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This study presents an automatic differentiation (AD)-based optimisation framework
for flow control in compressible turbulent channel flows. Using a differentiable solver,
JAX-Fluids, we designed fully differentiable boundary conditions that allow for the
precise calculation of gradients with respect to boundary control variables. This facilitates
the efficient optimisation of flow control methods. The framework’s adaptability and
effectiveness are demonstrated using two boundary conditions: opposition control and
tunable permeable walls. Various optimisation targets are evaluated, including wall
friction and turbulent kinetic energy (TKE), across different time horizons. In each
optimisation, there were around 4 × 104 control variables and 3 × 109 state variables
in a single episode. Results indicate that TKE targeted opposition control achieves a
more stable and significant reduction in drag, with effective suppression of turbulence
throughout the channel. In contrast, strategies that focus directly on minimising wall
friction were found to be less effective, exhibiting instability and increased turbulence
in the outer region. The tunable permeable walls also show potential to achieve stable drag
reduction through a ‘flux-inducing’ mechanism. This study demonstrates the advantages
of AD-based optimisation in complex flow control scenarios and provides physical insight
into the choice of the quantity of interest for improved optimisation performance.

Key words: compressible boundary layers, drag reduction, compressible turbulence

1. Introduction
Flow control and optimisation has long been a fundamental area of research in fluid
mechanics (Brunton & Noack 2015; Fukagata et al. 2024; Vinuesa 2024), driven by
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the need to reduce drag and regulate heat transfer in engineering applications. From
aerospace to automotive systems, as well as energy and process industries, controlling
the flow in a manner that optimises performance can significantly improve efficiency and
reduce operational costs. Traditional methods of flow control are typically categorised
into passive and active approaches. Passive methods, such as riblets (García-Mayoral &
Jiménez 2011), surface roughness (Yang et al. 2023), or porous media (Rosti et al. 2015;
Wang et al. 2021a, 2021b, 2022), alter the flow in a fixed manner without requiring external
energy. While passive strategies are effective in certain scenarios, they are limited by their
inability to adapt to changing flow conditions. Active flow control, by contrast, provides
dynamic manipulation of the flow-through external actuators, allowing for more flexibility
in achieving desired flow behaviours. An example of active control often referenced is
opposition control (Choi et al. 1994; Bewley et al. 2001; Kametani & Fukagata 2011),
which involves implementing local wall blowing and suction to negate the fluctuations in
wall-normal velocity at a specific height from the wall. Wang et al. (2024) performed high-
resolution large-eddy simulations to evaluate opposition control for turbulent boundary
layers on wing surfaces, analysing drag reduction and turbulence dynamics under adverse
pressure gradients. Their findings highlight that its effectiveness in reducing friction drag
is challenged by increased wall-normal convection from stronger gradients, especially in
complex geometries such as those found in wing applications.

In the compressible regime, flow control and optimisation become even more critical,
as the aerodynamic and thermal challenges intensify with increasing Mach numbers.
Kametani et al. (2017) investigated the drag reduction capabilities of uniform blowing
in supersonic wall-bounded turbulent flows, concluding that Mach number dependence
primarily stems from varying thermal properties such as density and temperature, similar
to the effect of Mach number on turbulent statistics in uncontrolled flows. Yao & Hussain
(2021) achieved a maximal drag reduction of 23 % with opposition control in a turbulent
channel flow at Mach numbers Mb = 1.5.

Another promising approach involves the use of porous media. In compressible
turbulent flows, porous surfaces are particularly effective for managing thermal loads,
enhancing heat transfer in thermal protection systems, which makes them highly relevant
for aerospace applications. These techniques offer significant potential for improving
both aerodynamic performance and thermal management in high-speed compressible
flows. Recent experimental and numerical studies have demonstrated that by tuning the
permeability of the porous medium, it is possible to achieve significant modulation of both
turbulence intensity and drag, providing an approach to drag reduction in practical appli-
cations (Manes et al. 2009; Kim et al. 2018; Rosti et al. 2018; Gómez-de Segura & García-
Mayoral 2019; Lācis et al. 2020; Chu et al. 2021). For instance, in thermal protection
systems (TPS) used in high-speed aerospace applications (Mansour et al. 2024), effective
flow control can significantly reduce heat loads and improve material longevity, ensuring
better thermal management and structural integrity. Chen & Scalo (2021a) studied flows
in channels at Mach numbers of Mb = 1.5 and Mb = 3.5, where the channel walls were
modelled using a time-domain impedance boundary condition (Chen & Scalo 2021a,b).
Large-eddy simulations were employed to examine how porous walls influence the flow,
particularly with respect to pressure changes and stress distribution. These findings
highlight the potential of porous media in advancing the design of efficient flow systems,
offering enhanced control over turbulent structures and contributing to both aerodynamic
performance and thermal regulation.

While traditional flow optimisation and control methods have demonstrated
effectiveness in specific scenarios, they often rely on empirically tuned parameters.
To address these challenges, the field has increasingly turned to advanced control and
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optimisation techniques that provide a more systematic and rigorous approach. Among
these, adjoint-based optimisation has become a cornerstone in the pursuit of efficient
flow control and design, offering a mathematically robust framework for optimising
performance across a wide range of flow configurations (Kungurtsev & Juniper 2019)
or data assimilation (Plogmann et al. 2024). The adjoint method allows the efficient
computation of gradients of an objective function, such as drag, lift, heat transfer or
energy dissipation, with respect to a large number of control variables by solving the
adjoint equations derived from the governing Navier–Stokes equations. This approach is
particularly advantageous because the cost of computing the gradient is independent of
the number of design parameters, making it highly suitable for complex systems, such
as aerodynamic shape optimisation, where traditional optimisation techniques would be
prohibitively expensive (Jameson 1988). Adjoint-based techniques have been successfully
applied to a wide range of flow control problems, including boundary layer manipulation,
turbulence suppression and noise reduction (Bewley et al. 2001; Kim 2003).

Despite its strengths, adjoint optimisation faces several challenges. One of the primary
difficulties lies in the derivation and implementation of the adjoint equations. For
these complex flows, the adjoint equations must be accurately formulated and solved
in tandem with the primal equations, leading to significant numerical complexity and
computational expense. Additionally, the presence of discontinuities in the flow, such
as shock waves or regions of flow separation, can lead to difficulties in ensuring stable
and convergent adjoint solutions, as these sharp gradients are challenging to resolve in
both the forward and adjoint simulations (Giles & Pierce 2000). Furthermore, adjoint-
based methods are often limited by the need for accurate linearisation of complex
physical models, and the derivation of adjoint systems for industrial-scale solvers can
be time consuming and error prone. Moreover, adjoint methods can struggle with
handling non-smooth optimisation landscapes, particularly in turbulent or chaotic flow
regimes (Vishnampet et al. 2015), where the adjoint variables exhibit high sensitivity to
small changes in the control inputs, leading to slow convergence or even divergence in
optimisation.

Machine learning (ML) has also emerged as a promising avenue for fluid mechanics
(Duraisamy et al. 2019; Srinivasan et al. 2019; Vinuesa & Brunton 2022; Chu & Pandey
2024; Han et al. 2024; Yang et al. 2024). Bayesian optimisation (BO), in particular, is
suited for cases where objective function evaluations are expensive, as it uses probabilistic
models to identify promising regions of the control space. This method has been used
to optimise flow control strategies in scenarios where traditional gradient-based methods
may struggle, offering a more global search that accounts for uncertainty in the control
space. Mahfoze et al. (2019) developed a BO framework to optimise low-amplitude wall-
normal blowing control in a turbulent boundary layer flow. The BO framework identifies
the optimal blowing amplitude and coverage, achieving up to a 5 % net power savings
within 20 optimisation iterations, which require 20 direct numerical simulations (DNS).
Reinforcement learning (RL), on the other hand, has been increasingly explored for flow
control applications where the control strategy can be learned through interaction with
the flow environment (Sonoda et al. 2023). Reinforcement learning algorithms allow for
agents to learn optimal control policies through trial and error. In the context of flow
control, RL has demonstrated potential in complex, nonlinear flow configurations, where
direct gradient methods may not provide effective solutions.

In addition to adjoint methods and ML, differentiable fluid dynamics combines the
strengths of traditional gradient-based methods with the flexibility of ML frameworks.
In differentiable fluid dynamics, the entire fluid simulation becomes differentiable,
allowing the efficient computation of control parameter gradients using automatic
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differentiation (AD) (Kochkov et al. 2021; List et al. 2022). The early development of
AD in scientific computing predates the ML era (Griewank & Walther 2008). In the
area of optimisation design, AD has been incorporated into the development of the
discrete adjoint (Albring et al. 2016; Bombardieri et al. 2021), providing an automated
method for generating the adjoint code. Automatic differentiation is implemented through
computational graphs, which represent the sequence of mathematical operations executed
during the forward pass. Each operation in the graph is a node, and the edges represent the
flow of data between operations, allowing dependencies between variables to be tracked. In
the reverse mode of AD, the graph is traversed backward after the forward pass, applying
the chain rule to propagate gradients efficiently. This enables for the fast computation of
gradients, even in large and deep models. This way, AD allows for the direct calculation
of exact gradients of the objective function, eliminating the need for hand-derived adjoints
or computationally expensive finite-difference (FD) approximations (Alhashim & Brenner
2024).

Recently, differentiable fluid dynamics has gained significant traction due to its ability
to seamlessly integrate with ML frameworks (Ataei & Salehipour 2024; Toshev et al.
2024), enabling the use of fast-evolving data-driven approaches in fluid simulations.
Beyond just optimisation, it holds broader potential in areas like data assimilation
(Buhendwa et al. 2024) and data-driven modelling (List et al. 2022; Fan & Wang
2024), allowing for the incorporation of governing equations directly into the learning
process. This approach bridges the gap between purely data-driven models and physics-
based simulations, enabling more accurate and reliable modelling of complex, chaotic
systems.

In this work we designed an AD-based optimisation framework for flow control in
compressible turbulent channel flows. Using the AD capability of the differentiable solver
JAX-Fluids (Bezgin et al. 2023, 2024), we calculate the exact gradients of the objective
functions, allowing us to efficiently optimise control strategies involving opposition
control or porous media. Through the application of AD in the framework of differentiable
fluid dynamics, we show that flow optimisation and control can be performed in an easier
and computationally efficient manner. This work highlights the potential of differentiable
fluid dynamics for end-to-end optimisation for complex flow control scenarios. Section 2
presents the numerical techniques employed in this study, covering the differentiable fluid
dynamics framework, as well as the optimisation workflow. In § 3 the effectiveness of drag
reduction through opposition control and permeable wall designs will be illustrated under
varying optimisation scenarios. Section 4 provides a conclusive discussion.

2. Numerical approach

2.1. Differentiable solver: JAX-fluids
In the present study, we establish our optimisation framework utilising JAX-Fluids (Bezgin
et al. 2023, 2024), a Python-based CFD solver with full differentiability, tailored for
compressible single- and two-phase flow scenarios. JAX-Fluids integrates high-order
Godunov-type finite-volume methodologies with positivity-preserving limiters to enhance
robustness. By leveraging JAX primitives, it facilitates efficient parallel processing on
GPU and TPU platforms. This integration allows JAX-Fluids to perform DNS of complex
flow dynamics with high-order precision and computational efficacy. A key feature of
JAX-Fluids is its differentiability, enabled through JAX’s AD capabilities. This allows
for the computation of derivatives of scalar outputs (e.g. a loss function) with respect to
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any of the input parameters, such as initial conditions and physical properties of the flow.
Therefore, the solver is ideally suited for present optimisation purposes due to its high
computational efficiency and differentiability.

