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Abstract
A landmark result of Erdős, Ginzburg, and Ziv (EGZ) states that any sequence of 2𝑛 − 1 elements in Z/𝑛
contains a zero-sum subsequence of length n. While algebraic techniques have predominated in deriving many
deep generalizations of this theorem over the past sixty years, here we introduce topological approaches to zero-
sum problems which have proven fruitful in other combinatorial contexts. Our main result is a topological criterion
for determining when any Z/𝑛-coloring of an n-uniform hypergraph contains a zero-sum hyperedge. In addition
to applications for Kneser hypergraphs, for complete hypergraphs our methods recover Olson’s generalization of
the EGZ theorem for arbitrary finite groups. Furthermore, we give a fractional generalization of the EGZ theorem
with applications to balanced set families and provide a constrained EGZ theorem which imposes combinatorial
restrictions on zero-sum sequences in the original result.
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2 F. Frick et al.

1. Introduction and statement of results

The classical Erdős–Ginzburg–Ziv (EGZ) theorem [19] states that any sequence 𝑎1, . . . , 𝑎2𝑛−1 of 2𝑛−1
elements in Z/𝑛 contains a subsequence 𝑎𝑖1 , . . . , 𝑎𝑖𝑛 with

∑
𝑗 𝑎𝑖 𝑗 = 0. Over the last sixty years, this result

has inspired numerous generalizations and variants, collectively known as zero-sum Ramsey theory, a
general viewpoint that seems to originate from a paper of Bialostocki and Dierker [7]; see [15, 21] for
surveys. Algebraic techniques such as the Cauchy–Davenport and Chevalley–Warning theorems have
proven to be particularly fruitful in deriving results of this type. Multiple different proofs of the original
EGZ theorem are known (see e.g., [2]); these typically proceed by first establishing the result for n a
prime, from which the general case follows by a simple induction on prime divisors.

Here we introduce equivariant topological methods to the study of zero-sum Ramsey problems.
Such techniques have proven to be quite powerful in other combinatorial contexts, for example in
Tverberg-type intersection theory (see, e.g., [12, 37, 11]) and in establishing the chromatic numbers of
Kneser graphs [29] and hypergraphs [3]. We refer the reader to Matoušek [30], de Longueville [28],
and Kozlov [25] for the basics of topological combinatorics. We remark that [36] presents an unrelated
geometric approach to zero-sum Ramsey results and [24] develops topological methods for a problem in
arithmetic combinatorics. Moreover, known results already show that the original EGZ theorem can be
seen as a consequence of the colorful Carathéodory theorem [4], a central result in discrete geometry,
since the latter implies a result of Drisko [18] on rainbow matchings in bipartite graphs from which [1]
the EGZ theorem quickly follows.

In what follows, we give three topological proofs of the Erdős–Ginzburg–Ziv theorem that generalize
in three distinct directions. In particular, when 𝑛 = 𝑝 is prime we

(i) establish a topological criterion for when any Z/𝑝-coloring of a p-uniform hypergraph admits a
hyperedge whose labels sum to zero, by which the Erdős–Ginzburg–Ziv theorem is recovered in
the case of a complete hypergraph;

(ii) provide a fractional generalization of the Erdős–Ginzburg–Ziv theorem; and
(iii) prove a constrained version of the Erdős–Ginzburg–Ziv theorem which imposes combinatorial

restrictions on zero-sum sequences in the original result.

We now state these generalizations and collect some consequences.

1.1. Hypergraph coloring generalizations of EGZ

Let H be an n-uniform hypergraph with vertex set V, that is, a collection of n-element subsets of V.
AZ/𝑛-coloring of H is a map 𝑐 : 𝑉 → Z/𝑛, and a hyperedge 𝑒 ∈ 𝐻 is said to be zero-sum with respect to
c provided

∑
𝑣 ∈𝑒 𝑐(𝑣) = 0. Thus an equivalent formulation of the EGZ theorem is that any Z/𝑛-coloring

of the complete n-uniform hypergraph on [2𝑛 − 1] = {1, 2, . . . , 2𝑛 − 1} has a zero-sum hyperedge.
When 𝑛 = 𝑝 is prime, our topological criterion for when a given hypergraph H has a zero-sum

hyperedge for any Z/𝑝-coloring is stated in terms of continuous maps 𝑓 : 𝐵(𝐻) → 𝑆2𝑝−3 from the
box complex 𝐵(𝐻) of H to a (2𝑝 − 3)-dimensional sphere. Box complexes are simplicial complexes
which have been instrumental in establishing lower bounds for the chromatic number 𝜒(𝐻) of uniform
hypergraphs; see Section 2.1 for the precise definition. As with any simplicial complex, one may think
of 𝐵(𝐻) as a topological space glued from simplices, which in this case carries a free Z/𝑝-action.

Denote the d-dimensional sphere by 𝑆𝑑 . Any p-th root of unity determines a Z/𝑝-action on C � R2

given by multiplication. Considering all nontrivial roots of unity, one thereby has a free Z/𝑝-action on
𝑆2𝑝−3 ⊂ R2𝑝−2 given by the diagonal action on R2𝑝−2 � (R2) 𝑝−1. We recall that a continuous map
𝑓 : 𝑋 → 𝑌 between two spaces X and Y equipped with a Z/𝑝-action is equivariant if it commutes with
the action.

We may now state our first main result:

Theorem 1.1. Let 𝑝 ≥ 2 be a prime, let H be a p-uniform hypergraph, and suppose that there is no Z/𝑝-
equivariant map 𝐵(𝐻) → 𝑆2𝑝−3. Then for any Z/𝑝-coloring of H there is a zero-sum hyperedge in H.
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An elementary Borsuk–Ulam type theorem of Dold [16] applies to show that the box complex of
the complete p-uniform hypergraph on 2𝑝 − 1 vertices does not admit a Z/𝑝-equivariant map to 𝑆2𝑝−3.
Thus Theorem 1.1 recovers the Erdős–Ginzburg–Ziv theorem when p is prime.

If one replaces continuous maps with linear ones, then the box complex construction allows for the
consideration of colorings of n-uniform hypergraphs by any group of order n (see Theorem 2.5). By
restricting to complete uniform hypergraphs and now applying the “linear Borsuk–Ulam theorem” of
Sarkaria [33], one obtains an extension of the EGZ theorem to arbitrary finite groups due to Olson [32]
as an immediate consequence:

Theorem 1.2. Let 𝑎1, . . . , 𝑎2𝑛−1 be a sequence of elements of a group G of order n. Then there are n
distinct indices 𝑖1, . . . , 𝑖𝑛 such that 𝑎𝑖1 · · · 𝑎𝑖𝑛 = 1, where 1 is the identity element of G.

It follows from a result of Kříž that any hypergraph satisfying the criterion of Theorem 1.1 must
have chromatic number at least three [27, Theorem 2.4]. Such a lower bound for the chromatic number
does not in itself guarantee a zero-sum hyperedge; see Remark 2.3 for a simple counterexample.
Nonetheless, in the special case of Kneser hypergraphs, one can use Theorem 1.1 to give a purely
combinatorial criterion for the existence of zero-sum hyperedges. Recall that for a set family F on
ground set [𝑚] = {1, 2, . . . , 𝑚}, the n-uniform Kneser hypergraph KG𝑛 (F) has F as its vertex set
and 𝐴1, . . . , 𝐴𝑛 ∈ F form a hyperedge if the 𝐴𝑖 are pairwise disjoint. The n-colorability defect cd𝑛 (F)

of F , introduced by Dolnikov [17] for 𝑛 = 2 and in general by Kříž [27], is defined by

cd𝑛 (F) =

𝑚 − max

{
𝑛∑
𝑖=1

|𝐴𝑖 | | 𝐴1, . . . , 𝐴𝑛 ⊂ [𝑚] pairwise disjoint and 𝐹 ⊄ 𝐴𝑖 for all 𝐹 ∈ F and all 𝑖 ∈ [𝑛]

}
.

Kříž proved the fundamental inequality (𝑛 − 1)𝜒(KG𝑛 (F)) ≥ cd𝑛 (F) relating the n-colorability
defect and the chromatic number of the Kneser hypergraph, while for Z/𝑛-colorings Theorem 1.1 will
imply the following:

Theorem 1.3. Let 𝑛 ≥ 2 be an integer, and let F be a set system with cd𝑛 (F) ≥ 2𝑛 − 1. Then any
Z/𝑛-coloring of KG𝑛 (F) has a zero-sum hyperedge.

As a special case of Theorem 1.3, let 𝑘 ≥ 1 be an integer and let m be an integer satisfying
𝑚 ≥ 𝑛(𝑘 + 1) − 1. Considering the set system F consisting of all k-element subsets of [𝑚], it is easily
seen that cd𝑛 (F) = 𝑚 − 𝑛(𝑘 − 1) ≥ 2𝑛 − 1. Thus Theorem 1.3 applied to KG𝑛 (F) recovers the fact
(see [6, 15]) that F contains a zero-sum matching of size n for any Z/𝑛-coloring of the hyperedges of
F . In particular, the Erdős–Ginzburg–Ziv theorem is recovered by letting 𝑘 = 1.

