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Abstract

The Jansen–Rit model of a cortical column in the cerebral cortex is widely used to
simulate spontaneous brain activity (electroencephalogram, EEG) and event-related
potentials. It couples a pyramidal cell population with two interneuron populations, of
which one is fast and excitatory, and the other slow and inhibitory.
Our paper studies the transition between alpha and delta oscillations produced by
the model. Delta oscillations are slower than alpha oscillations and have a more
complex relaxation-type time profile. In the context of neuronal population activation
dynamics, a small threshold means that neurons begin to activate with small input or
stimulus, indicating high sensitivity to incoming signals. A steep slope signifies that
activation increases sharply as input crosses the threshold. Accordingly, in the model,
the excitatory activation thresholds are small and the slopes are steep. Hence, we replace
the excitatory activation function with its singular limit, which is an all-or-nothing
switch (a Heaviside function). In this limit, we identify the transition between alpha
and delta oscillations as a discontinuity-induced grazing bifurcation. At the grazing,
the minimum of the pyramidal-cell output equals the threshold for switching off the
excitatory interneuron population, leading to a collapse in excitatory feedback.
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1. Introduction

The Jansen–Rit model [16, 17] is a well-established neural mass model of the activity
of a local cortical circuit in the human brain. The model builds on the earlier work
of Lopes da Silva et al. [21, 22] and Freeman [12]. They developed mathematical
models to simulate spontaneous brain activity, which can be recorded noninvasively,
to investigate the mechanisms behind specific types of electroencephalogram (EEG)
field potentials. Their focus was on understanding the origins of alpha-like activity –
a rhythmic EEG pattern with a frequency range of 8–12 Hz, most prominent during
restful states with closed eyes.

Neuronal activity detected by EEG results from the combined excitatory and
inhibitory postsynaptic potentials generated by large groups of neurons, such as
cortical columns in the cerebral cortex, firing at the same time. Jansen et al. [17]
and Jansen and Rit [16] extended Lopes da Silva’s lumped parameter model [21, 22]
by incorporating an excitatory feedback loop from local interneurons in addition to
the original populations of inhibitory interneurons and excitatory pyramidal cells to
investigate the significance of excitatory connections over long distances. Although
the Jansen–Rit model [16], as illustrated in Figure 1(a), is a simplification of the
complexity of neural connections in cortical regions of the brain, it is able to generate
a range of wave forms and rhythms resembling EEG recordings. Accordingly, it has
been extensively employed to simulate brain rhythmic activity recorded by EEG (see
[7, 26] and references therein). The Jansen–Rit model has been extended further
by Wendling et al. [29] to study epileptic-like oscillations by the addition of a fast
inhibitory interneuron population. This model has since gained significant attention in
studies of epileptic seizures [5, 29]. Furthermore, the Jansen–Rit model has been used
to simulate event-related potentials (ERPs) by applying pulse-like inputs, allowing
for the replication and analysis of EEG responses to external stimuli. Notably, the
interaction between cortical columns has been found to play a key role in generating
visual evoked potentials (VEPs) [17].

The rhythms generated by the Jansen–Rit model can be associated with different
behaviours, levels of excitability and states of consciousness. Using the parameter
settings suggested by Jansen and Rit [16], the model produces oscillations around
10 Hz corresponding to alpha-like activity as described by Grimbert and Faugeras
[13]. Delta rhythms have frequencies between 0.5 and 4 Hz detected during deep
stages of nonREM sleep (particularly stages 3 and 4), also known as slow-wave sleep.
During these stages, the brain exhibits large-amplitude, low-frequency delta activity.
A recent experimental study reports an alpha/delta switch in the prefrontal cortex
regulating the shift between positive and negative emotional states [4]. Moreover,
another very recent study by Brudzynski et al. [3] identifies a transition between
positive (associated with alpha rhythms) and negative (associated with delta rhythms)
emotions controlled by the arousal system. At the level of neuronal circuits, the alpha
rhythm is linked to synaptic long-term potentiation (LTP) in the cortex, while the delta
rhythm is associated with synaptic depotentiation (LTD) in the same region. Therefore,
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understanding what controls the transitions between alpha and delta oscillations in
neural circuits enhances our knowledge of how neural circuits regulate brain states
and may provide insights into disruptions that affect sleep and cognitive functions.

Grimbert and Faugeras [13] analysed the oscillatory behaviour of the Jansen–Rit
model using numerical bifurcation analysis. In their work, the external input signal
p (see Figure 1(a)) was considered as a bifurcation parameter. The behaviour of
the model under variation in p was investigated where all other model parameters
were kept fixed and equal to what was originally proposed by Jansen and Rit (see
Table 1). They found that the qualitative behaviour of the system changes from steady
state to oscillatory behaviour (appearance or disappearance limit cycle) via a Hopf
bifurcation. The authors also pointed out that the system displays distinct phenomena
such as bistability, limit cycles and chaos. Furthermore, Touboul et al. [27] carried
out bifurcation analysis for a nondimensionalized Jansen–Rit model and the extension
proposed by Wendling et al. [29] in several system parameters, detecting and tracking
bifurcations of up to codimension 3.

The transition between alpha and delta oscillations is linked to a notable feature
exhibited by the Jansen–Rit neural mass model: a sharp qualitative change in the
oscillations’ time profiles and frequencies occurs over a small parameter range without
change of stability and no (or little) hysteresis. Hence, the underlying mathematical
mechanism cannot be a generic bifurcation as found in textbooks [14, 19]. Recent
work by Forrester et al. [11], which developed an analysis of a large network of
interacting neural populations of Jansen–Rit cortical column models in the absence
of noise, identified the alpha–delta transition as a “false bifurcation”. They used an
arbitrary geometric feature of the periodic orbit (an inflection point) and associated it
with the qualitative changes of the periodic orbits. The feature of the orbits could then
be expressed as a zero problem and tracked in the two-parameter space (A, B), where A
and B are the gain (strength) of excitatory and inhibitory responses, respectively. This
is similar to the approach proposed by Rodrigues et al. [25], who tracked qualitative
changes in orbit shapes in an EEG model of absence seizures (such as Marten et al.
[23]). Study of alpha and delta frequency oscillations based on different parameter
settings has been performed by Ahmadizadeh et al. [1]. They showed that a model of
two coupled cortical columns can produce delta activity as the gain strength between
the two cortical columns is varied (see Figure 12T1 of [1] for delta-like activity). Their
model can also produce alpha-like activity, where the frequency of oscillation lies in
the alpha frequency band but the amplitude changes.

Our paper starts from the observation that after nondimensionalization (as done
by Touboul et al. [27]) the activation function for excitatory inputs has steep slopes
and small thresholds. The small threshold models that neurons begin to activate with
small input or stimulus, indicating high sensitivity to incoming signals. A steep slope
signifies that once the activation begins, it escalates rapidly, with the neurons’ response
intensity increasing sharply as input crosses the threshold. Hence, it makes sense
to introduce a small parameter ε equal to a quarter of the inverse of the activation
slope. The singular limit ε → 0 replaces the activation functions by all-or-nothing
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switches represented mathematically by Heaviside functions. In this singular limit,
we can locate most bifurcations of equilibria with simple formulae. We can also
identify the underlying mechanism for the alpha–delta transition. During alpha-type
oscillations, the minimum of the potential of the pyramidal cells always stays above
the threshold for switching off the excitatory feedback (see Figure 5). At the transition,
the minimum then “touches” this threshold. If the potential falls below the threshold
even briefly, the excitatory feedback collapses leading to all potentials dropping to
zero. This type of “touching of a threshold” is a typical bifurcation in a system with
discontinuous switches, called a grazing bifurcation [9, 20]. Our Figure 6 shows how
this grazing bifurcation is an accurate approximation of the boundary between alpha-
and delta-type oscillations for the value ε ≈ 1/40 corresponding to the parameters in
the original Jansen–Rit model.

