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Critical scaling profile for trees and
connected subgraphs on the
complete graph

Yucheng Liu and Gordon Slade

Abstract. We analyze generating functions for trees and for connected subgraphs on the complete
graph, and identify a single scaling profile which applies for both generating functions in a critical
window. Our motivation comes from the analysis of the finite-size scaling of lattice trees and lattice
animals on a high-dimensional discrete torus, for which we conjecture that the identical profile applies
in dimensions d ≥ 8.

1 Main results

1.1 Results

The enumeration of trees and connected graphs has a long history. We are motivated
by problems arising in the critical behavior of branched polymers in equilibrium
statistical mechanics, to consider certain generating functions for the number of trees
and connected subgraphs in the complete graphKV on V labeled vertices. The vertices
are labeled as V = {0, . . . , V − 1} and the edge set is E = {{x , y} ∶ x , y ∈ V, x ≠ y}.
Our interest is in the asymptotic behaviour as V → ∞.

We define one-point functions

G t
V ,0(p) = ∑

T∋0
( p

eV
)
∣T ∣

, Ga
V ,0(p) = ∑

A∋0
( p

eV
)
∣A∣

,(1.1)

where the first sum is over all labeled trees T inKV containing the vertex 0, the second
sum is over all labeled connected subgraphs A containing 0, and ∣T ∣ and ∣A∣ denote
the number of edges in T and A. The division of p by eV is a normalisation to make
p = 1 correspond to a critical value. We also study the two-point functions

G t
V ,01(p) = ∑

T∋0,1
( p

eV
)
∣T ∣

, Ga
V ,01(p) = ∑

A∋0,1
( p

eV
)
∣A∣

,(1.2)
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2 Y. Liu and G. Slade

where the sums now run over trees or connected subgraphs containing the distinct
vertices 0, 1. To avoid repetition, when a formula applies to both trees and connected
subgraphs we often omit the superscripts t, a. With this convention, we define the
susceptibility

χV(p) = GV ,0(p) + (V − 1)GV ,01(p).(1.3)

We are particularly interested in values of p in a critical window p = 1 + sV−1/2 around
the critical point, with s ∈ R.

We define the profile

I(s) = e√
2π ∫

∞

0
e−

1
2 x2+sx 1√

x
dx (s ∈ R).(1.4)

The profile can be rewritten in terms of a Faxén integral [25, p. 332] as I(s) =
eπ−1/22−5/4Fi( 1

2 , 1
4 ;
√

2s), and its asymptotic behavior is given by [25, Example 7.3,
p. 84] to be

I(s) ∼
⎧⎪⎪⎨⎪⎪⎩

e∣2s∣−1/2 (s → −∞)
es−1/2es2/2 (s → +∞),

(1.5)

where f ∼ g means lim f /g = 1. Our main result is the following theorem.

Theorem 1.1 For both trees and connected subgraphs, and for all s ∈ R, as V → ∞ we
have

GV ,01(1 + sV−1/2) ∼ V−3/4I(s),(1.6)

χV(1 + sV−1/2) ∼ V 1/4I(s).(1.7)

The proof of Theorem 1.1 uses a uniform bound on the one-point function. The
following theorem gives a statement that is more precise than a bound. It involves the
principal branch W0 of the Lambert function [5], which solves W0eW0 = z and has
power series

W0(z) =
∞
∑
n=1

(−n)n−1

n!
zn .(1.8)

The solution to W0eW0 = −1/e is achieved by the particular value W0(−1/e) = −1.

Theorem 1.2 For both trees and connected subgraphs, for all s ≥ 0, and for all
sequences pV with pV ≤ 1 + sV−1/2 and limV→∞ pV = p ∈ [0, 1],

lim
V→∞

GV ,0(pV) =
∞
∑
n=1

nn−1

n!
( p

e
)

n−1
= − e

p
W0(−

p
e
).(1.9)

In particular, if p = 1 then limV→∞GV ,0(pV) = e.

Notation: We write f ≲ g if there is a C > 0 such that f (x) ≤ Cg(x) for all x of
interest.
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Scaling profile for trees and connected subgraphs 3

1.2 Method of proof

To prove (1.6), it suffices to prove (1.7) and (1.9), since when p = 1 + sV−1/2, by
definition of χV we then have

GV ,01 =
χV − GV ,0

V − 1
∼ χV

V
.(1.10)

1.2.1 Trees

By Cayley’s formula, the number of trees on n labeled vertices is nn−2. By decomposing
the sum defining G t

V ,0(p) according to the number n of vertices in the tree, and by
counting the number of ways to choose n − 1 vertices other than 0, we have

G t
V ,0(p) =

V
∑
n=1

(V − 1
n − 1

)nn−2( p
eV

)
n−1

.(1.11)

Similarly, by counting the number of ways to choose n − 2 vertices other than 0 and 1,
we have

G t
V ,01(p) =

V
∑
n=2

(V − 2
n − 2

)nn−2( p
eV

)
n−1

.(1.12)

Since

(V − 1
n − 1

) + (V − 1)(V − 2
n − 2

) = n(V − 1
n − 1

),(1.13)

it follows from (1.3) that the susceptibility is given by

χt
V(p) =

V
∑
n=1

(V − 1
n − 1

)nn−1( p
eV

)
n−1

.(1.14)

For trees, we prove Theorems 1.1 and 1.2 by directly analyzing the above series for χt
V

and G t
V ,0. The profile I(s) for χt

V(1 + sV−1/2) arises from a Riemann sum limit.