1.2. Fractional and constrained extensions of EGZ

Our remaining results have for their starting point the characterization of zero-sum sequences in Z/𝑛
originally due to Marshall Hall [22]. We will give a topological proof of this fact when n is prime; see
Section 4.2.

Theorem 1.4. A sequence 𝑎1, . . . , 𝑎𝑛 ∈ Z/𝑛 is zero-sum if and only if there are permutations
{𝑏1, . . . , 𝑏𝑛} and {𝑐1, . . . , 𝑐𝑛} of Z/𝑛 with 𝑎𝑖 = 𝑏𝑖 − 𝑐𝑖 for all 𝑖 ∈ [𝑛].

Thus an equivalent reformulation of the Erdős–Ginzburg–Ziv theorem is that any sequence in Z/𝑛 of
length 2𝑛−1 contains a subsequence of length n that is a difference of two permutations. When 𝑛 = 𝑝 is
prime, we will strengthen this reformulation of the EGZ theorem in two distinct ways. First, we replace
sequences of elements in Z/𝑝 with sequences of arbitrary probability measures on Z/𝑝. Secondly, we
give additional constraints for those 𝑎𝑖 which are the difference of two permutations.
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Let 𝑗 ∈ Z/𝑝. For any subset 𝐴 ⊂ Z/𝑝 we denote by 𝐴+ 𝑗 the shifted set {𝑎+ 𝑗 | 𝑎 ∈ 𝐴}, and likewise
for any probability measure 𝜇 on Z/𝑝, we denote by 𝜇 + 𝑗 the shifted probability measure defined by
(𝜇 + 𝑗) (𝐴) = 𝜇(𝐴 − 𝑗) for 𝐴 ⊂ Z/𝑝. Our second main result is as follows:

Theorem 1.5. Let 𝜇1, . . . , 𝜇2𝑝−1 be a sequence of probability measures on Z/𝑝. Then there is an
injective map 𝜋 : Z/𝑝 → [2𝑝 − 1] and convex coefficients 𝜆𝑖 ≥ 0, 𝑖 ∈ Z/𝑝, with

∑
𝑖∈Z𝑝 𝜆𝑖 = 1 such that∑

𝑖∈Z/𝑝 𝜆𝑖 (𝜇𝜋 (𝑖) + 𝑖) is the uniform probability measure on Z/𝑝.

If the 𝜇𝑖 are Dirac measures concentrated at a single 𝑎𝑖 ∈ Z/𝑝, then realizing the uniform probability
measure as a convex combination of the 𝜇𝜋 (𝑖) + 𝑖 requires that the 𝑎𝜋 (𝑖) − 𝑖 are pairwise distinct elements
of Z/𝑝 and so Theorem 1.5 recovers the Erdős–Ginzburg–Ziv theorem. In the special case where each
𝜇𝑖 is the uniform measure on a subset 𝐴𝑖 ⊂ Z/𝑝, we derive a corollary for balanced set systems which
specializes to the EGZ theorem in the case that all the 𝐴𝑖 are singletons. Recall that a family of sets F
is balanced if it admits a perfect fractional matching, that is, if there is a function 𝑚 : F → [0, 1] such
that

∑
𝐴∈F |𝑣 ∈𝐴𝑚(𝐴) = 1 for every v in the ground set of F . One then has the following:

Corollary 1.6. Let 𝐴1, . . . , 𝐴2𝑝−1 ⊂ Z/𝑝 be a sequence of nonempty subsets of Z/𝑝. Then there is an
injective map 𝜋 : Z/𝑝 → [2𝑝 − 1] such that 𝐴𝜋 (𝑖) + 𝑖, 𝑖 ∈ Z/𝑝, is a balanced collection of subsets.

By Theorem 1.4, the Erdős–Ginzburg–Ziv theorem is equivalent to the statement that for any sequence
𝑎1, . . . , 𝑎2𝑝−1 of elements in Z/𝑝 there is a subsequence 𝑎𝑖1 , . . . , 𝑎𝑖𝑝 of length p and pairwise distinct
elements 𝑏1, . . . , 𝑏𝑝 ∈ Z/𝑝 such that {𝑎𝑖1 +𝑏1, . . . , 𝑎𝑖𝑝 +𝑏𝑝} = Z/𝑝. Lastly, we will use our topological
approach to zero-sum problems to prove restrictions on the permutation 𝑏1, . . . , 𝑏𝑝:

Theorem 1.7. Let 𝑎1, . . . , 𝑎2𝑝−1 be a sequence in Z/𝑝 and fix 𝑑1, . . . , 𝑑𝑝−1 ∈ Z/𝑝 \ {0}. Then there
is a subsequence 𝑎𝑖1 , . . . , 𝑎𝑖𝑝 , 𝑖1 < 𝑖2 < · · · < 𝑖𝑝 , and pairwise distinct 𝑏1, . . . , 𝑏𝑝 ∈ Z/𝑝 such that
{𝑎𝑖1 + 𝑏1, . . . , 𝑎𝑖𝑝 + 𝑏𝑝} = Z/𝑝 with the following additional constraint: If for any 𝑗 ∈ [𝑝 − 1] we have
that 𝑖 𝑗 is odd and 𝑖 𝑗+1 = 𝑖 𝑗 + 1, then we may prescribe that 𝑏 𝑗+1 = 𝑏 𝑗 + 𝑑 𝑗 .

2. A box complex criterion for zero-sums

2.1. Box complexes

We give the definition of the box complex of an n-uniform hypergraph in terms of the “deleted join”
construction commonly used in Tverberg-type intersection theory.

Given a finite simplicial complex Σ and any integer n, its n-fold join Σ∗𝑛 is the simplicial complex

Σ∗𝑛 = {𝐴1 � · · · � 𝐴𝑛 | 𝐴1, . . . , 𝐴𝑛 ∈ Σ},

where 𝐴1 � · · · � 𝐴𝑛 = (𝐴1 × {1}) ∪ · · · ∪ (𝐴𝑛 × {𝑛}) denotes the disjoint union of the faces 𝐴1, . . . , 𝐴𝑛
of Σ. The subcomplex

Σ∗𝑛
Δ = {𝐴1 � · · · � 𝐴𝑛 ∈ Σ∗𝑛 | 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for all 𝑖 ≠ 𝑗}

consisting of all n pairwise disjoint faces of Σ (possibly including empty faces) is called the deleted
n-fold join of Σ. The geometric realization of Σ∗𝑛

Δ consists of all formal convex combinations
∑𝑛

𝑖=1 𝜆𝑖𝑥𝑖
where each 𝑥𝑖 lies in the simplex determined by 𝐴𝑖 for all 𝑖 ∈ [𝑛]. If one identifies [𝑛] with a group G
of order n, then left multiplication by elements of the group determines a free G-action on Σ∗𝑛

Δ which
permutes the join factors of the 𝐴1 � · · · � 𝐴𝑛.

Now let H be an n-uniform hypergraph with vertex set V of size m and let Δ𝑚−1 be the simplex
determined by V; that is, as an abstract simplicial complex Δ𝑚−1 contains all subsets of V, whereas its
geometric realization is the standard regular simplex

Δ𝑚−1 = {𝑥 ∈ R𝑉 | 𝑥𝑣 ≥ 0 for all 𝑣 ∈ 𝑉,
∑
𝑣 ∈𝑉

𝑥𝑣 = 1}.
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We will use the notation Δ𝑚−1 for both the abstract simplicial complex and its geometric realization.
The box complex 𝐵(𝐻) is then the subcomplex of (Δ𝑚−1)

∗𝑛
Δ consisting of all 𝐴1 � · · · � 𝐴𝑛 ∈ (Δ𝑚−1)

∗𝑛
Δ

such that {𝑎1, . . . , 𝑎𝑛} ∈ 𝐻 for all 𝑎1 ∈ 𝐴1, . . . , 𝑎𝑛 ∈ 𝐴𝑛. Thus for nonempty 𝐴𝑖 ⊂ 𝑉 we have that
𝐴1 � · · · � 𝐴𝑛 ∈ 𝐵(𝐻) if and only if the 𝐴𝑖 are pairwise disjoint and H contains the complete n-partite
hypergraph determined by the 𝐴𝑖 . (If at least one of the 𝐴 𝑗 is empty then 𝐴1�· · ·�𝐴𝑛 ∈ 𝐵(𝐻) whenever
the 𝐴𝑖 are pairwise disjoint independent of the hypergraph H.) For any finite group G of order n, one
has a free G-action on 𝐵(𝐻) by restricting the G-action on (Δ𝑚−1)

∗𝑛
Δ . As an important special case,

observe that 𝐵(𝐻) = (Δ𝑚−1)
∗𝑛
Δ if H is the complete n-uniform hypergraph on [𝑚], since in that case H

contains any n-element subset of [𝑚] as a hyperedge.

