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Abstract

A landmark result of ErdGs, Ginzburg, and Ziv (EGZ) states that any sequence of 2n — 1 elements in Z/n
contains a zero-sum subsequence of length n. While algebraic techniques have predominated in deriving many
deep generalizations of this theorem over the past sixty years, here we introduce topological approaches to zero-
sum problems which have proven fruitful in other combinatorial contexts. Our main result is a topological criterion
for determining when any Z/n-coloring of an n-uniform hypergraph contains a zero-sum hyperedge. In addition
to applications for Kneser hypergraphs, for complete hypergraphs our methods recover Olson’s generalization of
the EGZ theorem for arbitrary finite groups. Furthermore, we give a fractional generalization of the EGZ theorem
with applications to balanced set families and provide a constrained EGZ theorem which imposes combinatorial
restrictions on zero-sum sequences in the original result.
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2 F. Frick et al.

1. Introduction and statement of results

The classical Erd§s—Ginzburg—Ziv (EGZ) theorem [19] states that any sequence ay, . .., az,—1 of 2n—1
elements in Z/n contains a subsequence a;,, . . . , a;, with }, jai; = 0. Over the last sixty years, this result

has inspired numerous generalizations and variants, collectively known as zero-sum Ramsey theory, a
general viewpoint that seems to originate from a paper of Bialostocki and Dierker [7]; see [15, 21] for
surveys. Algebraic techniques such as the Cauchy—-Davenport and Chevalley—Warning theorems have
proven to be particularly fruitful in deriving results of this type. Multiple different proofs of the original
EGZ theorem are known (see e.g., [2]); these typically proceed by first establishing the result for n a
prime, from which the general case follows by a simple induction on prime divisors.

Here we introduce equivariant topological methods to the study of zero-sum Ramsey problems.
Such techniques have proven to be quite powerful in other combinatorial contexts, for example in
Tverberg-type intersection theory (see, e.g., [12, 37, 11]) and in establishing the chromatic numbers of
Kneser graphs [29] and hypergraphs [3]. We refer the reader to Matousek [30], de Longueville [28],
and Kozlov [25] for the basics of topological combinatorics. We remark that [36] presents an unrelated
geometric approach to zero-sum Ramsey results and [24] develops topological methods for a problem in
arithmetic combinatorics. Moreover, known results already show that the original EGZ theorem can be
seen as a consequence of the colorful Carathéodory theorem [4], a central result in discrete geometry,
since the latter implies a result of Drisko [18] on rainbow matchings in bipartite graphs from which [1]
the EGZ theorem quickly follows.

In what follows, we give three topological proofs of the Erd§s—Ginzburg—Ziv theorem that generalize
in three distinct directions. In particular, when n = p is prime we

(i) establish a topological criterion for when any Z/p-coloring of a p-uniform hypergraph admits a
hyperedge whose labels sum to zero, by which the Erd§s—Ginzburg—Ziv theorem is recovered in
the case of a complete hypergraph;

(ii) provide a fractional generalization of the Erd6s—Ginzburg—Ziv theorem; and

(iii) prove a constrained version of the Erd6s—Ginzburg—Ziv theorem which imposes combinatorial
restrictions on zero-sum sequences in the original result.

We now state these generalizations and collect some consequences.

1.1. Hypergraph coloring generalizations of EGZ

Let H be an n-uniform hypergraph with vertex set V, that is, a collection of n-element subsets of V.
AZ/n-coloring of Hisamapc: V — Z/n, and a hyperedge e € H is said to be zero-sum with respect to
c provided '}, ¢, ¢(v) = 0. Thus an equivalent formulation of the EGZ theorem is that any Z/n-coloring
of the complete n-uniform hypergraph on [2n — 1] = {1,2,...,2n — 1} has a zero-sum hyperedge.

When n = p is prime, our topological criterion for when a given hypergraph H has a zero-sum
hyperedge for any Z/p-coloring is stated in terms of continuous maps f: B(H) — S§*/~3 from the
box complex B(H) of H to a (2p — 3)-dimensional sphere. Box complexes are simplicial complexes
which have been instrumental in establishing lower bounds for the chromatic number y (H) of uniform
hypergraphs; see Section 2.1 for the precise definition. As with any simplicial complex, one may think
of B(H) as a topological space glued from simplices, which in this case carries a free Z/p-action.

Denote the d-dimensional sphere by S¢. Any p-th root of unity determines a Z/p-action on C = R?
given by multiplication. Considering all nontrivial roots of unity, one thereby has a free Z/ p-action on
§2P=3 < R2P~2 given by the diagonal action on R??~2 = (R?)?~!. We recall that a continuous map
f: X — Y between two spaces X and Y equipped with a Z/ p-action is equivariant if it commutes with
the action.

We may now state our first main result:

Theorem 1.1. Let p > 2 be a prime, let H be a p-uniform hypergraph, and suppose that there isno Z/p-
equivariant map B(H) — S?P73. Then for any Z] p-coloring of H there is a zero-sum hyperedge in H.
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An elementary Borsuk—Ulam type theorem of Dold [16] applies to show that the box complex of
the complete p-uniform hypergraph on 2p — 1 vertices does not admit a Z/ p-equivariant map to 273,
Thus Theorem 1.1 recovers the Erd6s—Ginzburg—Ziv theorem when p is prime.

