any GL-model.
(d3) ϕ is true at the bottom of any �-extension of any GL-model.

Remark 2.8. Beklemishev [3] proved the equivalence between (d1), (d2) for � = �, and
another condition using ‘accumulating root’. In Section 5, we will show the equivalence
between (d2) and (d3). In Section 6, we will show the equivalence between (d1) and
others.
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§3. Sequent calculi. We introduce sequent calculi. From now on, letters 
,�, ...
denote finite sets of formulas. As usual, the expression ‘
,ϕ,�, �’, for example, stands
for the set 
 ∪ {ϕ,�} ∪ �, and ‘�
 ’ stands for the set {�� | � ∈ 
}. Sub(
 ) denotes
the set of all subformulas of formulas in 
 .

We use three different arrows ⇒, �, and ⇒⇒ to define three kinds of sequents
 ⇒ �
(called GL-sequent), 
 � � (called S-sequent), and 
 ⇒⇒ � (called D-sequent).

The following is the well-known sequent calculus for classical propositional logic;
we call it LK⇒.

Initial sequents: ϕ ⇒ ϕ and ⊥ ⇒
Inference rules:


 ⇒ �

 ′ ⇒ �′ (weakening), where
 ⊆ 
 ′and� ⊆ �′.


 ⇒ �,ϕ �,
 ⇒ �
ϕ→�,
 ⇒ � (→left)

ϕ,
 ⇒ �,�

 ⇒ �,ϕ→� (→right)


 ⇒ �,ϕ ϕ, ⇒ �

, ⇒ �,� (cut).

Similarly the sequent calculus LK� (or LK⇒⇒, respectively) consists of the above initial
sequents and inference rules where all ‘⇒’ are replaced with ‘�’ (or ‘⇒⇒’, respectively).
Next we introduce five rules (GL�), (GLtoS), (S�left), (GLtoD), and (StoD) as below


,�
,�ϕ ⇒ ϕ
�
 ⇒ �ϕ

(GL�)


 ⇒ �

 � � (GLtoS)(used in Sseq,D3

seq)
ϕ,
 � �
�ϕ,
 � � (S�left) (used in Sseq,D3

seq)


,�
 ⇒ ��

�
 ⇒⇒ ��
(GLtoD) (used in D2

seq)
�
 � ��

�
 ⇒⇒ ��
(StoD) (used in D3

seq).

Using these, we define four sequent calculi GLseq, Sseq, D2
seq, and D3

seq according to
Table 1. GLseq (= LK⇒ + (GL�)) is a well-known sequent calculus for GL, and has
been widely studied; see [8] and its references. Sseq (= GLseq + (GLtoS) + (S�left) +
LK�) is a sequent calculus for S using two kinds of sequents (GL- and S-sequents),
and it (or similar calculi) has been studied in [2, 9, 10]. The two calculi D2

seq and D3
seq

are new, and they are obtained as below

D2
seq = GLseq + (GLtoD) + LK⇒⇒.

D3
seq = Sseq + (StoD) + LK⇒⇒.

The superscripts ‘2’ and ‘3’ denote the number of kinds of sequents; that is, D2
seq uses

two kinds (GL- and D-sequents) and D3
seq uses three kinds of sequents.

Proofs in each calculus are called GLseq/Sseq/D2
seq/D

3
seq-proofs. In general, an Sseq-

proof has two-layered structure (the upper layer consists of GL-sequents and the
lower layer consists of S-sequents). Similarly, a D2

seq-proof has two layers (upper: GL-
sequents; lower: D-sequents), and a D3

seq-proof has three layers (top: GL-sequents;

https://doi.org/10.1017/S1755020325000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020325000036


CUT-FREE SEQUENT CALCULI FOR THE PROVABILITY LOGIC D 7

Table 1. Four sequent calculi

LK⇒ LK� LK⇒⇒ (GL�) (GLtoS) (S�left) (GLtoD) (StoD)

GLseq � �
Sseq � � � � �
D2

seq � � � �
D3

seq � � � � � � �

middle: S-sequents; bottom: D-sequents). Note that only LK⇒⇒-rules can have D-
sequents as assumptions. Therefore the bottom layer of a D2

seq/D
3
seq-proof consists of

only LK⇒⇒-rules.
As usual, the term ‘cut-free’ means ‘without using the cut rule’. The following

examples are cut-free D2
seq/D

3
seq-proofs, where ‘w.’ stands for ‘weakening’, and (∨left),

(∨right), and (¬right) are suitable combinations of rules in LK (since ∨ and ¬ are
abbreviations).

Example 3.1. Cut-free D2
seq � ⇒⇒ �(�ϕ∨��)→�ϕ∨��.

�ϕ ⇒ �ϕ �� ⇒ ��
�ϕ∨�� ⇒ �ϕ,�� (∨left)

�ϕ∨��,�(�ϕ∨��) ⇒ �ϕ,��
(w.)

�(�ϕ∨��) ⇒⇒ �ϕ,��
(GLtoD)

�(�ϕ∨��) ⇒⇒ �ϕ∨�� (∨right)

⇒⇒ �(�ϕ∨��)→�ϕ∨�� (→right).

Example 3.2. Cut-free D3
seq � ⇒⇒ �(�ϕ∨��)→�ϕ∨��.

�ϕ � �ϕ �� � ��

�ϕ ∨�� � �ϕ,��
(∨left)

�(�ϕ ∨��) � �ϕ,��
(S�left)

�(�ϕ ∨��) ⇒⇒ �ϕ,��
(StoD)

�(�ϕ ∨��) ⇒⇒ �ϕ ∨��
(∨right)

⇒⇒ �(�ϕ ∨��) → �ϕ ∨��
(→ right).

Example 3.3. Cut-free D2
seq � ⇒⇒ ¬�⊥.

⊥ ⇒
⊥,�⊥ ⇒ (w.)

�⊥ ⇒⇒ (GLtoD)

⇒⇒ ¬�⊥ (¬right).

The correspondence between sequent calculi and Hilbert-style systems is the same
as in classical logic, as below.