2.2. Proof of Theorem 1.1

Our proof of Theorem 1.1 relies on the following lemma, a simple consequence of Hall’s matching
criterion for bipartite graphs (see, e.g., [23], which is used in a standard proof of the Birkhoff–von
Neumann theorem [8]).

Lemma 2.1. Let 𝐴 = (𝑎𝑖 𝑗 )𝑖, 𝑗 ∈ R𝑛×𝑛 be a doubly stochastic matrix, that is, all entries 𝑎𝑖 𝑗 ≥ 0 are
nonnegative and the entries of each column and of each row sum to 1. Then there is a permutation
𝜋 : [𝑛] → [𝑛] such that 𝑎𝑖 𝜋 (𝑖) > 0 for all 𝑖 ∈ [𝑛].

A reformulation of this yields a characterization of those subsets of vertices of the product of two
regular (𝑛 − 1)-simplices Δ𝑛−1 × Δ𝑛−1 whose convex hull captures the barycenter of Δ𝑛−1 × Δ𝑛−1.

Lemma 2.2. Let 𝑥0 ∈ Δ𝑛−1×Δ𝑛−1 denote the barycenter of the product of two regular (𝑛−1)-simplices.
Identify the vertex set of Δ𝑛−1 × Δ𝑛−1 with [𝑛] × [𝑛]. Then for 𝐴 ⊂ [𝑛] × [𝑛] we have that 𝑥0 ∈ conv 𝐴
if and only if {(𝑖, 𝜋(𝑖)) | 𝑖 ∈ [𝑛]} ⊂ 𝐴 for some permutation 𝜋 : [𝑛] → [𝑛].

Proof. The vertex set of Δ𝑛−1 × Δ𝑛−1 consists of all pairs (𝑒𝑖 , 𝑒 𝑗 ) of standard basis vectors in R𝑛. The
barycenter 𝑥0 ofΔ𝑛−1×Δ𝑛−1 is 𝑥0 = ( 1

𝑛 , . . . ,
1
𝑛 ) ∈ R

𝑛×R𝑛. Let
∑

𝑖, 𝑗 𝜆𝑖, 𝑗 (𝑒𝑖 , 𝑒 𝑗 ) be a convex combination
of pairs of standard basis vectors (𝑒𝑖 , 𝑒 𝑗 ). Associate the matrix𝑀 = (𝜆𝑖, 𝑗 )𝑖, 𝑗 to this convex combination.
Then 𝑥0 =

∑
𝑖, 𝑗 𝜆𝑖, 𝑗 (𝑒𝑖 , 𝑒 𝑗 ) if and only if 𝑛 · 𝑀 is doubly stochastic. If A is a set of pairs of standard

basis vectors (𝑒𝑖 , 𝑒 𝑗 ) with 𝑥0 ∈ conv 𝐴 then by Lemma 2.1 there is permutation 𝜋 : [𝑛] → [𝑛] such that
𝜆𝑖, 𝜋 (𝑖) > 0 for all 𝑖 ∈ [𝑛]. In particular, the set A contains (𝑒𝑖 , 𝑒𝜋 (𝑖) ) for all 𝑖 ∈ [𝑛]. Conversely, if A
contains (𝑒𝑖 , 𝑒𝜋 (𝑖) ) for all 𝑖 ∈ [𝑛] for some permutation 𝜋 : [𝑛] → [𝑛], then 1

𝑛

∑𝑛
𝑖=1(𝑒𝑖 , 𝑒𝜋 (𝑖) ) = 𝑥0. �

Proof of Theorem 1.1. Denote the vertex set of H by V, and let 𝑐 : 𝑉 → Z/𝑝 be a Z/𝑝-coloring without
zero-sum hyperedge. We will construct a Z/𝑝-equivariant map 𝐵(𝐻) → 𝑆2𝑝−3. Recall that the vertex
set of 𝐵(𝐻) consists of p disjoint copies of V, which we will represent as 𝑉 × Z/𝑝. Identify the vertex
set of Δ 𝑝−1 ×Δ 𝑝−1 with Z/𝑝×Z/𝑝. The diagonal action of Z/𝑝 on Z/𝑝×Z/𝑝 extends to Δ 𝑝−1 ×Δ 𝑝−1.
Define a map

𝑓 : 𝐵(𝐻) → Δ 𝑝−1 × Δ 𝑝−1 ⊂ R𝑝 × R𝑝

on vertices of 𝐵(𝐻) by 𝑓 (𝑣, 𝑔) = (𝑔, 𝑐(𝑣) + 𝑔) and extend linearly onto the faces of 𝐵(𝐻). The map f
is equivariant: 𝑓 (𝑣, 𝑔 + ℎ) = (𝑔 + ℎ, 𝑔 + 𝑐(𝑣) + ℎ), which is g acting diagonally on (ℎ, 𝑐(𝑣) + ℎ).

We claim that the image of f misses the barycenter 𝑥0 of Δ 𝑝−1×Δ 𝑝−1. Otherwise by Lemma 2.2 there
would be a permutation 𝜋 : Z/𝑝 → Z/𝑝 and a face 𝐴0�· · ·�𝐴𝑝−1 of 𝐵(𝐻) such that 𝑓 (𝐴0�· · ·�𝐴𝑝−1)
contains the vertices (𝑔, 𝜋(𝑔)) for all 𝑔 ∈ Z/𝑝. Then for every 𝑔 ∈ Z/𝑝 there is a 𝑣𝑔 ∈ 𝐴𝑔 with 𝑓 (𝑣𝑔, 𝑔) =
(𝑔, 𝜋(𝑔)), and so 𝜋(𝑔) = 𝑐(𝑣𝑔) + 𝑔. Then

∑
𝑔∈Z/𝑝 𝑔 =

∑
𝑔∈Z/𝑝 𝜋(𝑔) =

∑
𝑔∈Z/𝑝 𝑐(𝑣𝑔) +

∑
𝑔∈Z/𝑝 𝑔. This

implies
∑

𝑔∈Z/𝑝 𝑐(𝑣𝑔) = 0. By definition of box complex {𝑣𝑔 | 𝑔 ∈ Z/𝑝} ∈ 𝐻, in contradiction to c
having no zero-sum hyperedges. Since f misses the barycenter of Δ 𝑝−1 × Δ 𝑝−1 it equivariantly retracts
to the boundary of Δ 𝑝−1 × Δ 𝑝−1, which is 𝑆2𝑝−3. �

https://doi.org/10.1017/fms.2025.10125 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10125


6 F. Frick et al.

Remark 2.3. For p-uniform hypergraphs H, it follows from work of Kříž [27, Theorems 2.2 and 2.6]
that 𝜒(𝐻) ≥ 𝑑+1

𝑝−1 , where d is the minimum dimension of a sphere 𝑆𝑑 equipped with a free Z/𝑝-action
for which there exists a continuous Z/𝑝-equivariant map 𝐵(𝐻) → 𝑆𝑑 . Thus the condition 𝑑 ≥ 2𝑝 − 2
given by Theorem 1.1 coincides with Kříž’s criterion for 𝜒(𝐻) ≥ 3. However, the topological condition
ensuring a zero-sum hyperedge given by Theorem 1.1 is stronger than the combinatorial condition
that the hypergraph is not two-colorable. As a simple example, let 𝑝 = 3 and let H be the 3-uniform
hypergraph whose vertex set is 𝑉 = {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and whose hyperedges consist of all
subsets of three vertices from V where exactly two vertices come from either 𝐴 = {𝑣1, 𝑣2, 𝑣3} or
𝐵 = {𝑣4, 𝑣5, 𝑣6}. It is easy to see that 𝜒(𝐻) = 3, but there is no zero-sum hyperedge corresponding to
the coloring 𝑐 : 𝑉 → Z/3 defined by 𝑐(𝑣𝑖) = 0 for 𝑖 ∈ {1, 2, 3}, 𝑐(𝑣𝑖) = 1 for 𝑖 ∈ {4, 5, 6}, and 𝑐(𝑣0) = 2.
Remark 2.4. Let G be a graph with k edges. Following Caro’s survey on zero-sum Ramsey theory [15],
we denote by 𝑅(𝐺, 2) the Ramsey number of G, that is the smallest n such that in any 2-coloring of
the edges of the complete graph 𝐾𝑛, there is a monochromatic copy of G. We let 𝐻𝑛 be the k-uniform
hypergraph whose vertex set consists of the edges of 𝐾𝑛, with hyperedges for any k edges of 𝐾𝑛 that form
a copy of G. Thus 𝑅(𝐺, 2) is the smallest n such that 𝐻𝑛 has chromatic number at least 3. Now denote
by 𝑅(𝐺,Z/𝑘) the zero-sum Ramsey number of G, that is, the smallest n such that every Z/𝑘-coloring
of 𝐻𝑛 has a zero-sum hyperedge. It is known that 𝑅(𝐺,Z/𝑘) ≥ 𝑅(𝐺, 2), and that this inequality is
often strict as in Remark 2.3 above. Clearly, 𝑅(𝐺,Z/𝑘) ≤ 𝑅(𝐺, 𝑘), where 𝑅(𝐺, 𝑘) is the smallest n
with 𝜒(𝐻𝑛) > 𝑘 . While it is an open problem whether the asymptotics of 𝑅(𝐺,Z/𝑘) are aligned more
closely with 𝑅(𝐺, 2) or with 𝑅(𝐺, 𝑘), Theorem 1.1 does show that the topological lower bounds on
𝑅(𝐺,Z/𝑘) and 𝑅(𝐺, 2) are identical.