However, the current JAX-Fluids does not support AD on its built-in boundary
conditions. To optimise the control parameters at the boundaries, we developed an
extended boundary condition framework that allows for the complete differentiability of
boundary conditions. This unlocks new possibilities for optimising flow control strategies
directly through gradient-based methods. The primary idea is to construct a user-defined
container that holds the boundary condition parameters and pass it from the high-level
function, such as feed_forward(), into the JAX-Fluids computational pipeline, and reach
low-level halo cell update function, where boundary conditions are enforced. During each
time step, the boundary parameters interact with the flow solver by being passed into the
halo cell update function, where boundary conditions are applied.

In JAX, functions that involve arrays or computational operations are traced to
construct a computational graph. Since the boundary parameter array is part of the
traced computation, it becomes part of this graph. Since the boundary parameters
are passed through the same computational graph, their gradients can be computed
during backward pass. This enables gradient-based optimisation of these boundary
parameters to minimise or optimise a loss function. The expanded patch allowing for
differentiable boundary conditions in JAX-Fluids has been made publicly available
(https://github.com/WangWen-kang/JAX-BC.git)

2.2. Governing equations and numerical methods
The optimisation and control is based on the DNS of compressible turbulent channel flow,
and the Navier–Stokes equations of conservative variables are

∂U
∂t

+ ∂Fc(U)

∂x
+ ∂Gc(U)

∂y
+ ∂Hc(U)

∂z
= ∂Fd(U)

∂x
+ ∂Gd(U)

∂y
+ ∂Hd(U)

∂z
+

∑
i

Si (U),

(2.1)
where Fc, Gc and Hc denote the convective fluxes in the x , y and z direction. Analogously,
Fd , Gd and Hd denote the dissipative fluxes in the three spatial dimensions. The right-hand
side is complemented by the sum of all source terms

∑
i Si (U). The primitive variables

are the fluid density ρ, the velocity components u, v, and w (in x , y, and z direction,
respectively), and the pressure p. Here E = ρe + (1/2)ρu · u denotes the total energy of
the fluid. The vector of the conservative variables is given as

U =

⎡
⎢⎢⎢⎣

ρ

ρu
ρv

ρw

E

⎤
⎥⎥⎥⎦ , (2.2)

and the convective fluxes are

Fc(U) =

⎡
⎢⎢⎢⎣

ρu
ρu2 + p

ρuv

ρuw

u(E + p)

⎤
⎥⎥⎥⎦ , Gc(U) =

⎡
⎢⎢⎢⎣

ρv

ρuv

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎦ , Hc(U) =

⎡
⎢⎢⎢⎣

ρw

ρuw

ρvw

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎦ . (2.3)
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The dissipative fluxes describe viscous effects and heat conduction:

Fd(U) =

⎡
⎢⎢⎢⎣

0
τxx
τxy
τxz∑

uiτi x − qx

⎤
⎥⎥⎥⎦ , Gd(U) =

⎡
⎢⎢⎢⎣

0
τyx
τyy
τyz∑

uiτiy − qy

⎤
⎥⎥⎥⎦ , Hd(U) =

⎡
⎢⎢⎢⎣

0
τzx
τzy
τzz∑

uiτi z − qz

⎤
⎥⎥⎥⎦ .

(2.4)

The viscous stress is given by

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
, (2.5)

where μ is the dynamic viscosity. The energy flux vector q = [qx , qy, qz]T is expressed
via Fourier’s heat conduction law, q = −λ∇T , where λ is the heat conductivity.

The system of governing equations is closed by the ideal gas equation of state:

p = (γ − 1)ρe, (2.6)

c =
√

γ (p)

ρ
. (2.7)

Here the ratio of specific heats γ = 1.4. In addition, we employ a simple power law model
for the dynamic viscosity μ,

μ = μref

(
T

Tref

)0.7

, (2.8)

where μref is the dynamic viscosity at the reference temperature Tref. The thermal
conductivity λ is determined using a constant Prandtl number Pr = 0.7:

λ= Pr

µcp
. (2.9)

In this context, cp represents the specific heat capacity at constant pressure.
The source terms S(U) in (2.1) represent body forces and heat sources. In the current

study, a constant mass flow rate is maintained by applying a body force in the streamwise
(x) direction using a proportional-integral-derivative (PID) controller that minimises the
error between the target and current mass flow rate,

e(t) = ṁtarget − ṁ(t)

ṁtarget
. (2.10)

The computational domain size (Lx/h × L y/h × Lz/h) is 3π × 2 × 1.5π in the
streamwise (x), wall-normal (y) and spanwise (z) directions, respectively (figure 1), where
h is the channel half-width. The grid resolution consists of 192 × 128 × 96 points in
the corresponding x × y × z directions. The DNS grid is uniform in the streamwise (x)
and spanwise (z) directions, while a hyperbolic-tangent stretching is applied in the wall-
normal (y) direction with a stretching factor of 1.8. The grid resolution in the streamwise
and spanwise directions is �x+ = �z+ = 10.71, with �x+ = xuτ /ν, �z+ = zuτ /ν and
uτ = √

τw/ρ. The cell sizes in the wall-normal direction vary, with a minimum value of
�y+

min = 0.69 and a maximum value of �y+
max = 6.48. A validation of the present DNS

against the DNS data from Yao & Hussain (2020) is provided in Appendix A.
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Differentiable

boundary conditions

Smooth wall

Permeable wall

Opposition control

Ly = 2

Reb, 
Mb

xz
y

Lz = 1.5π

L x =
 3
π

Figure 1. Domain of compressible DNS channel flow. The snapshot of the flow field, extracted from the smooth
wall channel, serves as the initial condition for control. The blue and red isosurfaces represent streamwise
vorticity at levels ωx = ±σx .

The bulk density is computed as ρb = (1/2h)
∫ h
−h〈ρ〉 dy and the bulk velocity is

calculated as Ub = (1/2hρb)
∫ h
−h〈ρu〉 dy. The Reynolds number, based on bulk density,

bulk velocity, channel half-width and wall viscosity, is Reb = (ρbUbh/μw) = 3000. The
bulk Mach number, defined as the ratio of the bulk velocity to the speed of sound at
the wall, is given by Mab = (Ub/cw) = 1.5. Isothermal no-slip boundary conditions are
enforced at the channel walls, where T = 1 and u = 0 at y = ±h. Periodic boundary
conditions are applied in both the streamwise and spanwise directions.

For the numerical set-up, we employ a TENO6-A (Fu et al. 2016) cell-face
reconstruction method combined with a HLLC (Harten–Lax–van Leer contact) Riemann
solver. The TENO6-A reconstruction is enhanced by an interpolation limiter, while flux
limiters are not utilised in this work since the single-phase cases considered do not involve
strong shock discontinuities. Diffusive fluxes are discretised using sixth-order central FD
schemes, and the temporal evolution is carried out using a third-order TVD (total variation
diminishing) Runge–Kutta (TVD-RK3) scheme with a Courant–Friedrichs–Lewy number
of 0.9.

2.3. The flow control boundary conditions
In addition to the smooth wall channel flow, which is taken as the baseline of flow control
performance, we investigate two types of flow control boundary conditions. The first is the
boundary condition of opposition control. A wall-normal velocity

u = −φ(x, t) · n (2.11)

is applied on the upper and lower wall, Γ + and Γ −, where n is the unit outward
normal to the boundary. This control strategy is applied with the objective of introducing
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a counteracting wall-normal velocity at the boundary, designed to oppose the near-
wall turbulence structures. The total net flux across the boundary is constrained to be
zero, i.e. ∫

Γ +
φ dx =

∫
Γ −

φ dx = 0, (2.12)

ensuring that there is no net mass flow through the wall over time.
The second boundary condition is a permeable wall boundary condition proposed

by Jiménez et al. (2001). The wall-normal velocity on the lower and upper walls is
modelled as

u = −β(x, t)p′ · n, (2.13)

where the parameter β works like the permeability of the wall and modulates the coupling
between the wall-normal velocity and the pressure fluctuations. The value of β varies
in the range of 0–0.7, as suggested by Jiménez et al. (2001). In contrast to the initial
research of Jiménez et al. (2001), where β remains constant throughout space and time,
our approach considers β as variable in both dimensions in order to improve its control
capabilities. For each time step, p′ is computed by decomposition of p in the first layer
of the grid above the wall p = 〈p〉 + p′. Here 〈p〉 is the average over the x–z plane, i.e.
〈p〉 = (1/Lx Lz)

∫
Γ

pdxdz; p′ is the current step used to compute the wall velocity for the
next step. This ensures that 〈p′〉 = 0, and therefore, there is no net flux across the wall
when β has a uniform spatial distribution. The net flux across the wall is only attributed to
the spatial variation of β.

Note that the isothermal condition (T = 1) is applied to the channel walls for both the
opposition control and permeable wall boundary conditions. This is consistent with the
baseline case of smooth wall channel.

2.4. Optimisation workflow
Figure 2 illustrates the workflow for the AD-based optimisation. We adopted the receding-
horizon predictive control process introduced by Bewley et al. (2001). The evolution of the
flow consists of a series of ‘episodes’. In each episode, the optimised control parameters
are explored by an iterative gradient-based optimisation algorithm. Once this iteration
converges, the flow is advanced to the next episode and the optimisation process is initiated
again.

Consider episode N as an instance. The optimisation’s input is UN , representing
the terminal state from episode N − 1. Alongside the boundary condition parameters
for the upper and lower walls, γ , the initial flow variables are processed through the
differentiable solver to yield an intermediate output Ubuffer, which is used to calculate
the loss function J . During the forward computation, the computational graph is created,
allowing for the calculation of the gradient of the loss function concerning the boundary
parameter ∇γ J (γ ) via AD. This requires just one computation pass to form the graph.

The gradient-based optimiser then updates the control input for differentiable boundary
conditions. In this context, the Adam optimiser (Kingma 2014) is used. At each iteration
k, the gradients ∇γ J (γ ) are used to calculate the biased first moment mk and the biased
second moment vk of the gradients according to the update rules

mk = β1mk−1 + (1 − β1)∇γ J (γ ), (2.14)

vk = β2vk−1 + (1 − β2)(∇γ J (γ ))2, (2.15)
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Navier–Stokes

solver

JAX-Fluids

Intermediate

output

Loss

function

Forward pass→Computational graph

Backward pass→gradient

(Automatic differentiation)
Gradient-based

optimiser

Update

Converged?

No

Episode N Episode 0 Episode 1 

Optimisation procedure

Simulation

Boundary condition

parameters γ 

Initial flow

variables U

Apply differentiable

boundary condition

Yes

U0 UN

UN

UN+1

UN+1

Ubuffer

U1 U2

t+ = 0 Δt+ = 50

γJ

J

Δ

t+ = 2000

Figure 2. The procedure for AD and flow control optimisation.

where β1 and β2 are the exponential decay rates for the first and second moments. Here we
use β1 = 0.9 and β2 = 0.999. To correct the biases introduced by initialising the moments
to zero, the bias-corrected first and second moments are computed as

m̂k = mk

1 − βk
1
, v̂k = vk

1 − βk
2
. (2.16)

Finally, the control parameters are updated using these corrected moments, i.e.

