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1. Introduction. Let 

(x - l)(x - 2) . . . (x - p + 1) - xp~~l - Alx
p~2 + . . . + A,_j . 

Then if p is a prime > 3, Glaisher [4] proved 

(1.1) - A2r - - 2rB2r ( m ° d P^ 

(1.2) ~2 A2r+1 s - ^ — S 2 r (mod £), 

where Bm denotes the wth Bernoulli number in the notation of Nôrlund ; it had 
been proved earlier by Nielsen [5] that the left members of (1.1) and (.1.2) are 
integral. 

In this paper we first showr that for ] < r < J(/> — 1), 

2rA2r+i - ~ hp2 (P ~ 2r - 1 ) B2r 

( 1 . 3 ) _ 1 ] L 

- (2r + l)psJ2 -r-B2iB2T-2i (mod pA); 

indeed, a similar but slightly more complicated congruence (mod pb) is obtained. 
Clearly (1.3) is a refinement of (1.2) and in fact of (1.1) also; alternatively, it 
may be looked on as specifying the residue (mod p) of a certain sum involving 
Bernoulli numbers. 

Glaisher made numerous applications of (1.1) and (1.2); in §§3, 4 we make 
a few additional applications. 

In the remainder of the paper we shall attempt to extend Glaisher's theorem 
to more general sequences. The generalization depends on the fact that the 
Am can be expressed in terms of Bernoulli numbers of higher order, namely 
[8, p. 148], 

(1.4) Ar= (- l ) r ( / ?7 l)'B?\ 
Hence if 

f(x) = J^cmxm/m\ <6-i = 1), 

where the cm are integral (mod />), and we define $£f by means of 
CO 

(1.5) (*//(*))*= D/8»V7*!, 
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it is natural, in view of (1.4), to seek congruences satisfied by P%\ It will be 
assumed throughout the paper that p is a fixed prime greater than 3. 

As we shall see, it is indeed not difficult to generalize (1.1) and (1.2) from 
this point of view. Moreover, by introducing coefficients iffî defined by 

(1.6) ( T T W T = S ^xmim\ , 
\ 1 + aj(x)/ £Zo 

where a is integral (mod p), we also generalize certain results of Nielsen analogous 
to (1.1) and (1.2). We remark in this connection that in both (1.5) and (1.6) 
the case k = — p as well as k = p is of interest. 

2. Proof of (1.3). Put 

(2.1) Sm = Sm(p) = T + 2m + . . . + (p - l)m. 

Then by Newton's formula we have, for r odd, 

rAt- £ ( - 1 ) U , 5 ^ , , 

which we write in the form 
*(r-3) è(r-3) 

(2.2) rAr - SiAr-i = Sr - Ax Sr-i + £ Au Sr-2i - £ Au+i Sr-i*-i . 

Now by a familiar formula we have for (2.1) 

(2-3) s^^ht(mV)B^-^' 
and this implies for r odd, 3 < r < p> 
/ 2 4 x Sr ^^rBr-xp2 (mod/*4), 

S f - i s B ^ i / > (mod/>3). 

Thus by (1.1) and (1.2), 

Z 4«< 5 r_2 i ^ - E 9".52<^ • i(f - 2f) Br+uP* (mod A 

*(r-3) *(r_3)2^' + 1 
Z A2i+i 5r_2i-i = X) —-T7- B2ip

2 . Br„u-ip (mod £5), 

so that 

è(r-3) .J(r-3) 

2^ An Sr-ii — 2^J A2i+i Sr-2i-i 

(2.5) 4(r-3) -, 
s - (r + 1)£3 2 T'BuB^u-i (mod />6). 
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Now by (2.3) we find that 

(2.6) Sr -At Sr-i a \p\r -p+ l)Br-i + hp\r - l ) ( r - 2)(r + 2)£ r_3 

( m o d / ) . 