The paper is organized as follows. We present the Jansen–Rit model in Section 2,
together with a first numerical bifurcation analysis in one parameter (feedback
strength A between excitatory populations). This analysis shows the two types of
oscillation (alpha and delta type) and the sharp transition between them. Section 3
first nondimensionalizes the model, identifies a small parameter ε and different ways
to take the singular limit ε → 0. In Section 3.3, we derive explicit expressions for
the location of equilibria in the limiting piecewise linear system. In Section 3.5, we
derive an algebraic system of equations for the periodic orbits of alpha-type, which are
piecewise exponentials and for which, one of the components is constant. Using this
algebraic system, we detect and track the grazing bifurcation, resulting in Figure 6.
As our singular perturbation analysis is only partial, we discuss open questions in
Section 4.

2. The Jansen–Rit model for a single cortical column

Figure 1(a) shows the structure of the Jansen–Rit model for a single cortical column.
The model assumes that the cortical column contains two populations of interneurons,
one excitatory and one inhibitory, and a population of excitatory pyramidal cells. The
model contains two blocks for each population, a linear dynamic block, modelled as a
second-order differential equation with the population’s average postsynaptic potential
(PSP) Yi as its output and an average pulse density of action potentials as its input. In
Figure 1(a), these are the blocks with label Yi: Y1 is the PSP of the pyramidal cell
population (blue diamond in Figure 1(a); Y2 is the PSP of the inhibitory interneuron
population (red ellipse in Figure 1(a)); and Y3 is the PSP of the excitatory interneuron
population (green ellipse in Figure 1(a)). The other block for each population is a
nonlinear sigmoid-type activation function (the blocks labelled “Sigm” in Figure 1(a))
from the PSP into an average pulse density of action potentials.

The arrows in Figure 1(a) show a positive feedback loop between the pyramidal
neuron population (Y1) and the excitatory interneuron population (Y3), where both
connections are excitatory; and a negative feedback loop between the pyramidal cells
and the inhibitory interneurons (Y2), where the connection back from the inhibitory
neurons to the pyramidal cells is inhibitory. The model incorporates an external
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FIGURE 1. (a) Interactions among three neuronal populations in a local circuit of a single cortical column
in the cerebral cortex of a brain modelled by (2.1): pyramidal cells (Y1), and excitatory (Y3, EINs) and
inhibitory (Y2, IINs) interneurons. (b) Blue axis shows the sigmoid profile of Sigm, defined in (2.2),
with slope r = 0.56 at threshold y0 = 6 mV (vertical dotted line), at which half-maximum e0 of Sigm is
achieved. (b) Black axis shows dimensionless sigmoid S, given in (3.3), for maximal slope value 1/(4ε) =
0.25/0.024 ≈ 10.5 at activation threshold y0,1 = 0.08 (nondimensionalized threshold y0,1 for excitatory
populations indicated by black vertical dotted line). See Tables 1 and 2 for other parameters of Sigm and S.

excitatory input, labelled p(t) (an average pulse density) representing signalling
from other neuronal populations external to the column (Figure 1(a)). The resulting
ordinary differential equation (ODE) system corresponding to the schematic diagram
in Figure 1(a) is as follows (note that each equation is of order two):

Ÿ1(t) = Aa{Sigm(Y3(t) − Y2(t))} − 2aẎ1(t) − a2Y1(t),

Ÿ2(t) = Bb{C4 Sigm(C3Y1(t)} − 2bẎ2(t) − b2Y2, (2.1)

Ÿ3(t) = Aa{p(t) + C2 Sigm(C1Y1(t))} − 2aẎ3(t) − a2Y3(t), where

Sigm(Y) =
2e0

1 + er(y0−Y)
(2.2)

is a nonlinear sigmoid activation function, converting local field postsynaptic potential
into firing rate, as shown in Figure 1(b). Its argument y is the average postsynaptic
potential in mV of the neural population. The threshold y0 determines the input level
at which the firing rate is half of its maximum 2e0, and r is the slope of Sigm at y0.

We restrict our study mostly to the case without external input signal by setting
the input p(t) to zero, that is, p(t) = 0. In previous studies, the values of p(t) have
been varied from 120 Hz to 320 Hz as proposed by Jansen and Rit [16]. For example,
Grimbert and Faugeras [13] have performed bifurcation analysis of (2.1) varying the
input p(t). The quantity Y3(t) − Y2(t) can be related to experiments, because it is
proportional to the signals obtained via EEG recordings corresponding to the average
local field potential generated by the underlying neuronal populations in the cortical
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TABLE 1. Quantities in Jansen–Rit model, (2.1), and their default values and dimensions [16].

Parameter Description Value/unit

Yi(t), i = 1, 3 excitatory postsynaptic potential EPSP mV
Y2(t) inhibitory postsynaptic potential IPSP mV
2e0 asymptotic maximum of Sigm 5 s−1

y0 switching threshold of Sigm 6 [mV]−1

(Sigm(y0) = e0)
r slope of Sigm at y = y0 (Sigm′(y0)) 0.56 [mV]−1

A maximal amplitude of excitatory PSP 3.25 mV
B maximal amplitude of inhibitory PSP 22 mV
a decay rate in excitatory populations 100 s−1

b decay rate in inhibitory population 50 s−1

αi, i = 1, . . . , 4 average number of synaptic connections α1 = 1, α2 = 0.8,
α3 = 0.25, α4 = 0.25

Ci, i = 1, . . . , 4 connectivity strength C1 = 135α1, C2 = α2C1,
C3 = α3C1, C4 = α4C1

p External signal 0

circuits [17]. In the cortex, pyramidal neurons project their apical dendrites into the
superficial layers where the postsynaptic potentials are summed, thereby making up
the core of the EEG. The interpretation of all model quantities and their numerical
values and dimensions are given in Table 1. The values are set to those proposed by
Jansen and Rit [16].

2.1. Sharp transitions from alpha to delta activity Figure 2(a) shows the
one-parameter bifurcation diagram of the Jansen–Rit model (2.1) for varying
excitability scaling factor A, which determines maximal amplitude of excitatory
postsynaptic potentials (EPSP) of excitatory populations (pyramidal cells Y1) and
excitatory interneurons (Y3). All other parameters are fixed as listed in Table 1. The
y-axis shows the PSP of the excitatory interneurons (Y3). A branch of equilibria (blue)
folds back and forth in two saddle node bifurcations (purple squares). Solid curves are
stable and dashed curves are unstable parts of the branch. Along the upper part of the
branch, the equilibria change stability in three Hopf bifurcations (red diamonds). We
focus on the periodic orbits (oscillations) emerging from the Hopf bifurcation at a high
value of A (A ≈ 15, label (HB)). The black curves show the maximum and minimum
values of Y3 along this branch of mostly stable periodic orbits that emanate from
this Hopf bifurcation and terminate at the low-A end in a homoclinic bifurcation of
saddle-node on invariant circle type (SNIC; [15]), at which the frequency of oscillation
goes to zero as A approaches the value for the saddle node bifurcation on the lower
branch of equilibrium points (A ≈ 7).
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FIGURE 2. (a) Bifurcation diagram of the Jansen–Rit model (2.1) for varying A. (b) Frequency of
oscillations with input p = 0 (black) and input p = 120 (yellow) for varying A, indicating alpha, theta and
delta frequency ranges. (c) Same bifurcation diagram as panel (a) but using nondimensionalized quantities
G = B/A and y3. (d),(e) Time profiles of oscillations in alpha (A = 11) and delta (A = 10) rhythm regimes
corresponding to vertical dashed lines in panel (b). See Tables 1 and 2 for parameters. Computation
performed with COCO [6].

Figure 2(b) shows the frequency of these oscillations over the range of parameters A
where they exist (A ∈ [7, 14.4]). We observe a sharp transition between high-frequency
oscillations for A in the range [10.2, 14.4], where the frequency (in Hz) is in the range
[8, 11], and low-frequency oscillation for A in the range [7, 10.2], where the frequency
is approximately 4 Hz and below. The oscillation frequencies on either side of the
transition are associated with wakefulness state (alpha-like activity, around 10 Hz) and
deep sleep (delta-like activity, around 2 Hz).