γk+1 = γk − α
m̂k√
v̂k + ε

, (2.17)

where α is the learning rate and ε = 10−7 is a small constant to avoid dividing by zero.
In the current study the learning rate α is set to 0.01. The iteration process continues until
the relative magnitude of the loss function reduction becomes sufficiently small, ensuring
convergence:

|J (γk+1) − J (γk)|
|J (γk)| < δ. (2.18)

Here δ is 10−4. For each episode, the maximum iteration limit is set to 100 steps to balance
computational efficiency and optimisation accuracy. When optimisation converges, the
boundary condition parameters are fixed for the current episode, enabling the flow to
proceed by �t and generate the terminal flow state UN+1. While the Adam method used
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in this study is suited for managing sparse gradients, it might reach suboptimal solutions in
some non-convex optimisation problems. Hence, it is important to carefully examine the
convergence of optimisation. Further analysis of the performance of the Adam optimiser
will be provided in later sections.

For the current channel domain, the upper and lower walls consist of 192 × 96 × 2 grid
points, resulting in a 36 864 dimensional optimisation problem. Automatic differentiation
is particularly powerful with functions with such high-dimensional input. Only one
backward pass through the computational graph is needed to compute the gradient with
respect to all input variables, since each partial derivative is accumulated in parallel during
the backward pass. Therefore, the total cost remains low even as the input dimension
increases. In addition, JAX uses the XLA (accelerated linear algebra) compiler for
just-in-time (JIT) compilation of functions. The JIT compilation translates the Python
functions into a lower-level, optimised representation that can run directly on the hardware,
avoiding the overhead of Python’s interpreter. This is particularly beneficial for AD,
where operations need to be traced through a computational graph. With JIT, this tracing
happens once and the compiled version can be executed repeatedly without needing to
retrace.

The duration of the optimisation episodes plays a vital role in the system. This time
horizon influences how far ahead the control algorithm projects the system’s behaviour.
A longer horizon enables the controller to foresee long-term effects of its actions,
though it demands more computational power. Conversely, a shorter horizon decreases
computational effort and favours real-time execution, but might lead to less optimal
decisions. In our current study we evaluated two time horizons: �t+ = �tu2

τ /νw = 25
and 50, with the latter corresponding to a 0.69 flow-through time tUb/Lx . The rollout
time step is �t+rollout = 0.04, which results in 1250 rollout steps for an episode with a
time horizon of �t+ = 50. In comparison, Bewley et al. (2001) used �t+rollout = 0.14 for
control optimisation with the adjoint method in an incompressible turbulent channel at
Reτ = 180. Meanwhile, Sonoda et al. (2023) used RL to optimise opposition control,
using �t+rollout = 0.06 for the minimal channel and �t+rollout = 0.03 for a full-size channel at
Reτ = 150. We tested that the optimisation results are only weakly dependent on the choice
of �trollout. The total simulation runs for t+ = 2000, translating to 27.6 flow-through
times, which is adequate for the controlling boundary to significantly affect turbulent flow
dynamics. The simulation and optimisation processes utilise eight NVIDIA A100 GPUs
on a single node within the HAWK-AI infrastructure at the High Performance Computing
Center Stuttgart. Each optimisation with t+ = 2000 takes about two days of wall-clock
time. This duration is manageable for industrial applications, highlighting its potential in
practical optimisation tasks.

Note that we use single precision in all simulations. This decision balances
computational efficiency with accuracy. Automatic differentiation computations require
substantial memory and time, and we verified that turbulence statistics in current low-
Reynolds-number channel flow simulations using single precision closely match those
with double precision, as validated in Appendix A. Thus, we selected single precision
on GPUs for our tests. This offers us greater flexibility in computational domain size and
time horizon, which we prioritise over slightly diminished precision.

2.5. Loss functions
The choice of loss function has a large impact on the optimisation process. In the current
study we compare several types of loss functions.

1011 A1-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.304


Journal of Fluid Mechanics

2.5.1. Cumulative wall friction control
To consider the cumulative effect of wall friction τw = μ(∂u/∂y)y=0, the loss function can
be formulated as the integration of friction drag on the upper and lower walls and over the
time horizon (0, �t). For the opposition control strategy, the magnitude of φ also needs to
be constrained to limit the cost of control, i.e.

Jτ(cum)(φ) = − 1
�t

∫ �t

0

∫
Γ ±

μ
∂u(φ)

∂n
dx dt + �2

2

∫
Γ ±

ρwφ2 dx, (2.19)

where ∂/∂n represents the gradient in the direction perpendicular to the wall, facing
outward. The factor �2 represents the price of control, which regulates the importance
of the control cost in the loss function, and hence, affects the optimisation result of φ.
In the current work we choose �2 to be 1. As will be shown later, this is a relatively large
constraint on the input energy of opposition control and results in a small amplitude of φ.

For permeable wall cases, there is no energy consumption except at the state-changing
instants between control sections. In this study we ideally assume that the state-changing
process of permeable walls has a marginal cost; hence, the cost function for permeable
wall cases is

Jτ(cum)(β) = − 1
�t

∫ �t

0

∫
Γ ±

μ
∂u(β)

∂n
dx dt. (2.20)

2.5.2. Cumulative turbulent kinetic energy control
In the present study, the longest time horizon for each episode, �t+ = 50, corresponds
to 0.69 of the flow-through time. This is similar to the time horizon employed in earlier
research (Bewley et al. 2001), yet it remains insufficient for the entire channel to fully
stabilise following the implementation of control. Therefore, taking the quantity of interest
directly as the cost function may not be the most effective and stable means of reducing it
over the long term. In particular, wall friction only involves the information on the wall,
which can be manipulated easily by setting the boundary condition in a short period. The
potential long-term effects of these manipulations on the outer region are not taken into
account, which may lead to instability of the control results.

Turbulence in the near-wall region induces wall-normal convective transport, thereby
enhancing both drag and heat transfer in the flow. It is well known that turbulent production
throughout the channel significantly contributes to wall friction (Renard & Deck 2016).
Hence, alleviating turbulence intensity might lead to a reduction in wall friction. Moreover,
turbulent kinetic energy (TKE), in contrast to wall friction that is concentrated in the region
close to the wall, results from the turbulence sustaining processes occurring throughout the
entire channel. Consequently, TKE may serve as a more effective loss function than wall
friction in producing stable control outcomes. We employed the cumulative TKE across
the channel as the loss function. For the opposition control boundary, we also include the
constraint on the cost of control:

Jk(cum)(φ) = 1
4h�t

∫ �t

0

∫
Ω

ρ|u(φ)|2 dx dt + �2

2

∫
Γ ±

ρwφ2 dx. (2.21)

For the permeable wall case, The cost of control is assumed to be small and not taken into
consideration hence the loss function is

Jk(cum)(β) = 1
4h�t

∫ �t

0

∫
Ω

ρ|u(β)|2 dx dt. (2.22)
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2.5.3. Terminal wall friction and TKE control
In addition to cumulative control that considers wall friction or TKE throughout the
time horizon, another control method is to concentrate solely on the terminal value of
each episode. Using the terminal control approach, the cost functional does not penalise
deviations in the quantity of interest during the intermediate stages of each episode,
provided that these deviations result in lower values of the quantity of interest at the end
of each optimisation horizon. Compared with traditional methods, the terminal control
approach offers greater flexibility in control strategies and potentially better control
outcomes; however, choosing an inappropriate loss function and having a very short time
horizon may also result in instability.

For terminal wall friction minimisation with opposition control, the loss function is

Jτ(ter)(φ) = −
∫

Γ ±
μ

∂u(φ; �t)

∂n
dx + �2

2

∫
Γ ±

ρwφ2 dx, (2.23)

and the loss function for a permeable wall is

Jτ(ter)(β) = −
∫

Γ ±
μ

∂u(β; �t)

∂n
dx. (2.24)

Similarly, the loss functions for terminal TKE minimisation are

Jk(ter)(φ) = 1
4h

∫
Ω

ρ|u(φ; �t)|2 dx + �2

2

∫
Γ ±

ρwφ2 dx (2.25)

and

Jk(ter)(β) = 1
4h

∫
Ω

ρ|u(β; �t)|2 dx (2.26)

for opposition control and a permeable wall, respectively.

3. Results
In the current section we show the simulation with optimised opposition control and
permeable wall configurations.

3.1. The performance of opposition control
The performance of opposition control is determined by the control φ(t), which is
influenced by the configuration of the optimisation process. Since we use the auto-
differentiation gradient as the optimisation input, the form of the computational graph
is the core. For the current set-up, there are two important factors. First, the time horizon
of the episodes decides the time integration length of the Navier–Stokes equation, and
hence, is closely related to the complexity of the computational graph. It also defines
the maximum flow field information available from the temporal dimension that could be
utilised for optimisation. Physically, the time horizon is the period during which the flow
is allowed to develop under the same conditions φ. Second, the choice of loss function
also profoundly affects the computational graph, since it determines more specifically the
variables, as well as the spatial and temporal range, included in the computational graph.
Figure 3 shows the comparison of instantaneous flow fields with different optimisation
targets.

Initially, the vortices exhibit a similar shape and count in both scenarios at the early
stage of control (t+ = 50). However, as the flow continues to evolve (t+ = 500 and 2000),
the vortex structures diverge markedly in form and quantity between the two cases. In the
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Figure 3. Vorticity structures above opposition control surfaces. Panels (a,c,e) show cumulative wall friction
control with �t+ = 50, while panels (b,d,f ) depict terminal TKE control with the same �t+. The pairs of
panels (a,b), (c,d) and (e,f ) represent t+ = 50, t+ = 500 and t+ = 2000 from the onset of control, respectively.
Blue and red isosurfaces indicate streamwise vorticity at ωx = ±σωx , σωx being the standard deviation of ωx at
t = 0. Control φ is illustrated on the wall with coloured contours. Present snapshot profiles of 〈u〉 and −〈u′v′〉
are overlaid on front (z = 1.5π ) and back (z = 0) planes with solid red lines. Black dashed lines show profiles
from the smooth wall scenario for comparison. See also supplementary movies 1 and 2 for the full simulation
duration.

cumulative wall friction control scenario (figure 3a,c,e), the vortices become more intense,
whereas in the TKE control scenario (figure 3b,d,f ), the turbulent structures are notably
diminished. This divergence is evident in the mean statistics, such as the Reynolds stress
profile 〈u′v′〉 (indicated by red solid lines on the plane z = 0). Compared with the initial
〈u′v′〉 (denoted by black dashed lines on the plane z = 0), the wall friction control case
shows a slight increase in the magnitude of Reynolds stress, while the TKE control case
registers a significant reduction in the peak of Reynolds stress.

The rise in Reynolds stress in the case of wall friction control appears counterintuitive
as Reynolds stress significantly contributes to friction drag. This is due to the modification
of the mean velocity profile 〈u〉 by the control. However, this alteration is localised near
the wall and is not distinctly visible (the 〈u〉 profiles are depicted as red solid lines in the
plane z = 1.5π in figure 3).