Hence combining (2.2), (2.5), (2.6) we get 

rAT - \p{p - l)Ar-i = hp\r - p+ l )S r _ 1 

(2.7) + à p\r - 1) (r - 2) (r + 2)5 r _ 3 

- H l ) / Z r ^ B - » - . (mod£6). 

In the next place it follows from [3, §19] that for / > 1, p = 2m + 1, 

(2.8) (m - t)pAu - A2t+1 s j ( p - 2/)(w - /)(ro - / + 1 ) A M , 

where or* has the same meaning as in [3, §12]. Also 

(T|_i = ^42*-2 (mod p2). 

Consequently (2.8) becomes (r = 2/ + 1) 

4 r ^ £/>(/> - r j i l ^ ! + é r(r - l ) (r - 2)^ 3 ^ r _ 3 (mod £5), 

which by (1.1) yields 

(2.9) Ar=hp(p- r)Ar_1 - ÂI (LZ^K!1=_2) ^ _ g ( m o d ^6)> 

Comparison of (2.7) and (2.9) now gives 

(r _ i ) (p _ r - i)Ar s _ ^ _ r ) ( / > _ r _ 1)3^ 

OU\Y •' r ( r - l ) ( r - 2 ) ( r 2 - r - 5 ) 4 R 
( 2 - 1 0 ) 2 4 ( ^ " 3 J " * 5 r - 3 

- (p-r)(r+ l)p3 Ç ^-.BuB^u^ (mod £6). 

In particular (2.10) implies 

(2.11) (r - 1 )4 r s - \p\p - r)5r_x - r / Z f p 5 2 < B r _ 2 i _ x (mod p4). 

In can be verified that 

(2.12) 4 g = - àp\p ~ 3) - A p 3 (mod£4). 

In view of (2.9) one can specify the residue of A2U 2 < 2/ < p — 3, mod p3. 
In this connection the related formula [7, p. 366] 

(2.13) i i(W9- Kp) = W,+ Y, ~ £ 2 , B2m„2r (mod />), £ = 2m + 1, 
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where Wp = (Ap^ + l)/p, K9 = ki + ... + V i , Hr) = ( r M - l}/p, is of 
interest. 

Another formula of a similar kind is 
*(î>-3) 1 (p + 2)£p+1 + J/>(^ + 1)^_! ^ 2i> E ~ S 2 r V » . (mod £2), 

r=2 ^ 

which is an easy consequence of Euler's formula 

(2m + l)B2m + Ç \ J ^ j #2r £2,»-2r = 0 ( f»> 1). 

3. An application. It follows from the definition of Am that 

(* - 2)(x - 4) . . . (x - 2(p - 1)) = xv~l -2A1x
p~2+ ... + 2v~l Av^\ 

if we put x = p = 2m + 1 this evidently becomes 

( - l ) m ( l • 3 • 5 • . . . • (p - 2))2 ^ 2P"1,4P_1 - 2p"2MP-2 + 2*-Vl42>-3 

(mod £6) 

s 22w(2m)! + 2 2 m ( - e1 + A) Bv_, (mod £4) 

^ 2 2 w ( 2 m ) ! ( l + ^ 3 £ P _ 3 ) (mod£4), 

where we have used 

Thus it follows that 

(3.1) 

AP-2 = %p*BP-t (mod£4), 

Ap^=lP%^ (mod£3). 

( - D m ( 2 j ) - 24m(l + à p'Br-,) (mod p% 

The weaker form of this congruence 

<- .rfc) -»4m 
( _ 1 ) " W B 2 (mod^) 

is due to F. Morley (for references see [2, p. 273]) ; see also Nielsen [6, p. 81] for 
an equivalent result. 

4. Other applications. Let us take next the familiar quotient 

(np)\ = (p+l)...(2p- 1) (2p + 1) . . . (3p - 1) 
n\{p\)n (p - 1)! (p - 1)! 