1.2.2 Connected subgraphs

For connected subgraphs, we will show that the contribution to χa
V , Ga

V ,01 from
connected subgraphs with cycles is much smaller than the contribution from trees.
Let C(n, n − 1 + �) denote the number of connected graphs on n labeled vertices with
exactly n − 1 + � edges, i.e., with � surplus edges. The surplus must be zero for n = 1, 2.
For n ≥ 3, we define the surplus generating function

S(n, z) =
∞
∑
�=1

C(n, n − 1 + �)z� .(1.15)

Note that terms in the above sum are zero unless � ≤ (n
2) − (n − 1), and that the tree

term (� = 0) is absent.
We decompose the sums defining Ga

V ,0 and Ga
V ,01 according to the number n of

vertices in the connected subgraph, and we further distinguish whether or not the
subgraph contains surplus edges. This leads to the decomposition
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4 Y. Liu and G. Slade

Ga
V ,0(p) = G t

V ,0(p) + ΔV ,0(p),(1.16)

χa
V(p) = χt

V(p) + ΔV(p),(1.17)

with

ΔV ,0(p) =
V
∑
n=3

(V − 1
n − 1

)S(n, p
eV

)( p
eV

)
n−1

,(1.18)

ΔV(p) =
V
∑
n=3

(V − 1
n − 1

)nS(n, p
eV

)( p
eV

)
n−1

.(1.19)

Given Theorems 1.1 and 1.2 for trees, we prove Theorems 1.1 and 1.2 for connected
subgraphs by showing that, for all s ∈ R,

lim
V→∞

ΔV ,0(1 + sV−1/2) = 0,(1.20)

lim
V→∞

V−1/4ΔV(1 + sV−1/2) = 0.(1.21)

The proof is more subtle than for trees and requires estimates on the surplus gener-
ating function. As we discuss later, a precise but cumbrous asymptotic formula for
C(n, n + k) is given in [3, Corollary 1]. We use that formula to prove the following
useful explicit bound. By convention, kk = 1 when k = 0.

Proposition 1.3 Let n ≥ 3 and N = (n
2). For 0 ≤ k ≤ n, we have

C(n, n + k) ≲ ( N
n + k

)(2
e
)

n

( en
k

)
k/2

.(1.22)

Proposition 1.3 is most useful when the surplus � = k + 1 is small but of order n. This
is a delicate region when controlling the surplus generating function, and the precise
constant e in the last factor of (1.22) is important. For a larger surplus, we simply
bound C(n, n + k) by the total number of graphs (connected or not) on n vertices
with n + k edges, which is ( N

n+k). Together, these bounds provide enough control on
S(n, p/(eV)) to prove (1.20) and (1.21).

1.3 Motivation

Theorem 1.1 is motivated by a broader emerging theory of finite-size scaling in statis-
tical mechanical models above their upper critical dimensions. The theory involves a
family of profiles expressed in terms of the functions

Ik(s) = ∫
∞

0
xk e−

1
4 x4− 1

2 sx2
dx (s ∈ R, k > −1).(1.23)

A change of variables transforms the profile I of (1.4) into I(s) = e21/4π−1/2I0(−
√

2s).
The general theory is described in [21] with references to the extensive physics and
mathematics literature.

Given an integer d ≥ 2, infinite-volume models can be formulated on a transitive
graph G = (Zd ,E), whose edge set E has a finite number of edges containing the
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origin and is invariant under the symmetries of Zd . Above an upper critical dimension
dc, for many models it has been proven that the critical exponents that describe
the critical behavior are the same as the corresponding exponents when the model
is formulated on a regular tree or on the complete graph. The tree and complete
graph settings are easy to analyze. Finite-volume models (with periodic boundary
conditions) can instead be formulated on a discrete torus Gr = (Td

r ,Er) of period r.
At and above the upper critical dimension, the torus models are known or conjectured
to have critical behavior analogous to that seen on the complete graph, with an inter-
esting “plateau” phenomenon involving a universal profile which is often expressed in
terms of Ik . The value of k depends on the model. Dimensions d < dc are conjectured
to exhibit different scaling, with no plateau or profile.

Lattice trees and lattice animals: A lattice animal is a finite connected subgraph of
G, and a lattice tree is an acyclic lattice animal. The critical behavior of lattice trees
and lattice animals is at least as difficult as is the case for the notoriously difficult
self-avoiding walk. Despite significant interest from chemists and physicists for over
half a century, due to applications to branched polymers [15], the critical behavior
is understood mathematically only in dimensions d > dc = 8. For d > 8, it has been
proved using the lace expansion that for sufficiently large edge sets E (or for nearest-
neighbor edges with d sufficiently large), lattice trees and lattice animals at the critical
point both have the same behavior as a critical branching process [4, 6, 12, 13].