If one replaces continuous maps with linear ones, then the box complex construction allows for the
consideration of colorings of n-uniform hypergraphs by any group of order n (see Theorem 2.5). By
restricting to complete uniform hypergraphs and now applying the “linear Borsuk—Ulam theorem” of
Sarkaria [33], one obtains an extension of the EGZ theorem to arbitrary finite groups due to Olson [32]
as an immediate consequence:

Theorem 1.2. Let ay, .. .,ax,—1 be a sequence of elements of a group G of order n. Then there are n
distinct indices iy, . . ., in such that a;, - - - a;, = 1, where 1 is the identity element of G.

v

It follows from a result of KfiZ that any hypergraph satisfying the criterion of Theorem 1.1 must
have chromatic number at least three [27, Theorem 2.4]. Such a lower bound for the chromatic number
does not in itself guarantee a zero-sum hyperedge; see Remark 2.3 for a simple counterexample.
Nonetheless, in the special case of Kneser hypergraphs, one can use Theorem 1.1 to give a purely
combinatorial criterion for the existence of zero-sum hyperedges. Recall that for a set family F on
ground set [m] = {1,2,...,m}, the n-uniform Kneser hypergraph KG" (F) has F as its vertex set
and Ay, ..., A, € F form a hyperedge if the A; are pairwise disjoint. The n-colorability defect cd" (F)
of F, introduced by Dolnikov [17] for n = 2 and in general by K¥iZ [27], is defined by

cd"(F) =

n
m— max{z |A;| | Ai,..., A, C [m] pairwise disjoint and F ¢ A; forall F € F and alli € [n]}
i=1

Vv

K{iZ proved the fundamental inequality (n — 1)y (KG"(F)) > cd"(F) relating the n-colorability

defect and the chromatic number of the Kneser hypergraph, while for Z/n-colorings Theorem 1.1 will
imply the following:

Theorem 1.3. Let n > 2 be an integer, and let F be a set system with cd"(F) > 2n — 1. Then any
Z/n-coloring of KG" (F) has a zero-sum hyperedge.

As a special case of Theorem 1.3, let k > 1 be an integer and let m be an integer satisfying
m > n(k + 1) — 1. Considering the set system JF consisting of all k-element subsets of [m], it is easily
seen that cd"(F) = m —n(k — 1) > 2n — 1. Thus Theorem 1.3 applied to KG" (F) recovers the fact
(see [6, 15]) that F contains a zero-sum matching of size n for any Z/n-coloring of the hyperedges of
F. In particular, the Erd6s—Ginzburg—Ziv theorem is recovered by letting k = 1.

1.2. Fractional and constrained extensions of EGZ

Our remaining results have for their starting point the characterization of zero-sum sequences in Z/n
originally due to Marshall Hall [22]. We will give a topological proof of this fact when 7 is prime; see

Section 4.2.
Theorem 1.4. A sequence ai,...,a, € Z/n is zero-sum if and only if there are permutations
{b1,...,by}and{cy,...,cn} of Z/n with a; = b; — c; for all i € [n].

Thus an equivalent reformulation of the Erd6s—Ginzburg—Ziv theorem is that any sequence in Z/n of
length 2n — 1 contains a subsequence of length » that is a difference of two permutations. When n = p is
prime, we will strengthen this reformulation of the EGZ theorem in two distinct ways. First, we replace
sequences of elements in Z/p with sequences of arbitrary probability measures on Z/p. Secondly, we
give additional constraints for those a; which are the difference of two permutations.
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Let j € Z/p. For any subset A C Z/p we denote by A + j the shifted set {a+j | a € A}, and likewise
for any probability measure y on Z/p, we denote by u + j the shifted probability measure defined by
(u+j)(A) = u(A—j) for A c Z/p. Our second main result is as follows:

Theorem 1.5. Let i, ..., uzp-1 be a sequence of probability measures on Z[/p. Then there is an
injective map . Z/p — [2p — 1] and convex coefficients 1; > 0, i € Z/p, with Ziezp A; = 1 such that
2iez)p Ai(Ha (i) +1) is the uniform probability measure on Z/ p.

If the y; are Dirac measures concentrated at a single a; € Z/ p, then realizing the uniform probability
measure as a convex combination of the y ;) +i requires that the a ;) —i are pairwise distinct elements
of Z/p and so Theorem 1.5 recovers the Erd§s—Ginzburg—Ziv theorem. In the special case where each
4; is the uniform measure on a subset A; C Z/p, we derive a corollary for balanced set systems which
specializes to the EGZ theorem in the case that all the A; are singletons. Recall that a family of sets F
is balanced if it admits a perfect fractional matching, that is, if there is a function m: F — [0, 1] such
that 3 sc ryea m(A) = 1 for every v in the ground set of F. One then has the following:

Corollary 1.6. Let Ay, ..., Az,_1 C Z/p be a sequence of nonempty subsets of Z[p. Then there is an
injective map w: Z[/p — [2p — 1] such that Ay +1, i € Z/p, is a balanced collection of subsets.

By Theorem 1.4, the Erd6s—Ginzburg—Ziv theorem is equivalent to the statement that for any sequence
ai,...,ap-1 of elements in Z/p there is a subsequence a;,, ..., a; . of length p and pairwise distinct
elements by,...,b, € Z/p suchthat {a; +b1,...,a;,+bp} =Z/p. Lastly, we will use our topological
approach to zero-sum problems to prove restrictions on the permutation by, ..., by:

Theorem 1.7. Let ay, .. .,az,-1 be a sequence in Z[p and fix dy, ...,dp,_1 € Z/p \ {0}. Then there
is a subsequence a;,, . . . s Qi i1 < iy < --- <ip, and pairwise distinct b1, ...,b, € Z/p such that
{ai, +by,...,a;, + by} = Z/p with the following additional constraint: If for any j € [p — 1] we have
thatijis odd andij.1 =i; + 1, then we may prescribe that b1 = b; +d;.

2. A box complex criterion for zero-sums
2.1. Box complexes

We give the definition of the box complex of an n-uniform hypergraph in terms of the “deleted join”
construction commonly used in Tverberg-type intersection theory.
Given a finite simplicial complex X and any integer n, its n-fold join " is the simplicial complex

Z*HZ{Alk’d"-LﬂAn|A1,...,An€Z},

where Ay W---WA, =(A; X{1})U---U (A, x {n}) denotes the disjoint union of the faces A, ..., A,
of 2. The subcomplex

S =AW WA, €S| ANA; =0 forall i # j}

consisting of all n pairwise disjoint faces of X (possibly including empty faces) is called the deleted
n-fold join of X. The geometric realization of X3 consists of all formal convex combinations 7" ; 4;x;
where each x; lies in the simplex determined by A; for all i € [n]. If one identifies [n] with a group G
of order n, then left multiplication by elements of the group determines a free G-action on X" which
permutes the join factors of the A} W --- W A,,.