(4.1) ((« - \)p + 1) . . . {np - 1) 
(*> - 1)! 

= (2p - l\(3p - l \ /»£ - A 
V p- i A />- i / • • \ p- i / • 
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But as Glaisher proved 

(4.2) ( ^ ~ j ) s 1 - ik(k - \)p%^ (mod p*), 

from which it follows that 

(4.3) ^ ^ - 1 - £(«' - w ^ B , . , (mod £4). 

The weaker congruence 

is due to Mason and Child (for references see [2, p. 278]). 
We can generalize (4.3) without much trouble. To begin with we replace 

(4.1) by 

(4 4) J&OL.. n(kpr-1) 
which is easily verified. Secondly, for r > 2, 

c«) «"(^lO-^'ijC-r**"1)/^:!)-
But by (4.2) it is clear that (4.5) implies 

(4.6) Qr s (2r_! (mod £4). 

Thus comparison with (4.4) and (4.3) yields 

(4.7) ^ ^ n s 1 - 5 (n3 - n)p%^ (mod £4), 

which is valid for all r > 1. 
We remark that for n = 0, d= 1 (mod p), (4.7) becomes 

À#!f " * (m°d P)' 
while for m = n (mod £), 

( ^ ) i = JrtÈDL (mnri A4. 
TO!(£r!)"'~ w!(//!)" ynoa p ;. 

5. General sequences. In order to generalize Glaisher's theorem we take 

(5.1) / = / ( * ) = Z ^ 7 ( * = D . 

where the rational numbers cm are integral (mod p). Now put 

(5.2) 7 = Ê - ~ , T : " ( 0 . = 1). 
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or what is the same thing 

(5-3) 5 A J t r A " - r = l 0 (m>l)t 
thus recursively defining the jftm. Moreover, it is evident from (5.3) that fim is 
integral (mod p) for m < p — 1. On the other hand, 

(5.4) £/V_i + c, s 0 (mod />) ; 

a somewhat sharper result is 

(5.5) £ft,_i - P E - = 1 - ^ - C, ft,_r + cp s 0 (mod p2). 

in the next place, for k > 1, define 

(5.6. ty-L^S- « • -"• 
so that ^m

(l> = /3W. It will also be convenient to define èm by means of 

(5.7) 2 - = E S ^ j - (a. « 1). 

By (5.1) and (5.2), (5.7) implies 

(5.8) K = É (?) c'+! ft-' • 

Thus ôm is integral (mod p) for m < /> — 1, while by (5.4) and (5.8) 

(5.9) PV_i + cP = 0 (modp). 

Indeed (5.8) implies the sharper result 
p-i 

(5.10) V i - &>-i = E ( - l) r^r+i Pp-i-r (mod />). 
r = l 

We remark that for m — p, (5.8) implies 

(5.11) dp - ft, = cp+i + £cp ft,_i — / > S ±z~ cr+i ft_r (mod pz); 
( — lY 

Pp = CP+1 + ^ P &>-l — P^2 ~ Cr+1 Pp f~~~A " A 

that ftp is integral (mod p) is clear from (5.3). In fact (5.3) implies, for m = p + 1 , 

(5.12) 0, + ±c2 £&,_! + ~ 5 ± - + pJT ^-^TCT ft+1_r s 0 (mod p2). 

For a generalization of the von Staudt-Clausen theorem for the numbers 
fim see [I]; the same result applies to ôm also. 

6, Generalization of Glaisher's theorem. Differentiation of (5.6) yields 

<7)"-<7)>£ 
m3m x 

m\ 

https://doi.org/10.4153/CJM-1953-035-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-035-2


312 LEONARD CARLITZ 

and thus by (5.7) we get 

g (fe - m)e&)xm _ kf, tik)xmf^ ônx
n 

o ml o ml o n\ 

This identity is equivalent to 

(6.i) rf+*£:(;*) s, ,e, = o. 
We take k = p in (6.1) and suppose m < £. It follows at once that 

(6.2) ^ s 0 (mod p),l<tn < p - 1, 

while for m = /? — 1, 

(6.3) (£ - 1) $ \ s - ^ , _ i = ^ (mod />). 