For x ∈ Zd , let cm(x) denote the number of lattice trees or lattice animals contain-
ing 0, x and having exactly m bonds. The one-point functions, two-point functions,
and susceptibilities are defined by

g(z) =
∞
∑
m=0

cm(0)zm , Gz(x) =
∞
∑
m=0

cm(x)zm , χ(z) = ∑
x∈Zd

Gz(x).(1.24)

The radius of convergence zc (the critical point) of these series is finite and positive,
and is strictly smaller for animals than for trees [7]. High-dimensional versions and
extensions of Theorem 1.2 for g(zc) are proved in [19, 23]. The analogous quantities
for trees and animals on the torus Td

r are denoted gr(z), Gr ,z(x), χr(z). These are
polynomials in z, so they define entire functions of z. Nevertheless, for large r the
infinite-volume critical point zc plays a role in the scaling. We denote the volume of
the torus by V = rd .

Our computation of the profile I for the two-point function and susceptibility in
Theorem 1.1 supports the following conjecture from [22] that the profile I0 (just a
rescaled I) occurs for both lattice trees and lattice animals on the torus, above the
upper critical dimension.

Conjecture 1.4 For lattice trees and lattice animals on T
d
r with d > 8, there are

constants ad < 0 and bd > 0 (different constants for trees and animals) such that, as
V = rd → ∞,

Gr ,zc+sV−1/2(x) − Gzc(x) ∼ bd V−3/4I0(ad s),

χr(zc + sV−1/2) ∼ bd V 1/4I0(ad s).
(1.25)
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6 Y. Liu and G. Slade

In (1.25), the torus point x is identified with its representative in Z
d ∩ (− r

2 , r
2 ]

d

in the evaluation of Gzc(x). For d > 8, Gzc(x) decays as ∣x∣−(d−2) [10, 11], and the
constant term of order V−3/4 = r−3d/4 dominates the Gaussian decay over most of
the torus. This is the “plateau” phenomenon. On the complete graph, the decaying
term ∣x∣−(d−2) is absent, and only the constant term occurs for GV ,01, as in (1.6).
For d = dc = 8, the conjecture is modified to include logarithmic corrections to the
window scale V−1/2, the plateau scale V−3/4, and the susceptibility scale V 1/4, but
with the identical profile I0.

Self-avoiding walk: Self-avoiding walk on the complete graph KV is exactly solvable
[27]. For 1 ≤ n ≤ V − 1, let cV ,n(0, 1) = ∏n

j=2(V − j) denote the number of n-step self-
avoiding walks from 0 to 1 on KV . Let SV ,01(p) = ∑V−1

n=1 cV ,n(0, 1)(p/V)n and let
χSAW

V (p) = 1 + (V − 1)SV ,01(p). It is proved in [27] (see also [24, Appendix B]) that,
as V → ∞,

SV ,01(1 + sV−1/2) ∼ (2V)−1/2I1(−
√

2s),

χSAW
V (1 + sV−1/2) ∼ 2−1/2V 1/2I1(−

√
2s).

(1.26)

In [24, 26], the same profile I1 is conjectured to apply to the self-avoiding walk on
T

d
r for d ≥ 4, in the sense that the two-point function and susceptibility obey the

analog of (1.25) with the right-hand sides replaced respectively by bd V−1/2I1(ad s) and
bd V 1/2I1(ad s). The conjectured log corrections for d = 4 are indicated in [24, Section
1.6.3].

Spin systems: The plateau for spin systems in dimensions d ≥ dc = 4 is discussed in
[20, 21, 26], including rigorous results for a hierarchical ∣φ∣4 model and conjectures
for spin systems on the torus. The relevant profile for n-component spin systems is

fn(s) = ∫Rn ∣x∣2e− 1
4 ∣x ∣

4− s
2 ∣x ∣

2
dx

n ∫Rn e− 1
4 ∣x ∣4−

s
2 ∣x ∣2 dx

= In+1(s)
nIn−1(s) .(1.27)

The profile f1 has been proven to occur for the Ising model on the complete graph
(Curie–Weiss model); a recent reference is [2]. As n → 0, the profile fn(s) converges
to I1(s), which is consistent with the conventional wisdom that the spin model with
n = 0 corresponds to the self-avoiding walk.

Percolation: Percolation has been extensively studied both on infinite lattices [9] and
on the complete graph (the Erdős–Rényi random graph) [17]. This is a probabilistic
model in which the cluster containing 0 is a connected subgraph A ∋ 0 with weight
p∣A∣(1 − p)∣∂A∣, where ∣A∣ denotes the number of edges in A, and ∂A denotes the set of
edges which are not in A but are incident to one or two vertices in A. On the complete
graph, we divide p by V (not by eV as in (1.2)) to make the critical value p = 1. Thus
we define the two-point function

τV ,01(p) = Pp/V(0 ↔ 1) = ∑
A∋0,1

( p
V

)
∣A∣

(1 − p
V

)
∣∂A∣

(1.28)
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Scaling profile for trees and connected subgraphs 7

and the susceptibility (expected cluster size) χperc
V (p) = 1 + (V − 1)τV ,01(p). Our con-

jecture for an analog of Theorem 1.1 for percolation on the complete graph is as follows.
It involves the Brownian excursion W∗ of length 1, and the moment generating
function Ψ(x) = E exp[x ∫

1
0 W∗(t)dt] for the Brownian excursion area.