Now let H be an n-uniform hypergraph with vertex set V of size m and let A,,_; be the simplex
determined by V; that is, as an abstract simplicial complex A,,—; contains all subsets of V, whereas its
geometric realization is the standard regular simplex

Ay ={xeRV | x, = 0forallv eV, va =1}.
vev
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We will use the notation A,,_; for both the abstract simplicial complex and its geometric realization.
The box complex B(H) is then the subcomplex of (A,,-1)," consisting of all A} W--- W Ay, € (Ap-1))"
such that {aj,...,a,} € H forall a; € Ay,...,a, € A,. Thus for nonempty A; C V we have that
Al W---W A, € B(H) if and only if the A; are pairwise disjoint and H contains the complete n-partite
hypergraph determined by the A;. (If at least one of the A; is empty then A1 W- - - WA, € B(H) whenever
the A; are pairwise disjoint independent of the hypergraph H.) For any finite group G of order n, one
has a free G-action on B(H) by restricting the G-action on (A,,-1);". As an important special case,
observe that B(H) = (A,-1)," if H is the complete n-uniform hypergraph on [m], since in that case H
contains any n-element subset of [m] as a hyperedge.

2.2. Proof of Theorem 1.1

Our proof of Theorem 1.1 relies on the following lemma, a simple consequence of Hall’s matching
criterion for bipartite graphs (see, e.g., [23], which is used in a standard proof of the Birkhoff—von
Neumann theorem [8]).

Lemma 2.1. Let A = (a;j)i,; € R™" be a doubly stochastic matrix, that is, all entries a;; > 0 are
nonnegative and the entries of each column and of each row sum to 1. Then there is a permutation
n: [n] — [n] such that a;r;y > 0 foralli € [n].

A reformulation of this yields a characterization of those subsets of vertices of the product of two
regular (n — 1)-simplices A,,—; X A,_; whose convex hull captures the barycenter of A,,_;] X A,_;.

Lemma 2.2. Let xg € A1 XA,—1 denote the barycenter of the product of two regular (n—1)-simplices.
Identify the vertex set of A,—1 X A,—1 with [n] X [n]. Then for A C [n] X [n] we have that xy € conv A
if and only if {(i,n(i)) | i € [n]} C A for some permutation 7 [n] — [n].

Proof. The vertex set of A,_; X A,_; consists of all pairs (e;, e;) of standard basis vectors in R". The
barycenter xg of A,_| XA, _1isxg = (%, R %) € R"XR"™. Let }}; ; 4;,j(ei, e) be aconvex combination
of pairs of standard basis vectors (e;, e ;). Associate the matrix M = (A; ;); ; to this convex combination.
Then xo = 3; ; 4;,j(ei, e;) if and only if n - M is doubly stochastic. If A is a set of pairs of standard
basis vectors (e;, e;) with xg € conv A then by Lemma 2.1 there is permutation 7: [n] — [n] such that
Aiz@y > O forall i € [n]. In particular, the set A contains (e;, e,(;)) for all i € [n]. Conversely, if A
contains (e;, e (;)) for all i € [n] for some permutation 7r: [n] — [n], then % i (eiers)) =x0. O

Proof of Theorem 1.1. Denote the vertex set of H by V, and let c: V — Z/p be a Z/ p-coloring without
zero-sum hyperedge. We will construct a Z/p-equivariant map B(H) — S?P~3. Recall that the vertex
set of B(H) consists of p disjoint copies of V, which we will represent as V x Z/ p. Identify the vertex
setof A,_1 XA _1 withZ/p X Z/ p. The diagonal action of Z/p on Z/p X Z/p extends to A ,_1 X A ,_j.
Define a map

:B(H) > A,_1 xA,.1 CRP xRP
P p

on vertices of B(H) by f(v,g) = (g, c(v) + g) and extend linearly onto the faces of B(H). The map f
is equivariant: f(v,g+ h) = (g + h, g + c(v) + h), which is g acting diagonally on (&, c(v) + h).

We claim that the image of f misses the barycenter xo of A ,_; XA ,_;. Otherwise by Lemma 2.2 there
would be a permutation 7: Z/p — Z/p and aface AgW- - -WA,_; of B(H) such that f(AgW---WA,_1)
contains the vertices (g, 7(g)) forallg € Z/p. Thenforevery g € Z/p thereisav, € Ag with f(v,, g) =
(g,7m(g)), and so m(g) = c(vg) + 8- Then Yycz/p 8 = Xgez/p (&) = Lgez/p ¢(Vg) + Xgez/p & This
implies 3 ,c7/, ¢(vg) = 0. By definition of box complex {v, | g € Z/p} € H, in contradiction to ¢
having no zero-sum hyperedges. Since f misses the barycenter of A ,_; X A,_; it equivariantly retracts
to the boundary of A ,_1 X A,,_q, which is §2p-3, O
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Remark 2.3. For p-uniform hypergraphs H, it follows from work of KfiZ [27, Theorems 2.2 and 2.6]

that y(H) > ]‘fﬁ]l , where d is the minimum dimension of a sphere S¢ equipped with a free Z/p-action

for which there exists a continuous Z/ p-equivariant map B(H) — S¢. Thus the condition d > 2p — 2
given by Theorem 1.1 coincides with KiZ’s criterion for y (H) > 3. However, the topological condition
ensuring a zero-sum hyperedge given by Theorem 1.1 is stronger than the combinatorial condition
that the hypergraph is not two-colorable. As a simple example, let p = 3 and let H be the 3-uniform
hypergraph whose vertex set is V = {vg, vy, v2, V3, V4, Vs, v} and whose hyperedges consist of all
subsets of three vertices from V where exactly two vertices come from either A = {vy,v,,v3} or
B = {v4,vs,v¢}. It is easy to see that y(H) = 3, but there is no zero-sum hyperedge corresponding to
the coloring c¢: V — Z/3 defined by c(v;) = Ofori € {1,2,3},c(v;) = 1 fori € {4,5,6},and c(vo) = 2.