It is also worth noting that φ remains constant in each episode. This means
that φ updates at a low frequency, making it more advantageous for practical
implementation. However, since each episode’s optimisation is independent, there could
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Figure 4. The development of wall friction τw with opposition control directly targeting loss functions
associated with τw . In the legend, ‘τw(cum), 25+’ represents cumulative wall friction control with a time
horizon of �t+ = 25; ‘τw(ter)’ indicates terminal wall friction control. This convention is consistently applied
throughout the rest of the legend and the paper.

be φ discontinuities between consecutive episodes (see supplementary movies 1 and 2
available at https://doi.org/10.1017/jfm.2025.304). This could be problematic for real-
world flow control, as actuator response times may not handle sudden φ changes,
potentially affecting control performance. Such a gap between the ideal φ and real control
velocity can be narrowed by using more efficient actuators with a shorter reaction time.
Another way to improve the continuity of φ is to use a time-varying control field per
episode. This could potentially reduce the temporal discontinuities of φ, but the extra
temporal dimension of the control parameter would greatly increase the computational
demands. In this study we overlook how this φ discontinuity might affect real-world
applications and assume that the ‘actuators’ function perfectly.

In the following sections we assess the impact of control strategies across varying time
horizons and loss functions. We elucidate the drag reduction mechanisms for different
scenarios in more detail.

3.1.1. The development of wall friction under opposition control
In § 2.5 we introduced two types of loss functions directly targeting wall friction: the
first, Jτ(cum), takes into account wall friction over the entire time horizon, while the
second, Jτ(ter), focuses solely on the terminal value for each episode. Figure 4 presents
a comparison of the drag evolution history using both types of loss functions, analysed
over two different time horizon durations, �t+ = 25 and 50.

For the cumulative τw control, the wall friction reduces to approximately 90 % of its
initial value by t+ = 750. A slight improvement in control outcomes is observed with a
shorter time horizon of �t+ = 25. In contrast, when employing a terminal loss function
Jτ(ter) and a time horizon of �t+ = 25, wall friction decreases by approximately 13 % at
t+ = 400, which seems to be more effective than cumulative control. However, after t+ =
500, the performance deteriorates, exhibiting a significant fluctuation as well as a slow
recovery in wall friction. This issue is exacerbated when terminal control is paired with an
extended time horizon �t+ = 50, as the wall friction experiences strong fluctuations and
fails to stabilise within the tested interval.
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The unstable performance of terminal control aligns with our expectations. As described
in § 2.5, focusing solely on the terminal value can lead to situations where only terminal
friction is decreased. This is particularly true when combined with a wall friction-based
loss function, as only the data points right above the wall are incorporated into the
computational graph. In such cases, much of the channel flow dynamics is curtailed,
and this truncation increases with longer time horizons. By focusing on the near-wall
region and neglecting the rest of the turbulent channel, terminal control can become
more aggressive and effective in the short term. However, this short-sighted approach
may cause excessive disturbances, ultimately increasing turbulent fluctuations over time.
To counteract the rise in wall friction from additional turbulence, terminal control requires
more intense intervention, creating a vicious cycle and resulting in control instability. The
cumulative loss function, which considers the full evolution history of wall friction, offers
an advantage by implicitly involving the dynamics of the outer region in the computational
graph. Consequently, while cumulative control may take longer to demonstrate its effects,
it tends to be more stable.

An alternative method to reduce wall friction involves suppressing the turbulence
intensity within the channel, which is also the fundamental principle behind opposition
control (Choi et al. 1994). We also compare the performance of the cumulative and
terminal type of loss function, i.e. Jk(cum) and Jk(ter), under time horizons �t+ = 25 and
�t+ = 50.

Figure 5(a) depicts the TKE evolution following the implementation of opposition
control. With cumulative controls, TKE decreases by around 20 % at t+ = 250. Initially,
TKE declines slightly quicker with an extended time horizon, yet the difference between
�t+ = 25 and 50 becomes insignificant after t+ = 750. Terminal controls seem more
efficient, lowering TKE by approximately 34 % at t+ = 250. An extended time horizon
seems advantageous for enhancing control performance. Despite a gradual recovery after
the initial quick drop, the turbulence intensity remains significantly lower compared with
the cumulative control scenarios.

In relation to the reduction of TKE, the wall friction in the TKE control scenarios also
significantly declines (see figure 5b). The cumulative control methods reduce wall friction
by approximately 10 %, whereas the terminal control methods achieve a reduction of up
to 20 %. Notably, the terminal control approach with a long time horizon of �t+ = 50
consistently surpasses the other configurations, demonstrating the most efficient wall
friction control.

Unlike scenarios with wall friction control, where the terminal loss function yields
unstable outcomes, controlling terminal TKE proves to be stable and significantly more
effective. This aligns with findings by Bewley et al. (2001), who utilised optimisation
through the adjoint method. The key distinction between terminal friction and terminal
TKE lies in the scope: TKE involves integrating turbulence intensity throughout the whole
channel, whereas wall friction is concerned solely with data from the near-wall area.
Wall friction can be quickly altered by adjusting boundary conditions, such as inducing
slip velocity at the wall, but TKE cannot be significantly decreased in a brief time by
merely altering boundary conditions, as it is tied to the processes of turbulence production,
transport and dissipation throughout the channel. Thus, while the terminal TKE loss
function omits the intermediate values, the full flow dynamics of the channel is essential
in the computational graph for its calculation. This ensures stability in the control from the
ground up. Regarding its effectiveness, omitting intermediate values allows the opposition
control to implement more aggressive control φ with greater flexibility.

Although the choice of loss function significantly affects optimisation outcomes, it
is observed that, with a few exceptions where convergence fails due to an unsuitable
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Figure 5. The history of (a) TKE k and (b) wall friction τw with opposition control targeting TKE related loss
function. The legend follows the same format as figure 4, with k denoting TKE control.

loss function, most cases achieve a stable control effect. This suggests that the current
optimisation framework effectively identifies meaningful control strategies for the channel.
We also performed a sensitivity analysis of the initial control parameters using the terminal
k control case with �t+ = 25 (Appendix C). Despite the two orders of magnitude variation
in the initial φ, all cases converged to the same control field and loss function value,
demonstrating the robustness and stability of the current optimisation results. Furthermore,
the consistent convergence of the optimisation to the same outcome implies potential
fundamental control mechanisms governing flow dynamics, which will be discussed in
the following sections.

3.1.2. The characteristic of control φ

To gain deeper insights into the control mechanisms and the differences arising from
varying control targets, we examine in more detail the optimised φ across all opposition
control scenarios. Figure 6 provides a comparison of φ fields in the wall friction control
scenarios initialised under identical conditions. In the cases of cumulative wall friction
control depicted in figure 6(a,c), the control fields φ exhibit streamwise elongated
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Figure 6. The opposition control φ(t+ = 0) for wall friction control with different targets and time horizons.
(a) Cumulative τw with �t+ = 25; (b) terminal τw with �t+ = 25; (c) cumulative τw with �t+ = 50;
(d) terminal τw with �t+ = 50. The isolines depict the initial u′ of the episode at buffer layer (y+ = 15).
The solid and dashed isolines indicate levels u′/σu′ = −1 and 1, respectively.

structures, resembling the form of high- and low-speed streaks in the near-wall region
(illustrated with isolines). When considering a longer time horizon, the control φ shows
longer streamwise structures. For terminal control φ, the spanwise spacing of the streak-
like formations matches that of the cumulative control φ, but these formations possess a
shorter streamwise scale and greater magnitude.

The similarity of φ and the u′ structures suggests that the form of φ is intimately linked
to the reduction of energetic structures near the wall. Additionally, for cumulative control
φ, regions of upward momentum flux largely coincide with high-speed streaks (solid
isolines in figure 6), whereas the areas of downward flux align with low-speed streaks
(dashed isolines). This correlation generates a positive Reynolds stress 〈u′v′〉 that acts
against the original Reynolds stress in the flow. It is important to note that the u′ fields
depicted with isolines in figure 6 represent the initial state of the optimisation episode.
There is no clear correlation between the terminal control φ and the initial u′ field because
the terminal control is focused solely on the final outcome of the optimisation. Since
near-wall friction velocity can be quickly adjusted by altering the boundary condition, the
influence from the initial flow state to the terminal control φ is anticipated to be minimal. It
will be demonstrated subsequently that the terminal control φ displays a strong correlation
with the terminal u′ fields.

When compared with wall friction control, the TKE control fields φ display significant
consistency across various loss functions (refer to figure 7). In all scenarios, the wall-
normal flux in φ aligns closely with low- and high-speed streaks within the buffer layer
(indicated by isolines). Specifically, the upward flux corresponds to regions of positive u′,
whereas the downward flux is situated in areas of negative u′. The impact of the duration of
the time horizon is minimal. In cases with a longer time horizon, the coherent structures
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Figure 7. The opposition control φ(t+ = 0) for TKE control with different targets and time horizons.
(a) Cumulative k with �t+ = 25; (b) terminal k with �t+ = 25; (c) cumulative k with �t+ = 50; (d) terminal
k with �t+ = 50. The isolines depict the initial u′ of the episode at buffer layer (y+ = 15). The solid and
dashed isolines indicate levels u′/σu′ = −1 and 1, respectively.

in control φ are smoothed due to time-averaging effects, resulting in fewer small-scale
details. Terminal control φ exhibits a greater magnitude compared with cumulative control
φ, indicating a more aggressive control strategy.

Terminal TKE control’s similarity in control φ to cumulative TKE control supports
our earlier discussion, indicating that loss functions involving terminal TKE implicitly
encompass flow dynamics over the full time span. Consequently, even though the initial
flow state is not directly included in the loss function, the control φ closely resembles the
energetic structures present within it.

To gain a deeper insight into the regulation mechanisms for different control objectives,
figure 8 displays the joint probability density function (PDF) relating the control variable
φ to u′, highlighting their statistical association. For clarity, we illustrate only four typical
scenarios with �t+ = 50, as other cases with shorter intervals exhibit essentially the same
pattern. In cumulative wall friction control (with �t+ = 50, figure 8a), the joint PDF fφu′

0
(coloured contour) between φ and the initial streamwise fluctuation u′

0 shows a distribution
skewed towards the first and third quadrants, indicating a clear positive correlation. This
aligns with our earlier findings in instantaneous flow fields (figure 6c). The joint PDF
fφu′

�t
(dashed isolines) between φ and the final u′

�t exhibits a slightly weaker correlation
compared with fφu′

0
. The positive correlation between φ and both the initial and final

u′ corroborates that the cumulative control φ achieved through the optimisation process
considers minimising wall friction across the entire time horizon. Conversely, in terminal
wall friction control (with �t+ = 50, figure 8c), the joint PDF fφu′

0
(coloured contour)

is symmetric around u′ = 0, indicating that φ is largely uncorrelated with the initial u′
0.

This observation is consistent with figure 6(b). Regarding fφu′
�t

(dashed isolines), a
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Figure 8. The joint PDF fφu′ between control φ and streamwise fluctuation u′ at y+ = 15. (a) Cumulative
τw control with �t+ = 50; (b) cumulative k control with �t+ = 50; (c) terminal τw control with �t+ = 50;
(d) terminal k control with �t+ = 50. The coloured contours show the joint PDF fφu′

0
between the control φ

and initial u′, and the dashed isolines show the joint PDF fφu′
�t

between the control φ and terminal u′.

distinct positive correlation is observed, confirming that terminal control of wall friction
exclusively focuses on reducing friction at the terminal time.