Conjecture 1.5 For s ∈ R, let

fperc(s) = ∫
∞

0
x2dσs , dσs =

1√
2π

x−5/2Ψ(x3/2)e−
1
6 x3+ s

2 x2− s2
2 x dx .(1.29)

Then, for some a, b > 0, as V → ∞ we have

τV ,01(1 + sV−1/3) ∼ bV−2/3 fperc(as),

χperc
V (1 + sV−1/3) ∼ bV 1/3 fperc(as).

(1.30)

Note the different powers of V in (1.30) compared to (1.25) and (1.6)–(1.7). The
powers of V in (1.30) are well-known, but to our knowledge the occurrence of the
profile has not been proved. On the torusTd

r with d > 6, the powers V−1/3 , V−2/3 , V 1/3

are proved in [14], and the role of fperc was first conjectured in [20, Appendix C].
The origin of the conjecture is as follows. The properly rescaled cluster size (without

expectation) is known to converge in distribution to a random variable described by
the Brownian excursion [1], and the limiting random variable is characterized by a
point process [18]. The measure σs is the intensity of the point process and is found in
[18, Theorem 4.1]. The point process describes cluster sizes, in the sense that

n−2k/3 ∑
i
∣C i ∣k ⇒ ∫

∞

0
xkdσs (k ≥ 2)(1.31)

in distribution [1]. The k = 2 case corresponds to χperc
V and identifies fperc(s).

2 Proof for trees

We begin with an elementary lemma.

Lemma 2.1 Let γ ≥ 0, κ > 0, and λ ∈ R. There is a constant Cκ,λ > 0 such that

V
∑

n=⌈b
√

V⌉

1
nγ e−κn2/V eλn/

√
V ≤ Cκ,λb−γV(1−γ)/2(2.1)

for all V and for all b sufficiently large (depending on κ, λ).

Proof Since n ≥ b
√

V and γ ≥ 0, the left-hand side of (2.1) is bounded by

1
bγV γ/2

∞
∑

n=⌈b
√

V⌉
e−κn2/V eλn/

√
V .(2.2)
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For b sufficiently large (depending onκ, λ), the summand above is monotone decreas-
ing in n, so we can bound the sum by the integral

∫
∞

b
√

V−1
e−κ(y/

√
V)2

eλ(y/
√

V)dy ≤ Cκ,λ
√

V ,(2.3)

and the desired result follows. ∎

Proof of Theorem 1.1 for trees We use (1.14) and drop the superscript t. Fix s ∈ R.
For p = 1 + sV−1/2, by combining V−(n−1) with the binomial coefficient, we have

χV(1 + sV−1/2) =
V
∑
n=1

(
n−1
∏
j=1

(1 − j
V

)) 1
(n − 1)!

nn−1

en−1 (1 + s√
V

)
n−1

.(2.4)

Let 0 < a < 1 < b < ∞. We divide the sum over n into three parts χ(1)V , χ(2)V , χ(3)V , which
respectively sum over n in the intervals [1, a

√
V), [a

√
V , b

√
V], (b

√
V , V]. We will

prove that

χ(1)V ≲ ea∣s∣(1 + a1/2V 1/4), χ(3)V ≤ C∣s∣b−1/2V 1/4(2.5)

for all a > 0 and all b sufficiently large, and that

lim
V→∞

V−1/4 χ(2)V = ∫
b

a
f (x)dx , f (x) = e√

2π
e−x2/2 1√

x
esx(2.6)

for all a, b. These claims imply that

∫
b

a
f (x)dx ≤ lim inf

V→∞

χV

V 1/4 ≤ lim sup
V→∞

χV

V 1/4 ≤ Cea∣s∣a1/2 + ∫
b

a
f (x)dx + C∣s∣b−1/2

(2.7)

for all a > 0 and all b sufficiently large. Since χV does not depend on a or b, by taking
the limits a → 0, b → ∞, we obtain limV→∞ V−1/4 χV = ∫

∞
0 f , which is the desired

result (1.7).
It remains to prove the claims (2.5) and (2.6). Let

bn = nn−1

(n − 1)!en−1 ,(2.8)

which obeys bn ≲ 1/
√

n, by Stirling’s formula. Using this in the sum for χ(1)V , and using
1 + s/

√
V ≤ e∣s∣/

√
V , we get

χ(1)V ≲
⌊a
√

V⌋
∑
n=1

1 1√
n

e∣s∣n/
√

V ≤ ea∣s∣
⌊a
√

V⌋
∑
n=1

1√
n

≲ ea∣s∣(1 + a1/2V 1/4),(2.9)

as claimed. For χ(3)V , we also need a bound on the product over j. Using 1 − x ≤ e−x ,
we have

n−1
∏
j=1

(1 − j
V

) ≤ exp{ − 1
V

n−1
∑
j=1

j} = exp{ − n(n − 1)
2V

}.(2.10)
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Scaling profile for trees and connected subgraphs 9

By Lemma 2.1 with γ = κ = 1
2 and λ = ∣s∣, this implies that, for all b sufficiently large,

χ(3)V ≲
V
∑

n=⌈b
√

V⌉
e−n2/2V en/2V 1√

n
e∣s∣n/

√
V ≲ e1/2b−1/2V 1/4 .(2.11)