Proposition 3.4. The following are equivalent:

• GLseq � 
 ⇒ �.
• GLH �

∧

→

∨
�.
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Proposition 3.5. The following are equivalent:

• Sseq � 
 � �.
• SH �

∧

→

∨
�.

Proposition 3.6. The following are equivalent:

• D2
seq � 
 ⇒⇒ �.

• D3
seq � 
 ⇒⇒ �.

• DH �
∧

→

∨
�.

Propositions 3.4 and 3.5 are well-known and easy to prove. Proposition 3.6 will be
shown in Section 6.

Remark 3.7. D3
seq is obtained from Sseq by adding some rules, while the logic D is

strictly weaker than S.

In the rest of this section, we mention the calculus for S by Kushida[10], which we
call SKushida. Written in our notation, the calculus SKushida consists of LK⇒, LK�, and
the four rules below

ϕ,
 ⇒ �
�ϕ,
 � � (Kushida-GLtoS�left)

�
,�,�ϕ ⇒ ϕ
�
,��⇒ �ϕ

(Kushida-GL�)

ϕ,
 � �
�ϕ,
 � � (S�left)

�
,�,�ϕ ⇒ ϕ
�
,��� �ϕ

(Kushida-GLtoS�).

Consequently, SKushida is obtained from Sseq by replacing the two rules
{(GL�), (GLtoS)} with the three rules {(Kushida-GLtoS�left), (Kushida-GL�),
(Kushida-GLtoS�)}. Note that sequents in [10] consist of multisets of formulas, while
our sequents consist of sets of formulas. However, this difference is not critical because
of the existence of the contraction-rules in [10]; so
,�, ... here denote sets of formulas.

The following lemma can be easily proved by induction on SKushida-proofs.

Lemma 3.8 (The rule (GLtoS) is cut-free admissible in SKushida). If SKushida � 
 ⇒ �,
then SKushida � 
 � �. If cut-free SKushida � 
 ⇒ �, then cut-free SKushida � 
 � �.

Then we have the following theorem.

Theorem 3.9 (SKushida and Sseq are equivalent). Let � ∈ {⇒,�}. SKushida � 
 � � if
and only if Sseq � 
 � �. Cut-free SKushida � 
 � � if and only if cut-free Sseq � 
 � �.

Proof. Each rule in SKushida is cut-free derivable in Sseq; for example, the rule
(Kushida-GLtoS�) is shown below

�
,�,�ϕ ⇒ ϕ
�
,��,
, �,�ϕ ⇒ ϕ (w.)

�
,��⇒ �ϕ
(GL�)

�
,��� �ϕ
(GLtoS).

On the other hand, each rule in Sseq is cut-free admissible in SKushida (the rule (GLtoS)
is shown by the previous lemma, and the rule (GL�) is trivial). Hence, this Theorem 3.9
is easily shown by induction.
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CUT-FREE SEQUENT CALCULI FOR THE PROVABILITY LOGIC D 9

§4. Syntactic arguments. In this section, we show some basic properties of our four
calculi, which can be shown by syntactic method (i.e., induction on proofs).

While the logics S and D are proper extensions of GL, the sequent calculi Sseq, D2
seq,

and D3
seq are conservative extensions of GLseq with respect to GL-sequents. Moreover,

D3
seq is a conservative extension of Sseq with respect to S-sequents. These are shown by

the following theorems.

Theorem 4.1 (Conservativity of provability of GL-sequents). The following four
conditions are equivalent: GLseq � 
 ⇒ �; Sseq � 
 ⇒ �; D2

seq � 
 ⇒ �; and D3
seq �


 ⇒ �.

Theorem 4.2 (Conservativity of provability of S-sequents). The following two condi-
tions are equivalent: Sseq � 
 � � and D3

seq � 
 � �.

Theorems 4.1 and 4.2 are trivial because any Sseq/D2
seq/D

3
seq-proofs of GL-sequents

consist of only the rules of GLseq, and any D3
seq-proofs of S-sequents consist of only

the rules of Sseq. These two theorems and their cut-free versions (e.g., cut-free GLseq �

 ⇒ � if and only if cut-free Sseq � 
 ⇒ �) will be used implicitly from now on.

The fact ‘both the logics S and D are extensions of GL’ is expressed by the following.

Theorem 4.3. If GLseq � 
 ⇒ �, then we have Sseq � 
 � �, D2
seq � 
 ⇒⇒ �, and

D3
seq � 
 ⇒⇒ �.

Proof. Suppose there is a GLseq-proof P of 
 ⇒ �. Sseq � 
 � � is trivial because
of the rule (GLtoS). On the other hand, D2

seq/D
3
seq � 
 ⇒⇒ � is shown by induction

on P. If the last inference rule of P is (GL�), then 
 ⇒ � is of the form � ⇒ �ϕ,
and we get D2

seq- and D3
seq-proofs as below without using the induction hypothesis.
.... P

� ⇒ �ϕ

,� ⇒ �ϕ
(w.)

� ⇒⇒ �ϕ
(GLtoD)

.... P
� ⇒ �ϕ

� � �ϕ
(GLtoS)

� ⇒⇒ �ϕ
(StoD).

In other words, a GLseq-proof
....

,�,�ϕ ⇒ ϕ
� ⇒ �ϕ

(GL�)
.... LK⇒-rules


 ⇒ �

is translated into the following D2
seq- and D3

seq-proofs.
....

,�,�ϕ ⇒ ϕ
� ⇒ �ϕ

(GL�)

,� ⇒ �ϕ
(w.)

� ⇒⇒ �ϕ
(GLtoD)

.... LK⇒⇒-rules

 ⇒⇒ �

....
,�,�ϕ ⇒ ϕ

� ⇒ �ϕ
(GL�)

� � �ϕ
(GLtoS)

� ⇒⇒ �ϕ
(StoD)

.... LK⇒⇒-rules

 ⇒⇒ �.
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The fact ‘logic S is an extension of D’ is expressed by the following theorem.

Theorem 4.4. If D2
seq � 
 ⇒⇒ �, then Sseq � 
 � �. If D3

seq � 
 ⇒⇒ �, then Sseq �

 � �.