The joint PDFs fφu′
0

and fφu′
�t

of cumulative TKE control depicted in figure 8(b)
demonstrate a strong positive correlation between the control variable φ and both u′

0 and
u′

�t . In contrast with cumulative wall friction control, these distributions are more tightly
centred around the line given by φ/σφ = u′/σu′ , indicating a direct reliance of φ on u′.
Similarly, for terminal TKE control, control φ also displays a strong positive correlation
with u′

�t . While φ shows a weaker correlation with u′
0, there is still a distinct skew of fφu′

0
towards the first and third quadrants. These observations align with the instantaneous field
data shown in figure 7(b,d).

It is worth reiterating the distinction between terminal wall friction control and terminal
TKE control. The control variable φ for the former has almost no correlation with the
initial u′

0 condition, whereas the control φ for the latter shows a notable correlation with
u′

0. Although both scenarios only incorporate the terminal state in the loss function, this
discrepancy arises from the inherent characteristics of the target, including spatial extent,
wall location and related variables. Turbulent kinetic energy is an appealing option as it
pertains to every component of turbulent velocity throughout the channel. Nonetheless,
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Reference case C f,0 C M
f,0 C F

f,0 CT
f,0

Smooth wall 7.84×10−3 4.84×10−3 2.18×10−5 2.99×10−3

Control cases �C f /C f,0 �C M
f /C M

f,0 �C F
f /C F

f,0 �CT
f /CT

f,0
τw(cum), 25+ −12.5 % −11.0 % −34.8 % −15.6 %
τw(cum), 50+ −9.5 % −9.1 % −33.2 % −11.1 %
τw(ter), 25+ + 13.8 % −14.2 % −20.8 % + 55.8 %
τw(ter), 50+ + 19.5 % −20.0 % −19.3 % + 80.0 %
k(cum), 25+ −8.7 % −4.8 % −28.6 % −18.6 %
k(cum), 50+ −8.3 % −3.0 % −31.4 % −17.5 %
k(ter), 25+ −11.8 % −4.7 % −38.8 % −26.8 %
k(ter), 50+ −18.2 % −10.7 % −52.2 % −33.4 %

Table 1. The wall friction of the turbulent channel and the relative change in opposition control cases.

several issues remain unresolved, such as why friction control optimisation underperforms
compared with TKE control, and what fundamentally differentiates the control strategies
of wall friction and TKE control. These concerns will be addressed through a more
detailed examination of the statistics of the turbulent channel.

3.1.3. The mean statistics
This section delves into the mean statistics of controlled flow fields to understand the
control mechanisms aimed at different targets. Table 1 provides a summary of the wall
friction coefficient C f for a standard turbulent channel, along with the relative changes
�C f observed in the control scenarios. In each case, the skin friction is calculated using
the flow fields over the time interval t+ = 500 − 2000. Currently, our focus is on the overall
wall friction coefficient, while the decomposition of wall friction will be addressed later in
the section. With the exception of the terminal τw control cases, which exhibit a substantial
rise in wall friction owing to instability, all opposition control methods result in varying
levels of drag reduction. The differences in effectiveness across different control targets
can be somewhat elucidated by examining the mean statistics.

Figure 9(a) displays the average statistics for the four typical scenarios with �t+ =
50, including both cumulative and terminal control of wall friction and TKE. The mean
streamwise velocity profiles 〈u〉/uτ (figure 9a) show an upward shift in the outer region
for all controlled cases when compared with the reference smooth wall scenario. This
upward shift signifies a decrease in wall friction velocity uτ , which is directly associated
with wall shear stress τw. This can be confirmed by comparing to table 1. The extent of
drag reduction tends to correspond with the degree of shift in the 〈u〉/uτ profile. From the
extent of the shift, the terminal TKE control demonstrates superior performance in friction
reduction among the four cases.

The average density 〈ρ〉 profiles (figure 9a) in all cases remain largely unchanged,
indicating that the compressibility of the channel is not affected by opposition control.
Similarly, the temperature distribution 〈T 〉 within the channel exhibits minimal alteration.
Only the case involving friction control of the terminal wall shows a slight increase in
temperature in the central area of the channel, which could be related to the increase
in viscous dissipation owing to a notable increase in the intensity of the turbulence
(figure 9c).

In the scenarios involving wall friction control, the peak of 〈u′u′〉 is seen to move farther
from the wall. Although the peak closer to the wall decreases, there is an increase in 〈u′u′〉
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Figure 9. Mean statistics of opposition control cases compared with the smooth wall channel. (a) Mean
streamwise velocity 〈u〉; (b) mean temperature 〈T 〉 and mean density 〈ρ〉; (c) turbulent intensity 〈u′

i u
′
i 〉;

(d) Reynolds stress 〈u′v′〉.

within the outer region. Moreover, a notable rise in 〈v′v′〉 and 〈w′w′〉 is detected in the
terminal friction control case. In contrast, for the TKE control cases, 〈u′u′〉 is not only
significantly reduced near the wall but also maintains a low level in the outer region.
Similarly, 〈v′v′〉 and 〈w′w′〉 are diminished in TKE control cases.

Similarly to the intensity of the turbulence, the Reynolds stress 〈u′v′〉 (figure 9d) of τw

control cases shows negligible reductions near the wall, yet it is considerably greater than
in the smooth wall scenario in the outer region. In the TKE control cases, particularly with
terminal control, the 〈u′v′〉 magnitude are notably lower than the baseline level.

Analysis of the average statistics indicates a fundamental contrast in the approaches
of wall friction control versus TKE targeted control. In cases aimed at controlling wall
friction, energetic turbulent structures such as streaks and vortices are displaced from
the wall, resulting in an outward shift of the turbulence intensity and Reynolds stress
peaks. Although this method may be temporarily effective, it induces additional turbulence
fluctuations in the outer regions, ultimately enhancing the mixing and undermining the
friction reduction efforts. Conversely, TKE control not only relocates the turbulence
but also suppresses it without creating additional disturbances. The different tactics
employed by the two control targets are related to the scope of their information. Wall
friction control focuses solely on wall-specific data and lacks insight into outer region
dynamics. Consequently, its optimal strategy is to push the friction-inducing structures
away. Turbulent kinetic energy control retains well-rounded information across the entire
channel, allowing it to successfully mitigate turbulence while avoiding any adverse effects.
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3.1.4. Decomposition of wall friction
To further understand the change of friction source in different control cases, we apply
skin-friction drag decomposition for compressible channel flow proposed by Renard &
Deck (2016) and Li et al. (2019):

C f = 2
ρbu3

b

∫ h

0
〈μ〉∂〈u〉

∂y

∂{u}
∂y

dy︸ ︷︷ ︸
C M

f

+ 2
ρbu3

b

∫ h

0

〈
μ′ ∂u′

∂y
+ μ′ ∂v′

∂x

〉
∂{u}
∂y

dy︸ ︷︷ ︸
C F

f

+ 2
ρbu3

b

∫ h

0
〈ρ〉 {−u′′v′′} ∂{u}

∂y
dy︸ ︷︷ ︸

CT
f

. (3.1)

Here C M
f and C F

f are both related to the direct molecular viscous dissipation, which
transforms the power of the skin-friction drag into heat; C M

f is dependent on the mean
shearing in the flow and C F

f is generated due to the thermodynamic fluctuations in
the compressible flow, CT

f represents the power converted into the production of TKE
induced by turbulent fluctuations.

Although this decomposition was originally formulated based on the no-slip wall
condition, it is also applicable to opposition control with zero net flux at the wall. For
all the cases, the residual error of RD identity is below ±2.3%. The RD identities for all
cases are documented in table 1. Across all scenarios, the primary contributors are C M

f

and CT
f , while the contribution from the compressibility effect of the flow, C F

f , is minimal
due to the low Mach number. Figure 10 presents a comparison between the premultiplied
integrands of the four typical cases (as in figure 8 and 9) and a smooth wall channel.

In the case of cumulative τw control with �t+ = 50 (figure 10a), there is an approximate
10 % decrease in both C M

f and CT
f . The decrease in CT

f is related to the positive correlation
between the control parameter φ and the fluctuating velocity u′, as illustrated in figure 8(a).
The decrease in C M

f suggests alterations in the mean shear close to the wall, particularly for
y+ below 10. This change is so subtle that it is not prominently observable in instantaneous
flow fields (figure 3a,c,e) or the normalised mean velocity profile (figure 9a). The terminal
τw control (figure 10c) more intensely altered the mean flow near the wall, decreasing C M

f
by 20 %. However, the additional fluctuations it induced considerably amplified turbulent
production, increasing CT

f by 80 %. Consequently, its impact on mean shear at the wall is
completely cancelled by increased turbulence, leading to increased wall friction.

In the cumulative k control illustrated in figure 9(b), the integrand of CT
f is primarily

reduced in the near-wall region (y+ < 30), while C M
f remains mostly unaffected.

Conversely, the terminal k control takes a notably more aggressive approach, significantly
diminishing turbulence production near the wall and in the outer region, resulting in a
33.4 % decrease in CT

f . Additionally, the mean shear on the wall undergoes a considerable
decline. The effective reduction in both CT

f and C M
f positions this as the most efficient

opposition control strategy achieved through the current optimisation.
The findings from RD identity support our previous hypothesis on the distinct

mechanisms employed in τw targeting control as opposed to k targeting control. In cases
of τw control, which only use limited data at the wall, the strategy tends to reduce shear
at the wall, albeit at the cost of introducing flow disturbances. In contrast, k control cases,
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Figure 10. Premultiplied integrands (PI) of RD identity as a function of y+ in opposition control cases. Here
C M

f , C F
f and CT

f are denoted by dashed lines, dotted lines and dash-dotted lines, respectively. The PIs of smooth
wall channel are superimposed with circles. (a) Cumulative τw control, �t+ = 50; (b) cumulative k control,
�t+ = 50; (c) terminal τw control, �t+ = 50; (d) terminal k control, �t+ = 50.

equipped with a comprehensive dynamic flow profile within the loss function, adopt a
turbulence cancellation strategy. The latter approach is evidently more efficient.

It is noted that the maximum amplitude of φ/uτ is only in the order of O(0.1), which is
equivalent to φ/Ub ∼O(10−3). Therefore, the amount of kinetic energy flux carried by the
control velocity is extremely low, which is attributed to a strong penalty for input energy
in the loss functions. This could explain the relatively lower drag reduction rates in current
cases, compared with the 23 % reduction reported by Yao & Hussain (2021) where φ/uτ is
estimated to be O(1). In addition, the low update frequency of the control field also limits
the performance. Nevertheless, the control field generated by the optimisation process
has a valid physics interpretation that aligns with the mechanism of opposition control
(Rebbeck & Choi 2006). This validates the effectiveness and convergence of the Adam
algorithm in searching for control solutions within the current optimisation framework.
The significant performance disparity between cases also highlights that, despite auto-
differentiation enabling swift gradient computation with numerous parameters, the results
are predominantly determined by the choice of loss function, which should be grounded
in physical insights.

3.2. The performance of tunable permeable wall
The main drawback of opposition control, similar to other active control techniques, is its
high energy consumption. Consequently, passive control strategies continue to be widely
intriguing for industrial implementation. In this research, we investigate the effectiveness
of a permeable wall for drag reduction. Prior research has indicated that a stationary
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permeable wall can reduce drag if the permeability is extremely low and predominantly
aligned in the streamwise direction (Rosti et al. 2018). Aside from this specific instance,
most studies on permeable walls have noted an increase in drag (Abderrahaman-Elena &
García-Mayoral 2017; Wang et al. 2021a,b). We are now removing the temporal invariance
constraint on the permeable wall to allow the permeability to vary with each optimisation
cycle. Although walls with tunable permeability are not frequently explored, it can be
implemented using metamaterials (Zheng et al. 2014), a shape memory polymer (Santo
2016), or stimuli-responsive materials (Wei et al. 2017).

