
7

Solving differential equations

The authors are grateful to Dong An, Di Fang, and Ashley Montanaro for

reviewing this chapter.

Overview

Many applications in engineering and science rely on solving differential

equations. Accordingly, this constitutes a large fraction of research-and-

development high-performance computing (HPC) workloads across a wide

variety of industries. There have been many proposals to speed up differential

equation solving using a quantum computer. At this point, the consensus

is that we lack compelling evidence for practical quantum speedup on

industry-relevant problems. However, the field is progressing rapidly, and this

conclusion is subject to change.

Some of the main application areas that have been considered are:

• Computational fluid dynamics (CFD), usually involving simulation of the

Navier–Stokes equation. The main industries relying on CFD simulations

are automotive, aerospace, civil engineering, wind energy, weather/climate

modeling, and defense. While most simulations focus on air or fluid flow on

solid objects, other processes, such as foaming, are also important to model.

Large CFD calculations are routinely in the petaflop regime and are run on

millions of CPU cores. Specific quantum proposals include [683, 965, 560,

584, 821, 406, 405, 268, 661].

• Geophysical modeling, involving simulation of the wave equation. The

main industries are oil and gas, hydroelectric, geophysics. Large seismic

imaging simulations can easily be in the petaflop regime. Quantum propos-

als for simulating the wave equation include [779, 518, 365].
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112 7. Solving differential equations

• A wide variety of engineering problems involving the finite element

method (FEM) for studying structural properties of solid objects. The main

industries are civil engineering, manufacturing (including automotive),

aerospace, and defense. The simulations are typically slightly smaller in

scale than CFD, though still often requiring large HPC clusters. Quantum

FEM proposals include [580, 777, 1002, 1082].

• Maxwell’s equations and the heat equation have applications in chip de-

sign and other electronic component design, as well as for navigation and

radar technology. Specific quantum proposals include [295, 580, 692].

• Plasma physics simulations, involving the simulation of the Vlasov equa-

tion, are widespread in nuclear fusion research. Quantum approaches in-

clude [803, 377, 354].

• Risk modeling, involving the simulation of stochastic differential equations,

is extensively used in finance (especially derivatives pricing), insurance, and

energy markets. Specific quantum proposals include [865, 33, 857, 393,

685].

Differential equations can be categorized according to a number of proper-

ties: (i) ordinary vs. partial depending on the number of differential variables,

(ii) stochastic vs. deterministic depending on whether the function is a random

variable or not, (iii) linear vs. nonlinear. We will focus mainly on linear ordi-

nary and partial differential equations, which have received the most attention

in the quantum computing literature, and only comment briefly on stochastic

and nonlinear differential equations.

In order to solve a differential equation numerically, one typically speci-

fies a discretization scheme. Two important classes of discretization schemes

are: (i) grid-based schemes, including finite difference methods (FDMs), as

well as the finite volume method (FVM) and the FEM combined with various

choices of support grids and preconditioning (see [665, 996] for an introduc-

tion). For example, in the finite difference framework, the continuous space is

discretized on a uniform grid and the continuous operators are replaced by fi-

nite difference operations on neighboring grid points. Alternatively, (ii) one can

discretize space by expansion in a functional basis (Fourier, Hermite, etc.), and

solve the discrete problem in this basis. This second class of methods is often

referred to as spectral methods [930]. There is often a tradeoff between error

convergence and regularity requirements, with higher-order grid-based meth-

ods and spectral methods offering faster error convergence with the number

of grid points or basis functions utilized, but requiring more stringent assump-

tions on the smoothness of the solution of the differential equation, which are

not always satisfied in the applications listed above.
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7. Solving differential equations 113

Given a discretization scheme, solving linear differential equations can be

accomplished by solving linear systems of equations. In cases where one is

interested in very high precision, requiring very fine discretization, the linear

system of equations can be too large for straightforward numerical solutions

on a classical computer. In particular, if one wants high-precision results in-

tegrated over time, and/or systems with many continuous variables, then the

simulations can be challenging both in time and memory. Quantum algorithms

aim to offer a speedup over classical methods by leveraging the existence of

quantum linear system solvers, or more generally, primitives in quantum linear

algebra, which enable quantum algorithms to perform efficient manipulations

of vectors that are exponentially large in the number of qubits and elementary

operations involved. However, at a technical level, various complications arise,

including the difficulty of reading out useful information at the end of the algo-

rithm, and assumptions about the differential equation that must be true for the

methods to work. Ultimately, polynomial speedups for end-to-end problems

appear to be possible, but for differential equations in a fixed number of spatial

dimensions, exponential speedups for real-world applications are not generally

attainable.

Actual end-to-end problem(s) solved

We are interested in solving a general linear partial differential equation (PDE)

of the form

L(u(x)) = f (x) for x ∈ Cd , (7.1)

where L is a linear differential operator acting on the function u(x), and f (x) ∈
C is the inhomogeneous term (which is 0 for homogeneous PDEs). In addi-

tion to Eq. (7.1), we are given boundary conditions on u(x) and its derivatives,

which ideally are sufficient to ensure a unique solution—for example, Dirichlet

boundary conditions refer to a specification of a function b(x) and a require-

ment that u(x) = b(x) for x contained in some subset Ω ∈ Cd. As a canonical

example of a linear PDE, consider the Poisson equation in d dimensions, given

by

∂2u

∂x2
1

+ · · · + ∂
2u

∂x2
d

= f (x) . (7.2)