Finally, for χ(2)V we fix a, b and use the asymptotic formulas

(1 + s√
V

)
n−1

= exp{(n − 1) log(1 + s√
V

)} = esn/
√

V[1 + O( 1√
V

) + O( n
V

)],

(2.12)

n−1
∏
j=1

(1 − j
V

) = exp{
n−1
∑
j=1

log(1 − j
V

)} = e−n2/2V[1 + O( n
V

) + O( n3

V 2 )],(2.13)

which follow from Taylor expansion of the logarithm (the constants here depend on s).
Since n ∈ [a

√
V , b

√
V], the above, together with the fact that bn = e√

2πn [1 + O(1/n)]
by Stirling’s formula, give

χ(2)V =
⌊b
√

V⌋
∑

n=⌈a
√

V⌉
e−n2/2V e√

2πn
esn/

√
V[1 + O( 1√

V
)].(2.14)

The desired limit then follows from the observations that the leading term of
V−1/4 χ(2)V is a Riemann sum for the integral ∫

b
a f with mesh size V−1/2. ∎

Proof of Theorem 1.2 for trees We use (1.11) and again drop the superscript t. Fix
s ≥ 0. Let pV be a sequence with pV ≤ 1 + sV−1/2 and pV → p ∈ [0, 1]. Similarly to (2.4)
and with an additional factor of n in the denominator,

GV ,0(pV) =
V
∑
n=1

(
n−1
∏
j=1

(1 − j
V

)) 1
n!

nn−1

en−1 pn−1
V .(2.15)

Let N , b ≥ 1. We divide the sum over n into three parts G(1)V , G(2)V , G(3)V , which
respectively sum over n in the intervals [1, N], (N , b

√
V], (b

√
V , V]. For a fixed N,

we immediately get

lim
V→∞

G(1)V (pV) =
N
∑
n=1

1
n!

nn−1

en−1 pn−1 ,(2.16)

which dominates the sum. Indeed, using monotonicity of the generating function, for
G(2)V we can proceed as in (2.9) to bound

G(2)V (pV) ≤ G(2)V (1 + sV−1/2) ≤ ebs
⌊b
√

V⌋
∑

n=N

1
n3/2 ≲ ebs

√
N

.(2.17)

For G(3)V , we can argue as in (2.11) but with an additional factor n in the denominator,
and use Lemma 2.1 with γ = 3

2 to get G(3)V (pV) ≲ b−3/2V−1/4 for b sufficiently large.
Together, we obtain
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N
∑
n=1

1
n!

nn−1

en−1 pn−1 ≤ lim inf
V→∞

GV ,0 ≤ lim sup
V→∞

GV ,0 ≤
N
∑
n=1

1
n!

nn−1

en−1 pn−1 + Cebs
√

N
(2.18)

for all N ≥ 1 and all b sufficiently large. Since GV ,0 does not depend on N, we can take
the limit N → ∞ to conclude the desired result (1.9). ∎

3 Proof for connected subgraphs

3.1 Bound on C(n, n + k)

We use the asymptotic formula for C(n, n + k) proved in [3]. We follow the notation
in [3] and write

x = 1 + k
n

.(3.1)

For x > 1, we define the function y = y(x) ∈ (0, 1) implicitly by

x = 1
2y

log( 1 + y
1 − y

) = 1
y

arctanh y =
∞
∑
m=0

y2m

2m + 1
,(3.2)

and we define the functions φ(x), a(x) by

eφ(x) = 2e−x y1−x
√

1 − y2
,(3.3)

a(x) = x(x + 1)(1 − y) + log(1 − x + x y) − 1
2

log(1 − x + x y2).(3.4)

Both φ and a extend continuously to x = 1 by defining y1−x = 1 at x = 1 and defining
a(1) = 2 + 1

2 log 3
2 .

Let N = (n
2). It is proved in [3, Corollary 1] that there are constants wk = 1 + O(1/k)

for which

C(n, n + k) = wk(
N

n + k
)enφ(x)ea(x)[1 + O((k + 1)1/16

n9/50 )](3.5)

uniformly in 0 ≤ k ≤ N − n. The constants wk are related to Wright’s constants for the
asymptotics of C(n, n + k) with k fixed [29], and they are related to the Brownian
excursion area [28]. We will simply bound wk by a constant. The next lemma gives
estimates for φ(x) and a(x).

Lemma 3.1 Let x ≥ 1.
(i) The function a(x) is bounded.
(ii) Let t =

√
3e and y = y(x). Then

eφ(x) ≤ 2
e

exp{ − 1
3

y2 log y
t
},(3.6)

and the right-hand side is monotonically increasing for 0 < y ≤ t/
√

e.
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By considering the limit x → ∞ (y → 1), we expect that the inequality (3.6)
becomes optimal with t = (e/2)3 ≈ 2.51, but we do not pursue this. The weaker version
with t =

√
3e is sufficient for our purposes, but to show the role of t we keep it in our

formulas.

Proof (i) The function a(x) is continuous on [1, ∞) by definition, and it satisfies
∣a(x)∣ ≲ x2(1 − y) ∼ 2x2e−2x as x → ∞ by [3, Lemma 3.2], so it is bounded.