Proof. Roughly speaking, we translate the D2
seq- and D3

seq-proofs
....

�,�� ⇒ ��

�� ⇒⇒ ��
(GLtoD)

.... LK⇒⇒ – rules

 ⇒⇒ �

....
�� � ��

�� ⇒⇒ ��
(StoD)

.... LK⇒⇒ – rules

 ⇒⇒ �

into the following Sseq-proofs respectively.
....

�,�� ⇒ ��

�,�� � ��
(GLtoS)

�� � ��
(S�left)

.... LK�-rules

 � �

....
�� � ��.... LK�-rules

 � �.

To be precise, we show this Theorem 4.4 by induction on the D2
seq- and D3

seq-proofs of

 ⇒⇒ �.

The following theorem is expected to be hold as a matter of course.

Theorem 4.5 (Equivalence between D2
seq and D3

seq). D2
seq � 
 ⇒⇒ � if and only if D3

seq �

 ⇒⇒ �.

The only-if part is easily shown by induction on D2
seq-proofs of 
 ⇒⇒ �; we use

the rules (GLtoS), (S�left), and (StoD) if the last inference rule is (GLtoD). On the
other hand, the if-part is not trivial because of the existence of S-sequents in D3

seq-
proofs. We need some lemmas as below. In the following, ref(�) will denote the set
{��→� | � ∈ �} (the name ‘ref’ comes from ‘reflection’).

Lemma 4.6. If Sseq � 
 � �, then there is a finite set� of formulas such that GLseq �
ref(�), 
 ⇒ �.

Proof. By induction on the Sseq-proof P of 
 � �. If P is
.... P

′

ϕ, � �
�ϕ, � � (S�left)

then we have

�ϕ ⇒ �ϕ

.... i.h. forP′

ref(�′), ϕ, ⇒ �
�ϕ→ϕ, ref(�′),�ϕ, ⇒ �. (w.)(→left)

Lemma 4.7. If GLseq � ref(�),�� ⇒ ��, then D2
seq � �� ⇒⇒ ��.
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Proof. It is easy to show that GLseq has the following property, which we call
(→left–1): If GLseq � ϕ→�,
 ⇒ �, then GLseq � 
 ⇒ �,ϕ and GLseq � �,
 ⇒ �.
Now assume GLseq � ref(�),�� ⇒ �� where � = {�1, �2, ... , �n}. For any subset
�′ ⊆ �, we have D2

seq � ��′,�� ⇒⇒ ��,�(� \ �′) as below.

GLseq � ��1→�1, ... ,��n→�n,�� ⇒ �� (Assumption of the Lemma)

GLseq � �′,�� ⇒ ��,�(� \ �′) (By n-times application of (→left–1))

D2
seq � ��′,�� ⇒⇒ ��,�(� \ �′). (By weakening and (GLtoD))

Then, by using the cut rule to the 2n D-sequents, we have D2
seq � �� ⇒⇒ ��. For

example, if n = 2, the proof is below.

�� ⇒⇒ ��,��1,��2 ��2,�� ⇒⇒ ��,��1

�� ⇒⇒ ��,��1
(cut)

��1,�� ⇒⇒ ��,��2 ��1,��2,�� ⇒⇒ ��

��1,�� ⇒⇒ ��
(cut)

�� ⇒⇒ ��
(cut)

Proof of if-part of Theorem 4.5. By induction on D3
seq-proof P of 
 ⇒⇒ �. If P is of

the form
.... P

′

�� � ��

�� ⇒⇒ ��
(StoD)

then we have D2
seq � �� ⇒⇒ �� by Lemmas 4.6 and 4.7.

Two calculi D2
seq and D3

seq are equivalent as above; however, they are not equivalent
with respect to cut-eliminability.

Theorem 4.8 (Cut-elimination for D3
seq). If D3

seq � � ⇒⇒ �, then cut-free D3
seq �

� ⇒⇒ �.

Proof. Combining cut-free versions of Theorems 4.1 and 4.2, Theorem 3.9, and the
syntactic cut-elimination for SKushida (shown in [10]), we have cut-free admissibility of
the cut rules for GL- and S-sequents in D3

seq; that is, we have the following:

(cut⇒) If both
 ⇒ �,ϕ andϕ, ⇒ � are cut-free provable in D3
seq,

then so is 
, ⇒ �,�.
(cut�) If both
 � �,ϕ andϕ, � � are cut-free provable in D3

seq,
then so is 
, � �,�.

Then we show this property for D-sequents; that is, we eliminate


 ⇒⇒ �,ϕ ϕ, ⇒⇒ �

, ⇒⇒ �,� (cut⇒⇒).
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As usual, this is shown by double induction on the length of the cut-formula ϕ and
sum of the length of the left and right upper proofs. In the case of

.... P
�
 � ��,�ϕ

�
 ⇒⇒ ��,�ϕ
(StoD)

.... Q
�ϕ,� � ��

�ϕ,� ⇒⇒ ��
(StoD)

�
,� ⇒⇒ ��,��
(cut⇒⇒)

we have the following:

.... P
�
 � ��,�ϕ

.... Q
�ϕ,� � ��

�
,� � ��,��
(cut�)

�
,� ⇒⇒ ��,��
(StoD).

The other cases are easily done by the standard method.

Note that the above proof is an indirect cut-elimination in the sense that it relies on
cut-admissibility of other systems which is obtained by proof translations in previous
theorems. A semantical proof of it will be given in the next section.

Theorem 4.9 (Failure of cut-elimination for D2
seq). There is a D-sequent that is provable

but not cut-free provable in D2
seq.

Proof. We have a D2
seq-proof:

��p ⇒ ��p
���p ⇒⇒ ��p (w.)(GLtoD)

�p ⇒ �p
��p ⇒⇒ �p (w.)(GLtoD)

���p ⇒⇒ �p (cut)

This last sequent is not cut-free provable because otherwise the last inference should
be one of the following rules:

��p,���p ⇒ �p
���p ⇒⇒ �p (GLtoD)

⇒⇒ �p
���p ⇒⇒ �p (w.)