In each optimisation episode, we adjust the boundary condition parameter (β for the
permeable wall) according to our control objectives. Unlike opposition control, where
constant energy put is necessary, tunable porous materials such as metamaterials, shape
memory foams and stimuli-responsive polymers only require energy during the state-
changing phase. After the porosity adjustment is done, no extra energy is needed to
preserve the changed state, moving the porous material into a ‘passive control’ mode.
Since we overlook the energy required for state change, the tunable permeable wall has
the advantage that there is no energy input constraint in the loss function. However, the
permeable wall lacks the ability to add or remove mass directly from the flow as opposition
control. Instead, it can only modulate local flux through changes in local permeability,
which may considerably limit its ability to alter the channel. Therefore, it is intriguing to
explore whether the high degrees of freedom offered by tunable permeability can be used
to achieve drag reduction.

Similarly to opposition control, there are several key factors to take into account
here, such as the target variable (wall friction τw or TKE k), the type of loss function
(whether cumulative or terminal) and the chosen time horizon (�t+ = 25 or �t+ = 50).
To illustrate the evolution of turbulent structures over a permeable wall, figure 11 presents
the instantaneous vorticity structures for two representative scenarios: cumulative τw

control with �t+ = 25 and terminal k control with �t+ = 25. The flow within the
channel undergoes substantial alteration by intermittently varying the distribution of β

(represented by the grey contour on the plane y = 0). For the cumulative τw control case
(figure 11a,c,e), the turbulence is intensified with an obvious increase in the population of
vortices. Correspondingly, there is an increase in Reynolds stress (red solid line in plane
z = 0). In the terminal k control case (figure 11b,d,f ), the number of vortices in the fields
is slightly reduced. This is also evidenced by the decrease of Reynolds stress (red solid
line in plane z = 0) in the outer region.

The β fields (depicted as grey contours on the y = 0 plane) predominantly exhibit two
distinct values. For most parts of the wall, the local β registers either as 0, indicating non-
permeability, or 0.7, which represents the upper bound for β in the current optimisation
study. Regions exhibiting β values in between these extremes are relatively small. In
the scenario of cumulative τw control (see figure 11a,c,e), the permeable zone forms an
interconnected network covering a substantial portion of the wall. Conversely, for the
terminal k control case, the permeable zones appear more segregated and streak like.
A notable increase in intermediate β values suggests the need for more refined controls
to manage turbulence. These distinctions in the patterns of the β map controls highlight
fundamentally different control mechanisms between the τw and k control scenarios.
Further discussion of these differences will be provided in the subsequent sections.

3.2.1. The development of wall friction on tunable permeable walls
Figure 12 presents the progression of wall friction under the influence of wall friction
control. With the permeable wall boundary condition, both cumulative and terminal τw
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Figure 11. Vorticity structures above a tunable permeable wall. Panels (a,c,e) show cumulative wall friction
control with �t+ = 25, while panels (b,d,f ) depict terminal TKE control with the same �t+. The pairs of
panels (a,b), (c,d) and (e,f ) represent t+ = 50, t+ = 500 and t+ = 2000 from the onset of control, respectively.
Blue and red isosurfaces indicate streamwise vorticity at ωx = ±σωx , σωx being the standard deviation of ωx at
t = 0. Control φ is illustrated on the wall with coloured contours. Present snapshot profiles of 〈u〉 and −〈u′v′〉
are overlaid on front (z = 1.5π ) and back (z = 0) planes with solid red lines. Black dashed lines show profiles
from the smooth wall scenario for comparison. See also supplementary movies 3 and 4 for the full simulation
duration.

control achieve stable outcomes in drag reduction, even in the terminal control scenarios.
Notably, cumulative τw control with a time horizon �t+ = 25 achieves over 10 % drag
reduction, while other control scenarios yield roughly a 5 % reduction.

It is noteworthy that the permeable wall, despite its lack of active flow manipulation
ability like opposition control, possesses an advantage in maintaining stable control
outputs with terminal control, relying on minimal information from the near-wall position.
This is partly due to the special properties of disturbances generated by the permeable
wall. The wall-normal flux at the permeable boundary is restricted to be proportional to
the pressure fluctuations, which are mostly chaotic, with an upper limit for β set at 0.7.
These conditions ensure that the wall-normal flux remains limited and prevents excessive
interfacial flux. Moreover, the drag reduction mechanism of the permeable wall differs
from that used in opposition control, a topic to be further discussed in a subsequent section.

In the case of TKE control, the use of permeable walls proves to be less efficient
than opposition control. Figure 13 illustrates the TKE and wall friction over time
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Figure 12. History of wall friction over tunable permeable wall targeting loss functions associated with τw .

with permeable wall intervention. Generally, the reduction in TKE and wall friction is
insignificant. The most successful scenario is terminal k control with �t+ = 50, achieving
around 5 % suppression in TKE and a 2 % reduction in drag. It is not surprising that the
permeable wall is ineffective at controlling TKE. The current permeable wall boundary
condition only includes a wall-normal component. Previous studies (Rosti et al. 2018) have
indicated that even slight wall-normal permeability can considerably enhance turbulence
production and wall friction. Nevertheless, we demonstrate that reducing TKE and drag is
indeed achievable through an optimised and adjustable distribution of β.

3.2.2. The characteristics of β distribution
The instantaneous flow fields depicted in figure 11 have demonstrated the distinctions
between the β fields in the τw and k control scenarios. This section delves deeper into
the characteristics of the β field to gain a clearer understanding of how the permeable wall
adjusts to the flow field, thereby achieving drag reduction and minimising turbulence.

Figure 14 presents the β fields for the τw control scenarios, using a grey colour map.
As noted in figure 11, the β fields predominantly exhibit two values, 0 and 0.7, which
correspond to non-permeable and permeable zones. In figure 11, permeable regions where
β � 0.4 are depicted by grey patches. Additionally, the p′ field from the initial state of the
current episode is overlaid, allowing the inference of local v′ at the wall.

For both cumulative and terminal control scenarios, the β map reveals a pattern that
is consistent across cases. In scenarios with an extended time horizon, the permeable
zones exhibit greater interconnectivity, and the primary areas remain comparable. In all
instances, there is noticeable overlap between the permeable zone and the negative p′
region. This indicates that these β map distributions generate a net positive wall-normal
flux. The injection of additional momentum into the near-wall region can modify the
velocity gradient and the characteristics of turbulence, partially elucidating the mechanism
behind drag reduction. This also clarifies why the β map possesses two distinct values.
Strategically positioning permeable zones, especially in regions with negative p′, to
have maximum permeability supports maximal upward fluid movement, while setting
non-permeable zones is crucial to entirely block any unwanted downward momentum.
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Figure 13. The history of (a) TKE k and (b) wall friction τw with the tunable permeable wall targeting TKE
related loss function.

Figure 15 illustrates the β field in k control cases. Compared with the τw control cases in
figure 14, the permeable areas in k control cases are smaller and more scattered, suggesting
that the TKE control has a more stringent requirement on the wall-normal disturbances on
the wall. Moreover, no obvious correlation between β and p′ can be observed, hence, there
is no net momentum flux across the wall.

The statistical features of the β field are further elucidated in figure 16, which depicts
the joint PDF f−βp′,u′ between the vertical velocity at the permeable wall, represented by
vw = −βp′, and the streamwise fluctuation u′ within the buffer layer (y+ = 15). In contrast
to figure 8, colour contours in this figure show the joint PDF at the start of the episodes,
labelled f−βp′

0,u
′
0
, while dashed isolines illustrate the joint PDF at the episodes’ endpoint,

labelled f−βp′
�t ,u

′
�t

. With cumulative τw control (figure 16a), the initial joint PDF f−βp′
0,u

′
0

prominently biases towards the positive −βp′ direction, suggesting a positive wall-normal
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Figure 14. The β map of the permeable wall for wall friction control with different targets and time horizons.
(a) Cumulative control with �t+ = 25; (b) terminal control with �t+ = 25; (c) cumulative control with �t+ =
50; (d) terminal control with �t+ = 50. The grey patches are permeable regions with β � 0.4. The colour map
shows the p′ at buffer layer y+ = 15.
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Figure 15. The β map of the permeable wall for TKE control with different targets and time horizons.
(a) Cumulative control with �t+ = 25; (b) terminal control with �t+ = 25; (c) cumulative control with
�t+ = 50; (d) terminal control with �t+ = 50. The other settings are the same as figure 14.
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Figure 16. The joint PDF f−βp′,u′ between the permeable wall flux and streamwise fluctuation u′ at y+ = 15.
(a) Cumulative control of wall friction with �t+ = 25; (b) cumulative control of TKE with �t+ = 25;
(c) terminal control of wall friction with �t+ = 25; (d) terminal control of wall TKE with �t+ = 25. The
coloured contours show the joint PDF f−βp′

0,u′
0

between wall flux and streamwise fluctuation u′ at the initial
time of the episodes, and the dashed isolines show the joint PDF f−βp′

�t ,u
′
�t

at the terminal time of the episodes.

flux. At the terminal time, a smaller bias is noted in f−βp′
�t ,u

′
�t

. Conversely, under terminal
τw control (figure 16c), the terminal joint PDF f−βp′

�t ,u
′
�t

exhibits a more pronounced
bias to the positive −βp′ than the initial joint PDF f−βp′

0,u
′
0
, implying that most of the

wall-normal flux occurs at the episodes’ conclusion. For both cumulative and terminal
τw control scenarios, the f−βp′,u′ displays symmetry around its horizontal centreline,
indicating no significant correlation between these variables.

In the cumulative k control (figure 16b) , the wall-normal flux −βp′ poses a weak
positive correlation with u′

0 with the shape of f−βp′
0,u

′
0

skewing towards the first and
third quadrants. Such positive correlation is not seen in the terminal joint PDF f−βp′

�t ,u
′
�t

.
A weak positive correlation between −βp′ and u′ is also observed in the joint PDFs in the
terminal k control case (figure 16d).

The joint PDFs in figure 16 confirm our observation in the instantaneous β fields in
figures 14 and 15. For wall friction control, the permeable wall adopted a completely
different strategy than the opposition control, that is, exploiting the tunable permeability
to inject net upward momentum in the near-wall region in order to alter the shear at the
wall. The TKE control, however, shares the same mechanism with opposition control. In
this case, wall-normal velocity induced by the permeable region is positively correlated to
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Control cases �C f /C f,0 �C M
f /C M

f,0 �C F
f /C F

f,0 �CT
f /CT

f,0 CV
f 1/C f,0 CV

f 2/C f,0

τw(cum), 25+ −15.8 % −3.2 % + 5.4 % + 34.7 % + 14.7 % −39.4 %
τw(cum), 50+ −7.1 % −2.5 % + 1.8 % + 12.5 % + 5.2 % −17.1 %
τw(ter), 25+ −4.9 % −0.8 % + 4.2 % + 12.9 % + 4.7 % −12.7 %
τw(ter), 50+ −4.1 % −0.3 % + 4.1 % + 18.5 % −3.3 % −5.7 %
k(cum), 25+ −2.3 % −0.5 % −14.6 % −9.6 % −4.1 % + 5.1 %
k(cum), 50+ −1.8 % −0.8 % −11.2 % −7.9 % −4.2 % + 5.4 %
k(ter), 25+ −1.4 % −1.1 % −8.9 % −7.6 % −4.5 % + 5.7 %
k(ter), 50+ −1.3 % −0.9 % −15.0 % −8.0 % −4.5 % + 5.7 %

Table 2. The relative wall friction change in permeable wall cases.

the u′ near the wall, hence cancelling the local Reynolds stress, which eventually leads to
drag reduction.