As another example, we consider a linear ordinary differential equation

(ODE) of the form

dū(t)

dt
= A(t)ū(t) + b̄(t) , (7.3)
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114 7. Solving differential equations

where we refer to the variable t ∈ R as time (although it could represent a

different quantity), ū(t) and b̄(t) are N-dimensional vectors, and A(t) is an N×N

matrix. Boundary conditions on ū(t) are also specified, often in the form of an

initial condition at t = 0, with one seeking the solution at some final time T ;

this is known as an initial value problem. Higher-order linear ODEs can always

be transformed into first-order linear ODEs. Note that if A(t) is anti-Hermitian

and b̄(t) = 0, then Eq. (7.3) becomes the time-dependent Schrödinger equation,

which is solved directly with Hamiltonian simulation. Equation (7.3) could be

viewed within the framework of Eq. (7.1) with d = 1 and u a vector-valued

rather than scalar-valued function. We separate these cases because the existing

literature typically uses either Eq. (7.1) or Eq. (7.3) as its starting point, and

the methods pursued in each case are distinct.

For nonlinear PDEs, the linear equations in Eq. (7.1) and Eq. (7.3) are re-

placed by nonlinear ones. For example, one can extend Eq. (7.3) to consider

an ODE with a polynomial nonlinearity of the form

dū(t)

dt
= FM(t)ū(t)⊗M + A(t)ū(t) + b̄(t) , (7.4)

where FM(t) is a tensor encoding the nonlinearity, although note that existing

quantum algorithms have focused on the case where FM(t) and A(t) are time

independent. This class of differential equations includes important potential

applications such as CFD, since the Navier–Stokes equation is nonlinear with

a quadratic nonlinearity (M = 2).

What does it mean to “solve” the differential equation? In the most general

sense, this refers to obtaining an expression for the solution u(x) (for Eq. (7.1))

or ū(t) (for Eq. (7.3)). While closed-form solutions can be derived for some

simple differential equations, this is not possible in general, and the solution

typically must be computed numerically. However, in specific applications, we

often do not need complete information about the solution function u(x) or ū(t)

to accomplish a certain goal. An end-to-end problem involving the solution of

a differential equation boils down to estimating the value of some property of

the solution, denoted by P[u] ∈ R, up to specified additive error parameter ϵ.

For linear PDEs, a straightforward example is when the property P is simply

the value of u at a specific point x∗, that is, P[u] = u(x∗). More generally,

we restrict to the case where P[u] is a linear functional of u, that is, P[u] =

⟨r, u⟩ :=
∫

x∈Ω dx r(x)u(x) for some subset Ω ⊂ Rd and function r : Ω → R
for which ⟨r, r⟩ = 1 [777]. For example, in [295], a quantum algorithm for

solving Maxwell’s equations based on the FEM was given, where the quantity

of interest was not the electric field itself at any specific point, but rather the
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7. Solving differential equations 115

electromagnetic scattering cross section. In this case, the cross section was

given by the square of a linear functional of u.

Properties of ODEs can be treated in the same framework, where we are

interested in computing quantities of the form P[u] =
∫

t∈Ω dt r̄⊺(t)ū(t), which

are linear functionals of the entries of ū(t) over some subset Ω of the interval

[0,T ]. However, we note that for initial value problems, often of primary in-

terest are properties at the final time T , in which case P[u] would reduce to

an inner product r̄⊺ū(T ). For example, in [832], the drag force on a ship hull

was expressed as a linear functional of the solution to the lattice Boltzmann

equation evolved forward in time.

Dominant resource cost/complexity

There are many distinct approaches to constructing a quantum algorithm for

solving the end-to-end problem above. The exact complexity will of course

depend on the method, but it will also depend on specific details related to

how the differential equation and its boundary conditions are specified to the

quantum algorithm (input model), as well as instance-specific factors such as

how smooth the solution to the differential equation is. Here we overview some

of the available choices and complexity considerations, focusing the bulk of the

discussion on methods that leverage the quantum linear system solver (QLSS)

as a primitive, as these have received the most attention in the literature.

Discretization of linear PDEs: Any numerical method must perform some

form of discretization. First, we focus on linear PDEs such as Eq. (7.2) where

there is no time variable. The choice of discretization will depend sensitively

on the problem at hand. In the case of the Poisson equation in Eq. (7.2) with

Dirichlet boundary conditions, quantum algorithms leveraging discretization

schemes based on FDM, FEM, and spectral methods were discussed in [228],

[777], and [285], respectively. The key goal is to minimize the number N of

grid points or basis functions while achieving discretization error O(ϵ). Us-

ing low-order grid-based methods, a problem in d spatial dimensions requires

taking N = (1/ϵ)Ω(d) grid points, with some caveats on solution norm and reg-

ularity [777]. Alternative sparse-grid or spectral methods can improve the 1/ϵ

dependence to logarithmic, but still scale exponentially with d [285]; however,

these generally require stricter regularity requirements on the solution to the

differential equation, which may not be satisfied in applications.

After appropriate discretization, the linear differential equation in Eq. (7.1)

(along with its boundary conditions) reduces to a matrix equation:

L|u⟩ = | f ⟩ . (7.5)
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116 7. Solving differential equations

This is the same linear equation that would be obtained for a classical method

using the same discretization scheme. Information about the solution function

u(x) is encoded into the N components of the vector |u⟩.1 Classical methods

typically manipulate a full description of all components of the vector |u⟩,
whereas quantum methods can create the normalized quantum state |u⟩/∥ |u⟩ ∥
encoding these N components into its amplitudes with O(log(N)) qubits.