Remark 2.4. Let G be a graph with k edges. Following Caro’s survey on zero-sum Ramsey theory [15],
we denote by R(G,?2) the Ramsey number of G, that is the smallest n such that in any 2-coloring of
the edges of the complete graph K,,, there is a monochromatic copy of G. We let H,, be the k-uniform
hypergraph whose vertex set consists of the edges of K,,, with hyperedges for any k edges of K, that form
a copy of G. Thus R(G, 2) is the smallest n such that H,, has chromatic number at least 3. Now denote
by R(G,Z/k) the zero-sum Ramsey number of G, that is, the smallest n such that every Z/k-coloring
of H, has a zero-sum hyperedge. It is known that R(G,Z/k) > R(G,?2), and that this inequality is
often strict as in Remark 2.3 above. Clearly, R(G,Z/k) < R(G, k), where R(G, k) is the smallest n
with y (H,) > k. While it is an open problem whether the asymptotics of R(G,Z/k) are aligned more
closely with R(G,2) or with R(G, k), Theorem 1.1 does show that the topological lower bounds on
R(G,Z/k) and R(G, 2) are identical.

2.3. Colorings by an arbitrary group

We will now extend the arguments of the previous subsection to arbitrary finite groups, starting with
the box complex construction. Let H be an n-uniform hypergraph on vertex set V, and let G be any
group of order n (written multiplicatively, and with identity element 1). As before, a G-coloring of the
hypergraphisamap c: V — G, and we now say that a hyperedge e is zero-sum if there is some ordering
e ={vi,...,v,} of its vertices such that IT_ c(v;) = 1.

Consider the group ring C[G] = {X4¢¢ 25 8 | zg € C} of the group G, on which G acts by linearly
extending the action on G afforded by left multiplication. The subrepresentation Uc[G] = {Xgec 2 8 €
C[G] | Xgec 2g = 0} is G-invariant and has the origin as the only point that is fixed by every element
of the group.

Theorem 2.5. Let n > 2 be an integer, let H be an n-uniform hypergraph, and let G be group of order n.
If every equivariant linear map B(H) — Uc[G] has a zero, then any G-coloring of H admits a zero-sum
hyperedge.

We briefly defer the proof of Theorem 2.5, preferring instead to first derive Theorem 1.2 as an
immediate corollary. As with the EGZ theorem, the latter has the equivalent reformulation that any
G-coloring of the complete n-uniform hypergraph H on [2n — 1] has a zero-sum hyperedge. We shall
need the following result of Sarkaria [33]:

Theorem 2.6. Let m,n > 2 be integers and let U be a real (m — 1)-dimensional representation of a
group G of order n. If the origin is the unique element of U that is fixed by the action, then any linear
G-equivariant map f: (Am-1)y" — U has a zero.

Proof of Theorem 1.2. Let H be the complete n-uniform hypergraph on [2n — 1], which we have seen
is precisely the deleted n-fold join of the (2n — 2)-dimensional simplex. By Theorem 2.6, any linear
G-equivariant map f: B(H) — Uc[G] must have a zero, and so by Theorem 2.5 any G-coloring of H
results in a zero-sum hyperedge. O

To prove Theorem 2.5, we will need the following elementary fact.
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Proposition 2.7. Let G be any group, let S = {g1,...,8m} = {1, ..., hm} be two orderings of a subset
of order m, and let x; := gi‘lhi for all i € [m]. Then there exists a permutation n of [m] such that
[TZ) Xy = 1.

Proof. We proceed by induction, the case m = 1 being immediate. For m > 2, consider x; = gl"hl. If
hi = g1, then we let S" = {g2,...,8m} = {h2,..., hy} and we are finished by induction. Supposing
hy # g1,consider the unique j # 1suchthatg; = k. Without loss of generality, we may suppose g» = hj.
Thus x;x, = gl‘lhg. If g1 = hy,thenwelet S” = {g3,...,gm} = {h3, ..., hy} and again we are done by
induction. If not, we consider the unique j # 1,2 such that g; = h,. Again without loss of generality we
may suppose j = 3, in which case we have x xox3 = gl’1 h3. Continuing in this fashion, we will eventually
be done by induction or else, without loss of generality, we have that h; = g2, ho = g3, ..., b2 = gm-1
and h,,, = g1. Thus g, = b1, S0 X1+ + * Xpp—1X = gl‘lhm,lg,‘nlhm =1. O

We now prove Theorem 2.5.

Proof of Theorem 2.5. Let V denote the vertex set of H and suppose that c: V — G is a G-coloring of
H without a zero-sum hyperedge. We will show there must exist a nonvanishing linear equivariant map
B(H) — Uc[G], where now we view B(H) as a simplicial complex on V X G. To that end, let Z be
the set of all permutations of G and let Y denote the simplicial complex on G x G defined by specifying
that o € Y for o C G X G if and only if o~ does not contain the graph I'(z) = {(g,z(g)) | g € G} of any
Z€Z.

We now define a simplicial map f: B(H) — Y by setting f(v,g) = (g,gc(v)) for (v,g) e VX G
and extending simplicially to the faces of B(H). First, we verify that our map is well-defined. Letting
o € B(H), we show that f(o) € G X G does not contain the graph I'(z) of any z € Z. So let
0 = Ugeg(Ag X {g}) be a face of B(H) and let z: G — G be a permutation of G. By definition, any
set {a, | g € G} withag € Ag forall g € G is a hyperedge of H. If I'(z) C f (o), then there would be
some collection {ag4}gec With ag € A, for all g € G such that {gc(ag): g € G} ={z(g): i € G}, and
therefore {gc(ag): g € G} = G. Fixing an ordering G = {g1, ..., gxn} and applying Proposition 2.7 to
S =G and h; = gjc(ag,), we see there is some permutation ¢ of [n] such that IT  c(ag,, ) = 1. This
contradicts the assumption that H does not contain a zero-sum hyperedge, so o does not contain the
graph of any z € Z and the map f is well-defined.