���p ⇒⇒
���p ⇒⇒ �p (w.) ⇒⇒

���p ⇒⇒ �p (w.).

But none of these upper sequents are provable. The fact GLseq 
� ��p,���p ⇒ �p
can be shown using the soundness of GLseq (i.e., combination of Propositions 2.1
and 3.4) and a GL-model 〈{x, y},≺, V 〉 where ≺= {(x, y)} and V (y, p) = false
(thus, V (x,�p) = false and V (x,��p) = V (x,���p) = true). The other sequents
( ⇒⇒ �p), (���p ⇒⇒ ), and ( ⇒⇒ ) are easily shown to be cut-free unprovable.

In the next section, we will show a weaker version of cut-elimination for D2
seq—we

can eliminate all but the cuts that have subformula property—by a semantical method.

§5. Cut-free completeness. In this section, we prove cut-free completeness of the
sequent calculi. As shown above, D2

seq does not have the full cut-elimination property;
so, for D2

seq, we show the completeness of ‘analytic D2
seq’ which is defined below.
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Definition 5.1. Analytic D2
seq is a restriction of D2

seq where cut is allowed only in the
form


 ⇒⇒ �,�ϕ �ϕ, ⇒⇒ �

, ⇒⇒ �,�. (cut⇒⇒) Proviso : �ϕ ∈ Sub(
,�,,�).

The following are key notions for proving the completeness.

Definition 5.2. Let �∈ {⇒,�,⇒⇒}.

• A GL/S/D-sequent 
 � � is →-saturated
def⇐⇒ (∀ϕ,� ∈ Form)((ϕ→� ∈


 =⇒ ϕ ∈ � or � ∈ 
) and (ϕ→� ∈ � =⇒ ϕ ∈ 
 and � ∈ �)).

• A GL/S/D-sequent 
 � � is �-left-saturated
def⇐⇒ (∀ϕ ∈ Form)(�ϕ ∈


 =⇒ ϕ ∈ 
).

• A GL-sequent �+ ⇒ �+ is a GLseq-saturation of � ⇒ � def⇐⇒ � ⊆
�+ ⊆ Sub(�,�); � ⊆ �+ ⊆ Sub(�,�); �+ ⇒ �+ is →-saturated; and cut-
free GLseq 
� �+ ⇒ �+.

• An S-sequent �+ � �+ is an Sseq-saturation of � � � def⇐⇒ � ⊆
�+ ⊆ Sub(�,�);� ⊆ �+ ⊆ Sub(�,�);�+ � �+ is→-saturated and�-left-
saturated; and cut-free Sseq 
� �+ � �+.

• A D-sequent �+ ⇒⇒ �+ is a D2
seq-saturation of � ⇒⇒ � def⇐⇒ � ⊆ �+ ⊆

Sub(�,�);� ⊆ �+ ⊆ Sub(�,�);�+ ⇒⇒ �+ is→-saturated;�ϕ ∈ �+ ∪�+

for any �ϕ ∈ Sub(�,�); and analytic D2
seq 
� �+ ⇒⇒ �+.

• A D-sequent �+ ⇒⇒ �+ is a D3
seq-saturation of � ⇒⇒ � def⇐⇒ � ⊆ �+ ⊆

Sub(�,�); � ⊆ �+ ⊆ Sub(�,�); �+ ⇒⇒ �+ is →-saturated; and cut-free
D3

seq 
� �+ ⇒⇒ �+.

The following lemma is a standard tool for the semantical cut-eliminations.

Lemma 5.3.

(1) If cut-free GLseq 
� � ⇒ �, then there is a GLseq-saturation of it.
(2) If cut-free Sseq 
� � � �, then there is an Sseq-saturation of it.
(3) If analytic D2

seq 
� � ⇒⇒ �, then there is a D2
seq-saturation of it.

(4) If cut-free D3
seq 
� � ⇒⇒ �, then there is a D3

seq-saturation of it.

Proof. A proof of (1) is well-known. We add proper formulas to � and � step by
step (to be precise, if ϕ→� is in the left-hand side, we do either adding ϕ to the right
or adding � to the left; if ϕ→� is in the right-hand side, we add ϕ to the left and
� to the right) while preserving cut-free unprovability, and eventually we obtain an
→-saturated sequent. The same proof can be done for (4). For the proofs of (2) and
(3), we combine the following step with the above procedure. (For 2): If �ϕ is in the
left-hand side, then we add ϕ there. (For 3): If �ϕ ∈ Sub(�,�), then we add �ϕ to
either the left-hand or right-hand side while preserving analytic unprovability.

Theorem 5.4 (Soundness and cut-free completeness of GLseq). For any GL-sequent
� ⇒ �, the following three conditions are equivalent:

(1) GLseq � � ⇒ �.
(2) Cut-free GLseq � � ⇒ �.
(3)

∧
�→

∨
� is true at any world of any GL-model.

Theorem 5.4 is well-known; see, e.g.,[1] for the proof.
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Before showing the theorem for Sseq, we state a proposition.

Proposition 5.5. If GLseq � � ⇒ �, then
∧
�→

∨
� is eventually always true in

the tail of any �-extension of any GL-model, for any limit ordinal �.

This proposition is trivial because a �-extension of a GL-model is also a GL-model.
The reason for stating such a trivial proposition is as follows. We will generalize the
results of this section in Section 7, where the generalized proposition is not trivial but
considered as a hypothesis.

Theorem 5.6 (Soundness and cut-free completeness of Sseq). Let � be a limit ordinal.
For any S-sequent � � �, the following six conditions are equivalent.

(1) Sseq � � � �.
(2) Cut-free Sseq � � � �.
(3)

∧
�→

∨
� is true at the bottom of any strongly constant �-extension of any

GL-model.
(4)

∧
�→

∨
� is eventually always true in the tail of any strongly constant �-

extension of any GL-model.
(5)

∧
�→

∨
� is eventually always true in the tail of any constant �-extension of

any GL-model.
(6)

∧
�→

∨
� is eventually always true in the tail of any �-extension of any GL-

model.