If the linear PDE has a time variable, one option is to treat it equally as the

other d − 1 variables (see, e.g., [692]), but it is often treated separately. First,

discretization of the other d−1 variables using N total grid points or basis func-

tions is performed as above, which reduces the linear PDE in Eq. (7.1) to an

ODE with N variables as in Eq. (7.3). Time is then discretized and propagated

as discussed for ODEs below.

Discretization of time in linear ODEs: To solve the linear ODE on N

variables in Eq. (7.3)—whether it came about via discretization of a PDE

or otherwise—the time interval [0,T ] is discretized into grid points, and the

solution at one grid point is related to the solution at the prior grid point by

a time-ordered exponential of the matrix A. If A is time independent, this

exponential can be approximated by a truncated Taylor series [138, 646, 571],

and if A is time dependent, it can be approximated by a truncated Dyson

series [132]. The number of grid points needed scales linearly with T , and the

series is truncated at order polylog(T/ϵ). An alternative approach when ū(t) is

sufficiently smooth in time uses spectral methods, which approximate ū(t) as

a truncated series over a complete set of basis functions [279]. In any case, the

relation between the solution at different time grid points or basis functions

leads to a linear system of equations, now of size roughly N′ = O(NT ), but

again of the form L|u⟩ = | f ⟩ as in Eq. (7.5).

Here the solution |u⟩ is a “history state” meaning that it is given by a su-

perposition of states |t⟩|ū(t)⟩ for different discrete values of t across the entire

interval [0,T ]. Since one is often interested only in ū(T ), additional trivial time

steps can be included at the end to boost the portion of the history state ampli-

tude on the t = T branch [131].

It is important to emphasize that classical methods for solving ODEs do

not solve the same linear equation L|u⟩ = | f ⟩ arrived at by these methods.

Rather, they typically handle time in a time-marching fashion where the value

of ū(t) at one time step is directly computed from its value at one or more

previous time steps. In [379], a quantum time-marching strategy was proposed

1 In this chapter, we adopt a convention where quantum states like |u⟩ need not be normalized
states. In fact, the norm, denoted by ∥ |u⟩ ∥ will be important for reasoning about the
complexity.
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7. Solving differential equations 117

for time-dependent homogeneous linear ODEs, which generates a sequence

of quantum states |ū(0)⟩, |ū(t1)⟩, |ū(t2)⟩, . . . , |ū(T )⟩ (rather than a superposition

of these states). This method avoids the need to solve a linear system, but it

does utilize primitives from quantum linear algebra. Similarly, the methods of

[312, 579, 80, 581, 36, 37] avoid the need to solve linear systems by mapping

ODEs to equations that can be simulated with Hamiltonian simulation [312,

579, 80, 581], or linear combination of Hamiltonian simulation [36, 37].

Solving the linear system: Once the linear PDE or ODE has been reduced to

a linear system L|u⟩ = | f ⟩, it can be solved on a quantum computer by applying

the QLSS. The QLSS subroutine prepares a quantum state approximating the

normalized solution vector |u⟩/∥ |u⟩ ∥ up to some specified precision ξ in ℓ2

norm, where ∥ |u⟩ ∥ =
√
⟨u|u⟩ is the norm of the quantum state encoding the

solution to the linear system. To do so, the QLSS assumes access to oracles

that (coherently) query the matrix elements of L and prepare the normalized

state | f ⟩/∥ | f ⟩ ∥. Optimal QLSSs [313, 327] (see also alternative near-optimal

methods in [26, 282, 248, 964, 31, 571]) make O(sκ log(1/ξ)) queries to these

oracles, where κ is the condition number of the matrix L (i.e., the ratio of

the largest and smallest singular values), and s is the maximum number of

nonzero elements in any row or column of L (“sparsity”). Additionally, one

can compute an estimate for the norm ∥ |u⟩ ∥ up to relative error ξ using Õ(sκ/ξ)

queries (note the worse ξ-dependence) [327, 248]. For simplicity, we assume

that to achieve ϵ overall error on the end-to-end problem, it will suffice to take

ξ = O(ϵ), although there can also be factors that depend on the choice of

discretization and norms of the solution u (see, e.g., [777]).

Henceforth, let N′ refer to the size of the linear system being solved, so

N′ = N for the PDE example described above, and N′ = O(NT ) for the ODE

example (with N reserved for the size of the matrix A).

The oracles for querying the matrix elements of the s-sparse N′ × N′ matrix

L and for preparing the N′-dimensional state | f ⟩/∥ | f ⟩ ∥ are assumed to have

cost polylog(N′). This is valid if the matrix elements of L can be efficiently

computed “on the fly,” which is plausible when they are given by succinct ex-

pressions, for example, based on a simple finite difference formula. However,

if entries of L and | f ⟩/∥ | f ⟩ ∥ depend on arbitrary, classically stored data re-

lated to, for instance, object geometries, boundary conditions, or grid point

locations, then the assumption of polylog(N′) cost per query requires access

to a log-depth quantum random access memory (QRAM). This requirement

is necessary in many practical applications of PDEs involving highly complex

geometries in three spatial dimensions, such as CFD and seismic modeling.

The assumption of log-depth QRAM brings significant caveats—for example,
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118 7. Solving differential equations

while the quantum circuits for implementing the QRAM operation can be par-

allelized to have depth polylog(N), they cannot avoid having size poly(N) for

accessing a database with poly(N) entries; see Chapter 17 on loading classical

data for more information.