Figures 2(d) and 2(e) show that this change in frequency is accompanied with a
qualitative change in the time profiles of the orbits. The alpha-type fast oscillations
have a four-phase profile typical for an oscillatory negative feedback loop (compare
Figure 2(d) and note that the scale differs between different outputs such that
Figure 2(d) has two y-axes):

• (0–0.02 s) high pyramidal cell output (Y1, blue) causes rising inhibition (Y2, red);
• (0.02–0.05 s) high inhibition causes decrease in pyramidal cell output;
• (0.03–0.07 s) low pyramidal cell output causes decreasing inhibition;
• (0.06–0.1 s) low inhibition causes rising pyramidal cell output.

Throughout the entire period of the alpha-type oscillation, the pyramidal cell output is
supported by a near-constant input from the excitatory interneurons (Y3, green). The
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delta-type (slow) oscillations are shown in Figure 2(e). They show a relaxation-type
time profile: pyramidal cell output Y1 (blue) and excitatory interneuron output Y3
(green) collapse to zero and stay there for some period. This period is determined
by how long it takes for inhibition (Y2, red) to reach sufficiently low levels to
permit pyramidal cell output Y1 and excitatory interneuron output Y3 to rise again.
The two time profiles in Figures 2(d) and 2(e) occur for parameter values of A
just above (Figure 2(d), A = 11) and below (Figure 2(e), A = 10) the transition.
The bifurcation diagram shows even a tiny region of bistability, bounded by two
saddle-node-of-limit-cycle bifurcations. However, this bistability and the saddle nodes
are not a consistent feature for this transition. Figure 2(b) shows a bifurcation diagram
for nonzero external input (p = 120 Hz, yellow curve), where the transition still occurs
and is still sharp, occurring in a small parameter region, but without bistability or
saddle nodes of limit cycles.

Forrester et al. [11] detected this transition in their investigation of the Jansen–Rit
model (2.1). They demonstrated that it is an essential ingredient in the occurrence of
large-scale oscillations in a network of neural populations (which would be measurable
by EEG). As the transition is not associated with a bifurcation in parts of the parameter
space (see Figure 3 of [11]), the authors labelled the transition a “false bifurcation”
and tracked it in parameter space by associating it with a feature of the time profile,
namely the occurrence of an inflection point. Forrester et al. [11] pointed out that “false
bifurcations” are usually originating from singular perturbation effects in the system,
referring to Desroches et al. [8] and Rodrigues et al. [25].

To investigate this phenomenon further, we nondimensionalize the Jansen–Rit
model (2.1) and identify a small parameter ε for which we can then study the
singular limit for the transition from alpha to delta activity. The bifurcation diagram
in Figure 2(a) shows a sharp change in the time profile of Y3 from nearly constant for
alpha activity to an oscillation with excursions close to zero: observe the drop in the
minimum of the periodic orbit (black curve) for A slightly above 10.

The numerical bifurcation analysis of the Jansen–Rit model is carried out using
the COCO toolbox [6], which is a MATLAB-based platform for parameter continuation
allowing for bifurcation analysis of equilibria and periodic orbits. Numerical continu-
ation in COCO [6] and XPPAUT [10] is used to track stability of equilibria and periodic
orbits, and to detect their bifurcations. For numerical integration (simulation), we use
XPPAUT and ODE45 (a Runge–Kutta method) in MATLAB. In all single-parameter
bifurcation diagrams, solid curves indicate stable states, while dashed lines are
unstable states. Black curves indicate maximum and minimum values of periodic
solutions in all bifurcation diagrams1.

1Availability of data scripts reproducing the computational data for all figures can be accessed at
https://github.com/jansieber/MSTA-alphadelta-anziam24-resources.
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3. Singular perturbation analysis of Jansen–Rit model

We introduce small parameter ε > 0 for which, in the limit ε → 0, the right-hand
side (vector field) of system (2.1) becomes a piecewise linear nonsmooth system. First,
we nondimensionalize the Jansen–Rit model (2.1) to identify the small parameter.

3.1. Nondimensionalization of the Jansen–Rit model Touboul et al. [27] present
a nondimensionalized version of the Jansen–Rit model. We choose the following
dimensionless scale, as proposed by Touboul et al. [27].

• Dimensionless time is set according to the internal decay time scale of the
excitatory populations, tnew = atold, where a is given in Table 1.

• We introduce the decay rate ratio b∗ of inhibitory to excitatory populations and
the ratio G of postsynaptic amplitudes of inhibitory to excitatory populations:

b∗ =
b
a

, G =
B
A

.

• We rescale the state variables Y1, Y2, Y3 such that they are all of order 1 at their
maximum, introducing a small parameter,

ε =
2a

BrC(2e0)
≈ 0.024,

y1(tnew) = rCεY1

( tnew

a

)
, yi(tnew) = rεYi

( tnew

a

)
for i = 2, 3.

(3.1)

We note that in Figures 2(d) and 2(e), the quantities Y1 and Y2, Y3 are on different
y-axes, because they have different orders of magnitude. The nondimensionalization
(3.1) ensures that pyramidal cell output y1 has the same (order-1) magnitude as the
inhibitory interneurons (y2) and the excitatory interneurons (y3). The quantity b∗ is
a measure of the difference in internal time scales between inhibitory and excitatory
populations. Usually, b∗ < 1 as inhibition is slower. The quantity G is a measure for
how strong internal feedback strength from inhibitory populations is compared with
excitatory populations.

By substituting these dimensionless dependent variables into (2.1) and applying
the chain rule with respect to the dimensionless time scale tnew, we obtain the
dimensionless form (using ẏi and ÿi also for the new time)

ÿ1 =
2
G

Sε/a1 (y3 − y2 − y0,1) − 2ẏ1 − y1,

ÿ2 = 2b∗α4 Sε/a2 (y1 − y0,2) − 2b∗ẏ2 − (b∗)2y2,

ÿ3 =
P
G
+

2α2

G
Sε/a3 (y1 − y0,3) − 2ẏ3 − y3,

(3.2)

where the new dimensionless sigmoidal transformation is (see Figure 1(b))

Sε(y) =
1

1 + exp(−y/ε)
. (3.3)
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TABLE 2. Parameter values of the dimensionless model equation (3.2).

Parameter Relation to the original parameters Value

ε inverse of slope of activation
function for excitatory populations

0.024

y0,1, y0,2, y0,3 re-scaled activation thresholds y0,1 = y0,3 = 0.08, y0,2 = 0.3
G B/A ratio of feedback strengths [0.5, 20] (varied)
b∗ b/a time scale ratio (inh. versus

exc.)
[0.2,0.5] (varied, original 0.5)

P εBrp(t)/a, external input 0
α2,α4 average number of synaptic

connections (same as original)
α2 = 0.8, α4 = 0.25

ai population-dependent factors in
sigmoid slope

a1=a3=1, a2=1/4.

As we have rescaled the PSP’s Yi(t), the thresholds in the activation function S are
now different for each neuron population, such that we call them y0,i. These thresholds
y0,i, at which the activation Sε/ai (y − y0,i) equals 1/2, now show up in (3.2). The new
nondimensional activation thresholds are

y0,1 =
ry0

a1
ε, y0,2 =

ry0

a2
ε, y0,3 =

ry0

a3
ε, where a1 = a3 = 1, a2 = 1/4, (3.4)

using the parameters from Table 1, which result in the nondimensional parameters
shown in Table 2. Note that the main difference to Touboul’s nondimensionalization
[27] is that the definition of the sigmoid function includes the scaling factor ε.
Figure 2(c) shows the same bifurcation diagram as shown in Figure 2(a), but uses
the nondimensionalized quantities G and y3. The new primary bifurcation parameter
G (the ratio of feedback strengths between inhibition and excitation) is proportional
to the inverse of the excitation feedback strength A, such that now, the alpha-to-delta
frequency transition occurs for increasing G at G ≈ 2.2. The Hopf bifurcation occurs
for low G ≈ 1.5 and the SNIC connecting orbit occurs at G ≈ 3.