2.3. Colorings by an arbitrary group

We will now extend the arguments of the previous subsection to arbitrary finite groups, starting with
the box complex construction. Let H be an n-uniform hypergraph on vertex set V, and let G be any
group of order n (written multiplicatively, and with identity element 1). As before, a G-coloring of the
hypergraph is a map 𝑐 : 𝑉 → 𝐺, and we now say that a hyperedge e is zero-sum if there is some ordering
𝑒 = {𝑣1, . . . , 𝑣𝑛} of its vertices such that Π𝑛

𝑖=1𝑐(𝑣𝑖) = 1.
Consider the group ring C[𝐺] = {

∑
𝑔∈𝐺 𝑧𝑔 𝑔 | 𝑧𝑔 ∈ C} of the group G, on which G acts by linearly

extending the action on G afforded by left multiplication. The subrepresentation𝑈C [𝐺] = {
∑

𝑔∈𝐺 𝑧𝑔 𝑔 ∈

C[𝐺] |
∑

𝑔∈𝐺 𝑧𝑔 = 0} is G-invariant and has the origin as the only point that is fixed by every element
of the group.
Theorem 2.5. Let 𝑛 ≥ 2 be an integer, let H be an n-uniform hypergraph, and let G be group of order n.
If every equivariant linear map 𝐵(𝐻) → 𝑈C [𝐺] has a zero, then any G-coloring of H admits a zero-sum
hyperedge.

We briefly defer the proof of Theorem 2.5, preferring instead to first derive Theorem 1.2 as an
immediate corollary. As with the EGZ theorem, the latter has the equivalent reformulation that any
G-coloring of the complete n-uniform hypergraph H on [2𝑛 − 1] has a zero-sum hyperedge. We shall
need the following result of Sarkaria [33]:
Theorem 2.6. Let 𝑚, 𝑛 ≥ 2 be integers and let U be a real (𝑚 − 1)-dimensional representation of a
group G of order n. If the origin is the unique element of U that is fixed by the action, then any linear
G-equivariant map 𝑓 : (Δ𝑚−1)

∗𝑛
Δ → 𝑈 has a zero.

Proof of Theorem 1.2. Let H be the complete n-uniform hypergraph on [2𝑛 − 1], which we have seen
is precisely the deleted n-fold join of the (2𝑛 − 2)-dimensional simplex. By Theorem 2.6, any linear
G-equivariant map 𝑓 : 𝐵(𝐻) → 𝑈C [𝐺] must have a zero, and so by Theorem 2.5 any G-coloring of H
results in a zero-sum hyperedge. �

To prove Theorem 2.5, we will need the following elementary fact.
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Proposition 2.7. Let G be any group, let 𝑆 = {𝑔1, . . . , 𝑔𝑚} = {ℎ1, . . . , ℎ𝑚} be two orderings of a subset
of order m, and let 𝑥𝑖 := 𝑔−1

𝑖 ℎ𝑖 for all 𝑖 ∈ [𝑚]. Then there exists a permutation 𝜋 of [𝑚] such that∏𝑚
𝑖=1 𝑥𝜋 (𝑖) = 1.

Proof. We proceed by induction, the case 𝑚 = 1 being immediate. For 𝑚 ≥ 2, consider 𝑥1 = 𝑔−1
1 ℎ1. If

ℎ1 = 𝑔1, then we let 𝑆′ = {𝑔2, . . . , 𝑔𝑚} = {ℎ2, . . . , ℎ𝑚} and we are finished by induction. Supposing
ℎ1 ≠ 𝑔1, consider the unique 𝑗 ≠ 1 such that 𝑔 𝑗 = ℎ1. Without loss of generality, we may suppose 𝑔2 = ℎ1.
Thus 𝑥1𝑥2 = 𝑔−1

1 ℎ2. If 𝑔1 = ℎ2, then we let 𝑆′′ = {𝑔3, . . . , 𝑔𝑚} = {ℎ3, . . . , ℎ𝑚} and again we are done by
induction. If not, we consider the unique 𝑗 ≠ 1, 2 such that 𝑔 𝑗 = ℎ2. Again without loss of generality we
may suppose 𝑗 = 3, in which case we have 𝑥1𝑥2𝑥3 = 𝑔−1

1 ℎ3. Continuing in this fashion, we will eventually
be done by induction or else, without loss of generality, we have that ℎ1 = 𝑔2, ℎ2 = 𝑔3, . . . , ℎ𝑚−2 = 𝑔𝑚−1
and ℎ𝑚 = 𝑔1. Thus 𝑔𝑚 = ℎ𝑚−1, so 𝑥1 · · · 𝑥𝑚−1𝑥𝑚 = 𝑔−1

1 ℎ𝑚−1𝑔
−1
𝑚 ℎ𝑚 = 1. �

We now prove Theorem 2.5.

Proof of Theorem 2.5. Let V denote the vertex set of H and suppose that 𝑐 : 𝑉 → 𝐺 is a G-coloring of
H without a zero-sum hyperedge. We will show there must exist a nonvanishing linear equivariant map
𝐵(𝐻) → 𝑈C [𝐺], where now we view 𝐵(𝐻) as a simplicial complex on 𝑉 × 𝐺. To that end, let Z be
the set of all permutations of G and let Y denote the simplicial complex on 𝐺 ×𝐺 defined by specifying
that 𝜎 ∈ 𝑌 for 𝜎 ⊆ 𝐺 ×𝐺 if and only if 𝜎 does not contain the graph Γ(𝑧) = {(𝑔, 𝑧(𝑔)) | 𝑔 ∈ 𝐺} of any
𝑧 ∈ Z .

We now define a simplicial map 𝑓 : 𝐵(𝐻) → 𝑌 by setting 𝑓 (𝑣, 𝑔) = (𝑔, 𝑔𝑐(𝑣)) for (𝑣, 𝑔) ∈ 𝑉 × 𝐺
and extending simplicially to the faces of 𝐵(𝐻). First, we verify that our map is well-defined. Letting
𝜎 ∈ 𝐵(𝐻), we show that 𝑓 (𝜎) ⊆ 𝐺 × 𝐺 does not contain the graph Γ(𝑧) of any 𝑧 ∈ Z . So let
𝜎 = ∪𝑔∈𝐺 (𝐴𝑔 × {𝑔}) be a face of 𝐵(𝐻) and let 𝑧 : 𝐺 → 𝐺 be a permutation of G. By definition, any
set {𝑎𝑔 | 𝑔 ∈ 𝐺} with 𝑎𝑔 ∈ 𝐴𝑔 for all 𝑔 ∈ 𝐺 is a hyperedge of H. If Γ(𝑧) ⊂ 𝑓 (𝜎), then there would be
some collection {𝑎𝑔}𝑔∈𝐺 with 𝑎𝑔 ∈ 𝐴𝑔 for all 𝑔 ∈ 𝐺 such that {𝑔𝑐(𝑎𝑔) : 𝑔 ∈ 𝐺} = {𝑧(𝑔) : 𝑖 ∈ 𝐺}, and
therefore {𝑔𝑐(𝑎𝑔) : 𝑔 ∈ 𝐺} = 𝐺. Fixing an ordering 𝐺 = {𝑔1, . . . , 𝑔𝑛} and applying Proposition 2.7 to
𝑆 = 𝐺 and ℎ𝑖 = 𝑔𝑖𝑐(𝑎𝑔𝑖 ), we see there is some permutation 𝜓 of [𝑛] such that Π𝑛

𝑖=1𝑐(𝑎𝑔𝜓 (𝑖)
) = 1. This

contradicts the assumption that H does not contain a zero-sum hyperedge, so 𝜎 does not contain the
graph of any 𝑧 ∈ Z and the map f is well-defined.

As with the box complex 𝐵(𝐻), the simplicial complex Y has a natural G-action arising from group
multiplication, namely by letting G act diagonally on the vertex set𝐺 ×𝐺 of Y and extending this action
to each face of Y. It is then easily observed that the simplicial map 𝑓 : 𝐵(𝐻) → 𝑌 is equivariant with
respect to the described actions.