With these assumptions, the QLSS portion of the quantum algorithm can be

performed exponentially faster in the parameter N, and with exponential saving

in memory, compared to any classical method that manipulates vectors of size

N, which includes Gaussian elimination and iterative methods like conjugate

gradient. Specifically, the quantum complexity to obtain the state |u⟩/∥ |u⟩ ∥ is

given by

sκ · polylog(N′, 1/ϵ)

and the cost to obtain ∥ |u⟩ ∥ is sκϵ−1 · polylog(N′, 1/ϵ). The number of qubits

is O(log(N′)), although if a log-depth QRAM is necessary, this may require

poly(N′) ancilla qubits.

Reading out estimates for properties of the solution to the differential

equation: Preparing the log(N′)-qubit state |u⟩/∥ |u⟩ ∥ does not immediately

yield an estimate for the property P[u]. Indeed, reading out useful informa-

tion from |u⟩/∥ |u⟩ ∥ represents a major bottleneck of the algorithm. Consider

the case that P[u] corresponds to the value u(x∗) at a specific point x∗ (for

PDEs), or the amplitude ⟨x∗|ū(T )⟩ on one of the basis states (for ODEs). Then,

the estimation of P[u] to precision ϵ is performed with amplitude estimation,

which introduces multiplicative overhead O(∥ |u⟩ ∥/ϵ) into the complexity. To

read out all N amplitudes of the state |u⟩ in this fashion, a linear factor of

N would be reintroduced, although more advanced methods of pure state to-

mography can reduce this to
√

N [49]. In the more general case that P[u] is a

linear functional, the value of P[u] can be expressed (up to discretization er-

ror) as an overlap P[u] = ⟨r|u⟩ between some preparable normalized state |r⟩
and the solution vector |u⟩ that solves L|u⟩ = | f ⟩. Thus, to compute P[u], one

computes the overlap between |r⟩ and |u⟩/∥ |u⟩ ∥, and then multiplies by ∥ |u⟩ ∥.
Overlap estimation [637] is a straightforward application of amplitude esti-

mation, and achieving precision ϵ/∥ |u⟩ ∥ introduces O(∥ |u⟩ ∥/ϵ) multiplicative

overhead. Thus, the overall scaling of the complexity is

sκ ∥ |u⟩ ∥
ϵ

· polylog(N′, 1/ϵ) . (7.6)

For initial value problems governed by the ODE in Eq. (7.3), one is often

interested in properties P[u] that depend only on the solution ū(T ) at the final

time T . When |u⟩ = ∑
i|ti⟩|ū(ti)⟩ is a history state encoding of the solution ū(t)
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7. Solving differential equations 119

over the whole interval, the complexity of computing useful information will

grow with the ratio

q =
supt∈[0,1]∥ |ū(t)⟩ ∥
∥ |ū(T )⟩ ∥ ≈ O

( ∥ |u⟩ ∥
∥ |ū(T )⟩ ∥

)
,

that is, the factor by which the norm of the solution has decayed compared

to its maximum on the interval [0,T ] (the approximation is correct assuming

supt∈[0,T ]∥ |ū(t)⟩ ∥ accounts for a constant fraction of the total norm ∥ |u⟩ ∥ ). This

arises from the fact that |T ⟩|ū(T )⟩ contributes at most ∥ |ū(T )⟩ ∥ ≈ O( ∥ |u⟩ ∥/q)

amplitude to the history state |u⟩ and thus the additive precision ϵ will need to

be on the order of ∥ |u⟩ ∥/q, or smaller, to learn something useful about ū(T ).

Since the complexity scales linearly with ∥ |u⟩ ∥/ϵ, the complexity grows with

q. Unfortunately, q can be large and growing with T if the solution to the ODE

is decaying. Furthermore, the dependence of the complexity on q is necessary

since otherwise the algorithm would be able to perform postselection on low-

probability events, a power ruled out by widely believed complexity-theoretic

conjectures; see [138, 35].

The persisting polylog(N) dependence in Eq. (7.6) suggests an exponential

speedup in the parameter N compared to classical methods, but this conclusion

depends on the scaling of the parameters s, κ, and ∥ |u⟩ ∥/ϵ with N.

Condition number: The sparsity s and condition number κ depend on the dif-

ferential equation and the choice of discretization, but can often be controlled.

For example, for PDEs discretized by the FEM, in many instances we have

s = O(1) and κ ≤ O(N2/d) (see, e.g., [198, Theorem 9.7.1]). Additionally, pre-

conditioning of linear systems to reduce κ is an effective technique in classical

iterative approaches to solving linear systems such as the conjugate gradient

method, and several studies have examined the possibility of integrating these

into the QLSS in some circumstances [295, 925, 990, 83]. In the best case

scenario, these could reduce κ to O(1).

In the setting of ODEs like Eq. (7.3), upper bounds on κ can be derived.

These bounds can have the form κ ≤ CT , where C is a factor that depends on

the spectral properties of A.2 The upper bounds on κ also require an assump-

tion that the ODE is “dissipative” [131, 138, 646, 132]; otherwise, the value

of C in the bound can grow exponentially with T [646], consistent with the

observation that the norm of the history state |u⟩ can be exponentially larger

than the norm of the initial state |ū(0)⟩. A sufficient condition for the ODE to

be dissipative is that A is diagonalizable and the real parts of its eigenvalues

2 Generally, the bound on κ scales with the number of grid points in time. The linear-in-T bound
is achieved when using the Dyson series method with high-order truncation [132].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.009
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.218, on 25 Jun 2025 at 18:59:34, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.009
https://www.cambridge.org/core


120 7. Solving differential equations

are non-positive [138] so that the solutions are stable and do not grow with

time, although this technical definition was relaxed slightly in [646] and now

includes nondiagonalizable A. The requirement of dissipation is not as relevant

for classical solvers based on time-marching strategies, which can renormal-

ize growing solutions at each step and do not generally require solving linear

systems.