3.2. Discussion of smallness of system parameters In the nondimensionalized
model (3.3), the small parameter ε, which equals 0.024, appears in the inverse of
the slope of the dimensionless sigmoid Sε at y = 0 letting the sigmoid Sε approach
a discontinuous switch in the limit for small ε and i = 1, 2, 3:

lim
ε→0

Sε(y − y0,i) =

⎧⎪⎪⎨⎪⎪⎩
0 if y < y0,i,
1 if y > y0,i.

(3.5)

In addition, the activation thresholds y0,i inherit a factor ε in (3.4). However, we
observe that there are nontrivial factors in front of ε in several places. Since the ε in
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the original parameters setting is approximately 1/40 (so not that small), these factors
will influence our strategies for taking the singular limit ε → 0.

• The slope in the activation for the inhibitory interneurons, Sε/a2 , is
a2/(4ε) = 1/(16ε) ≈ 2.6. So, it is further away from the limiting discontinuous
switch than the activation of the excitatory populations.

• The different factors ry0/a1, ry0/a3 and ry0/a2 of ε in (3.4) are obtained by
substituting the baseline values of the original parameters from Table 1 into
system (3.2). We observe that the activation thresholds of excitation are small
(y0,1 = y0,3 ≈ 0.08), but the threshold of inhibition y0,2 (y0,2 ≈ 0.3) is not a small
quantity.

The smallness of ε expresses that the internal dynamics of neurons in the excitatory
populations is fast, leading to small thresholds and steep activation functions after
nondimensionalization. The inhibitory neural population is comparatively slower,
leading at the population level to a shallower slope of the activation curve and a larger
activation threshold [30]. The above observations suggest several possible singular
limits.

(a) We let ε go to zero in the denominator appearing in Sε/ai for all neuron
populations (i = 1, 2, 3) simultaneously. At the same time, we keep the activation
thresholds y0,i fixed for all populations. This leaves the parameters y0,i in the
model as independent parameters and uses the concrete values from Table 2.

(b) We let ε go to zero in the denominator appearing in Sε/ai for all neuron
populations (i = 1, 2, 3) simultaneously, and we let the activation thresholds y0,1
and y0,3 for the excitatory neuron populations go to zero (either proportional to
ε or at some lower rate).

(c) We let ε go to zero for the excitatory neurons populations (i = 1, 3) in the slope
of the activations Sε/ai , but keep the activation for the inhibition with a fixed
finite slope, equal to ≈ 10 (as well as keeping the activation threshold y0,2 ≈ 0.3
fixed).

We will focus in our analysis on strategy (a) in this paper, because it permits explicit
expressions for most equilibria and their bifurcations, and it is sufficient to derive
in an implicit algebraic condition for the alpha-to-delta transition. In both limits, the
collapse of the alpha-frequency oscillations is a grazing bifurcation [9] of periodic
orbits in a piecewise linear ODE. In limit (a), the collapse leads to a low excitation
equilibrium (yi � 1 for i = 1, 2, 3), in limit (b), it leads to delta activity.

In the numerical bifurcation diagram in Figure 2(c), the three boundaries for alpha
and delta activity are the Hopf bifurcation (onset of alpha frequency oscillations) at
G ≈ 1.5, the transition between alpha and delta activity at G ≈ 2.2, and the connecting
orbit to a saddle-node (SNIC bifurcation) at G ≈ 3. Two of the boundaries can be found
by analysis of equilibria, namely the Hopf bifurcation and the saddle-node bifurcation
for small y1.
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For our analysis, the dimensionless external input p is fixed to zero. We use
the dimensionless parameter G (the ratio between feedback strength of inhibition
versus excitation) as our primary bifurcation parameter. We will later vary b∗, the
ratio between internal time scales between inhibition and excitation as a secondary
bifurcation parameter.

3.3. Equilibrium analysis in the small-ε limit Inserting ε = 0 (or ε � 1) into the
activation functions in (3.2) and (3.3) results in an easy-to-interpret limit for equilibria.
Setting all derivatives in (3.2) to zero, we obtain that the equilibrium values for y1, y2,
y3 satisfy the algebraic equations

y1 =
2
G

Sε(y3 − y2 − y0,1), (3.6)

y2 =
2α4

b∗
Sε/a2 (y1 − y0,2), (3.7)

y3 =
2α2

G
Sε(y1 − y0,3). (3.8)

The right-hand sides of (3.7) and (3.8) define the equilibrium values y2 and y3 as a
function of y1. This is also true in the limit ε = 0, whenever y1 is not on the activation
threshold (y0,2 and y0,3, respectively).

Inserting (3.7) and (3.8) into (3.6), and taking the Heaviside limit S0 in (3.5) for the
activation functions Sε/ai (indicating the dependence of y2 and y3 on y1), leads to the
relation

G
2

y1 = Rhs0(y1) :=

⎧⎪⎪⎨⎪⎪⎩
0 if y3(y1 − y03) − y2(y1 − y02) < y01,
1 if y3(y1 − y03) − y2(y1 − y02) > y01.

(3.9)

Analysis of (3.6)–(3.8) in the limit ε → 0 is supported by Figure 3. Each panel
shows the left-hand side of (3.9) (in red) and the right-hand side Rhs0(y1) of (3.9) (in
blue) as a function of y1 for different values of G, otherwise using the parameter values
in Table 2. The (red) left-side function is the straight line y1 �→ Gy1/2. The right-side
function Rhs0(y1) is piecewise constant. Defining two critical values for parameter G
as

G1 =
α2b∗

α4 + y0,1b∗/2
≈ 1.48, G3 =

2α2

y0,1
≈ 19.4, (3.10)

(thus, 0 < G1 < G3) the right-hand side equals (recall that 0 < y0,3 < y0,2)

Rhs0(y1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

for G in: (0,G1), (G1,G3), (G3,∞),
y1 ∈ (0, y0,3) (y2 off, y3 off): 0 0 0
y1 ∈ (y0,3, y0,2) (y2 off, y3 on): 1 1 0
y1 ∈ (y0,2,∞) (y2 on, y3 on): 1 0 0.

Each intersection of the two lines in Figure 3 is a stable equilibrium if Rhs0 (blue line)
is horizontal in the intersection, or an unstable, so-called pseudo-equilibrium [9, 20], if
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FIGURE 3. (a)–(g) Intersections between left-hand (red) and right-hand (blue) sides of (3.9) for different
bifurcation parameters G (plots used ε = 0.001, y0,1, y0,3 = 0.08 and y0,2 = 0.3). (h) Numerical bifurcation
diagram of equilibria in (G, y1)-plane obtained by COCO [6]. Sε/a1 = Sε (y3 − y2 − y0,1) for y1 in (3.6). For
other parameters, see Table 2.

Rhs0 is vertical in the intersection. For ε � 1 but nonzero, the pseudo-equilibria of the
piecewise linear limit system will become unstable equilibria with strongly unstable
eigenspaces. Table 3 lists the locations of equilibria for all ranges of parameter G, with
two additional critical values for G,

G2 =
2

y0,2
≈ 6.3, G4 =

2
y0,3
≈ 24.8. (3.11)

Figure 3(h) shows the resulting bifurcation diagram in the limit of small ε.
Figure 3(a) shows that for G < G1, we have a pair of stable and unstable equilibria,

both with small values of y1: the unstable equilibrium is a saddle with y1 = y0,3 = 0.08
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TABLE 3. Equilibrium points present in system (3.2) for all parameter ranges of G: for critical values of
G, see (3.10), (3.11). The index is the number of unstable eigenvalues of the Jacobian in the equilibrium
for nonzero ε.