As with the box complex B(H), the simplicial complex Y has a natural G-action arising from group
multiplication, namely by letting G act diagonally on the vertex set G X G of Y and extending this action
to each face of Y. It is then easily observed that the simplicial map f: B(H) — Y is equivariant with
respect to the described actions.

We will now construct a never-vanishing linear G-equivariant map ¥ — Uc[G]. Composition then
gives a never-vanishing linear equivariant map B(H) — Y — Uc[G], completing the proof. To that
end, first consider the real group ring R[G] = {X,cg 78 | 7 € R} and let h: ¥ — R[G] X R[G] be
the map that is defined on vertices (g;, g¢) € G X G by h(g;, g¢) = (gi, g¢) and otherwise interpolates
linearly, which is clearly G-equivariant. We observe that the image of % is contained in U, the real
(2n — 2)-dimensional affine subspace of R[G] X R[G] for which both the first and last n coordinates
sum to 1. We observe that U is invariant under the diagonal G-action on R[G] X R[G]. Geometrically,
this action simultaneously permutes the vertices of two regular (n — 1)-simplices lying in orthogonal
(n — 1)-dimensional subspaces. We now claim that (X4cq %g, 2geG % g) does not lie in the image
of h. This follows in the same way as in the proof of Theorem 1.1 using Lemma 2.2. O

3. Proof of Theorem 1.3

Yoy

‘We now prove Theorem 1.3. While this follows from Theorem 1.1 together with the work of KiiZ [27],
whose construction uses a different (albeit related) notion of a box complex from our own. Instead of
adapting Ki1Z’s construction, we shall instead give an argument that allows us to obtain Theorem 1.3
directly from Theorems 1.1 and 3.1 below; see [20] for similar techniques. We refer the reader to
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Matousek and Ziegler [31] for an exposition of the various notions of box complexes and how they
relate in the case p = 2.

We give some details on the difference between Ki1Z’s construction and our box complex. Let
H be a p-uniform hypergraph on V and denote by Bepain(H) the partially ordered set on V X Z/p,
where Ag X {0} U --- U A,_1 X {p — 1} is in Bep,in(H) if all the A; are nonempty and if for all
ap € Ag,...,ap-1 € Ap_y one has that {ao,...,ap-1} € H. Thus Benin(H) differs from B(H) only
in that it excludes those Ay X {0} U --- U A,_; X {p — 1} where some of the A; are empty. While the
set Behain (H) is not closed under taking subsets and is therefore not in itself a simplicial complex, as
a poset it has an associated order complex C(H); this is the simplicial complex which KiiZ considers.
We observe that this complex C(H) is a subcomplex of the barycentric subdivision of our box complex
B(H); we will use this later geometric version of Behain (H) in our proof.

We shall need the following special case of an elementary Borsuk—Ulam type theorem due to
Dold [16].

Theorem 3.1. Let m > 1 be an integer and let G be a nontrivial finite group. Suppose that X is an
m-connected simplicial complex on which G acts and that S™ is an m-sphere on which G acts freely.
Then there is no continuous G-equivariant map f: X — S§™.

Lemma 3.2. Let p > 2 be a prime, let m > 2 be an integer, and suppose that Z[/p acts freely on the
sphere S™ 2. Suppose that F is a set system that is upwards-closed, that is, A’ € F whenever A € F
and A’ D A. If cd? (F) > m, then there is no Z,] p-equivariant map B(KGP (F)) — §™2.

Proof. Assume that the ground set of F is [n]. Welet N = (p — 1)(d + 1) + m, where d > 0 is chosen
to be an integer such that N > n. We let X be the simplicial complex on vertex set [/N] defined by
specifying that o C [N] is a face of X if and only if o ¢ F. As F is upward-closed, X is downward-
closed and therefore a simplicial complex. By definition of the colorability defect cd” (F), a p-tuple of
pairwise disjoint faces of X can involve at most N —m = (p — 1)(d + 1) vertices of [N].

We now show that there exists a Z/p-equivariant map /: £, — SP~D(@+*D=1 This follows from
elementary obstruction theory.! Indeed, the dimension of EZP and §(P~D(@+D=1 are the same and latter
is connected up to top dimension. Since the action on the domain is free, one therefore has an equiv-
ariant map from 2" to §(P~D(4*D=1 by extending an arbitrary equivariant map defined on the vertex
set of 2,7

Now let sd((A N—I)Zp ) denote the barycentric subdivision of the simplicial complex (A N—1)ZP . We
shall construct a Z/p-equivariant simplicial map

@: sd((Ay-1),") — sd(Z,") * B(KG? (F)).

To that end, let v be a vertex of sd((An -1 )Zp ). This vertex uniquely corresponds to a face of the complex
(AN_l)Zp, or in other words to a p-tuple (Aj, ..., A,) of pairwise disjoint subsets of [N]. If none of
the A; are in F, then each A; determines a face of X and we define ®(v) € sd(ZZp ) be the vertex of the
barycentric subdivision of ZZP that corresponds to the face A @ --- @ A,,. On the other hand, suppose
that A; € F for at least one i € [p]. Then we set A; = B; for any such i € [p], and we set B; = 0 for
any i € [p] with A; ¢ F. We then define ®(v) to be the vertex of the box complex B(KG?” (F)) that
corresponds to (B, ..., Bp). Itis now easily verified that ® is Z/p-equivariant.

To complete the proof, suppose that Z/p acts freely on S”*~2 and that there is some Z/ p-equivariant
map B(KGP(F)) — S§™72. Joining this map with h above then gives a Z/p-equivariant map ZZP s
B(KGP (F)) — §p=D(d+D)=1 4 gm=2 ~ §N=2 and composition of this map with ® thereby yields a
Z/p-equivariant map (AN_I)ZP — SN =2 Noting that (AN_l)Zp = [p]*N-D js (N - 2)-connected and
that the Z/ p-action on the join sphere S =2 is free, we have reached a contradiction with Theorem 3.1.
Thus there is no Z/ p-equivariant map B(KG” (F)) — §"2. O

1We thank an anonymous referee for this observation, which simplified our previous argument.
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Theorem 1.3 now follows immediately from Lemma 3.2 and Theorem 1.1 when p is prime, and for
arbitrary integers n by a standard induction on prime divisors as in [3, 26], and the original proof of the
EGZ theorem [19].