We shall now sharpen (6.2) and (6.3). 
In the first place (6.1) becomes, for m = p — 1, 

(6.4) (p - 1) ^ + ^ = -pZ[P~l)sr ^ , _ r . 

For 1 < m < p — 1, (6.1) implies, using (6.2), 

(6.5) m^ +pôm^0 (mod £2). 

If we substitute from (6.5) in the right member of (6.4), we get 

(6.6) (p-1) /#.>! + £ V i ^ ~P2% ~jTT ô> W -

= P*T, ( ~ ^ 8 ,Vi -> (mod/>3). 

Similarly if m < £ — 1, (6.1) yields 

(6.7) rf + £5m 5 £2 g (™) S-^ (mod />3). 

If we substitute from (6.7) in (6.1) we get even stronger (but rather complica­
ted) results. For example (6.4) becomes 

(P -1) ^ + ps^ ^ /£ (p ~l) '-&=** 

- *»' £ £ r ) ~"w "' (mod P<). 
We remark that 

0 ? } = - 3 „ (mod£2). 

7. Special cases. It is of interest to see what some of the above formulae 
reduce to when cm = 1 for all m > 1 in (5.1). Then in the first place @m = Bm, 
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the mth Bernoulli number in Nôrlund's notation. In the second place, by (5.7), 

(7.1) «i = i ôm = Bm (m > 1). 

In particular fom+i = hm+\ = 0 for m > 1. It is also clear from 
(5.6) that 

R(k) _ T>(*) 
Pm -Dm • 

In the next place (6.1) reduces to 

tnB™ + k£ ( - \)r (™) BTB™r = 0, 

which is identical with [8, p. 146 (83)]. Now in view of 

we see that (6.2) and (6.3) become 

Am s 0 (1 < m < p - 1), Ar-i s - 1 (mod p). 

Next (6.5) implies for m odd, 1 < m < p, Am = 0 (mod pa), while (6.4) yields 

(p - 1) Ap-! + pBr-i s 0 (mod £2), 

another theorem due to Glaisher [4, p. 325]. We have also from (6.5) for m 
even, 2 < m < p — 1, 

-Am=——Bm (modp), 
p m 

which is the same as (1.1). As for (6.6), it evidently implies 

è(p-3) , 

(7.2) (p - 1) Ap-! + pB^-x s p2 £ Ô" ^2r ^ - 1 - 2 , (mod £3) 

which is equivalent to a result of Nielsen already referred to (see (2.13) above). 
Finally (6.7) yields for m odd, 3 < m < p, 

1 VYl 

F2Âm^2(m-l)Bm-1 {modp) 

which is the same as (1.2). For m even, 2 < m < p — 1, we get 

1 hm—1 i / \ 

(7.3) ^ (mAm + pBm) s g - ( j y £ 2 r £w_2r (mod />), 

which seems to be new. For m — p — \, (7.3) coincides with (7.2). 

8. The case k negative. In (5.6) we assumed k > 1. However the definition 
is valid for negative k also and it is of some interest to consider an application 
for such k. If then we take k = — p, (6.1) implies 

(8.1) m§k*=pit, (*)*,/£?> . 
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Thus corresponding to (6.2) and (6.3) we get 

(8.2) ffaP) = 0 (mod p)y 1 < m < p - 1, 

(8.3) (p - 1) &Z2? = pôp-i = - cp (mod />). 

In the next place we have 

(8.4) (P - 1 ) 0<p! - /,<y_l = p g (^ 7 ^ èT fctr 
and 
(8.5) w/3^"p) - pdm = 0 (mod p2), 1 < w < p - I. 