Range of G Figure 3 Equilibrium location Index

I1 = (0, G1) (a) yeq1 = (0, 0, 0) 0
yeq2 = (y0,3, 0, y0,1) 1
yeq3 = (2/G, 2α4/b∗, 2α2/G) 0

G1: Hopf bifurcation (b)
I2 = (G1, G2) (c) yeq1 = (0, 0, 0) 0

yeq2 = (y0,3, 0, y0,1) 1
yeq4 = (y0,2, 2α2/G − y0,1, 2α2/G) 2

G2: Hopf bifurcation (d)
I3 = (G2, min(G3, G4)) (e) yeq1 = (0, 0, 0) 0

yeq2 = (y0,3, 0, y0,1) 1
yeq4 = (2/G, 0, 2α2/G) 0

min(G3, G4): saddle node (f)
I4 = (min(G3, G4),∞) (g) yeq1 = (0, 0, 0) 0

for 0 < ε � 1, and the stable equilibrium is a node with a y1-value very close to zero,
of the order exp(−y0,1/ε).

There exists another stable equilibrium, for which y1 is large, equal to 2/G. At
G = G1 (Figure 3(b), see (3.10) for value of G1), Rhs0 drops to zero for y > y0,2, which
results in a sudden drop of the y1-component of the large-y1 equilibrium to y0,2 and
its loss of stability. For positive ε, this loss of stability is a Hopf bifurcation (see the
labelled point HB1 in Figure 3(h)). Figure 3(c) shows the equilibria for G ∈ (G1, G2).
Figure 3(d) shows the situation at the next critical value of G, the Hopf bifurcation
G = G2 = 2/y0,2, when the left-hand side function (red line) goes through the “corner”
of Rhs0 at y1 = y0,2 (see red diamond). At this value, the equilibrium with y1 = y0,2
regains its stability in a Hopf bifurcation for nonzero ε (see the labelled point HB2 in
Figure 3(h)). Figure 3(e) shows the situation for G > G2 with two stable equilibria and
one saddle. The next critical G is min(G3, G4), when either the excitatory interneuron
activity is no longer sufficient to overcome the threshold (G3, when the blue line in
Figure 3(g) drops to zero on the y1-interval (y0,3, y0,2)), or the left-hand side (red curve)
touches the “corner” of Rhs0 at y1 = y0,3 (G4). In both cases, the resulting equilibrium
bifurcation is a saddle-node bifurcation of the equilibrium with y1 = y0,1 = y0,3 (see
the labelled SN in Figure 3(h)). For the parameters we study, we have that G3 < G4
such that G4 does not change the dynamics.

3.4. Brief comment on the excitatory activation thresholds y0,1 and y0,3 While
we will treat the excitatory thresholds y0,1 and y0,3 as positive constants in our analysis
in Section 3.5 (called strategy (a) in Section 3.2), let us perform a quick check of what
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happens if we also assume that the excitatory thresholds y0,1 and y0,3 are assumed to be
small. If we assume proportionally small excitatory activation thresholds y01 = y03 ∼ ε,
then the saddle and node equilibria with y1 ≈ 0 are no longer present for any G of order
1. This follows immediately from a perturbation analysis of the equilibria for small
nonzero ε and excitatory activation thresholds of the form

y0,1 = εz0,1, y0,3 = εz0,3, z0,1, z0,3 > 0, z0,1, z0,3 = O(1).

Let us assume that y1,eq � 1, in particular, y1,eq � y0,2, and check that no such
equilibrium can exist. The smallness of y1,eq together with identity (3.7),

y2,eq =
2α4

b∗
{
1 + exp((y0,2 − y1,eq)/(ε/a2))

} ,

would imply that the corresponding inhibitory interneuron activity y2,eq is very close to
zero: y2,eq ∼ exp(−a2y0,2/ε) ≤ ε. From this, the identities (3.6) and (3.8) imply positive
lower bounds independent of ε for the equilibrium pyramidal-cell activity y1,eq and the
excitatory interneuron activity y3,eq, namely,

y1,eq ≥
2
G

1
1 + exp(z0,1 + y2,eq/ε)

≥ 2
G

1
1 + exp(z0,1 + 1)

,

y3,eq ≥
2α2

G
1

1 + exp(z0,3)
.

Hence, for excitatory activation thresholds of order ε, the pair of small-y1 equilibria
does not exist. The other equilibria in Table 3 and Figure 3(h) have well-defined
limits for y0,1, y0,3 → 0: the stable equilibrium has the limit y1 = 2/G, the unstable
equilibrium has the limit y1 = y0,2 and its inhibitory activity y2 approaches 2α2/G for
small y0,1. The saddle-node bifurcation at min(G3, G4) goes to infinity as y0,1, y0,3 → 0,
such that the large-activity equilibrium exists over a wider range of G. This leaves the
region (G1, G2) between the two Hopf bifurcations, where no stable equilibrium exists
for y0,1, y0,3 of order ε. The Hopf bifurcation at G1 has the limit α2b∗/α4 for y0,1 → 0,
while G2 is independent of y0,1 and y0,3.

3.5. Periodic orbits in the small-ε limit
3.5.1. The case ε = 0 as a piecewise smooth ODE System (3.2) in the limit ε → 0

has discontinuities on the right-hand side such that it is only piecewise smooth in its
phase space [9]. For such systems, there is, in general, no guarantee that trajectories
can be consistently continued across discontinuities by following the flow defined by
the right-hand sides in each part of the phase space. The problem can be illustrated for
the simplest scenario, an ODE with a right-hand side consisting of two smooth pieces
and a single discontinuity,

ẋ(t) =

⎧⎪⎪⎨⎪⎪⎩
f+(x) if h(x) ≥ 0,
f−(x) if h(x) < 0,
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with smooth right-hand sides f± : Rn → Rn and switching function h : Rn → R (for
example, consider the scalar example ẋ(t) = −signx(t), where f±(x) = ∓1 and h(x) = x).
For all points with ±h(x) > 0, it is clear that the trajectory through x is determined by
f±(x). However, when following a trajectory x(t), one may approach a point x with
h(x) = 0 (on the discontinuity surface {x | h(x) = 0}). If, in this point x, the quantities
h′(x)f−(x) and h′(x)f+(x) have opposite sign (using h′(x) for ∂h(x)), then the trajectory
cannot “cross to the other side” of the discontinuity surface D = {x | h(x) = 0} consis-
tent with the right-hand sides. A commonly adopted convention for this case where
the flows on both sides of a codimension-1 discontinuity surface point in opposite
directions relative to the surface, is continuing the trajectory using the Filippov
solution, or sliding, by following the flow of

ẋ(t) =
f+(x)h′(x)f+(x) − f−(x)h′(x)f−(x)

h′(x)f+(x) − h′(x)f−(x)
if

⎧⎪⎪⎨⎪⎪⎩
h(x) = 0 and
h′(x)f+(x)h′(x)f−(x) < 0.

However, the structure of (3.2) rules out this common scenario of sliding, where
h′(x)f+(x)h′(x)f−(x) < 0, for the discontinuity surfaces in system (3.2) generated by the
limit ε → 0 in (3.3). System (3.2) has three hyperplanes where it is discontinuous in
the limit ε → 0, with the switching functions

h1(y, ẏ) = y3 − y2 − y0,1, h2(y, ẏ) = y1 − y0,2, h3(y, ẏ) = y1 − y0,3.

In each of the hyperplanes {hi = 0}, where the vector field is discontinuous, the two
half-space vector fields point into the same direction relative to the hyperplane. This
is due to the presence of inertia: (3.2) is a system of second-order equations for the
firing activities, but the switches in S0 depend only on the firing activities, not their
time derivatives. Let us inspect each codimension-1 discontinuity set.

• Di = {y | y1 = y0,i} for i= 2, 3, such that the switching function is hi(y, ẏ)= y1 − y0,i:
the inner product of the vector fields (ẏ, ÿ) on both sides of Di with the gradient
of hi equals ẏ1, which is continuous across Di and, thus, all nonequilibrium
trajectories cross the surface Di in the same direction from both sides of Di.

• D1 = {y | y3 − y2 = y0,1}, such that the switching function is hi(y, ẏ) = y3 − y2 − y0,1:
the inner product of (ẏ, ÿ) on both sides of D1 is ẏ3 − ẏ2, which is also continuous
across D1.