Proof of Theorem 1.3. First, let p be prime. We note that we may assume that F is upward-closed. This
is because if G is the set family obtained from F by including any supersets of the A € F, then it is
immediate from the definition of colorability defect that cd”(G) > c¢d? (F) > 2n — 1. Given a coloring
c: F — Z/p, we greedily extend it to a Z/p-coloring ¢c: G — Z/p. Namely, if Ay, ..., Ag are the
inclusion-maximal elements of F, then we set c(A]) = A; for all supersets A} D Ay, c(A) = C(Az)
for all supersets A}, D> A, which are not supersets of Aj, and so on. Considering the Z/p-action on
Uc[Z/p] and letting m = 2p — 1 in Lemma 3.2, we have cd”(G) > 2p — 1 and so by Lemma 3.2
there is no Z/ p-equivariant map B(KG” (G)) — $*~3. Thus KG” (G) contains a zero-sum hyperedge
{A],...,A},} by Theorem 1.1, and therefore KG” () contains a hyperedge {A1, ..., Ap}.

For general n, let F be a set system on [m] with cd” (F) > 2n— 1. Given any integer-valued function
c: F — Z, we show that there are pairwise disjoint Ay, ..., A,, € F such that n divides }.7_ | c(A;). As
in [19], we induct on the number of prime divisors of n and so we may assume that n = pg, where p
is a prime and ¢ > 2 is an integer. We now follow the same reasoning as given by KiiZ [26]: Defining
I'={E C [m] | cd?(F|g) = 2q — 1}, KiiZ shows that the assumption that cd"(F) > 2n — 1 implies
that cd”(T") > 2p — 1. Now let E € I" be arbitrary. By induction, any Z/g-coloring of KG?(F|g) has a
zero-sum hyperedge, that is, there are pairwise disjoint sets A 1,...,Ag 4 € F|g such that g divides
Z?:l ¢(Ag ;). Definingc: I' —» Zby c(E) = Z?:l ¢(Ag ;) and using the fact that cd” (I") > 2p—1 shows
that there are pairwise disjoint £, ..., E, € I" such that p divides Zf’: 1 c(E;). We therefore have that n
divides Zl]'; ?:1 c(Ag, j),sothat {Ag, ;| i € [p],j € [q]} is the desired zero-sum hyperedge. O

4. Zero-sums via the topology of chesshboard complexes
4.1. Chessboard complexes

Our fractional generalization of the EGZ theorem and our proof of Hall’s characterization of zero-
sum sequences both rely crucially on the topological properties of chessboard complexes, a simplicial
complex that encodes the nonattacking rook placements on an m X n chessboard. These complexes have
seen extensive application to geometric combinatorics, notably in the context of colorful extensions of
Tverberg’s theorem (see, e.g., [5, 37, 35, 11]).

Definition 4.1 (Chessboard Complex). For positive integers n and m, the chessboard complex A, ,,
is the simplicial complex where oo C [m] X [n] is a face of A, , if and only if (i1, j1), (i2, j2) € O
whenever i; # i» and j; # J».

As an abstract simplicial complex, A, , consists of all matchings of the complete bipartite graph
Kn.n. For any chessboard complex A,, , one has a Z/m-action given by permuting the rows of the
chessboard, as well as a free Z/n-action obtained by permuting the columns.

4.2. A topological proof of Hall’s zero-sum criterion

Our proof of Theorem 1.4 relies on the fact (see [11, 35]) that any chessboard complex of the form
Ap—1,, is an (n—2)-dimensional orientable pseudomanifold when n > 3. Considering the Z/n action on
A, -1, induced by permuting the columns of an (n — 1) X n chessboard, arguments of [10, 11] (see also
[35, Proposition 2]) show that when p > 3 is prime then any Z/p-equivariant map A ,_1 , — 0A
has nonzero degree. Since any Z/p-equivariant map A,_; , — 0A,_; that fails to be surjective has
degree zero one has the following lemma:

Lemma 4.2. If p > 3 is prime then any continuous Z/ p-equivariant mapping f: Ap_1 p, — 0Ap_1 is
surjective.
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Lemma 4.2 implies the following result on partial transversals from which Hall’s criterion for
zero-sums in Z/p follows quickly:

Theorem 4.3. Let p > 2 be a prime, and let ay,as,...,a,-1 € Z/p be a sequence of length p — 1.
Then there are pairwise distinct by, ba, . .., bp_1 € Z/p such that

{a1+b1,a2+b2,...,ap_1+bp_1}={O,1,...,p—2}.

Proof. We identify the vertex set of the chessboard complex A ,_; ;, with [p — 1] X Z/p and the vertex
set of A,_y with Z/p as well (i.e., A,_; is the standard simplex in the regular representation R[Z/p]).
The map f: Z/p X [p — 1] — Z/p given by f(i, j) = a; + i induces a simplicial and Z/p-equivariant
map f: Ap_1,, — Ap_1. Any such map is surjective onto A ,_; by Lemma 4.2, so in particular there

must be a maximal face of A,_; , which is mapped onto the face {0,1,...,p — 2} of dA,_;. Thus
there is an injective map n: [p — 1] — Z/p such that {0, 1,...,p =2} = {f(n(i),i) |ie [p-1]} =
{a; + (i) | i € [p — 1]}, completing the proof. O

Proof of Theorem 1.4 for primes. First, let b = };c7,,1 (thus b = 1 if p = 2 and is zero otherwise).
We define the simplicial complex Y on Z/p X Z/p to consist of all subsets of Z/p X Z/p that do not
contain the graph of any function z: Z/p — Z/p with }; z(i) = b. We now let Y’ be the simplicial
complex Y UA, , and we equip ¥’ with the Z/p-action that is defined on vertices (i,£) € Z/p X Z/p
by j-(i,€) =, 0+ ) forall j € Z/p.