The linear dependence on T in the complexity cannot be improved in general

since this factor appears in the complexity of optimal Hamiltonian simulation,

which corresponds to the special case that A is anti-Hermitian and b̄ = 0 [134].

However, it has been shown that many ODEs admit “fast forwarding” and the

dependence on T can be reduced. For example, for stable ODEs (when all

eigenvalues of A have a negative real part), a bound of the form κ ≤ Õ(
√

T )

was derived in [571]; see also [35].

Final complexity: For dissipative ODEs on N variables, propagated to time T ,

the final complexity inherits a linear dependence on CT via the condition num-

ber, and existing literature typically includes the factor q defined above directly

in the complexity statements. These statements are phrased to say that the state

|ū(T )⟩ can be obtained to error ξ in complexity roughly T sqC · polylog(N, 1/ξ)

[138, 646, 571, 132], which accounts for postselecting the time register to

t = T but not yet the complexity to read out a property of interest.3 Defin-

ing ϵ′ = ϵq/∥ |u⟩ ∥ to be the normalized precision parameter that should be

small in order to learn something interesting, and taking ξ = O(ϵ′), the total

end-to-end complexity including readout could then be expressed as

T sqC

ϵ′
· polylog(N, q/∥ |u⟩ ∥ϵ′) . (7.7)

For PDEs in d dimensions, we recall that N and ϵ are not independent pa-

rameters: in general, we are interested in simulating the PDE to a fixed preci-

sion, and adapt N to reach the desired precision. As discussed, depending on

the discretization method, N scales either as (1/ϵ)O(d) or (polylog(1/ϵ))d, but

either way, we have that polylog(N) ≤ dO(1) · polylog(1/ϵ). For PDEs with a

time variable and initial conditions specified at t = 0, where d − 1 dimensions

are discretized and time is integrated via mapping to an ODE, we substitute

3 We briefly mention the complexity of alternative approaches to ODEs that avoid solving linear
systems. The quantum time-marching method of [379] has a different complexity form, but
has similar features, growing with time (in this case, as T 2) and depending on an
“amplification ratio” Q > q, but offering other potential benefits, such as minimal regularity
requirements (even allowing A(t) to have jump discontinuities) and needing fewer queries to
the initial condition ū(0). Meanwhile, the linear combination of Hamiltonian simulation
method [37] shares the feature of needing minimal queries to ū(0) while matching the
complexity stated above.
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7. Solving differential equations 121

this value of N into Eq. (7.7). This gives a total complexity of

dO (1) · Õ (
TCq/ϵ′

)

for reading out a property of the (renormalized) solution to the PDE at time T

to precision ϵ′.

For static PDEs where all d dimensions are discretized by a grid-based

method like the FEM, we instead substitute κ = O(N2/d), s = O(1), and

N = (1/ϵ)O(d) into Eq. (7.6), yielding overall end-to-end complexity

∥ |u⟩ ∥ dO (1)

ϵ1+O (1)

to compute a global property of the PDE, given conditions on the boundary.

If preconditioning improves κ to O(1), the ϵ dependence is improved to essen-

tially linear in 1/ϵ—see [777] for a more careful analysis specific to the FEM

that arrives at similar expressions, but better accounts for impact of solution

norm and smoothness.

Generally, the main conclusion is that—irrespective of the discretization

scheme—the quantum complexity is polynomial in the desired preci-

sion 1/ϵ, although for d-dimensional PDEs the complexity may scale as

poly(d) · poly(1/ϵ) rather than poly((1/ϵ)d). Thus, for fixed dimension d

there is potentially room for a polynomial-in-1/ϵ quantum speedup, the size

of which grows exponentially in the dimension d. Ultimately, the necessity

of the O(1/ϵ) scaling is traced back to the fact that the quantum solver

produces a quantum state encoding the normalized solution to the differential

equation, potentially exponentially faster than leading classical methods such

as conjugate gradient, but the exponential speedup is lost in the readout step,

where one must learn an observable of interest to error ϵ. Moreover, this

conclusion holds not just for “bad” observables (like full state tomography),

but for any observable, due to the Ω(1/ϵ) cost of quantum readout.

Nonlinear differential equations: The immediate issue with applying the

above methods to nonlinear differential equations such as the nonlinear ODE

of Eq. (7.4) is that discretization no longer leads to a system of linear equa-

tions. Early work on quantum algorithms for nonlinear ODEs handled this

issue by dividing time into short time steps and preparing the quantum state

encoding the solution at one time step using multiple copies of the solution at

the previous time step [679]. Since quantum states cannot be cloned, the com-

plexity of this strategy necessarily grows exponentially in the number of time

steps. More recent quantum algorithms for nonlinear differential equations in-

stead proceed by first linearizing the differential equation and then applying

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.009
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.218, on 25 Jun 2025 at 18:59:34, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.009
https://www.cambridge.org/core


122 7. Solving differential equations

the methods sketched above [710, 702, 1061, 703, 646, 315]. Specifically, the

most heavily studied approach has been Carleman linearization, where one ex-

actly maps a nonlinear ODE with polynomial nonlinearity such as Eq. (7.4)

to a linear ODE on an infinite-dimensional variable (ū, ū⊗2, ū⊗3, . . .), and then

truncates to form an approximate finite-dimensional linear ODE. Quantum al-

gorithms based on this method were first studied in [702] and further developed

in [703, 646, 315, 207], and it has also been analyzed in the context of specific

differential equations such as reaction-diffusion equations [703, 315, 32], the

Navier–Stokes equation (via the lattice Boltzmann equation) [683, 832], and

differential equations related to training classical neural networks [701]. The

complexity of the quantum algorithm has a similar scaling as that for linear

ODEs quoted in Eq. (7.7), growing linearly in T , q, and 1/ϵ′. However, this

complexity scaling requires an additional assumption: a quantity R capturing

the nonlinearity-to-dissipation ratio of the differential equation must satisfy

R < 1 for the errors to be controlled (see [702, 703, 315, 1055]), and it is not

always clear when this condition holds.