We will now construct a never-vanishing linear G-equivariant map 𝑌 → 𝑈C [𝐺]. Composition then
gives a never-vanishing linear equivariant map 𝐵(𝐻) → 𝑌 → 𝑈C [𝐺], completing the proof. To that
end, first consider the real group ring R[𝐺] = {

∑
𝑔∈𝐺 𝑟𝑔 𝑔 | 𝑟𝑔 ∈ R} and let ℎ : 𝑌 → R[𝐺] × R[𝐺] be

the map that is defined on vertices (𝑔𝑖 , 𝑔ℓ) ∈ 𝐺 × 𝐺 by ℎ(𝑔𝑖 , 𝑔ℓ) = (𝑔𝑖 , 𝑔ℓ) and otherwise interpolates
linearly, which is clearly G-equivariant. We observe that the image of h is contained in U, the real
(2𝑛 − 2)-dimensional affine subspace of R[𝐺] × R[𝐺] for which both the first and last n coordinates
sum to 1. We observe that U is invariant under the diagonal G-action on R[𝐺] × R[𝐺]. Geometrically,
this action simultaneously permutes the vertices of two regular (𝑛 − 1)-simplices lying in orthogonal
(𝑛 − 1)-dimensional subspaces. We now claim that (

∑
𝑔∈𝐺

1
𝑛 𝑔,

∑
𝑔∈𝐺

1
𝑛 𝑔) does not lie in the image

of h. This follows in the same way as in the proof of Theorem 1.1 using Lemma 2.2. �

3. Proof of Theorem 1.3

We now prove Theorem 1.3. While this follows from Theorem 1.1 together with the work of Kříž [27],
whose construction uses a different (albeit related) notion of a box complex from our own. Instead of
adapting Křıž’s construction, we shall instead give an argument that allows us to obtain Theorem 1.3
directly from Theorems 1.1 and 3.1 below; see [20] for similar techniques. We refer the reader to
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Matoušek and Ziegler [31] for an exposition of the various notions of box complexes and how they
relate in the case 𝑝 = 2.

We give some details on the difference between Křıž’s construction and our box complex. Let
H be a p-uniform hypergraph on V and denote by 𝐵chain(𝐻) the partially ordered set on 𝑉 × Z/𝑝,
where 𝐴0 × {0} ∪ · · · ∪ 𝐴𝑝−1 × {𝑝 − 1} is in 𝐵chain(𝐻) if all the 𝐴𝑖 are nonempty and if for all
𝑎0 ∈ 𝐴0, . . . , 𝑎𝑝−1 ∈ 𝐴𝑝−1 one has that {𝑎0, . . . , 𝑎𝑝−1} ∈ 𝐻. Thus 𝐵chain(𝐻) differs from 𝐵(𝐻) only
in that it excludes those 𝐴0 × {0} ∪ · · · ∪ 𝐴𝑝−1 × {𝑝 − 1} where some of the 𝐴𝑖 are empty. While the
set 𝐵chain(𝐻) is not closed under taking subsets and is therefore not in itself a simplicial complex, as
a poset it has an associated order complex 𝐶 (𝐻); this is the simplicial complex which Kříž considers.
We observe that this complex 𝐶 (𝐻) is a subcomplex of the barycentric subdivision of our box complex
𝐵(𝐻); we will use this later geometric version of 𝐵chain(𝐻) in our proof.

We shall need the following special case of an elementary Borsuk–Ulam type theorem due to
Dold [16].

Theorem 3.1. Let 𝑚 ≥ 1 be an integer and let G be a nontrivial finite group. Suppose that X is an
m-connected simplicial complex on which G acts and that 𝑆𝑚 is an m-sphere on which G acts freely.
Then there is no continuous G-equivariant map 𝑓 : 𝑋 → 𝑆𝑚.

Lemma 3.2. Let 𝑝 ≥ 2 be a prime, let 𝑚 ≥ 2 be an integer, and suppose that Z/𝑝 acts freely on the
sphere 𝑆𝑚−2. Suppose that F is a set system that is upwards-closed, that is, 𝐴′ ∈ F whenever 𝐴 ∈ F
and 𝐴′ ⊃ 𝐴. If cd𝑝 (F) ≥ 𝑚, then there is no Z/𝑝-equivariant map 𝐵(KG𝑝 (F)) → 𝑆𝑚−2.

Proof. Assume that the ground set of F is [𝑛]. We let 𝑁 = (𝑝 − 1) (𝑑 + 1) + 𝑚, where 𝑑 ≥ 0 is chosen
to be an integer such that 𝑁 ≥ 𝑛. We let Σ be the simplicial complex on vertex set [𝑁] defined by
specifying that 𝜎 ⊆ [𝑁] is a face of Σ if and only if 𝜎 ∉ F . As F is upward-closed, Σ is downward-
closed and therefore a simplicial complex. By definition of the colorability defect cd𝑝 (F), a p-tuple of
pairwise disjoint faces of Σ can involve at most 𝑁 − 𝑚 = (𝑝 − 1) (𝑑 + 1) vertices of [𝑁].

We now show that there exists a Z/𝑝-equivariant map ℎ̃ : Σ∗𝑝
Δ → 𝑆 (𝑝−1) (𝑑+1)−1. This follows from

elementary obstruction theory.1 Indeed, the dimension of Σ∗𝑝
Δ and 𝑆 (𝑝−1) (𝑑+1)−1 are the same and latter

is connected up to top dimension. Since the action on the domain is free, one therefore has an equiv-
ariant map from Σ∗𝑝

Δ to 𝑆 (𝑝−1) (𝑑+1)−1 by extending an arbitrary equivariant map defined on the vertex
set of Σ∗𝑝

Δ .
Now let sd((Δ𝑁−1)

∗𝑝
Δ ) denote the barycentric subdivision of the simplicial complex (Δ𝑁−1)

∗𝑝
Δ . We

shall construct a Z/𝑝-equivariant simplicial map

Φ : sd((Δ𝑁−1)
∗𝑝
Δ ) → sd(Σ∗𝑝

Δ ) ∗ 𝐵(KG𝑝 (F)).

To that end, let v be a vertex of sd((Δ𝑁−1)
∗𝑝
Δ ). This vertex uniquely corresponds to a face of the complex

(Δ𝑁−1)
∗𝑝
Δ , or in other words to a p-tuple (𝐴1, . . . , 𝐴𝑝) of pairwise disjoint subsets of [𝑁]. If none of

the 𝐴𝑖 are in F , then each 𝐴𝑖 determines a face of Σ and we define Φ(𝑣) ∈ sd(Σ∗𝑝
Δ ) be the vertex of the

barycentric subdivision of Σ∗𝑝
Δ that corresponds to the face 𝐴1 � · · · � 𝐴𝑝 . On the other hand, suppose

that 𝐴𝑖 ∈ F for at least one 𝑖 ∈ [𝑝]. Then we set 𝐴𝑖 = 𝐵𝑖 for any such 𝑖 ∈ [𝑝], and we set 𝐵𝑖 = ∅ for
any 𝑖 ∈ [𝑝] with 𝐴𝑖 ∉ F . We then define Φ(𝑣) to be the vertex of the box complex 𝐵(KG𝑝 (F)) that
corresponds to (𝐵1, . . . , 𝐵𝑝). It is now easily verified that Φ is Z/𝑝-equivariant.

To complete the proof, suppose that Z/𝑝 acts freely on 𝑆𝑚−2 and that there is some Z/𝑝-equivariant
map 𝐵(KG𝑝 (F)) → 𝑆𝑚−2. Joining this map with ℎ̃ above then gives a Z/𝑝-equivariant map Σ∗𝑝

Δ ∗

𝐵(KG𝑝 (F)) → 𝑆 (𝑝−1) (𝑑+1)−1 ∗ 𝑆𝑚−2 � 𝑆𝑁−2, and composition of this map with Φ thereby yields a
Z/𝑝-equivariant map (Δ𝑁−1)

∗𝑝
Δ → 𝑆𝑁−2. Noting that (Δ𝑁−1)

∗𝑝
Δ � [𝑝]∗(𝑁−1) is (𝑁 −2)-connected and

that the Z/𝑝-action on the join sphere 𝑆𝑁−2 is free, we have reached a contradiction with Theorem 3.1.
Thus there is no Z/𝑝-equivariant map 𝐵(KG𝑝 (F)) → 𝑆𝑚−2. �

1We thank an anonymous referee for this observation, which simplified our previous argument.
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Theorem 1.3 now follows immediately from Lemma 3.2 and Theorem 1.1 when p is prime, and for
arbitrary integers n by a standard induction on prime divisors as in [3, 26], and the original proof of the
EGZ theorem [19].

Proof of Theorem 1.3. First, let p be prime. We note that we may assume that F is upward-closed. This
is because if G is the set family obtained from F by including any supersets of the 𝐴 ∈ F , then it is
immediate from the definition of colorability defect that cd𝑝 (G) ≥ cd𝑝 (F) ≥ 2𝑛 − 1. Given a coloring
𝑐 : F → Z/𝑝, we greedily extend it to a Z/𝑝-coloring 𝑐̃ : G → Z/𝑝. Namely, if 𝐴1, . . . , 𝐴𝑘 are the
inclusion-maximal elements of F , then we set 𝑐(𝐴′

1) = 𝐴1 for all supersets 𝐴′
1 ⊃ 𝐴1, 𝑐(𝐴′

2) = 𝐶 (𝐴2)
for all supersets 𝐴′

2 ⊃ 𝐴2 which are not supersets of 𝐴1, and so on. Considering the Z/𝑝-action on
𝑈C [Z/𝑝] and letting 𝑚 = 2𝑝 − 1 in Lemma 3.2, we have cd𝑝 (G) ≥ 2𝑝 − 1 and so by Lemma 3.2
there is no Z/𝑝-equivariant map 𝐵(KG𝑝 (G)) → 𝑆2𝑝−3. Thus KG𝑝 (G) contains a zero-sum hyperedge
{𝐴′

1, . . . , 𝐴
′
𝑝} by Theorem 1.1, and therefore KG𝑝 (F) contains a hyperedge {𝐴1, . . . , 𝐴𝑝}.