We now show that any Z/p-equivariant simplicial map from ¥’ — A ,_; is surjective. To see this,
first observe that the restriction of Y’ to {0,1,...,p — 2} X Z/p equivariantly contains A,_ ,. By
Lemma 4.2, any Z/p-equivariant map A,_;,, — 0A,_; is surjective, so there is some injective map
n:{0,1,...,p =2} — Z/p so that the face {(i,7(i)) | i € {0,1,...,p —2}} of A,_; , is mapped
simplicially onto the face {0,1,..., p — 2} of dA,_1. We may now extend this face to a larger face in
Y’ that will surject onto A ,_1, as follows: there must be a unique vertex of the form (p — 1, j) of Y’ that
maps to the vertex p — 1 of A,_;. We claim that

g = {(l’ﬂ-(l)) | i € {0,1,’17_2}}U{(17_ 1’.])}

is a face of Y’ and thus that Y’ — A,_; is surjective. To see this, note that if j # (i) for all
i€{0,1,...,p—2}, theno liesin A, , € Y’. On the other hand, if j = 7 (i) for some i € {0, 1,...,
p — 2}, then we must have j + Y}; w(i) # b, so that now o lies in Y C Y’. Thus any Z/p-equivariant
simplicial map from Y’ to A ,_; is surjective.

Finally,letay, ...,a, € Z/p be a given zero-sum sequence. We must show there is some permutation
nof Z/p suchthat {a;+n(1),...,ap+n(p)} = Z/p. For this, we define a simplicial map f: Y’ — A,
by specifying that f(i, j) = a; + i for each vertex (i, j). Since f is Z/p-equivariant and is therefore
surjective, there exists a function 7: Z/p — Z/p such that f carries some maximal face 7 := {(i, 7(i)) |
i € Z/p} of Y’ onto A,_;. To complete the proof, we show that 7 is not a face of Y, hence that t
is a face of A, ;,, and therefore that 7 is indeed a permutation of Z/p. To see this, observe that by
definition }; n’(i) # b were 7 in Y. However, since {7’ (i) + a;} = Z/p and }}; a; = 0 we must have
Sin'(i)y=;n"(i)+a; =b. O

4.3. Proof of Theorem 1.5

We now give a second proof of the original EGZ theorem, now based on the topological connectivity of
chessboard complexes (see, e.g., [9]). The proof method will then easily yield the probabilistic extension
Theorem 1.5. First we need the following Lemma, which can also be obtained as a direct consequence
of cohomological index computations for more general chessboard complexes [12, Theorem 6.8]. For
this, we consider the free Z/p-action on A, 5,1 arising from permuting the rows of the p x (2p — 1)
chessboard.

https://doi.org/10.1017/fms.2025.10125 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10125

Forum of Mathematics, Sigma 11

As in the complex setting, for a finite group G we let Ur [ G] denote the sub-representation of the group
ring R[G] = Y 4c 7 & | rg € R} consisting of all formal sums 3, 7 g for which ¥, rg = 0.

Lemma 4.4. If p > 2 is prime, then for any continuous 7/ p-equivariant map A , 5,1 — A ,_1 there is
some point in Ap, »,,_1 whose image is the barycenter of A ,_1.

Proof. As shown in [9], A, 51 is (p — 2)-connected while S(Ur[Z,]) has dimension p — 2, so by
Theorem 3.1 any continuous Z/p-equivariant map A, »,-1 — Ur[Z/p] must have a zero. Viewing
A1 as the standard simplex inside R[Z/p], translation by the barycenter of A,_; shows that any
Z/p-equivariant map A , 5,1 — A ,_1 results in equivariant map A, 5,,—1 — Ur[Z/p]. As such a map
must have a zero, the map A, 5,-1 — A,_| must hit the barycenter. O

Second Proof of the EGZ theorem for primes p. Let ai,...,az,-1 € Z/p be an arbitrary sequence.
Identifying the vertex set of the chessboard complex A, >, with Z/p X [2p — 1], we let f: Z/p X
[2p — 1] — Z/p be the simplicial map defined on the vertex set by f(i,j) = a; + i. This map
is Z/p-equivariant after identifying the vertex set of A,_; with Z/p. Any such map must hit the
barycenter of A,_;, and since the map is simplicial there must be a face of the chessboard complex
A 2p—1 Which is mapped onto A,_;. Thus there is an injective map n: Z/p — [2p — 1] such that
Zlp ={f(i,x(i)) | i € Z/]p} ={anu +i|i € Z/p}. This implies }Y;cz/, 1 = Xjez/p ar(i) +i and so
that ar@iy=0. O

Replacing simplicial maps with linear ones proves our fractional generalization of the EGZ theorem.

Proof of Thm 1.5. First, observe that any probability measure u on Z/p may be identified with a pointx,,
in A ,_1 since both uniquely describe convex coeflicients for the vertices of A ,_;. Here we again identify
Z/p with the vertices of A ,_1. Explicitly, this bijective correspondence is given by x,, = ¥z, u({i})-i.
Repeating the proof of the EGZ theorem above, given a sequence yi, ..., t2p—1 of measures on Z/p
we define the continuous Z/p-equivariant map f: A, 2,-1 — A, by setting f(i, j) = u; +i on the
vertices and extending to the faces of A, 5, by linear interpolation. As each u; is a probability measure
onZ/p, the image f (i, j) of each vertex lies in A ,_; and so f does indeed map to A ,,_;. While this map
is not simplicial (unless each of the u; are Dirac measures), Lemma 4.4 applies nonetheless and so there
is aface o of A}, 5,,—1 such that f(o) contains the barycenter of A ,_;. Thus there exists a permutation 7
of Z/p and convex coeflicients A; such that }’; p1(;) +i equals the barycenter of A ,_;. As the barycenter
of A ,_1 corresponds to the uniform probability measure on Z/p, the proof is complete. O

