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The dispersion behaviour of solutes in flow is crucial to the design of chemical separation
systems and microfluidics devices. These systems often rely on coupled electroosmotic
and pressure-driven flows to transport and separate chemical species, making the transient
dispersive behaviour of solutes highly relevant. However, previous studies of Taylor
dispersion in coupled electroosmotic and pressure-driven flows focused on the long-term
dispersive behaviour and the associated analyses cannot capture the transient behaviour
of solute. Further, the radial distribution of solute has not been analysed. In the current
study, we analyse the Taylor dispersion for coupled electroosmotic and pressure-driven
flows across all time regimes, assuming a low zeta potential (electric potential at the
shear plane), the Debye–Hückel approximation and a finite electric double layer thickness.
We first derive analytical expressions for the effective dispersion coefficient in the long-
time regime. We also derive an unsteady, two-dimensional (radial and axial) solute
concentration field applicable in the latter regime. We next apply Aris’ method of moments
to characterise the unsteady propagation of the mean axial position and the unsteady
growth of the variance of the solute zone in all time regimes. We benchmark our
predictions with Brownian dynamics simulations across a wide and relevant dynamical
regime, including various time scales. Lastly, we derive expressions for the optimal relative
magnitudes of electroosmotic versus pressure-driven flow and the optimum Péclet number
to minimise dispersion across all time scales. These findings offer valuable insights
for the design of chemical separation systems, including the optimisation of capillary
electrophoresis devices and electrokinetic microchannels and nanochannels.
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1. Introduction
Taylor–Aris dispersion describes the enhanced spreading of solute in a fluid due to the
coupled effects of advection and diffusion. G. I. Taylor (1953) first developed an analytical
solution for the long-term dispersive behaviour of solute based largely on the idea that the
radial diffusion (i.e. transverse to flow) approximately balances axial dispersion caused
by the non-uniform velocity field. The analysis was later formalised and significantly
extended by Aris (1956). Aris introduced a solution method that is now called the method
of moments (MoM). The MoM reformulates the dispersion problem in terms of axial
integrals of the concentration field which correspond to, for example, the axial mean
and variance of the solute zone. Generally, Taylor–Aris dispersion is highly relevant to
a wide variety of applications, ranging from analytical chemistry to microfluidics and to
large-scale environmental flows (Brenner & Edwards 1993).

Taylor’s original analysis, focused on classic pressure-driven flow (PDF) in a cylindrical
tube, provided a closed-form solution for solute dispersion for a regime that can be
summarised as L/a � Pe � 6.9. Here, L is an axial distance of travel of the solute,
a is the inner radius of the tube and Pe is a Péclet number (a〈u〉/D where D is the
molecular diffusivity) based on a and the area-averaged bulk velocity 〈u〉 (the brackets
indicate a cross-sectional area average). This condition implies that the advective time
scale, L/〈u〉, is large relative to the characteristic time of transverse diffusion, a2/D,
which we will here refer to as the ‘long-time limit’ or the ‘quasi-steady’ regime of the
problem. Aris (1956) subsequently expanded upon G. I. Taylor’s work in several important
ways. First, he included the effects of axial molecular diffusion for the quasi-steady
problem. Aris also generalised the problem and introduced the MoM as a mathematical
framework that enables the analysis of solute dispersion across all time regimes, starting
from arbitrary initial conditions. Aris’ MoM is applicable to channels of arbitrary cross-
sectional geometries and, relevant here, to arbitrary velocity fields. Taylor’s analysis
and Aris’ model in the quasi-steady (long-time) regime predict that the area-averaged
concentration of the solute will reach an axial Gaussian distribution that has a variance
which grows linearly with time. This linear growth can be characterised by an effective
dispersion coefficient.

While neither Taylor nor Aris rigorously analysed the early variance growth of the
solute zone, Barton (1983) significantly extended Aris’ MoM to analyse solute behaviour
across time regimes and for arbitrary velocity fields. In particular, Barton derived general
expressions for the first three integral moments of the concentration field, valid in all time
regimes. In the same paper, Barton applied his work to three specific flow profiles and
geometries for select initial conditions: plane Couette flow, Poiseuille flow in a cylindrical
tube and an analytical approximation of turbulent channel flow.