For example, in the case of the Navier–Stokes equation, the size of the

nonlinearity—and hence the value of R—grows with the “Reynolds number”

of the fluid, and the condition R < 1 would be violated when simulating high-

Reynolds-number turbulent flows. Turbulent flows are potentially handled by

applying the Carleman linearization method to the lattice Boltzmann equation

rather than the Navier–Stokes equation directly [683, 832], in which case the

size of the nonlinearity does not scale with the Reynolds number. Indeed, gen-

erally speaking, for this approach to nonlinear differential equations, there is a

delicate interplay between the size of the input state at time t = 0, the form of

the nonlinearity, and the amount of dissipation in the linear term; see [315] for

a discussion.

Separate from these approaches, methods have been proposed that map non-

linear classical dynamics to linear phase-space dynamics that can be simulated

with Hamiltonian simulation [590, 354, 580, 578, 581].

Comments on the complexity of alternative methods and problems: We

briefly comment on two further classes of applications involving PDEs, but

which typically have very different characteristics. The first is stochastic dif-

ferential equations (SDEs), which are simulated extensively in computational

finance and more generally in risk modeling. There, one typically samples tra-

jectories of the SDE (via Monte Carlo methods), and evaluates observables

stochastically. Quantum-accelerated Monte Carlo has been worked on exten-

sively (see Section 8.2 on pricing financial options). Where classical methods

require sampling O(1/ϵ2) trajectories to obtain an ϵ-estimate of a certain quan-
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7. Solving differential equations 123

tity, the quantum method can create a superposition of trajectories and read

out the relevant amplitude at O(1/ϵ) cost—a quadratic quantum advantage. On

the classical side, a key advantage of these methods is that they avoid an ex-

ponential scaling in the number of continuous dimensions d (i.e., the “curse

of dimensionality”), unlike the “Eulerian” approaches discussed above that

discretize the d-dimensional space into N ≥ exp(Ω(d)) grid points or basis

functions. Thus, they are relatively effective when d is large, and less preferred

when d is small due the fact that their ϵ dependence cannot be better than

O(1/ϵ2). In fact, in some cases, classical and quantum trajectory-based meth-

ods can be applied not only to SDEs but also to (deterministic) PDEs, and

thus they compete against QLSS-based PDE and ODE methods we have dis-

cussed. For example, the quantum and classical complexity of a Monte Carlo

approach for the heat equation was studied in [692] and compared against

alternative approaches—for the end-to-end problem considered, the classical

Monte Carlo approach outperformed all classical alternatives when d > 4, and

the quantum-accelerated Monte Carlo approach outperformed all (quantum or

classical) alternatives when d > 2. For SDEs, an alternative to Monte Carlo

is to map the SDE to a Fokker–Planck equation via the Itô calculus and solve

the Fokker–Planck PDE. This has been proposed in [441]. However, for most

SDEs of interest in risk analysis, Monte Carlo simulation converges in a num-

ber of samples scaling linearly in the number of variables, leaving very little

room for a quantum speedup in these applications given our current under-

standing.

The last class of problems to be mentioned are multi-particle Schrödinger

equations. They are (i) high dimensional, (ii) complex, and (iii) require

high-precision solutions for practical applications. Hence, they match all

of the criteria under which a quantum advantage might be expected. The

second-quantized approach to solving the full configuration interaction

molecular Schrödinger equation is a specific case of the spectral method,

although here one must solve an eigenvalue equation rather than a linear

system. Unsurprisingly, this case has already gathered a lot of attention (see

Chapter 2 on quantum chemistry).

Existing resource estimates

An explicit resource estimate for linear PDEs was reported in [902] for solving

Maxwell’s equations to estimate an electromagnetic scattering cross section in

2D. Following the asymptotic analysis of [295], it employed an FEM-based

discretization scheme to form a linear system of size N = 3 × 108, targeting

accuracy ϵ = 0.01. The estimates did not incorporate preconditioning methods

and assumed a value for the condition number κ ≈ 104, ultimately finding
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124 7. Solving differential equations

that 1029 T gates would be needed to complete the computation. However,

this work predated asymptotic and practical advancements to the complexity

of the QLSS [313, 327], and modern estimates for the same problem would

likely lead to more reasonable resource counts. Note also that much of the

art in classical PDE solvers is to find appropriate preconditioning schemes to

control the condition number. In [295], it was shown that one common class of

preconditioners works within the framework of the quantum algorithm, but it

is as yet unclear if this is the case more generally.

For ODEs, [571] gave a detailed performance analysis of the Taylor

series truncation approach developed in [138, 646] applied to general time-

independent dissipative ODEs. They gave explicit upper bounds on the

condition number κ of the linear system in terms of the total evolution time

T and the “log-norm” of the matrix A. They considered the task of outputting

the history state |u⟩ or the final-time state |ū(T )⟩. By combining the bound

on κ with explicit upper bounds from [572] on the query complexity of the

QLSS, they determined an upper bound on the number of times the algorithm

needs to query a block-encoding of the ODE matrix A to accomplish this task.