Corollary 1.6 immediately follows from Theorem 1.5:

Proof of Cor. 1.6. Let Ay,...,Asp,-1 € Z/p be nonempty subsets of Z/p and associate to each A;
the uniform probability distribution y; supported on A;. Applying Theorem 1.5 to the sequence
U1, ..., M2p—1 thereby completes the proof. O

We conclude this section with a remark concerning Lemma 4.4. As we have seen, our chessboard
proof of the EGZ theorem for cyclic groups of prime order relied only on the fact that any equivariant
simplicial map A, 5,1 — A, hits the barycenter of the simplex, or equivalently that the simplicial
map is surjective. Thus if it could be shown that any Z/n-equivariant simplicial map A, 2,-1 — A,
is surjective for any integer n > 2, our proof technique would imply the EGZ theorem for arbitrary
cyclic groups. As we now show, it actually follows immediately from the EGZ theorem that any
Z/[n-equivariant simplicial map A, 2,-1 — A,—; is indeed surjective.

Theorem 4.5. Let n > 2 be an integer. Then any Z [n-equivariant simplicial map f: Ay an—1 — Ay
is surjective.

Proof. As before, we identify the vertex set of A,,_; by Z/n. By the remarks above, we only need to show
that the EGZ theorem implies that a given Z/n-equivariant simplicial map f: A, 2,1 — A, hits the
barycenter of A,,_;. To that end, consider the sequence a; = f(0,1),...,a2,-1 = f(0,2n - 1) in Z/n.
This has a zero-sum subsequence of length n by the EGZ theorem, and thus there is a permutation 7 of
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Z/n such that 3; £(0,7(i)) = 0. The set {(i,7(i)) | i € Z/p} is a face of A, 2,—1, and by equivariance
we have that f(i, 7(i)) = a(;) +i. Lettingx = 3 ; %(i, n(i)), we now have that f(x) = ), %f(i, n(i)) =
i %a,r(i) + 2 %i =2 %i is the barycenter of A,,_;. O

5. Erddés—Ginzburg—Ziv plus constraints

We conclude with the proof of our constrained version of the EGZ theorem.

Proof of Thm. 1.7. Letay, ..., azp- € Z/p. Weidentify the vertex setof (Ay,_2),” withZ/px[2p—1].
Suppose now that X C (AQP_Z)ZP is a Z/p-equivariant (2p — 3)-connected subcomplex of (Agp_z)zp .
For any i € Z/p, we let ¥; be the subcomplex of (Az,-2),” defined by letting o = {0} X Ag U - - - U
{p =1} x A,_y be a face of ¥; if [A;| < 1. Thus N;ez/pYi = Apop-1 is precisely the p x (2p — 1)
chessboard complex. Letting d: X X X — [0, co) be any metric on X compatible with the topology of X
as a simplicial complex (e.g., the £;-metric), for each x € X we denote by d(x,Y;) = minyey, d(x,y;) the
distance of x to the subcomplex ¥;. We thus have x € A, 5,1 if and only if d(x,Y;) =0 foralli € Z/p.

As in our second proof of the EGZ theorem, we define f: Z/p X [2p—1] — Z/p by f(i,j) = a; +i,
which induces a Z/p-equivariant simplicial map f: X — A,_;. Thinking of A,_; as the standard
simplex in R[Z/p] and letting b denote its barycenter, we now define

F: X - (Ur[Z/p])®?, x> (f(x) = b,d(x,Y) —a(x),...,d(x, Yp-1) —a(x)),

where a(x) = Ilj > d(x,Y;) is the average distance of x € X to the Y;.

The map F is Z/p-equivariant, and since by assumption X is (2p — 3)-connected, it follows from
Theorem 3.1 that F must have a zero x. Thus f(x) is at the barycenter of A ,_;, and moreover we have
that d(x,Yy) = -+ = d(x,Y,-1) = a(x). Let 0 = {0} X AgU --- U {p — 1} x A,,_; be the inclusion-
minimal face of X that contains x. We now claim that a(x) = 0, so that d(x,Y;) =0 foralli € Z/p and
x € Apop-1. Indeed, if a(x) > 0, then d(x,Y;) > O for some j € Z/p and therefore that d(x,Y;) > 0
forall i € Z/p. We would therefore have that |A;| > 1 for all i € Z/p. Since by definition of (Azj,_1),”
the A; are pairwise disjoint, this implies that [{J; A;| > 2p, a contradiction since [ J; A; € [2p — 1].
Thus |A;| < 1 for all j. On the other hand, since f(o) = A,_1, we therefore must have |A;| = 1
for all j. Thus o = {(i,n(i)) | i € Z/p} for some injective map n: Z/p — [2p — 1], and since
{f(i,n(i)) | i € Z/p} = Z/p we have that 3 a,(;) = 0 as before.

To finish the proof, we therefore only need to verify that the constraints of Theorem 1.7 give rise
to a (2p — 3)-connected subcomplex X C (Azp_z)zp . The subcomplex X is defined by the property
that for every face o of (Az,,,z)zp, we have that whenever (i,2j — 1) € o then (i +x,2j) ¢ o
unless x = d;. The complex X is indeed highly connected, since it is the join of (p — 1) circles
(corresponding to {ai,asz},...,{azp-3,a2p-2}) and p discrete points (corresponding to as,_1).
Restricting the vertex set of X to Z/p x {2j — 1,2} yields a Z/p-equivariant cycle of length 2p
that traverses (0,2j - 1),(d;,2j),(d;,2j - 1),(2d;,2j),...,(pd;,2j). This closes up only after 2p
steps because p is prime. As there are no further constraints, X is the join of these cycles and the p
vertices corresponding to the restriction of X to Z/p X {2p — 1}. As the (p — 1)-fold join of the circle
S'is a (2p — 3)-dimensional sphere $7~3, we see that X = U;cz/,D:” " is the union of the p cones
D?p_z = §2P73 « {i}, each of which is a (2p — 2)-dimensional disk. Thus X is (2p — 3)-connected. O
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