Proof. Note that the implications ‘(6) ⇒ (5) ⇒ (4)’ and ‘(2) ⇒ (1)’ are trivial.
(Proof of (1) ⇒ (6)) By induction on the Sseq-proof of � � �. When the last

inference rule is (GLtoS), we use Proposition 5.5. When the last inference rule is
(S�left), we use the fact that�ϕ→ϕ is eventually always true in the tail {tα | 0 < α < �}
of any �-extension of any Kripke model. (Proof of this fact: If ϕ is true at all the worlds
in the tail, then so is �ϕ→ϕ. If ϕ is false at tα for some α, then �ϕ→ϕ is true at t	 for
any 	 such that α < 	 < �.)

(Proof of (4) ⇒ (3)) Let M = 〈W,≺, V 〉 be a strongly constant �-extension of
a Kripke-model, t� be the bottom, and {tα | 0 < α < �} be the tail of M. For
any formula ϕ, we consider four conditions below. (�T): V (t�, ϕ) = true. (�F):
V (t�, ϕ) = false. (ET): (∃α < �)(α < ∀	 < �)(V (t	 , ϕ) = true). (EF): (∃α < �)(α <
∀	 < �)(V (t	 , ϕ) = false). By induction on ϕ, we can show two implications ‘(�T) ⇒
(ET)’ and ‘(�F) ⇒ (EF)’. Therefore we have ‘(ET) ⇒ (�T)’ because the conditions
(ET) and (EF) are exclusive, and the condition (�T) is the negation of (�F).

(Proof of (3) ⇒ (2)) We show the contraposition. Suppose cut-free Sseq 
� � � �.
We will construct a strongly constant �-extension of a GL-model such that

∧
�→

∨
�

is false at the bottom. First we apply Lemma 5.3(2) to � � �, and we get an Sseq-
saturation �+ � �+. The GL-sequent �+ ⇒ �+ is not cut-free provable because of
the (GLtoS)-rule, and this sequent is not cut-free provable also in GLseq. Then we
get a GL-model 〈W,≺, V 〉 such that

∧
�+→

∨
�+ is false at a world t0, by the cut-

free completeness of GLseq (Th.5.4). Thus, we have the following: (A) If p ∈ �+, then
V (t0, p) = true. (B) Ifp ∈ �+, thenV (t0, p) = false. (C) If�� ∈ �+, thenV (x,�) =
true for any x ∈W such that t0 ≺ x. (D) If �� ∈ �+, then V (x,�) = false for some
x ∈W such that t0 ≺ x. Then we define a strongly constant �-extension 〈W +,≺+, V +〉
of 〈W,≺, V 〉 where {tα | 0 < α < �} is the tail, t� is the bottom, and V +(tα, p) =
V (t0, p) for any α ≤ � and p. (In Figure 2 (left), the essence of 〈W +,≺+, V +〉 is
illustrated: each world is a sequent, and the goal is to show that each formula in the
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Figure 2. 〈W+,≺+, V+〉 in Theorem 5.6 (left) and in Theorem 5.7 (right).

left (or right) hand side is true (or false, resp.) there.) Now, for any formula ϕ and any
ordinal number α ≤ �, we prove the following two properties by induction on ϕ. (L) If
ϕ ∈ �+, then V +(tα, ϕ) = true. (R) If ϕ ∈ �+, then V +(tα, ϕ) = false. In the case of
ϕ = p, we use the facts (A) and (B). In the case ofϕ = ��, we use�-left-saturatedness,
the induction hypothesis, and the fact (C) to show the property (L); and we use the
fact (D) to show the property (R). Thus we have V +(t�,

∧
�→

∨
�) = false.

Theorem 5.7 (Soundness and analytic completeness of D2
seq). Let � be a limit ordinal.

For any D-sequent � ⇒⇒ �, the following four conditions are equivalent:

(1) D2
seq � � ⇒⇒ �.

(2) Analytic D2
seq � � ⇒⇒ �.

(3)
∧
�→

∨
� is true at the bottom of any constant �-extension of any GL-model.

(4)
∧
�→

∨
� is true at the bottom of any �-extension of any GL-model.

Proof. The implications ‘(2) ⇒ (1)’ and ‘(4) ⇒ (3)’ are trivial.
(Proof of (1) ⇒ (4)) Let M+ = 〈W +,≺+, V +〉 be a �-extension of a GL-model.

We prove, by induction on the D2
seq-proof of � ⇒⇒ �, that

∧
�→

∨
� is true at the

bottom t� ofM+. Here we show the case that (� ⇒⇒ �) = (�� ′ ⇒⇒ ��′) and the last
inference rule is (GLtoD); that is, we have the hypothesis (†) GLseq � � ′,�� ′ ⇒ ��′.
We assume

∧
�� ′ is true at t�; then, the goal is to show

∨
��′ is true at t�.

By the assumption and the definition of ≺+, we have both
∧
� ′ and

∧
�� ′

are true at any world in the tail. Then the hypothesis (†) and Proposition 5.5
imply that

∨
��′ is eventually always true in the tail {tα | 0 < α < �}. Therefore,

there must be a formula �ϕ ∈ ��′ such that the condition (‡) (∀α < �)(α <
∃	 < �)(V +(t	 ,�ϕ) = true) holds because otherwise every �ϕ ∈ ��′ satisfies (∃α <
�)(α < ∀	 < �)(V +(t	 ,�ϕ) = false), and this contradicts the fact that

∨
��′ is

eventually always true. This formula �ϕ is also true at the bottom t� because the
condition (‡) implies (∀α < �)[(V +(tα, ϕ) = true) and (∀x �+ tα)(V +(x, ϕ) = true)].
Thus, we have V +(t�,

∨
��′) = true.

(Proof of (3) ⇒ (2)) We show the contraposition. Suppose analytic D2
seq 
� � ⇒⇒ �.