For general n, let F be a set system on [𝑚] with cd𝑛 (F) ≥ 2𝑛−1. Given any integer-valued function
𝑐 : F → Z, we show that there are pairwise disjoint 𝐴1, . . . , 𝐴𝑛 ∈ F such that n divides

∑𝑛
𝑖=1 𝑐(𝐴𝑖). As

in [19], we induct on the number of prime divisors of n and so we may assume that 𝑛 = 𝑝𝑞, where p
is a prime and 𝑞 ≥ 2 is an integer. We now follow the same reasoning as given by Kříž [26]: Defining
Γ = {𝐸 ⊆ [𝑚] | cd𝑞 (F |𝐸 ) ≥ 2𝑞 − 1}, Kříž shows that the assumption that cd𝑛 (F) ≥ 2𝑛 − 1 implies
that cd𝑝 (Γ) ≥ 2𝑝 − 1. Now let 𝐸 ∈ Γ be arbitrary. By induction, any Z/𝑞-coloring of KG𝑞 (F |𝐸 ) has a
zero-sum hyperedge, that is, there are pairwise disjoint sets 𝐴𝐸,1, . . . , 𝐴𝐸,𝑞 ∈ F |𝐸 such that q divides∑𝑞

𝑖=1 𝑐(𝐴𝐸,𝑖). Defining 𝑐̂ : Γ → Z by 𝑐̂(𝐸) =
∑𝑞

𝑖=1 𝑐(𝐴𝐸,𝑖) and using the fact that cd𝑝 (Γ) ≥ 2𝑝−1 shows
that there are pairwise disjoint 𝐸1, . . . , 𝐸𝑝 ∈ Γ such that p divides

∑𝑝
𝑖=1 𝑐̂(𝐸𝑖). We therefore have that n

divides
∑𝑝

𝑖=1
∑𝑞

𝑗=1 𝑐(𝐴𝐸𝑖 , 𝑗 ), so that {𝐴𝐸𝑖 , 𝑗 | 𝑖 ∈ [𝑝], 𝑗 ∈ [𝑞]} is the desired zero-sum hyperedge. �

4. Zero-sums via the topology of chessboard complexes

4.1. Chessboard complexes

Our fractional generalization of the EGZ theorem and our proof of Hall’s characterization of zero-
sum sequences both rely crucially on the topological properties of chessboard complexes, a simplicial
complex that encodes the nonattacking rook placements on an 𝑚 × 𝑛 chessboard. These complexes have
seen extensive application to geometric combinatorics, notably in the context of colorful extensions of
Tverberg’s theorem (see, e.g., [5, 37, 35, 11]).

Definition 4.1 (Chessboard Complex). For positive integers n and m, the chessboard complex Δ𝑚,𝑛

is the simplicial complex where 𝜎 ⊆ [𝑚] × [𝑛] is a face of Δ𝑚,𝑛 if and only if (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ 𝜎
whenever 𝑖1 ≠ 𝑖2 and 𝑗1 ≠ 𝑗2.

As an abstract simplicial complex, Δ𝑚,𝑛 consists of all matchings of the complete bipartite graph
𝐾𝑚,𝑛. For any chessboard complex Δ𝑚,𝑛 one has a Z/𝑚-action given by permuting the rows of the
chessboard, as well as a free Z/𝑛-action obtained by permuting the columns.

4.2. A topological proof of Hall’s zero-sum criterion

Our proof of Theorem 1.4 relies on the fact (see [11, 35]) that any chessboard complex of the form
Δ𝑛−1,𝑛 is an (𝑛−2)-dimensional orientable pseudomanifold when 𝑛 ≥ 3. Considering the Z/𝑛 action on
Δ𝑛−1,𝑛 induced by permuting the columns of an (𝑛 − 1) × 𝑛 chessboard, arguments of [10, 11] (see also
[35, Proposition 2]) show that when 𝑝 ≥ 3 is prime then any Z/𝑝-equivariant map Δ 𝑝−1, 𝑝 → 𝜕Δ 𝑝−1
has nonzero degree. Since any Z/𝑝-equivariant map Δ 𝑝−1, 𝑝 → 𝜕Δ 𝑝−1 that fails to be surjective has
degree zero one has the following lemma:

Lemma 4.2. If 𝑝 ≥ 3 is prime then any continuous Z/𝑝-equivariant mapping 𝑓 : Δ 𝑝−1, 𝑝 → 𝜕Δ 𝑝−1 is
surjective.
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Lemma 4.2 implies the following result on partial transversals from which Hall’s criterion for
zero-sums in Z/𝑝 follows quickly:

Theorem 4.3. Let 𝑝 ≥ 2 be a prime, and let 𝑎1, 𝑎2, . . . , 𝑎𝑝−1 ∈ Z/𝑝 be a sequence of length 𝑝 − 1.
Then there are pairwise distinct 𝑏1, 𝑏2, . . . , 𝑏𝑝−1 ∈ Z/𝑝 such that

{𝑎1 + 𝑏1, 𝑎2 + 𝑏2, . . . , 𝑎𝑝−1 + 𝑏𝑝−1} = {0, 1, . . . , 𝑝 − 2}.

Proof. We identify the vertex set of the chessboard complex Δ 𝑝−1, 𝑝 with [𝑝 − 1] × Z/𝑝 and the vertex
set of Δ 𝑝−1 with Z/𝑝 as well (i.e., Δ 𝑝−1 is the standard simplex in the regular representation R[Z/𝑝]).
The map 𝑓 : Z/𝑝 × [𝑝 − 1] → Z/𝑝 given by 𝑓 (𝑖, 𝑗) = 𝑎 𝑗 + 𝑖 induces a simplicial and Z/𝑝-equivariant
map 𝑓 : Δ 𝑝−1, 𝑝 → Δ 𝑝−1. Any such map is surjective onto 𝜕Δ 𝑝−1 by Lemma 4.2, so in particular there
must be a maximal face of Δ 𝑝−1, 𝑝 which is mapped onto the face {0, 1, . . . , 𝑝 − 2} of 𝜕Δ 𝑝−1. Thus
there is an injective map 𝜋 : [𝑝 − 1] → Z/𝑝 such that {0, 1, . . . , 𝑝 − 2} = { 𝑓 (𝜋(𝑖), 𝑖) | 𝑖 ∈ [𝑝 − 1]} =
{𝑎𝑖 + 𝜋(𝑖) | 𝑖 ∈ [𝑝 − 1]}, completing the proof. �

Proof of Theorem 1.4 for primes. First, let 𝑏 =
∑

𝑖∈𝑍/𝑝 𝑖 (thus 𝑏 = 1 if 𝑝 = 2 and is zero otherwise).
We define the simplicial complex Y on Z/𝑝 × Z/𝑝 to consist of all subsets of Z/𝑝 × Z/𝑝 that do not
contain the graph of any function 𝑧 : Z/𝑝 → Z/𝑝 with

∑
𝑖 𝑧(𝑖) = 𝑏. We now let 𝑌 ′ be the simplicial

complex 𝑌 ∪ Δ 𝑝,𝑝 and we equip 𝑌 ′ with the Z/𝑝-action that is defined on vertices (𝑖, ℓ) ∈ Z/𝑝 × Z/𝑝
by 𝑗 · (𝑖, ℓ) = (𝑖, ℓ + 𝑗) for all 𝑗 ∈ Z/𝑝.