Hence, the set D in phase space where trajectories are not well defined in the
classical sense is much smaller than for common piecewise smooth ODEs. It is
a subset of the codimension-2 surfaces D′i = {(y, ẏ) | y1 = y0,i, ẏ1 = 0} for i = 2, 3
and D′1 = {(y, ẏ) | y2 − y3 = y0,1, ẏ2 = ẏ3}. Examples of points in these sets D are the
“unstable equilibria” yeq2

listed in Table 3. These types of equilibria are called pseudo
equilibria in the literature about Filippov systems. As the equilibrium discussion in
Figure 3 shows, the pseudo equilibria for ε = 0 are limits of unstable equilibria for
ε > 0.
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FIGURE 4. Equilibria and periodic orbits branching off Hopf bifurcation (HB1) for system (3.2) for
varying G and small ε = 0.001, showing equilibrium values, or maxima and minima of the neural
activities y1, y2, y3, respectively. Green vertical line corresponds to canard orbit shown in Figure 7. Grey
vertical line is at parameter G = 1.7, used in singular limit in Figure 5(a). Other parameters are listed in
Table 2.

3.5.2. Numerical bifurcation analysis of α-type periodic orbits for small positive ε
As seen in Table 3 and Figure 3(h), in the small-ε limit, the high-activity equilibrium
y1 changes not only its stability at G = G1 but also its location: the equilibrium
pyramidal-cell activity drops sharply from y1 = 2/G = 2/G1 ≈ 1.35 to y1 = y0,2 ≈ 0.3.
Hence, in the singular limit, we cannot expect the standard Hopf bifurcation scenario
with a family of nearly harmonic small-amplitude periodic orbits branching off.

We initially perform a numerical continuation for the full nondimensionalized
system (3.2) for small ε (ε = 0.001). Figure 4 zooms into the range of parameters
G where periodic orbits of α type exist, near the Hopf bifurcation at G = G1 ≈ 1.48
(see (3.10)). We observe that the pyramidal-cell (y1) amplitude for the family of
periodic orbits emerging from the Hopf bifurcation grows over a small range of G
to order 1 (black curve in top panel in Figure 4), by approximately the same amount
as the equilibrium value of y1 dropped before the Hopf bifurcation. This explosive
growth in amplitude is reminiscent of canard explosions as first described for the
classical van der Pol or FitzHugh–Nagumo oscillator by Benoît [2] (see Krupa and
Szmolyan [18] for general theory and Wechselberger [28] for a review). However, the
inhibition amplitude y2 grows square-root-like with G − G1, as occurs at a classical
Hopf bifurcation. This discrepancy and the fact that the singular limit ε → 0 is not
slow–fast but discontinuous suggests that another mechanism must be responsible for
the explosive growth in amplitude of y1. Exploration of this phenomenon is beyond
the scope of this paper. The time profile of periodic orbits near the explosion is shown
in Figure 7 in the discussion in Section 4.

3.5.3. Piecewise linear oscillations in a negative feedback loop between pyra-
midal cells and inhibition for ε = 0 In Figure 4, we also note that for G ≈ G1
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FIGURE 5. Time profile of alpha-type piecewise exponential periodic orbits given in (3.15), representing
solutions of the piecewise linear ODE (3.12), (3.13) fory0,1, y0,3 = 0.08, y0,2 = 0.3 and y3 fixed at its
equilibrium value 2α2/G. (a) Orbit for (b∗, G) = (0.5, 1.7); ts2 ,off , ts2 ,on: threshold crossing times of
y1 (where y1 = y0,2); ts1 ,off , ts1 ,on: threshold crossing times of y2 (where y2 = y3 − y0,1). Dashed blue
line (legend entry S0(pc)) is activation switch S0(y3 − y2(t) − y0,1) for y1 with ε = 0.001. Dashed red
line (legend entry S0(inh)) is activation switch S0(y1(t) − y0,2) for y2. (b) Same as panel (a) but for
(b∗, G) = (0.44, 1.7), where orbit grazes (y1,min = y0,3, green star on grey horizontal line {y = y0,3}). For
other parameters, see Table 2.

and pyramidal-cell activity y1 in the range between y0,2 and 2/G1, the excitatory
interneurons are uniformly active, as y1 is always above the threshold y0,3 at which
excitatory interneuron activity is switched off, and which is much smaller than y0,2.
Hence, y3 will be positive and at its equilibrium value

y3(t) ≈ y3,eq =
2α2

G
≈ 2α2

G1
= y0,1 +

2α4

b∗
.

Thus, we may replace y3 in the sigmoid input for y1 with its equilibrium value,
resulting in the four-dimensional system for pyramidal-cell and inhibitory activity only,
inserting the limit ε = 0:

(if y1(t) > y0.3 for all time),
ÿ1 = (2/G) u1 − 2ẏ1 − y1, (3.12)

ÿ2 = 2b∗α4 u2 − 2b∗ẏ2 − (b∗)2y2, where (3.13)

u1(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if y2 < 2α2/G − y0,1,
0 if y2 > 2α2/G − y0,1,

u2(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if y1 < y0,2,
1 if y1 > y0,2.

System (3.12), (3.13) is a classical negative feedback loop with inertia: y2 suppresses
y1, while y1 promotes y2. Each oscillation period has four phases and follows a
piecewise linear second-order vector field in each of the phases.

Figure 5(a) shows the typical shape for the y1 and y2 profile of the oscillations.
We reduce the periodic problem for the four-dimensional piecewise affine ODE to
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a four-dimensional algebraic problem, parametrizing the oscillations using the times
at which the respective activations u1, u2 switch between 0 and 1 (without loss of
generality ts1,off = 0), (see Figure 5(a) for guidance):

ts1,off = 0 < ts2,off < ts1,on < ts2,on < T , where
ts1,off : y2 crosses 2α2/G − y0,1 from below to above, (u1 : 1→ 0),
ts2,off : y1 crosses y0,2 from above to below, (u2 : 1→ 0),
ts1,on : y2 crosses 2α2/G − y0,1 from above to below, (u1 : 0→ 1),
ts2,on : y1 crosses y0,2 from below to above, (u2 : 0→ 1),

T : period of oscillation.

3.5.4. Alpha-type oscillations in the singular limit For G > G1, the periodic orbits
consist of two coupled pairs of orbit segments, one pair of segments for pyramidal
activity y1 governed by the piecewise linear ODE (3.12) (switching at times ts1,off and
ts1,on) and one pair of segments for inhibition y2 governed by the piecewise linear
ODE (3.13) (switching at times ts2,off and ts2,on), as shown in Figure 5(a). The coupling
occurs through the switching times, as the switching times ts2,on/off are determined by
y1 crossing the threshold y0,2, and the switching times ts1,on/off are determined by y2
crossing the threshold y3,eq − y0,1 = 2α2/G − y0,1. Both piecewise linear ODEs (3.12)
and (3.13) are affine ODEs of the form

ÿ = b2c − 2bẏ − b2y, (3.14)

with inhomogeneity c. The general solution (y(t), ẏ(t)) ∈ R2 of (3.14) for its IVP with
initial condition (y(0), ẏ(0)) = (y0, ẏ0) ∈ R2 is

Yadv

(
t; b, c,

[
y0
ẏ0

])
=

[
y(t)
ẏ(t)

]
: = eMbt

[
y0
ẏ0

]
+ [I2 − eMbt]e1c,

where eMbt = e−bt
[
1 + bt t
−b2t 1 − bt

]
,

e(·) is the exponential and e1 = (1, 0)T is the first standard basis vector. From this
general formula, we find that requiring periodicity of the pyramidal activity y1 and
the inhibition y2 determines their initial conditions at the “off” switching time. The
initial conditions [

y1(ts1,off)
ẏ1(ts1,off)

]
=

2
G

Yper(T , ts1,on − ts1,off; 1),
[
y2(ts2,off)
ẏ2(ts2,off)