(ii) By the definitions of φ(x) and x, and by the Taylor series for log(1 − y2),

φ(x) − log 2
e
= (1 − x)(1 + log y) − 1

2
log(1 − y2)

= −
∞
∑
m=1

y2m

2m + 1
(1 + log y) +

∞
∑
m=1

y2m

2m

= − 1
3

y2 log y + 1
6

y2 +
∞
∑
m=2

y2m

2m + 1
( − log y + 1

2m
).(3.7)

We bound the series in the last line by a quadratic function, term by term. For any
m ≥ 2, by calculus,

max
0≤y≤1

[y2m−2(−2m log y + 1)] = 2m
2m − 2

e−1/m .(3.8)

Then, with K = maxm≥2{ 2m
2m−2 e−1/m} = 2e−1/2, by [8, 0.234.8] we have

∞
∑
m=2

y2m

2m + 1
( − log y + 1

2m
) ≤

∞
∑
m=2

Ky2

(2m + 1)(2m) = (1 − log 2 − 1
6
)Ky2 .(3.9)

Therefore,

φ(x) − log 2
e
≤ − 1

3
y2 log y + [ 1

6
+ (1 − log 2 − 1

6
)K]y2 .(3.10)

This implies (3.6) with any t that obeys 1
3 log t ≥ 1

6 + (1 − log 2 − 1
6 )K ≈ 0.3367. In

particular, we can take any t ≥ 2.75, including t =
√

3e ≈ 2.85. Monotonicity of the
upper bound in 0 < y ≤ t/

√
e is another calculus exercise. ∎

We now restate and prove Proposition 1.3.

Proposition 3.2 Let n ≥ 3, N = (n
2), and t =

√
3e. For 0 ≤ k

n ≤ t2

3e , we have

C(n, n + k) ≲ ( N
n + k

)(2
e
)

n

( t2n
3k

)
k/2

.(3.11)

Proof We use the asymptotic formula (3.5), and use that wk = 1 + O(1/k) is
bounded. The error term in (3.5) is bounded by a constant since k is at most
linear in n. The factor ea(x) is also bounded by a constant, by Lemma 3.1(i).
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We therefore only need to estimate enφ(x). Since 0 ≤ k
n ≤ t2

3e and x = 1 + k
n , by (3.2)

we have y(x) ≤
√

3(x − 1) =
√

3k/n ≤ t/
√

e, so Lemma 3.1(ii) gives

eφ(x) ≤ 2
e

exp{ − 1
3

y2 log y
t
} ≤ 2

e
exp{ − x − 1

2
log 3(x − 1)

t2 } = 2
e
( t2n

3k
)

k/2n

.

(3.12)

The desired result then follows by inserting the above into (3.5). ∎

For larger k
n we simply use the fact that C(n, n + k) is less than the total number

of graphs (connected or not) on n vertices with n + k edges, which is ( N
n+k). For all

n ≥ 2 and k ≥ −1, we have

C(n, n + k) ≤ ( N
n + k

) ≤ N n+k

(n + k)!
.(3.13)

3.2 Bound on the surplus generating function

We now prove useful bounds on the surplus generating function defined in (1.15):

S(n, z) =
∞
∑
�=1

C(n, n − 1 + �)z� =
∞
∑
k=0

C(n, n + k)zk+1 .(3.14)

The terms in the series are zero unless k ≤ (n
2) − n. The goal is to prove that S(n, z) is

small relative to the number of trees C(n, n − 1) = nn−2. We do this by decomposing
the series into two parts corresponding to sparse and dense graphs. We define

A(n, z) = 1
nn−2

n
∑
k=0

C(n, n + k)zk+1 , B(n, z) = 1
nn−2

∞
∑

k=⌊ 1
2 n⌋

C(n, n + k)zk+1 ,

(3.15)

so that

S(n, z) ≤ nn−2(A(n, z) + B(n, z)).(3.16)

Lemma 3.3 (Sparse connected graphs) Let n ≥ 3, z ≥ 0, and t =
√

3e.
(i) If n3/2z ≤ b, then A(n, z) ≤ Cb n3/2z for some Cb > 0.
(ii) If ε > 0, then

A(n, z) ≤ Cε exp{( 1
24

+ ε)et2z2n3}(3.17)

for some Cε > 0.

Proof Since t2

3e = 1, we can apply Proposition 3.2 to estimate C(n, n + k). For the
binomial coefficient in (3.11), we use Stirling’s formula, n + k ≥ n, and N = (n

2) =
1
2 n(n − 1) to see that
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( N
n + k

) ≤ N n+k

(n + k)!
≲ 1√

n + k
( eN

n + k
)

n+k

≤ 1√
n
( e(n − 1)

2
)

n+k

.(3.18)

Then, by extending the sum to run over all k ≥ 0, we obtain

1
z

A(n, z) = 1
nn−2

n
∑
k=0

C(n, n + k)zk

≲ 1
nn−2√n

n
∑
k=0

( en
2

)
n+k

(2
e
)

n

( t2n
3k

)
k/2

zk ≤ n3/2
∞
∑
k=0

1
kk/2 (

etn3/2z
2
√

3
)

k

,(3.19)

which converges for all z > 0.
(i) If n3/2z ≤ b then the series on the right-hand side is bounded by a constant Cb ,

as required.
(ii) We set x = e tn3/2 z

2
√

3 and use the asymptotic formula [16, Lemma 4.1(i)]

∞
∑
k=0

1
kk/2 xk ∼ (4πe−1)1/2xe

1
2e x2

as x → ∞(3.20)

to get a bound for large x. For smaller x ≥ 0, we simply bound by a constant. The
desired result then follows by absorbing the prefactor of (3.20) and another factor of
n3/2z = const x into the exponential. This completes the proof. ∎

Lemma 3.4 (Dense connected graphs) Let n ≥ 3 and z ≤ 3
en . Then B(n, z) ≲ z2.