We now show that any Z/𝑝-equivariant simplicial map from 𝑌 ′ → Δ 𝑝−1 is surjective. To see this,
first observe that the restriction of 𝑌 ′ to {0, 1, . . . , 𝑝 − 2} × Z/𝑝 equivariantly contains Δ 𝑝−1, 𝑝 . By
Lemma 4.2, any Z/𝑝-equivariant map Δ 𝑝−1, 𝑝 → 𝜕Δ 𝑝−1 is surjective, so there is some injective map
𝜋 : {0, 1, . . . , 𝑝 − 2} → Z/𝑝 so that the face {(𝑖, 𝜋(𝑖)) | 𝑖 ∈ {0, 1, . . . , 𝑝 − 2}} of Δ 𝑝−1, 𝑝 is mapped
simplicially onto the face {0, 1, . . . , 𝑝 − 2} of 𝜕Δ 𝑝−1. We may now extend this face to a larger face in
𝑌 ′ that will surject onto Δ 𝑝−1, as follows: there must be a unique vertex of the form (𝑝 − 1, 𝑗) of 𝑌 ′ that
maps to the vertex 𝑝 − 1 of Δ 𝑝−1. We claim that

𝜎 : = {(𝑖, 𝜋(𝑖)) | 𝑖 ∈ {0, 1, . . . , 𝑝 − 2}} ∪ {(𝑝 − 1, 𝑗)}

is a face of 𝑌 ′ and thus that 𝑌 ′ → Δ 𝑝−1 is surjective. To see this, note that if 𝑗 ≠ 𝜋(𝑖) for all
𝑖 ∈ {0, 1, . . . , 𝑝 − 2}, then 𝜎 lies in Δ 𝑝,𝑝 ⊆ 𝑌 ′. On the other hand, if 𝑗 = 𝜋(𝑖) for some 𝑖 ∈ {0, 1, . . . ,
𝑝 − 2}, then we must have 𝑗 +

∑
𝑖 𝜋(𝑖) ≠ 𝑏, so that now 𝜎 lies in 𝑌 ⊂ 𝑌 ′. Thus any Z/𝑝-equivariant

simplicial map from 𝑌 ′ to Δ 𝑝−1 is surjective.
Finally, let 𝑎1, . . . , 𝑎𝑝 ∈ Z/𝑝 be a given zero-sum sequence. We must show there is some permutation

𝜋 ofZ/𝑝 such that {𝑎1+𝜋(1), . . . , 𝑎𝑝+𝜋(𝑝)} = Z/𝑝. For this, we define a simplicial map 𝑓 : 𝑌 ′ → Δ 𝑝−1
by specifying that 𝑓 (𝑖, 𝑗) = 𝑎 𝑗 + 𝑖 for each vertex (𝑖, 𝑗). Since f is Z/𝑝-equivariant and is therefore
surjective, there exists a function 𝜋 : Z/𝑝 → Z/𝑝 such that f carries some maximal face 𝜏 := {(𝑖, 𝜋(𝑖)) |
𝑖 ∈ Z/𝑝} of 𝑌 ′ onto Δ 𝑝−1. To complete the proof, we show that 𝜏 is not a face of Y, hence that 𝜏
is a face of Δ 𝑝,𝑝 , and therefore that 𝜋 is indeed a permutation of Z/𝑝. To see this, observe that by
definition

∑
𝑖 𝜋

′(𝑖) ≠ 𝑏 were 𝜏 in Y. However, since {𝜋′(𝑖) + 𝑎𝑖} = Z/𝑝 and
∑

𝑖 𝑎𝑖 = 0 we must have∑
𝑖 𝜋

′(𝑖) =
∑

𝑖 𝜋
′(𝑖) + 𝑎𝑖 = 𝑏. �

4.3. Proof of Theorem 1.5

We now give a second proof of the original EGZ theorem, now based on the topological connectivity of
chessboard complexes (see, e.g., [9]). The proof method will then easily yield the probabilistic extension
Theorem 1.5. First we need the following Lemma, which can also be obtained as a direct consequence
of cohomological index computations for more general chessboard complexes [12, Theorem 6.8]. For
this, we consider the free Z/𝑝-action on Δ 𝑝,2𝑝−1 arising from permuting the rows of the 𝑝 × (2𝑝 − 1)
chessboard.

https://doi.org/10.1017/fms.2025.10125 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10125


Forum of Mathematics, Sigma 11

As in the complex setting, for a finite group G we let𝑈R [𝐺] denote the sub-representation of the group
ring R[𝐺] =

∑
𝑔∈𝐺 𝑟𝑔 𝑔 | 𝑟𝑔 ∈ R} consisting of all formal sums

∑
𝑔∈𝐺 𝑟𝑔 𝑔 for which

∑
𝑔∈𝐺 𝑟𝑔 = 0.

Lemma 4.4. If 𝑝 ≥ 2 is prime, then for any continuous Z/𝑝-equivariant map Δ 𝑝,2𝑝−1 → Δ 𝑝−1 there is
some point in Δ 𝑝,2𝑝−1 whose image is the barycenter of Δ 𝑝−1.

Proof. As shown in [9], Δ 𝑝,2𝑝−1 is (𝑝 − 2)-connected while 𝑆(𝑈R [Z𝑝]) has dimension 𝑝 − 2, so by
Theorem 3.1 any continuous Z/𝑝-equivariant map Δ 𝑝,2𝑝−1 → 𝑈R [Z/𝑝] must have a zero. Viewing
Δ 𝑝−1 as the standard simplex inside R[Z/𝑝], translation by the barycenter of Δ 𝑝−1 shows that any
Z/𝑝-equivariant map Δ 𝑝,2𝑝−1 → Δ 𝑝−1 results in equivariant map Δ 𝑝,2𝑝−1 → 𝑈R [Z/𝑝]. As such a map
must have a zero, the map Δ 𝑝,2𝑝−1 → Δ 𝑝−1 must hit the barycenter. �

Second Proof of the EGZ theorem for primes p. Let 𝑎1, . . . , 𝑎2𝑝−1 ∈ Z/𝑝 be an arbitrary sequence.
Identifying the vertex set of the chessboard complex Δ 𝑝,2𝑝−1 with Z/𝑝 × [2𝑝 − 1], we let 𝑓 : Z/𝑝 ×
[2𝑝 − 1] → Z/𝑝 be the simplicial map defined on the vertex set by 𝑓 (𝑖, 𝑗) = 𝑎 𝑗 + 𝑖. This map
is Z/𝑝-equivariant after identifying the vertex set of Δ 𝑝−1 with Z/𝑝. Any such map must hit the
barycenter of Δ 𝑝−1, and since the map is simplicial there must be a face of the chessboard complex
Δ 𝑝,2𝑝−1 which is mapped onto Δ 𝑝−1. Thus there is an injective map 𝜋 : Z/𝑝 → [2𝑝 − 1] such that
Z/𝑝 = { 𝑓 (𝑖, 𝜋(𝑖)) | 𝑖 ∈ Z/𝑝} = {𝑎𝜋 (𝑖) + 𝑖 | 𝑖 ∈ Z/𝑝}. This implies

∑
𝑖∈Z/𝑝 𝑖 =

∑
𝑖∈Z/𝑝 𝑎𝜋 (𝑖) + 𝑖 and so

that
∑
𝑎𝜋 (𝑖) = 0. �

Replacing simplicial maps with linear ones proves our fractional generalization of the EGZ theorem.

Proof of Thm 1.5. First, observe that any probability measure 𝜇 onZ/𝑝may be identified with a point 𝑥𝜇
in Δ 𝑝−1 since both uniquely describe convex coefficients for the vertices of Δ 𝑝−1. Here we again identify
Z/𝑝with the vertices ofΔ 𝑝−1. Explicitly, this bijective correspondence is given by 𝑥𝜇 =

∑
𝑖∈Z/𝑝 𝜇({𝑖}) ·𝑖.

Repeating the proof of the EGZ theorem above, given a sequence 𝜇1, . . . , 𝜇2𝑝−1 of measures on Z/𝑝
we define the continuous Z/𝑝-equivariant map 𝑓 : Δ 𝑝,2𝑝−1 → Δ 𝑝−1 by setting 𝑓 (𝑖, 𝑗) = 𝜇 𝑗 + 𝑖 on the
vertices and extending to the faces ofΔ 𝑝,2𝑝−1 by linear interpolation. As each 𝜇 𝑗 is a probability measure
on Z/𝑝, the image 𝑓 (𝑖, 𝑗) of each vertex lies in Δ 𝑝−1 and so f does indeed map to Δ 𝑝−1. While this map
is not simplicial (unless each of the 𝜇 𝑗 are Dirac measures), Lemma 4.4 applies nonetheless and so there
is a face 𝜎 of Δ 𝑝,2𝑝−1 such that 𝑓 (𝜎) contains the barycenter of Δ 𝑝−1. Thus there exists a permutation 𝜋
of Z/𝑝 and convex coefficients 𝜆𝑖 such that

∑
𝑖 𝜇𝜋 (𝑖) + 𝑖 equals the barycenter of Δ 𝑝−1. As the barycenter

of Δ 𝑝−1 corresponds to the uniform probability measure on Z/𝑝, the proof is complete. �

Corollary 1.6 immediately follows from Theorem 1.5:

Proof of Cor. 1.6. Let 𝐴1, . . . , 𝐴2𝑝−1 ⊆ Z/𝑝 be nonempty subsets of Z/𝑝 and associate to each 𝐴𝑖
the uniform probability distribution 𝜇𝑖 supported on 𝐴𝑖 . Applying Theorem 1.5 to the sequence
𝜇1, . . . , 𝜇2𝑝−1 thereby completes the proof. �

We conclude this section with a remark concerning Lemma 4.4. As we have seen, our chessboard
proof of the EGZ theorem for cyclic groups of prime order relied only on the fact that any equivariant
simplicial map Δ 𝑝,2𝑝−1 → Δ 𝑝−1 hits the barycenter of the simplex, or equivalently that the simplicial
map is surjective. Thus if it could be shown that any Z/𝑛-equivariant simplicial map Δ𝑛,2𝑛−1 → Δ𝑛−1
is surjective for any integer 𝑛 ≥ 2, our proof technique would imply the EGZ theorem for arbitrary
cyclic groups. As we now show, it actually follows immediately from the EGZ theorem that any
Z/𝑛-equivariant simplicial map Δ𝑛,2𝑛−1 → Δ𝑛−1 is indeed surjective.

