A THEOREM OF GLAISHER
LEONARD CARLITZ

1. Introduction. Let
=D —=2)...x—p+1)=x""— A" 4+ ...+ 4,...

Then if p is a prime > 3, Glaisher [4] proved

1 1
(1.1) Z)Aﬂr = — g, B (mod p),
1 2 1
(1.2) ?A'u’f-fl = _Cz—g—‘“ B,, (mod p),

where B,, denotes the mth Bernoulli number in the notation of Nérlund; it had
been proved earlier by Nielsen [5] that the left members of (1.1) and (1.2) are

integral.
In this paper we first show that for 1 <7 < 3(p — 1),
2 A= — A (p — 2r — 1) Bo,
(1.3)

r—1
P 4 1
— (2r + l)psizlz;.BgiBQ,_m (mod ﬁA)I

indeed, a similar but slightly more complicated congruence (mod p?) is obtained.
Clearly (1.3) is a refinement of (1.2) and in fact of (1.1) also; alternatively, it
may be looked on as specifying the residue (mod p) of a certain sum involving
Bernoulli numbers.

Glaisher made numerous applications of (1.1) and (1.2): in §§3, 4 we make
a few additional applications.

In the remainder of the paper we shall attempt to extend Glaisher’s theorem
to more general sequences. The generalization depends on the fact that the
A,, can be expressed in terms of Bernoulli numbers of higher order, namely

(8, p. 148],
(1.4) 4, = (- 1)'<f’: 1> BY.
Hence if
flx) = ":Z; Cn X" /m! (¢r = 1),
where the ¢, are integral (mod p), and we define 8% by means of
(1.5) /[N = 3 8" mt,
306
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it is natural, in view of (1.4), to seek congruences satisfied by B®. It will be
assumed throughout the paper that p is a fixed prime greater than 3.

As we shall see, it is indeed not difficult to generalize (1.1) and (1.2) from
this point of view. Moreover, by introducing coefficients n® defined by

1 ’ - k), m
o (i) = Eotwm

where a is integral (mod p), we also generalize certain results of Nielsen analogous
to (1.1) and (1.2). We remark in this connection that in both (1.5) and (1.6)
the case k = — p as well as B = p is of interest.

2. Proof of (1.3). Put
2.1) Sp=Sa(@)=1"4+2"4+...4+ (- 1"
Then by Newton’s formula we have, for 7 odd,
—1
14, = ;0 (= 1)'4, S,

which we write in the form

F(r—=3) 3(r—3)
(2.2) rd, — S14,4,=8,— 4,51+ Z Aoy S,—u - 2:1 Aovigr Sr_gea .
. i=

=1

Now by a familiar formula we have for (2.1)

1 = (m + 1) :
(2.3) Sp = p——r ; i Bpiip’,
and this implies for r odd, 3 < r < p,
(2.4) SY = %TBP‘I p2 (mOd p4)1
S,1=B,.p (mod p*).
Thus by (1.1) and (1.2),
$(r—3) Hr—3) 1 ) . 5
12:1 Asi Sioa; = — iE EB‘MP L3 —2)B,_1 0P (mod p°),
3-® HGOBE 1
; Asipr Srmgin = 1Z.=1 £ -L Boip' . B, gia1p (mod p°),
so that
3(r—3) (=3
Zl Aoy Spa: — izl Aseir Srozia
f== =
(2.5) RGO
=-—(r+1)p 121 EBM B, 21 (mod p").
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- Now by (2.3) we find that
(26) S, — 41 S, =3p"(r —p+ )B,i + 5 p'(r — 1)(r — 2)(r + 2)B,—s

(mod p°).
Hence combining (2.2), (2.5), (2.6) we get
rd, — 3p(p — )A,o = $p°(r — p + 1)B,s
@7) + 550 = D = 2)0 + 2)B.s
HN Do 3(r—)
- (r+ 1)p’° Z 'I‘Bzi B, 5, (mod p°).

In the next place it follows {rom [3, §19] that for¢t > 1, p = 2m + 1,
(28)  (m — )pAs, — Asr =5 (p — 20)(m — t)(m — t + 1)po .,
where o, has the same meaning as in [3, §12]. Also
g1 = Az (mod p°).
Consequently {2.8) becomes (r = 2¢ 4+ 1)
A, =3p(p — A+ 3ir(r — 1) — 2)p°4,, (mod p°),
which by (1.1) yields

L — -
@9 A= ipp - nd, - PO =D g (mod 7).