3.2.3. The mean statistics and wall friction decomposition
To elaborate on how drag is reduced using a permeable wall, we analyse the flow field
statistics in this section. Table 2 provides a comparison of wall friction between the
permeable wall channel and the smooth wall channel (refer to table 1). It is evident that
only the cumulative τw control with �t+ = 25 achieves a 15 % reduction in drag, while
the effectiveness of other methods remains under 8 %.

Figure 17 presents the average statistics for four selected permeable wall cases.
We chose the cases with a shorter time horizon �t+ = 25, as they generally outperform
the long time horizon ones. The mean streamwise velocity profiles (figure 17a) remain
largely unchanged due to the low drag reduction rate. In the τw control scenarios, the
temperature at the channel’s centre (figure 17b) shows a slight increase. This is attributed to
a rise in turbulence intensity and Reynolds stress (figure 17c,d), leading to more heat being
dissipated into the channel and mildly reducing ρ. Conversely, in the k control scenarios,
both turbulence intensity and Reynolds stress exhibit a slight decrease.

To further understand the source of drag on permeable wall cases, we inspect the
decomposition of wall friction. Note that for the permeable wall condition, the zero-net-
flux condition does not hold anymore, therefore, we have to rederive the RD identity to
include the additional terms generated by this. Here we show the RD identity for the
compressible channel with the permeable wall:

C f = 2
ρbu3

b

∫ h

0
〈μ〉∂〈u〉

∂y

∂{u}
∂y

dy︸ ︷︷ ︸
C M

f

+ 2
ρbu3

b

∫ h

0

〈
μ′ ∂u′

∂y
+ μ′ ∂v′

∂x

〉
∂{u}
∂y

dy︸ ︷︷ ︸
C F

f

+ 2
ρbu3

b

∫ h

0
〈ρ〉 {−u′′v′′} ∂{u}

∂y
dy︸ ︷︷ ︸

CT
f

(3.2)

+ 2
ρbu3

b

∫ h

0
−〈ρ〉({u} − ub){v}∂{u}

∂y
dy︸ ︷︷ ︸

CV
f 1

−2ρw{v}w
ρbub︸ ︷︷ ︸
CV

f 2

.
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Figure 17. Mean statistics of permeable wall cases compared with the smooth wall channel. (a) Mean
streamwise velocity 〈u〉; (b) mean temperature 〈T 〉 and mean density 〈ρ〉; (c) turbulent intensity 〈u′

i u
′
i 〉;

(d) Reynolds stress 〈u′v′〉.

Comparing to the original RD identity equation (3.1), two additional terms CV
f 1 and

CV
f 2 emerged, representing the effect of mean convection in the wall-normal direction.

The first term CV
f 1 is the gain of mean streamwise kinetic energy in the absolute frame.

The term CV
f 2 represents the effect of fluid injection at the permeable wall, showing that

a positive {v} flux at the wall would directly reduce the mean friction coefficient. The full
derivation of (3.2) is in Appendix D. For the permeable wall cases, the residual error for
the extended RD identity is confined within ±3.5 %, which is slightly larger compared
with the opposition control cases with the initial RD identity. This could be attributed to
the limited sample time and the continuous momentum injection at the wall, which can
violate the assumption of temporal homogeneity (see (3.2)). However, the decomposition
is still fairly reliable and may provide insight into wall friction over permeable
walls.

Table 2 lists the relative change in the components of RD identity for permeable wall
cases. Note that for CV

f 1 and CV
f 2, the relative change is compared with the total friction.

In the τw control scenarios, the main contributor to the reduction of drag is the wall flux
term CV

f 2, which aligns with previous observations of a net positive −βp′ in figure 16(a,c).
However, the drag reduction attributed to wall flux is significantly counteracted by the
increase in the kinetic energy of the turbulence CT

f and the kinetic energy of mean
convection CV

f 1. Despite this, the cumulative τw control with t+ = 25, with a maximum
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Figure 18. Premultiplied integrands (PI) of RD identity as a function of y+ for tunable permeable wall cases.
Here C M

f , C F
f , CT

f and CV
f 1 are denoted by dashed lines, dotted lines, dash-dotted lines and thin solid lines,

respectively. The sum of all the integrands C ′
f are denoted by thick solid lines, where the contribution of CV

f 2
is not included. The PI of the smooth wall channel is superimposed with circles of corresponding colours.
(a) Cumulative τw control, �t+ = 25; (b) cumulative k control, �t+ = 25; (c) terminal τw control, �t+ = 25;
(d) terminal k control, �t+ = 25.

induced upward flux through the permeable wall, produces the highest drag reduction rate
up to 15.8 %.

In all the TKE control cases, a slightly positive CV
f 2 is observed, which suggests a

weak downward net flux at the wall. This minor magnitude is not clearly depicted in
figure 16(b,d). The presence of downward flux at the wall decreases the kinetic energy
of both mean convection and turbulence, which results in a reduction in CV

f 1 and CT
f .

Additionally, the mean shear in the near-wall region is altered, leading to a diminished
C M

f . Despite all these favourable changes to the flow, the overall drag reduction remains
relatively minor compared with the τw control cases.

The premultiplied integrands of RD identity for the four typical cases in figure 17 is
shown in figure 18. Note that CV

f 2 is not in the form of integration and is not shown in
figure 18. For the τw control cases (figure 18a,c), the mean shear term close to the wall
is reduced. Meanwhile, the turbulent production term CT

f is enhanced. The net wall flux
induces the vertical mean convection velocity, introduces extra CV

f 1 in the near-wall area.
This observation is consistent with our previous findings that the permeable wall in the τw

control cases induces upward flux at the wall, altering the near-wall shear stress and mean
convect in the channel.
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As for the k control cases (figure 18b,d), both CT
f is reduced slightly, indicating the

flux induced by permeable present an ‘opposition control’ effect on the turbulence field.
The C M

f is also slightly reduced. The downward wall flux also produces favourable CV
f 1.

However, these reduction sources are countered by CV
f 2, resulting in a marginal drag

reduction result.
It appears that the optimisation process effectively identified a ‘shortcut’ for the τw

control cases, which is indirectly injecting momentum into the boundary layer by adjusting
the distribution of permeability. This control mechanism is consistent with the mass
bleed control strategy (Lee & Kim 2006), which alters the flow behaviour through a
managed mass flow to the surface. Furthermore, we tested that the optimisation results
for the cumulative τw control with �t+ = 25 show insensitivity to the initial β (see
Appendix C). The alignment of optimised control mechanisms with established methods
further validates the efficiency of the current optimisation framework.

Despite the fact that the drag reduction performance of the tunable permeable wall is
far below opposition control, we demonstrate that a permeable wall with only a vertical
permeability component can also achieve drag reduction when its local permeability is
adjustable over time. It is also important to note that the adjustable permeable wall used in
this study is not entirely a passive control method. Modulation of the wall permeability will
undoubtedly consume energy. Bearing this in mind, cases with shorter episodes benefit
from a higher energy input. This partly clarifies why the t+ = 25 cases are generally more
effective.

4. Conclusive remarks
In this study we have designed an AD-based optimisation framework based on the fully
differentiable solver JAX-Fluids for flow control in compressible turbulent channel flows.
By developing a fully differentiable boundary condition, the exact gradients with respect to
boundary control parameters are computed, enabling efficient optimisation of flow control
strategies.

The study investigated two primary flow control strategies: opposition control and
tunable permeable walls. We adopted the receding-horizon predictive control process,
which consists of a series of ‘episodes’. In each optimisation episode there were
around 192 × 96 × 2 ≈ 4 × 104 control variables and 192 × 96 × 128 × 1200 ≈ 3 × 109

state variables. We explored the two control strategies under different optimisation targets,
specifically wall friction τw and TKE, across varying time horizons. Opposition control
strategies targeting TKE consistently outperform those directly minimising τw in terms of
stability and effectiveness. Specifically, terminal TKE control with �t+ = 50 manages to
reduce drag by approximately 20 % by diminishing turbulence intensity across the entire
channel domain.

In contrast, opposition control directly targeting τw appears to be less effective.
Although this strategy initially showed a promising result in the initial phase of the control,
it suffered from instability over longer time scales, particularly with terminal τw controls.
This instability comes from the tendency of the τw control to push energetic turbulence
structures away from the wall, leading to an increase in turbulent fluctuations in the outer
flow region. The resulting redistribution of turbulence often led to an overall increase
in Reynolds stresses, undermining the effectiveness of friction reduction. These findings
highlight the importance of selecting loss functions that include information from the
entire flow field to ensure stable and effective control outcomes.

We also explored the potential of using a tunable permeable wall as a quasi-passive
control mechanism. Unlike active methods such as opposition control, the tunable
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permeable wall does not directly inject or remove mass directly from the flow. Instead,
it modulates the flow dynamics through spatial variations in wall permeability. The
performance of this strategy appears to be quite stable, even with terminal τw control cases.
This stability is attributed to its naturally constrained wall-normal flux, which prevents
excessive disturbances and ensures a gradual and mild control input.

The permeable wall demonstrated the ability to achieve up to 15 % drag reduction using
cumulative τw as loss functions. This is achieved by consistently inducing upward flux
by adjusting the local permeability, which adds momentum into the near-wall region. It is
proven with wall friction decomposition that this upward momentum contributes directly
to drag reduction. However, the effectiveness of the permeable wall in reducing TKE was
notably limited compared with the opposition control. This is likely due to its inherent
limitations in dynamically adjusting the flow field, as the boundary condition only allows
controlled leakage rather than active momentum injection. Nonetheless, stable reduction
of drag using an adjustable permeable wall has been seldom investigated, and it presents a
novel opportunity for the application of porous materials in industrial settings.

It should be noted that the control methods employed in this study rely on ideal
assumptions. For example, the switch time for the control velocity φ and the porosity
coefficient β between episodes is considered zero. In reality, flow rate changes or material
porosity adjustments require reaction time based on actuator performance or material
properties. Furthermore, the energy used to generate and maintain φ and β, including
mechanical and electrical energy by actuators and control systems, is ignored. To create
control strategies suitable for real-world scenarios, a more precise control model and
refined loss function taking these aspects into account are necessary.

The integration of AD into fluid dynamics simulations offers a powerful tool for
optimising flow control with high dimensionality and nonlinearity. The AD-based
approach significantly reduces the complexity associated with traditional adjoint methods,
making it more accessible for a wider range of flow control and optimisation applications.
The findings of this study suggest several avenues for future research. First, extending the
optimisation framework to higher Mach number flows could provide valuable insights into
the control of supersonic and hypersonic boundary layers, where thermal and aerodynamic
effects are more pronounced. Moreover, the potential to integrate AD-based optimisation
with ML techniques, such as RL, could enable adaptive control strategies that dynamically
adjust to changing flow conditions in real time.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.304.