The estimated number of queries per unit time varied from 10 to 105 over

the parameter regime considered, and these figures would be reduced with

subsequent improvements to the QLSS complexity, such as those reported in

[327].

In [832], the query bounds of [571] were applied to the specific end-to-end

CFD problem of computing the drag force on a ship hull in the incompressible

(and potentially turbulent) parameter regime, by solving the nonlinear lattice

Boltzmann equation (linearized via Carleman linearization). They considered

a simplified version of the problem where the ship hull is modeled as a sphere.

They estimated that the quantum algorithm would need 1020–1024 T gates and

roughly 103–105 logical qubits (depending on the value of the Reynolds num-

ber) to compute the drag force on the sphere. Classically, the lattice Boltzmann

method is a high-accuracy method and would be computationally intractable

for this instance in the high-Reynolds-number regime. In practice, classical

methods resort to lower accuracy methods, which for this instance can be com-

pleted within several minutes on a laptop. Computing the drag force on actual

ship hulls with the quantum method is expected to be significantly more re-

source intensive compared to the flow-past-a-sphere instance due to the need

to coherently load the boundary conditions describing the ship hull each time

the block-encoding is queried.
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Caveats

A key caveat is that many analyses in the literature do not consider the full end-

to-end problem that needs to be solved for applications. Often, these works

only consider the cost of preparing the quantum state |u⟩ that encodes the so-

lution to the differential equation into its amplitudes, and they report this cost

in terms of the number of queries to oracles of the input data. Thus, these

works study the task of solving differential equations as a primitive—similar to

Hamiltonian simulation, that is, simulation of the time-dependent Schrödinger

ODE—rather than as an end-to-end application. As discussed above, reading

out useful information to precision ϵ introduces a Ω(1/ϵ) multiplicative over-

head and dramatically changes the complexity scaling, precluding exponential

end-to-end speedups. Furthermore, whereas a full classical description of the

solution could be computed just once, and subsequently many properties read

out from that description, the state |u⟩ is consumed during readout, and the

number of times |u⟩ needs to be prepared grows with the number of properties

one wants to learn. In some cases, one may only seek to learn a few observ-

ables, but in other cases, extracting the desired information might require near

full tomography of the quantum state |u⟩, which in certain situations removes

all quantum advantage [692].

The readout caveat can potentially be avoided if a small number of samples

from the state |u⟩ measured in the computational basis, as opposed to prop-

erties P[u] as defined above, would be useful for the end-to-end application.

However, in such cases one must also be careful to compare against classical

methods for the same task, where quantum-inspired methods can be competi-

tive [977]. In [80], it was shown that BQP-hard problems can be encoded into

an ODE describing coupled oscillators and solved by sampling from |u⟩, but

this situation would be unlikely to arise naturally in applications. In [701], it

was suggested that samples from |u⟩ encoding the solution to certain nonlinear

differential equations could be useful for training neural networks.

Another caveat is that complexity statements often report only the number

of times the algorithm queries oracles for the input data. In applications where

the input data encoding complex boundary conditions or object geometries is

not efficiently computable but rather stored in a large classical database, one

must assume access to a log-depth QRAM in order to implement these oracles

efficiently, an assumption that has its own caveats.

For simulating time evolution of ODEs, it is important to emphasize the

dependence of the complexity in Eq. (7.7) on the parameter q, which for dis-

sipative systems grows with time, potentially exponentially, as the size of the

solution decays. Furthermore, for nonlinear differential equations, we reiterate

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.009
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.218, on 25 Jun 2025 at 18:59:34, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.009
https://www.cambridge.org/core


126 7. Solving differential equations

that existing quantum algorithms are often based on the assumption that the

nonlinearity-to-dissipation ratio is sufficiently small, which may not be satis-

fied in practical instances. Generally speaking, strong nonlinearities can cause

the solution to develop discontinuities, and linearization schemes might break

down for problems of interest if the solutions lack sufficient regularity, as can

be the case for simulations of turbulence in CFD.

Finally, we note that due to the large number of methods available to clas-

sical solvers of differential equations, an important caveat is that any claim of

quantum advantage must be sure to compare against the best possible classical

method, and consider the possibility that this classical method might benefit

from parallelization.

Comparable classical complexity and challenging instance sizes

Classical algorithms for linear PDEs can compute a classical description of the

solution u by solving the same linear equation L|u⟩ = | f ⟩ solved by the quan-

tum algorithm. For an s-sparse N×N linear system, the complexity of an exact

Gaussian elimination approach is O(Nω), where ω < 2.37 is the matrix multi-

plication exponent. However, in practice, approximate iterative methods such

as the conjugate gradient method are more common. The complexity of conju-

gate gradient scales as Õ(Ns
√
κ log(1/ϵ)) when L is positive semidefinite [481,

Chapter 10.2]. For a discretization scheme like the FEM where N = (1/ϵ)Ω(d),

and using the aforementioned bound κ ≤ O(N2/d), the complexity of the conju-

gate gradient approach is s(1/ϵ)Ω(d), which has exponential dependence on the

spatial dimension d but for fixed d scales as poly(1/ϵ). Additionally, in prac-

tice, the conjugate gradient method benefits from preconditioning techniques

to reduce κ, and from parallel implementation on graphics processing units

(GPUs). For a sense of scale, [713] used the preconditioned conjugate gradient

method within a finite element analysis to compute the thermal conductivity

and elasticity of certain 3D cast iron samples imaged with micro-computed

tomography (a task chosen mainly to benchmark their method). Among other

reported results, their implementation solved the end-to-end problem, which

required solving several linear systems, with N ≥ 106 in less than 1 second,

and N ≥ 4 × 108 in less than 30 minutes using a single GPU with 8 gigabytes

of RAM.