Comparison of (2.7) and (2.9) now gives
r=D@-r—-0DA4,=—4$p'(p—7)p —r— 1)B,a

, rir — @r —2)(* —r — 5)
(2.10) B 24(r — 3)
' RIS
— -0+ 1)P Z “‘1‘321 B, 2 (mod PB).

P4B r—3

In particular (2.10) implies
' 1r=3)

211) (r — DA, = — 3p°(p — r)B,_y — rp° z_)l 1 B2Braen (mod Y.
In can vbe verified that

2.12) A= —5ip'(p—3) — 150’ (mod p%).

In view of (2.9) one can specify the residue of 4z, 2 < 2t < p — 3, mod p2.
In this connection the related formula [7, p. 366]

@213) %}(W K,) = W, + 2 ——Bz,Bzm_z, (mod ), p = 2m + 1,
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where W, = (Ap1+ 1)/p, Ky = k14 ... + kyey, k(r) = (1 = 1)/p, is of
interest.
Another formula of a similar kind is
4 (p—3)

(6 +2Bps + 1600 + DBys =20 3, 5-Bu Bpuasr (mod 4,

which is an easy consequence of Euler’s formula

m—1
2
(zm + 1)B2m + z:l (2::”) Bﬂr B2m—2r =0 (m > 1)
3. An application. It follows from the definition of 4,, that

x—2)x—4)...x—=20p — 1) =" =24, 2"+ ...+ 27" 4,,;
if we put x = p = 2m + 1 this evidently becomes

(=D)"1-3-5-...-(p—2)=2""4,1 — 2" pA, o + 2" P4, s
(mod »°)
=2"@2m)! + 2"(—= 5+ B) B«  (mod p")
= 2""(@2m)! (1 + 13 p'B,-s) (mod p*),
where we have used , :
A, =3p'B,s (mod, p),
Ays = 30°B,s (mod p°).
Thus it follows that
3.1) (= 1)"‘(‘32”) =2"(1 + 129°By-s) (mod ).

lhe Weaker fOl'm Of thiS Congruence
( 1) < ) = 24 (lll()d Pa)
m

is due to F. Morley (for references see [2, p. 273]); see also Nielsen [6, p. 81] for
an equivalent result.

4. Other applications. Let us take next the familiar quotient

mp)! _(p+1)...2p—1) 2p+1)...3p—1)

nl(ph)" (» - D! (- 1)!
(4.1) (n=Lp+1)...(np—1)
o (- 1!

-(2o0D - (o).
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But as Glaisher proved

from which it follows that

43) ;ffZﬁff =1 = " — n)p'By_s (mod ).

The weaker congruence
mp)! _
n!(p!)”
is due to Mason and Child (for references see (2, p. 278]).

We can generalize (4.3) without much trouble. To begin with we replace
(4.1) by

p)! EpT— 1

which is easily verified. Secondly, for r > 2,

_ (k" - 1) _ ((k — Dp" +jp — 1)/(1? - 1)
4.5) Qr—(Pr_] = Q1 g p—1 .
But by (4.2) it is clear that (4.5) implies

(4.6) 0= Q1 (mod P4)'
Thus comparison with (4.4) and (4.3) yields

(mod p*)

™1 \
@) = 1=~ B, (mod p).

which is valid tor all » > 1.
We remark that for » = 0, &= 1 (mod p), (4.7) becomes

(np")!
al(p " = (mod £,
while for m = n (mod p),
(np)! _ _(np")! (mod 5.

mlp O™~ nlpH"

5. General sequences. In order to generalize Glaisher’s theorem we take

. 2 "
(5.1) f=7t) = 270

(1= 1),

where the rational numbers ¢, are integral (mod p). Now put

Loy fert (8 = 1),

X
(52) f m=10 m’
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or what is the same thing

. , N (m J1 (m=1),
(5’3) ;( >(' .‘311: r = lo (m > 1)'
thus recursively defining the 8,. Moreover, it is evident from (5.3) that 8, is
integral (mod p) for m < p — 1. On the other hand,

(5.4) pPBr-1+ ¢, =0 (mod p) ;

a somewhat sharper result is

»—1 . r R
(5.5) PBp-1 — p;ﬁ (=1 ¢ Bpr+ ¢, =0 (mod p7).