Proof Let ν = ⌊n/2⌋ ≥ 1. The crude bound (3.13) gives

B(n, z) ≤ 1
nn−2

∞
∑
k=ν

N n+k

(n + k)!
zk+1 = z1+ν

nn−2
N n+ν

(n + ν)!

∞
∑
k=ν

(Nz)k−ν (n + ν)!
(n + k)!

≤ z1+ν

nn−2
N n+ν

(n + ν)!

∞
∑
m=0

( Nz
n + ν

)
m

,(3.21)

since (n + k)! ≥ (n + ν)!(n + ν)k−ν . Note that by our hypothesis

Nz
n + ν

≤
1
2 n(n − 1)z

n + ( 1
2 n − 1

2 )
< n(n − 1)

3n − 3
z = 1

3
nz ≤ 1

e
,(3.22)

so the geometric series in (3.21) is bounded by a constant. For the prefactor in (3.21),
since 1 + ν ≥ 2 and z ≤ 3

en by hypothesis, we have

z1+ν = z2zν−1 ≤ e
3

z2(3
e
)

ν
n1−ν .(3.23)

Also, using N = 1
2 n(n − 1) and Stirling’s formula,

N n+ν

(n + ν)!
≲

[ 1
2 n(n − 1)]n+ν
√

n( n+ν
e )n+ν = nn+ν

√
n

( e
2
)

n+ν
( n − 1

n + ν
)

n+ν
.(3.24)
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Since n−1
n+ν ≤ 2

3 , together we obtain

z1+ν

nn−2
N n+ν

(n + ν)!
≲ z2(3

e
)

ν
n5/2( e

3
)

n+ν
= z2n5/2( e

3
)

n
.(3.25)

It follows that B(n, z) ≲ z2 supn≥3{n5/2(e/3)n}, and the proof is complete since
e < 3. ∎

3.3 Proof for connected subgraphs

Proof of Theorem 1.1 for connected subgraphs Fix s ∈ R and let p = 1 + sV−1/2.
We assume V is large enough so that p ≤ 3. As discussed around (1.21), it suffices to
prove

lim
V→∞

V−1/4ΔV(1 + sV−1/2) = 0.(3.26)

By the definition of ΔV in (1.19) and by (3.16),

ΔV(p) ≤
V
∑
n=3

(V − 1
n − 1

)( p
eV

)
n−1

nn−1(A(n, p
eV

) + B(n, p
eV

)).(3.27)

We write the part of the upper bound (3.27) that contains A, B as Δ(A)
V , Δ(B)V

respectively.
We start with Δ(B)V and use Lemma 3.4 to bound B. Let z = p/(eV). Since n ≤

V and p ≤ 3 (for large V), we have nz ≤ p/e ≤ 3/e, so Lemma 3.4 applies and gives
B(n, z) ≲ V−2. Then, by comparing to χt

V in (1.14), we find that

Δ(B)V (p) ≲ V−2 χt
V(p).(3.28)

For Δ(A)
V , we claim that if both b ≥ 1 and V are sufficiently large, then

Δ(A)
V (p) ≤ CbV−1/4 χt

V(p) + Csb−1/2V 1/4 .(3.29)

Since we already know that V−1/4 χt
V converges, (3.29) implies that

0 ≤ lim sup
V→∞

ΔV

V 1/4 ≤ lim sup
V→∞

Δ(A)
V + Δ(B)V

V 1/4 ≤ Csb−1/2(3.30)

for all b sufficiently large. But ΔV does not depend on b, so by taking the limit b → ∞,
we obtain (3.26), as desired.

It remains to prove (3.29). We divide the sum defining Δ(A)
V into two parts

Δ(1)V , Δ(2)V , which sum over n in the intervals [3, b
√

V], (b
√

V , V] respectively.
For Δ(1)V , we have n ≤ bV 1/2 so n3/2z = n3/2 p/(eV) ≤ cbV−1/4, so we can apply

Lemma 3.3(i) to obtain A(n, z) ≤ C′b n3/2z ≤ CbV−1/4. With the formula for χt
V in

(1.14), this gives

Δ(1)V ≤ CbV−1/4
⌊b
√

V⌋
∑
n=3

(V − 1
n − 1

)( p
eV

)
n−1

nn−1 ≤ CbV−1/4 χt
V(p).(3.31)

This provides the first term on the right-hand side of (3.29).
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For Δ(2)V , we use z = p/(eV) and Lemma 3.3(ii) to see that

A(n, z) ≤ Cε exp{( 1
24

+ ε)e−1 t2 p2n3/V 2}.(3.32)

Since t =
√

3e, we have 1
24 e−1 t2 = 1

8 . By choosing ε small, and by using p = 1 +
sV−1/2 → 1 as V → ∞, for V sufficiently large (depending only on ε, s) we have

A(n, z) ≤ Cε exp{ 1
5

n3

V 2 }.(3.33)