]
=

2α4

b∗
Yper(T , ts2,on − ts2,off; b∗),

where Yper is defined as

Yper(T , δt; b) = [I2 − eMbT ]−1[I2 − eMb(T−δt)]e1,
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will lead to a solution of (3.12), (3.13) that is periodic with period T. The switching
times ts1,on, ts2,on/off and the period T satisfy four relations that follow from the crossing
conditions y1(ts2,off) = y1(ts2,on) = y02 and y2(ts1,off) = y2(ts1,on) = y3 − y01:

y0,2 = eT
1Yadv(ts2,off; 1, 0, (·)) ◦ 2

G
Yper(T , ts1,on− ts1,off; 1),

y0,2 = eT
1Yadv(ts2,on − T; 1, 2/G, (·)) ◦ 2

G
Yper(T , ts1,on− ts1,off; 1),

2α2

G
− y0,1 = eT

1Yadv(ts1,on − ts2,off; b∗, 0, (·)) ◦ 2α4

b∗
Yper(T , ts2,on− ts2,off; b∗),

2α2

G
− y0,1 = eT

1Yadv(−ts2,off; b∗, 2α4/b∗, (·)) ◦ 2α4

b∗
Yper(T , ts2,on− ts2,off; b∗).

(3.15)

In (3.15) and below, we use the composition symbol ◦ with the meaning f ◦ x = f (x),
f ◦ g ◦ x = f (g(x)) and so forth to reduce nesting of brackets. Recall that we set
ts1,off = 0 such that this switching time has been omitted in the defining equations
(3.15). We have already inserted the appropriate initial conditions to ensure periodicity
with period T into (3.15), such that the system (3.15) is a system of four algebraic
equations, depending on the four unknown times ts1,on, ts2,off , ts2,on and T, and system
parameters such as G, b∗ and the switching thresholds y0,1, y0,2. For given switching
times and period, one may obtain the complete periodic orbit as[

y1(t)
ẏ1(t)

]
= Yadv

(
t; 1,

2
G

u1(t), (·)
)
◦ 2

G
Yper(T , ts1,on − ts1,off; 1)

for t ∈ [ts1,on − T , ts1,on],[
y2(t)
ẏ2(t)

]
= Yadv

(
t − ts2,off; b∗,

2α4

b∗
u2(t), (·)

)
◦ 2α4

b∗
Yper(T , ts2,on − ts2,off; b∗)

for t ∈ [ts2,on − T , ts2,on],[
y3(t)
ẏ3(t)

]
=

[
2α2/G

0

]
, where

u1(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ∈ [0, ts1,on],
1 if t ∈ [ts1,on − T , 0],

u2(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ∈ [ts2,off , ts2,on],
1 if t ∈ [ts2,on − T , ts2,off].

Figure 5(a) shows an example of such a piecewise exponential and its switching times.
The associated thresholds y3,eq − y0,1 = 2α2/G − y0,1 and y0,2 for y2(t) and y1(t) for the
switching events of y1(t) and y2(t) are shown as magenta and yellow horizontal lines,
respectively.

3.5.5. Detection of grazing boundary for alpha activity The orbits given by the
algebraic system (3.15) are alpha-type oscillations with constant support by excitatory
interneuron population y3. A criterion for the existence of these oscillations is that y1
never crosses below the threshold y0,3 at which the excitatory interneurons y3 switch
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off. The piecewise exponential has a distinct minimum y1,min at some time t1,min,
labelled by a star in Figure 5(a). This minimum consistently occurs shortly after ts1,on,
in the interval between ts1,on and ts2,on, due to the inertia caused by the second-order
nature of the ODE for y1. Hence, we may introduce y1,min and t1,min as additional
parameters satisfying the relations[

y1,min

0

]
= Yadv(t1,min − ts1,on; 1, 2/G, (·)) ◦ Yadv(ts1,on; 1, 0, (·))

◦ (2/G)Yper(T , ts1,on − ts1,off; 1). (3.16)

We add the two parameters t1,min and y1,min while tracking solutions of (3.15), (3.16)
in system parameters to monitor the difference y1,min − y0,3 for roots. The difference
equals the distance between the point on the graph in Figure 5(a) labelled with a
star and the grey horizontal line D3 = {y1 = y0,3}. When this difference is zero, we
have a grazing bifurcation: the alpha activity oscillation’s orbit touches the threshold
D3 = {y | y1 = y0,3} in a quadratic tangency. To find an orbit with such a quadratic
tangency, we fix G = 1.7 and vary the time scale ratio b∗ from b∗ = 0.5 downwards
along the horizontal dashed line shown in Figure 6(a). While doing so, we monitor the
quantity y1,min − y0,3 until it reaches zero, which is the point that represents the grazing
bifurcation. The grazing occurs at (b∗, G) ≈ (0.44, 1.7), labelled with a green star in
Figure 6(a).

3.5.6. Mapping alpha and delta oscillations: a two-parameter bifurcation analysis
Following detection of this grazing bifurcation at (b∗, G) ≈ (0.44, 1.7), we track its
locus in two system parameters, time scale ratio b∗ and the feedback ratio G,
by imposing the algebraic condition y1,min − y0,3 = 0. The resulting curve in the
(b∗, G)-plane is shown in Figure 6(a) in black. We combine this curve with the other
relevant bifurcations bounding alpha and delta activity:

(1) (Hopf bifurcation) The Hopf bifurcation curve is the lower bound for alpha
activity in G. It is given by (3.10) in the limit ε = 0 (G1 = α2b∗/(α4 + y0,1b∗/2))
and shown in red in Figure 6(a) for ε = 0.024. The value ε = 0.024 is the
original value of ε given in Table 2. Visually, the Hopf curve for ε = 0.024 is
indistinguishable from its ε = 0 limit.

(2) (Grazing bifurcation) Asymptotically for ε → 0, the transition boundary
between delta and alpha activity is the grazing curve determined by the algebraic
equations (3.15), (3.16), shown in black in Figure 6(a).

(3) (SNIC bifurcation) The upper bound in G for δ activity is a SNIC bifurcation,
determined by the saddle-node of equilibria for the stable small-activity equilib-
rium, labelled yeq1

, and the small-activity saddle yeq2
in Table 3. Table 3 indicates

that both equilibria exist for all positive values of G for ε = 0 and (uniformly in
ε) positive thresholds y0,1 and y0,3. Hence, the parameter value GSNIC for the
SNIC bifurcation shown in Figure 2(c) has the limit GSNIC → 0 for ε → 0. We
included the SNIC bifurcation curve for three values of ε (the original value
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FIGURE 6. (a) Composite bifurcation diagram overlaying regions of alpha and delta activity of system
(3.2) for ε = 0.024, and the grazing bifurcation (black curve) detected by solving algebraic equations
(3.15), (3.16) in the (b∗, G) parameter plane. (b,c) Time profiles of typical alpha activity ((b∗, G) =
(0.4, 1.4), blue circle in panel (a)) and delta activity ((b∗, G) = (0.4, 1.6), yellow circle in panel (a)) for
each neuron population at ε = 0.024. Folds of periodic orbit (SNP, two purple curves on top of each other)
and Hopf bifurcation (HB, red) are for ε = 0.024, SNIC bifurcations are shown for ε = 0.024, 0.015, 0.01.
Horizontal grey dashed line for b∗ ∈ [0.44, 0.5] at G = 1.7 is the parameter path for continuation to grazing
bifurcation reached at the point labelled by a green star. See Table 2 for other parameters.

0.024 given in Table 2, 0.015 and 0.01) in Figure 6(a) to visualize the effect of
decreasing ε. For (b∗, G) above the SNIC bifurcation curve, the activity drops to
its small-activity equilibrium.