In the next place, for £ > 1, define

2\ K @ (k) m
(5.6) G) =3 Bu_x” (B8P = 1),

|

5.7) S e %o
By (5.1) and (5.2), (5.7) lmplleg

(5.8) O = r}_;o (:") Cri1 Brir -

Thus é,, is integral (mod p) for m < p — 1, while by (5.4) and (5.8)

5.9) Pop1+¢,=0 (mod p).
Indeed (5.8) implies the sharper result

1).

»—1

(5']—0) 61;—1 - ﬁp—l = Z ( - 1)rCr+l Bp—l—r (mOd P)

T

We remark that for m = p, (5.8) implies

(6.11) 8 — Bp = Cpp1 + PCp Bp1 — Z ——— Cr+1 Bo—r (mod P‘z);
that B, is integral (mod p) is clear from (5.3). In fact (5.3) implies, form = p +1,

(5.12) By + dor pBys + - 4 p 3 56 Bpis = 0 (mod 5.

p+1 p r(r

For a generalization of the von Staudt-Clausen theorem for the numbers
B., see [1]; the same result applies to 8, also.

6. Generalization of Glaisher’s theorem. Differentiation of (5.6) yields

% k x kxff © mB(k) m
k@ ‘k<?> Tl T
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and thus by (5.7) we get

(k m)BU‘) m © Br(nk) xm
I

m:

This identity is equivalent to

(6.1) CIS kZ ( ) 8, B, = 0.

r=1

We take k£ = p in (6.1) and suppose m < p. It follows at once that

(6.2) BY =0 (mod p), 1 <m < p — 1,
while for m = p — 1,
(6.3) (0 —1)B2=—po1=0c (mod p).

We shall now sharpen (6.2) and (6.3).
In the first place (6.1) becomes, for m = p — 1,

p—2
(6'4) (P - 1) B(p)l + Pap—l = - PZI ( 1) 8r /3(11)1—7 .
For 1 <m < p — 1, (6.1) implies, using (6.2),
(6.5) mB + pon =0 (mod p%).
If we substitute from (6.5) in the right member of (6.4), we get

p—2
(6.6) b= 1) B2+ phpa= —p ; " +1 b by

= Zl (‘ 1 8r Op1s (mod °).
Similarly if m < p — 1, (6.1) yields

(6.7) mBY + pon = p’ Zl ( )5 f’"‘ (mod p°).

If we substitute from (6.7) in (6.1) we get even stronger (but rather complica-
ted) results. For example (6.4) becomes

—2
-1 B(p)l + po, = POZ (P - 1) 07 Op—1-;

(6.4)" MU ’
S DIDY (

=1 s=1

> —p=lor D Tree f 201 (mod p*).

We remark that
Y = — o, (mod p*).

7. Special cases. It is of interest to see what some of the above formulae
reduce to when ¢, = 1 for all m > 1 in (5.1). Then in the first place 8, = Bn,
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the mth Bernoulli number in Norlund’s notation. In the second place, by (5.7),

(7.1) =12, 6n,=Bn, (m > 1).
In particular Bomi1 = Samy1 = 0 for m > 1. It is also clear from
(5.6) that
® _ g

In the next place (6.1) reduces to ,
mB® + k> (= 1) (”;) B,B®, =0,
r=1
which is identical with [8, p. 146 (83)]. Now in view of

o (t Y0,

we see that (6.2) and (6.3) become

=0(1l<m<p—1), Adp.=-1 (mod p).
Next (6.5) implies for m odd, 1 < m < p, 4,, = 0 (mod p,), while (6.4) yields
(p—1)Apa+ pB1 =0 (mod p°),

another theorem due to Glaisher [4, p. 325]. We have also from (6.5) for m
even,2 < m < p — 1,

1, _ 1
Z;Am.': mBm (mOd P),
which is the same as (1.1). As for (6.6), it evidently implies
RICD 1
3
(7.2) (p—1)Apr+ pBpr=p Z 5, Ber Bp-1-2s (mod 27)

r=1

which is equivalent to a result of Nielsen already referred to (see (2.13) above).
Finally (6.7) yields for m odd, 3 < m < p,

Ly=m
P = 2m 1)

which is the same as (1.2). For m even, 2 < m < p — 1, we get

Bm_1 (mod P)

jm—1
(7.3) # (mAn + pBa) = 3 217( > Ba, By o, (mod 2),

which seems to be new. For m = p — 1, (7.3) coincides with (7.2).