We will construct a constant �-extension of a GL-model such that
∧
�→

∨
� is

false at the bottom. First we apply Lemma 5.3(3) to � ⇒⇒ �, and we get a D2
seq-

saturation�+ ⇒⇒ �+. Let�� = {� | �� ∈ �+} and�� = {ϕ | �ϕ ∈ �+}. The GL-
sequent ��,��� ⇒ ��� is not cut-free provable in GLseq because otherwise analytic
D2

seq � �+ ⇒⇒ �+ by the rules (GLtoD) and weakening. Then applying Lemma 5.3(1),
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we get a GLseq-saturation  ⇒ � of ��,��� ⇒ ���. We show that  ⇒ � is �-
left-saturated:

Suppose�� ∈  . Then�� ∈ Sub(�,�) (because ⇒ � is a GLseq-
saturation of ��,��� ⇒ ��� which consists of the elements of
Sub(�,�)), and we have either �� ∈ �+ or �� ∈ �+ (because
�+ ⇒⇒ �+ is a D2

seq-saturation of� ⇒⇒ �). But the latter condition
�� ∈ �+ does not hold because, if �� ∈ �+, then �� ∈ ��� and
 ⇒ � is cut-free provable from the initial sequent ��⇒ �� by the
weakening rule in GLseq. Therefore the former condition �� ∈ �+

holds, and we have � ∈ �� ⊆  .

The remaining part is similar to the proof of ‘(3) ⇒ (2)’ of Theorem 5.6. We get
a GL-model 〈W,≺, V 〉 such that

∧
→

∨
� is false at a world t0, by the cut-free

completeness of GLseq. Then we define a constant �-extension of 〈W +,≺+, V +〉 of
〈W,≺, V 〉 where {tα | 0 < α < �} is the tail, t� is the bottom, V +(tα, p) = V (t0, p)
for any α < �, and V +(t�, p) = true ⇐⇒ p ∈ �+. (In Figure 2 (right), the essence of
〈W +,≺+, V +〉 is illustrated.) We consider four properties below, where α < �. (L) If
ϕ ∈  , thenV +(tα, ϕ) = true. (R) If ϕ ∈ �, thenV +(tα, ϕ) = false. (L�) If ϕ ∈ �+,
then V +(t�, ϕ) = true. (R�) If ϕ ∈ �+, then V +(t�, ϕ) = false. The properties (L)
and (R) are proved in the same way as that in Theorem 5.6 for any ordinal number
α < �. Note that  ⇒ � is �-left-saturated as shown above (while �+ ⇒⇒ �+ may
not). Finally, we prove the properties (L�) and (R�) by induction on ϕ. In the case of
ϕ = �� ∈ �+, for example, the proof is done as follows.

�� ∈ �+ def. of=⇒ � ∈  (L)
=⇒ V +(tα, �) = true for any α < �. (†)

�� ∈ �+ def. of=⇒ �� ∈  (L)
=⇒ V +(t0,��) = true =⇒

V +(x,�) = true for any x ∈W such that t0 ≺ x. (‡)

�� ∈ �+ (†)(‡)
=⇒ V +(t�,��) = true.

Theorem 5.8 (Soundness and cut-free completeness of D3
seq). Let � be a limit ordinal.

For any D-sequent � ⇒⇒ �, the following four conditions are equivalent:

(1) D3
seq � � ⇒⇒ �.

(2) Cut-free D3
seq � � ⇒⇒ �.

(3)
∧
�→

∨
� is true at the bottom of any constant �-extension of any GL-model.

(4)
∧
�→

∨
� is true at the bottom of any �-extension of any GL-model.

Proof. Proof can be done in a similar way to Theorem 5.7. Points of differences
between two proofs are below. In the proof of ‘(1) ⇒ (4)’, we use ‘(1) ⇒ (6)’ of
Theorem 5.6 instead of Proposition 5.5. In the proof of ‘(3) ⇒ (2)’, we use a D3

seq-
saturation �+ ⇒⇒ �+ of � ⇒⇒ � (by Lemma 5.3(4)) to define the valuation V + at
the bottom; and we use an Sseq-saturation  � � of ��� � ��� (and the GL-
sequent ⇒ � which is not cut-free provable in GLseq) to define the valuation V + at
the tail.
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§6. Hilbert-style systems for D. Corresponding to D2
seq and D3

seq, we introduce new
Hilbert-style proof systems, called D2

H and D3
H:

Axioms of D2
H: Tautologies, and formulas of the form

∧
�
→

∨
��

such that
∧

(
,�
 )→
∨

�� is a theorem of GLH.
Rule of D2

H: Modus ponens.
Axioms of D3

H: Tautologies, and formulas of the form
∧

�
→
∨

��
which is a theorem of SH.

Rule of D3
H: Modus ponens.

Similarly to Propositions 3.4 and 3.5, we have the following.

Proposition 6.1. D2
seq � 
 ⇒⇒ � if and only if D2

H �
∧

→

∨
�.

Proposition 6.2. D3
seq � 
 ⇒⇒ � if and only if D3

H �
∧

→

∨
�.

These are proved by induction. To be exact, for the if-parts, we show ‘Diseq � (⇒⇒ ϕ)
if DiH � ϕ’ by induction on the DiH-proof of ϕ. Note that Propositions 3.4 and 3.5 and
Theorems 4.1, 4.2, and 4.3 are used in the proofs.

Now the logic D has three Hilbert-style systems DH, D2
H and D3

H; and the equivalence
of these is shown by combining Proposition 2.7 (for � = �), Theorems 5.7 and 5.8 (for
� = �), and Propositions 6.1 and 6.2. But it is a natural question whether we can
show this equivalence syntactically (since the above combination uses soundness and
completeness). Syntactic proof of equivalence between D2

H and D3
H can be obtained by

Theorem 4.5 and Propositions 6.1 and 6.2. In the following, we show a syntactic proof
of equivalence between D2

H and DH; consequently the equivalence between the three
systems is shown syntactically.

Theorem 6.3. D2
H � ϕ if and only if DH � ϕ.

Proof. (Proof of only-if-part) We show the following by induction on D2
H-proof of

ϕ: If D2
H � ϕ, then DH � ϕ. If ϕ is the axiom

∧
�
→

∨
��, an outline of the proof

is as follows.