To demonstrate the quantitative accuracy of the prediction from the singular limit ε = 0
for the transition between delta and alpha activity, we include shading according to
frequency in areas where we find oscillations for the positive value ε = 0.024 from
Table 2. We observe a sharp drop in frequency for increasing G near the singular-limit
grazing bifurcation (from yellow to green in Figure 6(a)). Panels (b) and (c) in Figure
6 show time profiles at representative points in the alpha region ((b∗, G) = (0.4, 0.14),
blue circle) and in the delta region ((b∗, G) = (0.4, 0.16), yellow circle). For larger b∗,
a small deviation is noticeable such that the effect of nonzero ε is slightly larger near
b∗ ≈ 0.5. The pair of folds of periodic orbits which coincides with the frequency drop
(see Figures 2(b) and 2(c) is also included for ε = 0.024 as a pair of purple curves,
labelled SNP (the two SNP curves are close to each other, such that one obscures the
other). The pair of folds overlaps with the grazing bifurcation for ε = 0 over large parts
of the parameter plane.
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4. Discussion and further analysis

We have identified the mechanism responsible for the transition between alpha- and
delta-type activity in the Jansen–Rit model [16]. The transition between alpha-type
oscillations and delta-type oscillations in neural circuits is relevant to applications
because alpha frequencies are associated with the promotion of long-term potentiation
(LTP), enhancing synaptic strength and facilitating memory formation during active
learning, while delta frequencies are associated with long-term depression (LTD),
which promotes synaptic weakening and neural plasticity during deep sleep [24].
The combined effects of these processes contribute to learning via consolidation of
memory across the wakefulness and sleep cycles [3, 4]. Therefore, understanding
these transitions enhances our knowledge of how neural circuits regulate brain states
and may provide insights into disruptions that affect sleep and cognitive functions.
In the Jansen–Rit model, the transition is not associated with one of the generic
codimension-one bifurcations, but it occurs over a small range of parameter values
for decreasing excitatory feedback strength A and with little to no hysteresis. In the
transition, the time profile and the frequency change sharply: oscillations during
alpha activity show a shape typical for a single negative feedback loop because of
the near-constant support from the excitatory interneurons. Oscillations during delta
activity are of relaxation type with long periods of near-zero activity (see Figures 2(d)
and 2(e) in Section 2). The feedback strength parameter A affects how neurons respond
to incoming signals by scaling the excitable population’s output of firing rates [16].

The results presented in Section 3 show that the singular limit where one assumes
that the activation is an all-or-nothing switch reduces the sharp transition in shape
and frequency to a grazing bifurcation: when the pyramidal-cell activity “touches” the
threshold line for switching off the excitatory interneurons in a quadratic tangency, the
excitatory interneuron activity collapses. This causes a further drop of pyramidal-cell
activity, such that both populations approach near-zero activity. They stay there until
the (slower) inhibition activity has dropped sufficiently low to permit recovery of
excitatory activity in pyramidal and interneuron populations (that is, neuron response
to incoming signals acts as binary operation off/on) in Section 3. The singular limit
allow us to detect the curve of grazing bifurcation separating the two distinct wave
rhythms (that is, the boundary between two distinct types of periodic orbits) in the
two parameter plane (b∗, G), where b∗ is the decay rate ratio of inhibitory to excitatory
populations and G is the ratio of postsynaptic amplitudes of inhibitory to excitatory
populations in nondimensionalized model (3.2).

There are several further open questions for the analysis of the singular limit.

4.0.1. Small-threshold analysis of alpha–delta transition and SNIC Our analysis
shows that the limit ε → 0 with fixed thresholds y0,1, y0,3 does not support delta-type
oscillations. In delta-type oscillations, all potentials come close to zero such that
these oscillations are only possible if there are no stable equilibria at small y1, y3.
However, Figure 6 shows that for all sufficiently small ε, there are no parameter
values (b∗, G) for which grazing has happened (so, above the black curve) but no

https://doi.org/10.1017/S1446181125000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000161


24 H. Mahdi, J. Sieber and K. Tsaneva-Atanasova [24]

equilibria with y1 ≈ 0, y3 ≈ 0 exist (below the blue solid/dashed/dotted curve called
SNIC). This is because for positive y0,1, y0,3 and small y1, y2, y3, the existing stable
“off” equilibrium yeq1

from Table 3 attracts trajectories with y1, y2, y3 ≈ 0. If we
also consider the thresholds for the excitatory populations as small quantities, then
delta-type oscillations are possible for small ε: as we showed in Section 3.3, if the
thresholds are proportional to ε, then there are no small equilibria present for small ε.
A more detailed analysis is needed to find for which asymptotic order of magnitude
for the thresholds a saddle-node (and, hence, SNIC) is present for parameters G of
order 1.

The expressions in (3.15) show that the dependence of the alpha-type periodic orbits
on the threshold y0,1 is regular, such that replacing y0,1 by zero in (3.15) will not
have a large effect. However, the grazing bifurcation is determined by the minimum
of y1 reaching y0,3, such that for y0,3 → 0, the grazing bifurcation will shift. The
pyramidal-cell potential y1 decays exponentially as long as the inhibition y2 is above
the equilibrium value of the threshold y3 − y0,1 ≈ 2α2/G. As a smaller b∗ leads to a
slow-down in the change of inhibition y2, a decrease of b∗ leads to a longer period of
exponential decay for y1, so to a smaller minimum of y1. Hence, we expect the value
of b∗ for the grazing bifurcation to decrease slowly with ε, on the order of 1/|log ε|,
because of the exponential decay of y1 for above threshold inhibition.

4.1. Canard explosion of alpha-type orbits at the singular Hopf bifurcation
The Hopf bifurcation, shown in the zoomed-in bifurcation diagram in Figure 4 can
be studied in the singular limit ε = 0. Figure 7 shows that the periodic orbits in
this canard-like explosion are parametrized by the time during which inhibition is
switched off (drop of dashed curve in Figure 7(b) to zero), which is short for values
of the parameter G close to the bifurcation value G1. Since the periodic orbits are
piecewise exponentials, the asymptotic parameter-amplitude dependence for G ≈ G1
can be determined explicitly.

4.2. Improved limit for slow inhibition The small thresholds y0,1 and y0,3 and
sharp sigmoid slopes in the activation function Sε model the fact that excitatory
populations have faster internal dynamics. We kept the threshold for the inhibition
y0,2 nonsmall, but replaced the activation function of the inhibition Sε/a2 also by an
all-or-nothing switch in the limit ε → 0. A more appropriate limit consideration would
be to keep a finite-slope sigmoid activation function S2(y1 − y0,2) in place for the
inhibition and take the small-ε limit only for the excitatory populations. We would
still encounter the same dynamical phenomenon for the alpha–delta transition in the
limit, namely a grazing bifurcation. However, the limiting periodic orbits of alpha
type would no longer be determined by an algebraic system with exponentials, such
as (3.15), but as solutions of a nonlinear ODE over a finite time interval. So, finding
the grazing bifurcation would require solving a nonlinear ODE numerically, instead of
using the formulae in (3.15) and (3.16).
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FIGURE 7. Time profile for alpha-type canard orbit near Hopf bifurcation (labelled HB1, in Figure 4) and
activations Sε/a1 for y1, and Sε/a2 for y2. Parameters: G = 1.49 ≈ G1 = 1.48 (green dashed vertical line in
Figure 4 near HB1), ε = 0.001, y0,1, y0,3 = 0.08 and y02 = 0.3, for others, see Table 2. Inset in panel (b)
shows that y2 crosses the threshold y3,eq − y0,1 of y1.

4.3. Dependence of delta-type oscillations on parameters including nonzero
input Delta-type oscillations in the zero-input case studied here have excitation
population potentials y1 and y3 at zero until the inhibition y2 drops sufficiently low
such that y1 and y3 can recover and generate a large-amplitude burst (see Figure 2(e)).
The precise time ratios between time spent at zero and bursts depends on time scale
ratios such as b∗, and thresholds. A positive external input p will affect the time profile
and frequency of delta-type oscillations, as positive p will prevent y3 from staying near
zero, resulting in a positive slope at low potential values, as seen in the simulations
done by Forrester et al. [11] and Ahmadizadeh et al. [1].
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