For these values of V, we thus have

Δ(2)V (1 + sV−1/2) ≲
V
∑

n=⌈b
√

V⌉
(V − 1

n − 1
)( 1 + sV−1/2

eV
)

n−1

nn−1 exp{ 1
5

n3

V 2 }.(3.34)

We now follow the argument used for χ(3)V of trees in the paragraph containing
(2.11). Using n3

V 2 ≤ n2

V and Lemma 2.1 with γ = 1
2 and κ = 1

2 − 1
5 > 0, we find that if b is

sufficiently large then

Δ(2)V (1 + sV−1/2) ≲
V
∑

n=⌈b
√

V⌉
e−(

1
2−

1
5 )n

2/V 1√
n

e∣s∣n/
√

V ≤ C∣s∣b−1/2V 1/4 .(3.35)

This gives the second term on the right-hand side of (3.29) and concludes the
proof. ∎

Proof of Theorem 1.2 for connected subgraphs As noted at (1.20), it suffices to
prove that ΔV ,0(1 + sV−1/2) → 0 for all s ≥ 0. We write p = 1 + sV−1/2 and follow the
proof of Theorem 1.1. Compared to ΔV for the susceptibility, there is one less factor n
in ΔV ,0, so instead of (3.27) we now have

ΔV ,0(p) ≤
V
∑
n=3

(V − 1
n − 1

)( p
eV

)
n−1

nn−2(A(n, p
eV

) + B(n, p
eV

)).(3.36)

As in (3.28), the contribution from B obeys

Δ(B)V ,0(p) ≲ V−2G t
V ,0(p) ≲ V−2 ,(3.37)

so it vanishes in the limit. For Δ(1)V ,0(p), the same bound on A that was used in (3.31)
now gives Δ(1)V ,0(p) ≤ CbV−1/4GV ,0(p). For Δ(2)V ,0(p), in (3.35) we now have an extra
factor n in the denominator, so Lemma 2.1 with γ = 3

2 gives

Δ(2)V ,0(1 + sV−1/2) ≲
V
∑

n=⌈b
√

V⌉
e−(

1
2−

1
5 )n

2/V 1
n3/2 e∣s∣n/

√
V ≤ C∣s∣b−3/2V−1/4 .(3.38)

Altogether, we have ΔV ,0(p) ≲ V−1/4 → 0, and the proof is complete. ∎
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[17] S. Janson, T. Łuczak, and A. Ruciński, Random graphs. John Wiley and Sons, New York, NY, 2000.
[18] S. Janson and J. Spencer, A point process describing the component sizes in the critical window of the

random graph evolution. Combin. Probab. Comput. 16(2007), 631–658.
[19] N. Kawamoto and A. Sakai, Spread-out limit of the critical points for lattice trees and lattice animals

in dimensions d > 8. Combin. Probab. Comput. 33(2024), 238–269.
[20] Y. Liu, R. Panis, and G. Slade, The torus plateau for the high-dimensional Ising model. Commun.

Math. Phys. 406(2025), article 159.
[21] Y. Liu, J. Park, and G. Slade, Universal finite-size scaling in high-dimensional critical phenomena.

Preprint, 2024. https://arxiv.org/abs/pdf/2412.08814.
[22] Y. Liu and G. Slade, Near-critical and finite-size scaling for high-dimensional lattice trees and

animals. J. Stat. Phys. 192(2025), article 23.
[23] Y. Mejía Miranda and G. Slade, Expansion in high dimension for the growth constants of lattice trees

and lattice animals. Combin. Probab. Comput. 22(2013), 527–565.
[24] E. Michta, J. Park, and G. Slade, Boundary conditions and universal finite-size scaling for the

hierarchical ∣φ∣4 model in dimensions 4 and higher. Commun. Pure Appl. Math. (2025).
https://doi.org/10.1002/cpa.22256.

[25] F. W. J. Olver, Asymptotics and special functions, CRC Press, New York, NY, 1997.
[26] J. Park and G. Slade, Boundary conditions and the two-point function plateau for the hierarchical

∣φ∣4 model in dimensions 4 and higher. Ann. Henri Poincaré (2025).
https://doi.org/10.1007/s00023-025-01566-y.

[27] G. Slade, Self-avoiding walk on the complete graph. J. Math. Soc. Japan 72(2020), 1189–1200.
[28] J. Spencer, Enumerating graphs and Brownian motion. Commun. Pure Appl. Math. 50(1997),

291–294.
[29] E. M. Wright, The number of connected sparsely edged graphs. J. Graph Theory 1(1977), 317–330.

Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
e-mail: yliu135@math.ubc.ca slade@math.ubc.ca

https://doi.org/10.4153/S0008439525100763 Published online by Cambridge University Press

https://arxiv.org/abs/pdf/2412.08814
https://doi.org/10.1002/cpa.22256
https://doi.org/10.1007/s00023-025-01566-y
mailto:yliu135@math.ubc.ca
mailto:slade@math.ubc.ca
https://doi.org/10.4153/S0008439525100763

	1 Main results
	1.1 Results
	1.2 Method of proof
	1.2.1 Trees
	1.2.2 Connected subgraphs

	1.3 Motivation

	2 Proof for trees
	3 Proof for connected subgraphs
	3.1 Bound on C(n,n+k)
	3.2 Bound on the surplus generating function
	3.3 Proof for connected subgraphs