(1) GLH �
∧

(
,�
 ) →
∨

�� (By definition of the axiom)

(2) GLH �
∧

(�
,��
 ) → �
∨

�� (By (1) and inference in GLH)

(3) GLH �
∧

�
 → �
∨

�� (By (2) and the fact GLH � �� → ���)

(4) DH � �
∨

��→
∨

�� (Lemma 2.7.1 in [3])

(5) DH �
∧

�
 →
∨

��. (By (3), (4), and definition of the axioms of DH.)

(Proof of if-part) First we show the following claim by induction on the GLH-proof
of ϕ: If GLH � ϕ, then D2

H � ϕ. A point is that the axioms �(ϕ→�)→(�ϕ→��)
and �(�ϕ→ϕ)→�ϕ and the conclusion of (�)-rule are respectively equivalent
(over classical propositional logic) to formulas of the form

∧
�
→

∨
�� such

that
∧

(
,�
 )→
∨

�� is a theorem of GLH. For example, �(ϕ→�)→(�ϕ→��) is
equivalent to

∧
�(ϕ→�,ϕ)→��, where

∧
(ϕ→�,ϕ,�(ϕ→�,ϕ))→�� is a theorem

of GLH. Then we show the following claim by induction on the DH-proof of ϕ: If
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DH � ϕ, then D2
H � ϕ. For the axioms ¬�⊥ and �(�ϕ∨��)→�ϕ∨��, proofs are

done corresponding to the D2
seq-proofs in Examples 3.3 and 3.1.

§7. Generalization. In this section, we generalize the completeness of SH, D2
H, and

D3
H.
In the following, L denotes an arbitrary set of formulas. We define five sets of

formulas depending on L.

Definition 7.1 (MP[·],S[·],D[·],D2[·],D3[·]).

MP[L] is the smallest set of formulas that contains L and is closed
under modus ponens;

S[L] = MP[L ∪ {�ϕ→ϕ | ϕ ∈ Form}];
D[L] = MP[L ∪ {¬�⊥} ∪ {�(�ϕ∨��)→�ϕ∨�� | ϕ,� ∈ Form}];
D2[L] = MP[Taut ∪ {

∧
�
→

∨
�� |

∧
(
,�
 )→

∨
�� ∈ L}];

and
D3[L] = MP[Taut ∪ {

∧
�
→

∨
�� |

∧
�
→

∨
�� ∈ S[L]}];

where Taut is the set of tautologies.

For example, S[GL], D[GL], D2[GL], and D3[GL] are the sets of theorems of SH,
DH, D2

H, and D3
H, respectively, if GL is the set of theorems of GLH.

Definition 7.2. Let F be a class of Kripke frames and L be a set of formulas. We say
that a Kripke model is an F-model if it is based on a frame in F . We say that L is
characterized by F if the following two conditions are equivalent for any formula ϕ.

• ϕ ∈ L.
• ϕ is true at any world of any F-model.

Moreover, we say that L is �-tail-sound for F if any formula in L is eventually always
true in the tail of any �-extension of any F-model, where � is a limit ordinal.

For example, GL is characterized by and �-tail-sound for the class of GL-frames.
The following are the generalization of the completeness of SH, D2

H, and D3
H.

Theorem 7.3. Let � be a limit ordinal. If L is characterized by F and �-tail-sound for F ,
then the following five conditions are equivalent:

(1) ϕ ∈ S[L].
(2) ϕ is true at the bottom of any strongly constant �-extension of any F-model.
(3) ϕ is eventually always true in the tail of any strongly constant �-extension of any

F-model.
(4) ϕ is eventually always true in the tail of any constant �-extension of anyF-model.
(5) ϕ is eventually always true in the tail of any �-extension of any F-model.

Theorem 7.4. Let � be a limit ordinal. If L is characterized by F and �-tail-sound for F ,
then the following four conditions are equivalent:

(1) ϕ ∈ D2[L].
(2) ϕ ∈ D3[L].
(3) ϕ is true at the bottom of any constant �-extension of any F-model.
(4) ϕ is true at the bottom of any �-extension of any F-model.
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Table 2. Rewriting for generalization

Terms in Section 5 Replaced with

GL-model F-model
(cut-free) GLseq � 
 � �

∧

→

∨
� ∈ L

(cut-free) Sseq � 
 � �
∧

→

∨
� ∈ S[L]

(analytic) D2
seq � 
 � �

∧

→

∨
� ∈ D2[L]

(cut-free) D3
seq � 
 � �

∧

→

∨
� ∈ D3[L]

Theorem 5.4, Proposition 5.5 assumption of the theorem

Proof of Theorems 7.3 and 7.4. Suppose that L is characterized by F . If X is L, S[L],
D2[L], or D3[L], then X contains all tautologies, and X is closed under tautological
consequence; therefore, X can simulate LK as below.

• (Initial sequents) ϕ→ϕ ∈ X .
• (Inference rules) X is closed under the following rules:

∧

→

∨
�

∧

 ′→

∨
�′

(weakening), where
 ⊆ 
 ′and� ⊆ �′,

∧

→

∨
(�,ϕ)

∧
(�,
)→

∨
�

∧
(ϕ→�,
)→

∨
�

(→left),

∧
(ϕ,
)→

∨
(�,�)

∧

→

∨
(�,ϕ→�)

(→right),

∧

→

∨
(�,ϕ)

∧
(ϕ,)→

∨
�

∧
(
,)→

∨
(�,�)

(cut).

Using these, we generalize the arguments of Section 5. Roughly speaking, this is done
by replacing terms according to Table 2. In the following, we show a detailed proof of
Theorem 7.3.

First we redefine ‘Sseq-saturation’:

An S-sequent �+ � �+ is an Sseq-saturation of � � � def⇐⇒
� ⊆ �+ ⊆ Sub(�,�); � ⊆ �+ ⊆ Sub(�,�); �+ � �+ is →-
saturated and �-left-saturated; and

∧
�+→

∨
�+ 
∈ S[L].

Then we show the generalization of Lemma 5.3(2):

If
∧
�→

∨
� 
∈ S[L], then there is an Sseq-saturation of � � �.