For linear and nonlinear initial value problems, classical methods could ap-

ply conjugate gradient or other linear system solvers to the same linear equa-

tion L|u⟩ = | f ⟩ that the quantum algorithm constructs to solve the ODE. The

complexity of this approach would have a linear-in-N dependence, but since

the solution would be a full classical description of the history state, it would
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not need to also pay the factor of q arising from postselecting on the t = T

branch of the history state, and it would avoid the O(1/ϵ) readout cost.

However, most classical methods do not follow this route and instead in-

tegrate the ODE with a time-marching method, where a description of the

length-N vector is propagated forward in time, for which there are many op-

tions [1024, 1025]. Similar to the quantum complexity, nearly linear-in-T scal-

ing is achieved by high-order methods, so long as A(t) is smooth up to cor-

responding order, or by spectral methods [930]. In the time-independent or

smooth case, one would achieve NTC′ · polylog(T, 1/ϵ) complexity, where C′

is some constant depending on the spectral properties of A, similar to C. As in

the quantum case, care must be taken to choose ϵ appropriately when solutions

are exponentially growing or decaying.

We also mention that there has recently been work on using machine learn-

ing methods to classically simulate nonlinear PDEs, especially for CFD [1019,

730]. These methods are generally very fast, but they are heuristic, so they

are suitable in some instances but not when high-confidence, high-accuracy

solutions are required.

Speedup

For linear PDEs in d dimensions, solved via discretization with N = (1/ϵ)Ω(d)

grid points and inverting the corresponding linear system, the speedup is a re-

duction from time roughly ϵ−Ω(d) classically to dO(1)ϵ−1ϵ−O(1) quantumly, here

omitting dependencies on ∥ |u⟩ ∥ and log(ϵ−1). The O(1) powers depend on the

details of the discretization and the efficacy of preconditioning. Other dis-

cretization schemes may give rise to slightly distinct complexity forms, but

in any case, the conclusion is that for fixed dimension d, the speedup is at

best polynomial, a point that has been made in more detail in, for example,

[777, 692].

The speedup can be exponential in the parameter d. However, in many engi-

neering applications, the number of dimensions is fixed to be fewer than four

(three for space, one for time), limiting the advantage quantum methods can

obtain. Furthermore, for PDEs with large d, trajectory-based classical strate-

gies can avoid the exponential-in-d complexity scaling, and in cases where

these methods apply, the best possible speedup is typically a quadratic reduc-

tion from O(1/ϵ2) to O(1/ϵ); see, for example, [692] and Section 8.2 on option

pricing.

For integrating ODEs of N variables forward in time, there can be an ex-

ponential speedup in the parameter N. However, since N and ϵ are typically

related by N ≤ (1/ϵ)Ω(d) (e.g., when the ODE arises via discretization of a

PDE), the O(1/ϵ) cost of readout will contribute a much larger factor than the
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polylog(N) cost of the QLSS, and the best possible speedup is again poly-

nomial. An exponential speedup could be possible if N ≥ exp(Ω(1/ϵ)), or if

samples from the state |u⟩ were directly useful within the end-to-end applica-

tion, but this assessment would also require that the solution-decay-factor q

appearing in the quantum complexity does not cancel the speedup.

In general, these methods do offer the possibility of an exponential saving in

space, since the quantum methods can represent the vector using a logarithmic

number of qubits. Nevertheless, the overall take-home message is that quantum

algorithms can potentially outperform classical algorithms, but major gains are

only to be expected when the number of spatial dimensions is large, or if there

is otherwise a reason that the linear systems involved are much larger than the

precision demanded in the output. This intuition is corroborated by the analysis

of quantum computing algorithms for ab initio chemistry, where the number

of dimensions scales with the number of electrons.

NISQ implementations

Various proposals at NISQ implementations of PDE solvers have been made;

see [677] and references therein. The idea is to start from some discretization

of the PDE L|ψ(θ)⟩ = |b⟩, where |ψ(θ)⟩ is an appropriately chosen variational

circuit, and to optimize the parameters θ of the circuit. This is an example of

a variational quantum algorithm. Another proposal applies a variational ap-

proach to nonlinear PDEs [725]. Note that even if these methods find param-

eters to generate a good approximation of the solution, they would still pay

the O(1/ϵ) cost to read out properties. Thus, they offer at best a polynomial

speedup over classical methods. It is difficult to imagine that sufficient size

and precision can be reached in the NISQ regime to be competitive with the

best classical solvers.

Outlook

While the simulation of differential equations is one of the most important

large-scale computational tasks, constituting a sizable fraction of HPC work-

loads in industry, at present the benefit of quantum solvers for real-world

problems appears limited to relatively modest polynomial speedups. Extensive

work on quantum algorithms for solving differential equations has developed

methods with rigorous analyses and likely close-to-optimal complexities; the

challenge that remains is how these methods can integrate into an end-to-end

application pipeline, in such a way as to reduce the cost. To find a high-value

application related to solving differential equations (beyond potentially ab ini-

tio chemistry), one would likely need to find a situation that meets some or all

of the following criteria: (i) involves a very large number of spatial dimensions,
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7. Solving differential equations 129

(ii) has simple geometry or initial conditions in order to avoid the need for a

QRAM input model, (iii) requires high precision, ruling out heuristic classi-

cal approximate methods, (iv) requires learning a relatively small number of

properties of (or ideally requires only samples from) the solution vector. There

remains the possibility for substantial improvements in memory usage, but this

is not currently a bottleneck in classical PDE solving.
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