8. The case k negative. In (5.6) we assumed & > 1. However the definition
is valid for negative k also and it is of some interest to consider an application
for such k. If then we take & = — p, (6.1) implies

(8.1) Be? —pZ ( )a B .

r=1
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Thus corresponding to (6.2) and (6.3) we get

(8.2) ST =0 (mod p), L < m < p — 1,
(8.3) (0 — 1) B = popr = — ¢, (mod p).
In the next place we have
p—2 _
(84) (p - }) :81-!,) /)61)~1 = p; <P v 1) Br ﬁ(:qlf
and
(8.5) mBS” — po, =0 (mod p*), 1 < m < p — 1.
Substitution in (8.4) yields
8.6) (b= 1) B — por=p" Z ”(':‘L) 0, p1—/ (mod p°);

similarly, for m < p — 1,

8.7) mB " — pon = p’ f ( )a Binr (mod p°).
Comparison with (6 6) and (6.8) glves

(8.8) <m/3"" + pon) = (MB‘“’” — pon) (mod p).

If we now speciallze as in §7, and recall that

& — 1\* B 3 s (k) o etk m A
( % ) - -G S e
we see that

!
350 BIR ~ (mjl—k)'z (= D7 ( ) R ) @

so that B{7®/m! is a Stirling number of the second kind. We now have at once

(8.5") B5P =0 (mod p*),1 < 2r+1<p—1
PB(“”’ = -2732, (mod p),1 <2 < p — 1,

i(p—-3) .
(86" (p — 1) B — pB,_, = p* Z Bo, p—1tr (mod p%),
8.7 ?)‘ng;zi = 2155—1 By (modp),1<2r+1<p— 1.

Formulae (8.5") and (8.7") are due to Nielsen [7, p. 338].

9. Generalized Euler numbers. We now briefly consider sequences related
to the Euler numbers of higher order. Let @ be a fixed rational number which is
integral (mod p) and put
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e &) ,m ’ @ m
-k _ Mm_% af — Snx
©.1 (1 + af) ~m§0 m! " 14af £ mi’
where f = f(x) has the same meaning as in (5.1). The coefficients n%® and ¢,
are evidently integral (mod p).
If we differentiate the first of (9.1), we get

02 = w3 (7) e
s=0
which is analogous to (6.1). In particular for & = p, (9.2) implies
1 m
©3) L —tm = 3 ()t
P s=1 N
so that
1
(9.4) ;nﬁfil = —(n (mod p).
Substitution of (9.4) in (9.3) now yields
1 1 m
(95) Z)(Z; 77::—3—1 - ?m) = ;1 (T) g-m-s fs—l (mOd P)

Now for a = } we have [8, p. 143]

2 k ®© C7(nk) xm
) -2 &5

so that ® = 2="C,®. Also {n = — 27™'C, for m > 0, where C, = C{;
we recall that Cz, = 0 for » > 0. We can therefore state the following results as
special cases of (9.4) and (9.5):

9.6) R (mod p):;
r—1 _

9.7) %([‘1) C‘g) - C‘u—l) = }:,l (2723 1) Corzs1 Coy (mod p),

(9.8) E)l“zcgzu =— (2r+1) Cor (mod p).

These congruences are evidently analogous to Glaisher’s theorem for 4., Az,4..
Finally if we take & in (9.1) negative we get results similar to those above.
In particular for £ = — p, we have

, 1 ' L 3
(93 ) - "]En-fl) - {m = Z < > g‘m—s 772 p)’

f) s=1 N
l {— \
(9'4’) 5 n;n-f{ = (nm (mod p),
l 1 _ m
9.5 b (5 Mt + §m> =2 (T) Cons 51 (mod p).
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Comparison with (9.5) gives

1(1 1(1
9.9) » (; 2y — s“m) =5 (;7 il — s“m) (mod p).
Then if @ = } we get the special formulae
1 .
9.6") Z)Cér”) = — Cor (mod p),
r—1 _
9.7 ‘1‘1)(; cs? — C2r—1> = 821 <Qrzs 1) Cor25—1 Cogy (mod p),
9.8 FCT= = @+ 1) G (mod $).

Formulae (9.6") and (9.8") are proved by Nielsen [7, p. 292]; to facilitate
comparison we note that

2k—m (k) k (k) m
cyP =3 s".

s=0 \S
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