This is shown by simulating the proof of Lemma 5.3(2). Note that the rule (S�left) is
available in S[L] as below

∧
(ϕ,
 )→

∨
�

∧
(�ϕ,
 )→

∨
�

(S�left)

because �ϕ→ϕ ∈ S[L]. Then we prove the generalization of Theorem 5.6.
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The following five conditions are equivalent:

(1)
∧
�→

∨
� ∈ S[L].

(2)
∧
�→

∨
� is true at the bottom of any strongly constant

�-extension of any F-model.
(3)

∧
�→

∨
� is eventually always true in the tail of any strongly

constant �-extension of any F-model.
(4)

∧
�→

∨
� is eventually always true in the tail of any

constant �-extension of any F-model.
(5)

∧
�→

∨
� is eventually always true in the tail of any �-

extension of any F-model.

Note that ϕ ∈ S[L] if and only if
∧

∅→
∨
{ϕ} ∈ S[L]; therefore, showing the above

equivalence is sufficient for Theorem 7.3.
(Proof of (1) ⇒ (5)) We show that each element of S[L] is eventually always true in

the tail of any �-extension of any F-model. This is easy because of the definition of
S[L], the assumption that L is �-tail-sound forF , and the fact that�ϕ→ϕ is eventually
always true (this was shown in the proof of ‘(1) ⇒ (6)’ of Theorem 5.6).

(Proof of (5) ⇒ (4) ⇒ (3)) Trivial.
(Proof of (3) ⇒ (2)) Shown in the proof of ‘(4) ⇒ (3)’ of Theorem 5.6.
(Proof of (2) ⇒ (1)) We generalize the proof of ‘(3) ⇒ (2)’ of Theorem 5.6. Suppose∧
�→

∨
� 
∈ S[L]. By the ‘generalized Lemma 5.3(2)’, we get an Sseq-saturation

�+ � �+ of � � �. By the definition of Sseq-saturation, we have
∧
�+→

∨
�+ 
∈

S[L]; therefore
∧
�+→

∨
�+ 
∈ L because of the definition of S[L]. Hence, there is

an F-model 〈W,≺, V 〉 such that
∧
�+→

∨
�+ is false at a world t0 because of the

assumption that L is characterized by F . The rest of the proof is the same as in the
proof of ‘(3) ⇒ (2)’ of Theorem 5.6.

This completes the proof of Theorem 7.3. Similarly, Theorem 7.4 can be proved by
generalizing the proofs of Theorems 5.7 and 5.8.

Remark 7.5. In the proof of Theorem 6.3, we use the following particular properties
of GL: �ϕ→��ϕ ∈ GL, and GL ⊆ D2[GL] (due to the property of the axioms of GL
specified in the proof of Theorem 6.3). Therefore, in general, the condition ‘ϕ ∈ D[L]’
seems nonequivalent to the conditions (1)–(4) of Theorem 7.4.

In the rest of this section, we show an application of Theorem 7.4 to the extensions
of GL and D with linear order models.

Let � be a limit ordinal, and M be 〈W,≺, V 〉. We define ‘finite linear GL-model’,
‘linear GL-model’, and ‘�-GL-model’ as below.

M is a finite linear GL-model def⇐⇒〈W,≺〉 � 〈{α | α ≤ n}, >〉 for some
natural number n. (We call 〈{α | α ≤ n}, >〉 a finite linear GL-frame.)

M is a linear GL-model def⇐⇒ 〈W,≺〉 � 〈{α | α < 	}, >〉 for some
ordinal number 	 > 0.

M is a �-GL-model def⇐⇒ 〈W,≺〉 � 〈{α | α ≤ �}, >〉.

Then we define logics LinGLF, LinGL, LinD�, and LinD as below.

LinGLF = {ϕ | ϕ is true at any world of any finite linear GL-model.}
LinGL = {ϕ | ϕ is true at any world of any linear GL-model.}
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Figure 3. A �-extension of a finite linear GL-model and its submodel.

LinD� = {ϕ | ϕ is true at the bottom of any �-GL-model.}
LinD = {ϕ | ϕ is true at the bottom of any �′-GL-model, for any limit

ordinal �′.}

Theorem 7.6. LinGLF = LinGL. (Therefore, LinGL is characterized by the class of
finite linear GL-frames.)

Proof. LinGLF is known to be axiomatized by adding an axiom scheme
�(�ϕ→�)∨�(�∧��→ϕ) to GLH ([7, sec. 25]). We call this system LinGLH.
The soundness of LinGLH with respect to LinGL is easily shown. Therefore
LinGLF ⊆ LinGL is shown as below: ϕ ∈ LinGLF =⇒ LinGLH � ϕ =⇒ ϕ ∈ LinGL.
The converse inclusion LinGLF ⊇ LinGL is trivial by the definition.

Theorem 7.7. Let � be a limit ordinal. The following conditions are equivalent:

(1) ϕ ∈ D2[LinGL].
(2) ϕ ∈ D3[LinGL].
(3) ϕ is true at the bottom of any �-extension of any finite linear GL-model.
(4) ϕ is true at the bottom of any �′-extension of any finite linear GL-model, for any

limit ordinal �′.
(5) ϕ ∈ LinD�.
(6) ϕ ∈ LinD.

Proof. If M is a �-extension of a finite linear GL-model, and if M ′ is a submodel
of M as in Figure 3, thenM ′ is a �-GL-model and the truth value of each formula at
each world is inherited from M. Using this, we can show the following three facts. (i)
LinGL is �-tail-sound for the class of finite linear GL-frames. (ii) The conditions (3)
and (5) are equivalent. (iii) The conditions (4) and (6) are equivalent. Then, the fact
(i) and Theorems 7.6 and 7.4 imply the equivalence between the conditions (1), (2),
and (3). Finally, ‘(3) ⇐⇒ (4)’ is shown similarly to Remark 2.6.

Remark 7.8. Also the condition ‘ϕ ∈ D[LinGL]’ is equivalent to the conditions
in Theorem 7.7 because we can show D2[LinGL] = D[LinGL] in the same way as
Theorem 6.3, using the Hilbert-style system LinGLH (mentioned in the proof of
Theorem 7.6). A cut-free sequent calculus for LinGL was discussed in [13].
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