Substitution in (8.4) yields 

(8.6) (/> - 1) /£:? - pô,^ = / > 2 £ i ~ - ^ - 3r V _ ^ (mod p>) ; 

similarly, for m < p — 1, 
W - l 1 / \ 

(8.7) mfav) - M» = P1 Z " ( j «r &m-r (mod p3). 

Comparison with (6.6) and (6.8) gives 

(8.8) -4 ( m ^ + pda) = 4 ( m / 3 ^ - />ôw) (mod p) . 
P P 

If we now specialize as in §7, and recall that 

(m + *)!. 
we see that 

B(-k) = — V ( - \)k-r K rm+k = m»©?+* 

so that Bl~k)/ml is a Stirling number of the second kind. We now have at once 

(8.5') M7+1 = 0 (mod p2), 1 < 2r + 1 < p - 1 

1 B<7> = 1 £ 2 r (mod />), 1 < 2r < />• - 1, 

i (p-3) i 

(8.6') (i> - 1 ) J B ^ - pBv.x s p2 g ~ J52r Bp-x.2, (mod p3), 

(8.7') K Btt = - - 4 7 - «2r (mod p), 1 < 2r + 1 < p - 1. 

Formulae (8.5') and (8.7') are due to Nielsen [7, p. 338]. 

9. Generalized Euler numbers. We now briefly consider sequences related 
to the Euler numbers of higher order. Let a be a fixed rational number which is 
integral (mod p) and put 
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CO W m M OO y . M 

(9.1) (1 + af)-k = £ !lmJr, T T 1 = S i > 

where / = fix) has the same meaning as in (5.1). The coefficients ??£f and fm 

are evidently integral (mod £). 
If we differentiate the first of (9.1), we get 

(9.2) „<?>,= - ^ H U * „ 
s=0 \ S / 

which is analogous to (6.1). In particular for k = p> (9.2) implies 

(9.3) - r)m+l — fm = ~ Li \ I £m-s Vs , 

p s~i \s/ 
so that 

(9.4) i ^ s - ^ (modp). 

Substitution of (9.4) in (9.3) now yields 

(9.5) - (ç i&U - J-») - g (™) U_ s f_i (mod /»). 

Now for a = | we have [8, p. 143] 

/_2_y. g 
so that ri£> = 2~mCm

(*). Also fm = - 2~m-1Cm for m > 0, where Cm = C ^ ; 
we recall that Cu — 0 for r > 0. We can therefore state the following results as 
special cases of (9.4) and (9.5) : 

(9.6) \ Cg = C2r_!, { C&1 = 0 (mod p) ; 

(9.7) ~ ( ~ Cg - Cir-i) ^ Jly 2s ) C*r-2i-i C2a-i (mod />), 

1 ^ p ) (9.8) ~2 CKti s - (2r + 1) C2r-i (mod p). 

These congruences are evidently analogous to Glaisher's theorem for A<ir, A2r+i> 
Finally if we take k in (9.1) negative we get results similar to those above. 

In particular for k = — py we have 

(9.3') ±&l-{m- § ( T ) r — ; 

(9.4') J - i£S = r« (mod/»), 
P 

(9.5') i ( i „£*} -f fm) - g (™) r,„-s f.-. (mod./»). 
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Comparison with (9.5) gives 

(9.9) I (l # i - r.) - I (l l£S - f.) (mod p). 
p\p ••""•* '"'/ p\p 

Then if a = 5 we get the special formulae 

(9.6') I CiTp) - - C2r_! (mod p), 
P 

(9.7') i ( i C£P) - C2r_x) s g ( 2 r ~ *) C2 r-a^i C2s_! (mod p), 

(9.8') ^ Cfc?l s - (2r + 1) C2r-i (mod />). 

Formulae (9.60 and (9.8') are proved by Nielsen [7, p. 292]; to facilitate 
comparison we note that 

Qk—m f*(.—\ "=£©*"• 
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