Theorem 4.5. Let 𝑛 ≥ 2 be an integer. Then any Z/𝑛-equivariant simplicial map 𝑓 : Δ𝑛,2𝑛−1 → Δ𝑛−1
is surjective.

Proof. As before, we identify the vertex set of Δ𝑛−1 by Z/𝑛. By the remarks above, we only need to show
that the EGZ theorem implies that a given Z/𝑛-equivariant simplicial map 𝑓 : Δ𝑛,2𝑛−1 → Δ𝑛−1 hits the
barycenter of Δ𝑛−1. To that end, consider the sequence 𝑎1 = 𝑓 (0, 1), . . . , 𝑎2𝑛−1 = 𝑓 (0, 2𝑛 − 1) in Z/𝑛.
This has a zero-sum subsequence of length n by the EGZ theorem, and thus there is a permutation 𝜋 of
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Z/𝑛 such that
∑

𝑖 𝑓 (0, 𝜋(𝑖)) = 0. The set {(𝑖, 𝜋(𝑖)) | 𝑖 ∈ Z/𝑝} is a face of Δ𝑛,2𝑛−1, and by equivariance
we have that 𝑓 (𝑖, 𝜋(𝑖)) = 𝑎𝜋 (𝑖) + 𝑖. Letting 𝑥 =

∑
𝑖

1
𝑛 (𝑖, 𝜋(𝑖)), we now have that 𝑓 (𝑥) =

∑
𝑖

1
𝑛 𝑓 (𝑖, 𝜋(𝑖)) =∑

𝑖
1
𝑛𝑎𝜋 (𝑖) +

∑
𝑖

1
𝑛 𝑖 =

∑
𝑖

1
𝑛 𝑖 is the barycenter of Δ𝑛−1. �

5. Erdős–Ginzburg–Ziv plus constraints

We conclude with the proof of our constrained version of the EGZ theorem.

Proof of Thm. 1.7. Let 𝑎1, . . . , 𝑎2𝑝−1 ∈ Z/𝑝. We identify the vertex set of (Δ2𝑝−2)
∗𝑝
Δ withZ/𝑝×[2𝑝−1].

Suppose now that 𝑋 ⊆ (Δ2𝑝−2)
∗𝑝
Δ is a Z/𝑝-equivariant (2𝑝 − 3)-connected subcomplex of (Δ2𝑝−2)

∗𝑝
Δ .

For any 𝑖 ∈ Z/𝑝, we let 𝑌𝑖 be the subcomplex of (Δ2𝑝−2)
∗𝑝
Δ defined by letting 𝜎 = {0} × 𝐴0 ∪ · · · ∪

{𝑝 − 1} × 𝐴𝑝−1 be a face of 𝑌𝑖 if |𝐴𝑖 | ≤ 1. Thus ∩𝑖∈Z/𝑝𝑌𝑖 = Δ 𝑝,2𝑝−1 is precisely the 𝑝 × (2𝑝 − 1)
chessboard complex. Letting 𝑑 : 𝑋 × 𝑋 → [0,∞) be any metric on X compatible with the topology of X
as a simplicial complex (e.g., the ℓ1-metric), for each 𝑥 ∈ 𝑋 we denote by 𝑑 (𝑥,𝑌𝑖) = min𝑦∈𝑌𝑖 𝑑 (𝑥, 𝑦𝑖) the
distance of x to the subcomplex 𝑌𝑖 . We thus have 𝑥 ∈ Δ 𝑝,2𝑝−1 if and only if 𝑑 (𝑥,𝑌𝑖) = 0 for all 𝑖 ∈ Z/𝑝.

As in our second proof of the EGZ theorem, we define 𝑓 : Z/𝑝× [2𝑝−1] → Z/𝑝 by 𝑓 (𝑖, 𝑗) = 𝑎 𝑗 + 𝑖,
which induces a Z/𝑝-equivariant simplicial map 𝑓 : 𝑋 → Δ 𝑝−1. Thinking of Δ 𝑝−1 as the standard
simplex in R[Z/𝑝] and letting b denote its barycenter, we now define

𝐹 : 𝑋 → (𝑈R [Z/𝑝])
⊕2, 𝑥 ↦→ ( 𝑓 (𝑥) − 𝑏, 𝑑 (𝑥,𝑌0) − 𝑎(𝑥), . . . , 𝑑(𝑥,𝑌𝑝−1) − 𝑎(𝑥)),

where 𝑎(𝑥) = 1
𝑝

∑
𝑖 𝑑 (𝑥,𝑌𝑖) is the average distance of 𝑥 ∈ 𝑋 to the 𝑌𝑖 .

The map F is Z/𝑝-equivariant, and since by assumption X is (2𝑝 − 3)-connected, it follows from
Theorem 3.1 that F must have a zero x. Thus 𝑓 (𝑥) is at the barycenter of Δ 𝑝−1, and moreover we have
that 𝑑 (𝑥,𝑌0) = · · · = 𝑑 (𝑥,𝑌𝑝−1) = 𝑎(𝑥). Let 𝜎 = {0} × 𝐴0 ∪ · · · ∪ {𝑝 − 1} × 𝐴𝑝−1 be the inclusion-
minimal face of X that contains x. We now claim that 𝑎(𝑥) = 0, so that 𝑑 (𝑥,𝑌𝑖) = 0 for all 𝑖 ∈ 𝑍/𝑝 and
𝑥 ∈ Δ 𝑝,2𝑝−1. Indeed, if 𝑎(𝑥) > 0, then 𝑑 (𝑥,𝑌 𝑗 ) > 0 for some 𝑗 ∈ Z/𝑝 and therefore that 𝑑 (𝑥,𝑌𝑖) > 0
for all 𝑖 ∈ Z/𝑝. We would therefore have that |𝐴𝑖 | > 1 for all 𝑖 ∈ Z/𝑝. Since by definition of (Δ2𝑝−1)

∗𝑝
Δ

the 𝐴 𝑗 are pairwise disjoint, this implies that |
⋃

𝑗 𝐴 𝑗 | ≥ 2𝑝, a contradiction since
⋃

𝑗 𝐴 𝑗 ⊆ [2𝑝 − 1].
Thus |𝐴 𝑗 | ≤ 1 for all j. On the other hand, since 𝑓 (𝜎) = Δ 𝑝−1, we therefore must have |𝐴 𝑗 | = 1
for all j. Thus 𝜎 = {(𝑖, 𝜋(𝑖)) | 𝑖 ∈ Z/𝑝} for some injective map 𝜋 : Z/𝑝 → [2𝑝 − 1], and since
{ 𝑓 (𝑖, 𝜋(𝑖)) | 𝑖 ∈ Z/𝑝} = Z/𝑝 we have that

∑
𝑎𝜋 (𝑖) = 0 as before.

To finish the proof, we therefore only need to verify that the constraints of Theorem 1.7 give rise
to a (2𝑝 − 3)-connected subcomplex 𝑋 ⊆ (Δ2𝑝−2)

∗𝑝
Δ . The subcomplex X is defined by the property

that for every face 𝜎 of (Δ2𝑝−2)
∗𝑝
Δ , we have that whenever (𝑖, 2 𝑗 − 1) ∈ 𝜎 then (𝑖 + 𝑥, 2 𝑗) ∉ 𝜎

unless 𝑥 = 𝑑 𝑗 . The complex X is indeed highly connected, since it is the join of (𝑝 − 1) circles
(corresponding to {𝑎1, 𝑎2}, . . . , {𝑎2𝑝−3, 𝑎2𝑝−2}) and p discrete points (corresponding to 𝑎2𝑝−1).
Restricting the vertex set of X to Z/𝑝 × {2 𝑗 − 1, 2 𝑗} yields a Z/𝑝-equivariant cycle of length 2𝑝
that traverses (0, 2 𝑗 − 1), (𝑑 𝑗 , 2 𝑗), (𝑑 𝑗 , 2 𝑗 − 1), (2𝑑 𝑗 , 2 𝑗), . . . , (𝑝𝑑 𝑗 , 2 𝑗). This closes up only after 2𝑝
steps because p is prime. As there are no further constraints, X is the join of these cycles and the p
vertices corresponding to the restriction of X to Z/𝑝 × {2𝑝 − 1}. As the (𝑝 − 1)-fold join of the circle
𝑆1 is a (2𝑝 − 3)-dimensional sphere 𝑆2𝑝−3, we see that 𝑋 = ∪𝑖∈Z/𝑝𝐷

2𝑝−2
𝑖 is the union of the p cones

𝐷2𝑝−2
𝑖 = 𝑆2𝑝−3 ∗ {𝑖}, each of which is a (2𝑝 − 2)-dimensional disk. Thus X is (2𝑝 − 3)-connected. �
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