Acknowledgements. This work is supported by the Fundamental Research Funds for the Central
Universities (China). All authors gratefully acknowledge the access to the high performance computing facility
Hawk-AI at HLRS, Stuttgart. XC appreciates the funding support from Royal Society (RG\R1\251236). We
would like to express our gratitude for the valuable discussions and support provided by Professor Nikolaus
Adams, Deniz Bezgin and Aaron Buhendwa from TU München.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Validation of DNS channel flow
Figure 19 shows a comparison of the current DNS results with those of Yao & Hussain
(2020) for validation of basic turbulent flow statistics. Yao’s DNS had a resolution of
512×129×256, with a domain size of 6π × 2 × 2π , which is larger in the streamwise and
spanwise directions, and features a higher resolution than the current DNS set-up. Despite
these differences, figure 19(a) shows that the mean streamwise velocity profile 〈u〉/uτ ,
plotted against the wall-normal coordinate y+, demonstrates excellent agreement between
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Figure 19. Comparison of mean statistics between the current DNS and Yao & Hussain (2020). (a) Mean
streamwise velocity 〈u〉;(b) mean temperature 〈T 〉 and mean density 〈ρ〉; (c) turbulent intensity 〈u′

i u
′
i 〉 and

Reynolds stress 〈u′v′〉.
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Figure 20. (a) Opposition control set-up for AD validation. The green regions near the upper and lower walls
represent areas where the control amplitude is set to zero, while the orange regions denote areas with a uniform
control amplitude φ. (b) Convergence of FD gradients towards AD gradients.. The blue line represents the
relative error between FD and AD gradients as a function of the step size. The dashed line indicates second-
order convergence.

the current DNS (solid black line) and the reference data from Yao & Hussain (2020) (grey
circles). In figure 19(b) the temperature 〈T 〉/Tw and density 〈ρ〉/ρw profiles are shown as
functions of the normalised wall-normal distance y/h. The current DNS captures the near-
wall temperature peak and the density decay towards the centreline accurately, aligning
well with the reference data. Figure 19(c) compares the Reynolds stress components 〈u′

i u
′
j 〉

between the current DNS (solid lines) and the reference DNS (circle markers). Strong
agreement is observed across all components, demonstrating that the current DNS captures
the key turbulent stress distributions despite the differences in resolution and domain size.
This comparison confirms the reliability of the current DNS in reproducing the essential
turbulent flow features and stress profiles.

Appendix B. Validation of AD with finite difference
We validate AD using a FD method in the context of opposition control. Figure 20(a)
shows the case set-up. The green areas in the upper and lower walls represent regions
where the opposition control amplitude is set to zero. The orange regions denote areas
where the control amplitude is assigned a finite uniform value α. We evaluated the
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sensitivity of the cumulative TKE over a horizon of �t+ = 50 with respect to the
amplitude α when α = 0 using both AD and FD methods.

Note that instead of computing the gradient at a point on the control surface, we compute
the gradient over an area of uniform control input. This lies in the nature of the methods
being compared. While AD can compute gradients accurately even with a control input
applied at a single point, FD methods struggle with this due to round-off errors. When
using a very small control input like a single point, the changes in the output can be too
subtle, causing the finite difference to become unreliable because it cannot distinguish
these small variations amidst numerical noise.

Figure 20(b) displays the comparison between the derivatives computed through AD
and those obtained using the FD approach. Specifically, we use a second-order central
difference scheme where the amplitude is incremented by εFD, leading to a derivative
estimate through

gFD = (k|α=εFD − k|α=−εFD)/2εFD. (B1)

The blue line represents the relative error between the gradient calculated using the FD
method (gFD) and AD (gAD) as the step size εFD is reduced. It is evident from the plot that
as εFD decreases, the error diminishes, showing the expected trend of improved accuracy
with smaller step sizes. The dashed line indicates second-order convergence, which serves
as a reference for the behaviour of the FD error. The trend of the blue line aligns well with
this reference initially, confirming the second-order accuracy of the FD method.

However, as the step size εFD decreases further, numerical errors, such as round-off
errors, begin to dominate, causing the deviation from the dashed line. This underscores
the advantage of AD, which, unlike the FD method, is not limited by the choice of a step
size and provides exact gradients up to machine precision.

Appendix C. Sensitivity analysis of initial control parameters
We conducted a sensitivity analysis of the initial control parameters in two representative
cases: opposition control (terminal k control, �t+ = 25) and permeable wall control
(cumulative τw control, �t+ = 25). The initial flow field is set to the uncontrolled channel
flow as in figure 1. The other configurations are the same as in § 2.

For the opposition control case, the initial control fields φ were initialised as uniformly
distributed random fields R with different limits, specifically ±0.001, ±0.01 and ±0.1.
The evolution of the L2 norm ‖φ‖2 and the loss function J (φ) over optimisation iterations
is depicted in figure 21(a) and 21(b), respectively. Despite the two-order magnitude
difference in the initial control field, all cases successfully converged to the same final
control field and loss function value.

For the permeable wall control case, the initial parameter β was also set as a uniformly
distributed random field R with different limits, namely (0, 0.005), (0, 0.05) and (0, 0.5).
The corresponding evolution of the L2 norm ‖β‖2 and the loss function J (β) is shown
in figures 21(c) and 21(d). Similar to the opposition control case, despite a two-order
magnitude difference in the initial β values, the optimisation consistently converged to
the same final state.

Despite variations in initial conditions, all cases exhibit stable convergence to the same
final state, implying that the optimisation process is insensitive to the choice of initial
parameters.

Appendix D. Decomposition of mean friction in permeable wall channels
Considering the channel flow, we assume statistical homogeneity in the spanwise and
streamwise directions and symmetry with respect to the central plane of the channel.
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Figure 21. The sensitivity of the initial control field φ (terminal k control, �t+ = 25) and parameter β

(cumulative τw control, �t+ = 25). (a) The development of the L2 norm ‖φ‖2 with iteration steps for the
opposition control case. (b) The evolution of the loss function J (φ) with iteration steps. (c) The development
of ‖β‖2 with iteration steps for the permeable wall control case. (d) The evolution of the loss function J (β)

with iteration steps.

The compressible Reynolds-averaged momentum equation in the streamwise (x) direction
is

∂〈ρu〉
∂t

+ ∂〈ρuv〉
∂y

= ∂〈τyx 〉
∂y

+ 〈ρ f 〉, (D1)

where u and v are respectively the streamwise and wall-normal components of the
transient velocity, ρ is density, t is time and τyx is the shear stress in the streamwise
direction. A uniform body force f is added to drive the flow in the streamwise direction.
Integrating (D1) from the wall surface to the central plane gives

∂ Q

∂t
= −τw + ρbh f, (D2)

where Q is the mass flow rate across the traverse plane. In the current study, Q is controlled
to be constant, hence f = τw/ρbh.

Rewriting the left-hand side of (D1) in the form of Favre average gives

∂〈ρu〉
∂t

+ ∂〈ρuv〉
∂y

= 〈ρ〉∂{u}
∂t

+ ∂〈ρ〉{u}{v}
∂y

+ ∂〈ρ〉 {
u′′v′′}

∂y
. (D3)

For the no-slip boundary condition and zero-net-flux opposition control boundary
condition, the second term on the right-hand side, representing the mean convection in
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the vertical direction, is considered as zero since {v} = 0. However, for the permeable wall
condition, this term may not be zero as flux through the wall is allowed.

Substituting (D2) and (D3) into (D1), we have

〈ρ〉∂{u}
∂t

= −∂〈ρ〉{u}{v}
∂y

− ∂〈ρ〉 {
u′′v′′}

∂y
+ ∂〈τyx 〉

∂y
+ 〈ρ〉

ρbh
τw. (D4)

We convert the original reference frame, which is stationary with respect to the wall, into
an absolute reference frame, travelling at velocity ub. Consequently, the friction on the
wall generates a non-zero power that contributes to the mean kinetic energy budget. Let
the subscript a represent the variables in the absolute frame. We have

ta = t, ρa = ρ, xa = x − ubt, ya = y, ua = u − ub, va = v. (D5)

Substituting (D5) into (D4) yields

〈ρa〉∂{ua}
∂ta

= −∂〈ρa〉{ua}{va}
∂ya

− ∂〈ρa〉
{
u′′

av′′
a

}
∂ya

+ ∂〈τyx 〉
∂ya

+ 〈ρa〉
ρbh

τw. (D6)

Multiplying both sides of (D6) by {ua}, we have the energy budget equation

〈ρa〉∂ {Ka}
∂ta

= − {ua} ∂〈ρa〉{ua}{va}
∂y

− {ua} ∂〈ρa〉
{
u′′

av
′′
a

}
∂ya

+ {ua} ∂〈τyx 〉
∂ya

+ {ua} 〈ρa〉
ρbh

τw,

(D7)

where Ka = {ua}2/2 is the averaged streamwise kinetic energy of unit mass in the absolute
frame. For a channel flow statistically homogeneous in time, ∂Ka/∂ta = 0. A single
integration over the half-channel is then performed on (D7), using symmetry boundary
conditions at the centreline and {ua}|y=0 = −ub leads to the formula of the skin-friction
coefficient in the absolute reference frame:

C f = 2τw

ρbu2
b

= 2
ρbu3

b

∫ h

0

〈
τyx

〉 ∂ {ua}
∂ya

dya︸ ︷︷ ︸
Cν

f

+ 2
ρbu3

b

∫ h

0
〈ρa〉

{−u′′
av′′

a

} ∂ {ua}
∂ya

dya︸ ︷︷ ︸
CT

f

(D8)

+ 2
ρbu3

b

∫ h

0
〈ρa〉 (−{ua}{va}) ∂{ua}

∂ya
dya︸ ︷︷ ︸

CV
f 1

−2ρw{va}w
ρbub︸ ︷︷ ︸
CV

f 2

.

Rewriting (D8) as a function of the usual (wall) reference frame variables yields

C f = 2
ρbu3

b

∫ h

0

〈
μ

(
∂u

∂y
+ ∂v

∂x

)〉
∂{u}
∂y

dy︸ ︷︷ ︸
Cν

f

+ 2
ρbu3

b

∫ h

0
〈ρ〉 {−u′′v′′} ∂{u}

∂y
dy︸ ︷︷ ︸

CT
f

− 2
ρbu3

b

∫ h

0
〈ρ〉({u} − ub){v}∂{u}

∂y
dy︸ ︷︷ ︸

CV
f 1

−2ρw{v}w
ρbub︸ ︷︷ ︸
CV

f 2

, (D9)
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where

Cν
f = 2

ρbu3
b

∫ h

0
〈μ〉∂〈u〉

∂y

∂{u}
∂y

dy︸ ︷︷ ︸
C M

f

+ 2
ρbu3

b

∫ h

0

〈
μ′ ∂u′

∂y
+ μ′ ∂v′

∂x

〉
∂{u}
∂y

dy︸ ︷︷ ︸
C F

f

. (D10)

Here Cν
f is associated with molecular viscosity dissipation, C M

f is the mean shear term,
C F

f is the viscosity variation term, CT
f the turbulent-convection term, CV

f 1 and C F
f 2 are

mean convection terms that are generated due to the non-zero {v} in the channel and at
the wall.
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