Gill & Sankarasubramanian (1970, 1971) developed a distinct yet related approach to
the MoM to describe solute concentration in a manner valid across all time regimes.
They formulated the solute concentration field as an infinite series of axial derivatives
of the area-averaged solute concentration, a method known as a Kramers–Moyal-type
expansion. The dispersion coefficients, which correspond to the integral moments of the
solute distribution, emerge naturally as the eigenvalues of this solution ansatz. Since Gill
& Sankarasubramanian’s work, Chatwin (1970, 1972), Degance & Johns (1978a,b), Mauri
(1991) and Wang & Chen (2016) extended this Kramers–Moyal-type solution method to
various dispersion problems. For a detailed discussion of Kramers–Moyal-type expansions
and other pre-asymptotic solution methods, see Taghizadeh, Valdés-Parada & Wood
(2020). Note that Aris and Barton’s MoM (which we leverage in our analysis in § 4) is a
largely different approach to solving dispersion problems than Gill’s Kramers–Moyal-type
expansions. The MoM produces one partial and one ordinary differential equation (per
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moment) that govern the nth integral moment of the concentration field. These equations
can often be solved directly by techniques such as eigenfunction expansions or Laplace
transforms. In contrast, Gill’s method derives dispersion coefficients as eigenvalues of
a Kramers–Moyal expansion of the solute concentration field. However, both solution
methods involve deriving expressions for either the nth moment of the concentration
field (MoM) or the nth dispersion coefficient (Kramers–Moyal), whence constructing a
formulation for the (n+1)st and (n+2)nd moment or coefficient. Both processes therefore
generate equations that build on others to describe progressively higher-order moments.

Several other solution methods have been developed for these problems which further
extend the mathematical and physical understanding of solute dispersion. Brenner (1980)
generalised Aris’ framework by analysing the so-called local and total moments of the
probability density function of a tracer particle in a spatially periodic cell. Brenner
demonstrated that the solution of various moments can be obtained by solving the elliptical
partial differential equation of a cell field B defined on an individual period cell. The
solution can be used to compute a tensor that characterises the long-term dispersion
behaviour of solutes. Brenner’s approach, known as the Brenner–Aris theory or the
macrotransport paradigm, provides a very broad framework for understanding transport
phenomena in heterogeneous systems, such as porous media.

Mercer & Roberts (1990) pioneered the use of infinite-dimensional centre manifold
theory in the analysis of Taylor dispersion by obtaining higher-order asymptotic
approximations for the classic, Taylor-type diffusive model. In a significant development,
Balakotaiah & Chang (1995) applied centre manifold theory to flows with additional
complexities, such as bulk reactions, surface reactions, adsorption and desorption and
transverse velocity gradients. Rosencrans (1997) further extended the use of centre
manifold theory to dispersion in channels with slow axial variations in width.

Later, Stone & Brenner (1999) formalised and extended Taylor’s (1953) original solution
method. Stone & Brenner introduced a more organised set of assumptions for the problem,
more intuitive notation (which we will here adopt) and extended the solution to velocity
fields which slowly vary in the axial direction. Consistent with the original Taylor analysis,
Stone & Brenner’s solution method is valid for the long-time limit of the problem.

Beyond advancements in solution methods, much effort has been devoted to analysing
dispersion in varying channel geometries and for a variety of velocity fields. We here
focus on dispersion in electrokinetic phenomena in a cylindrical tube. Specifically,
electroosmotic flow (EOF) plays a pivotal role in analytical chemistry processes and
electrokinetic microfluidic applications. Electroosmotic flow refers to the bulk flow of
a liquid induced by an externally applied electric field imparting Coulombic forces on
the diffuse charges of electric double layers (EDLs; Hunter 1988). These EDLs form
spontaneously on the wetted walls of a liquid-filled channel. Electroosmotic flow is
inherently applicable to small (micron- and nanometre-scale) channels and offers electrical
control of flow and solutes in devices with no moving parts. The Poisson–Boltzmann
equation describes the electric potential throughout a tube caused by the EDL. The most
common approximate solution to the latter is the Debye–Hückel approximation, which
assumes low zeta potential (ζ < 25.7 mV at room temperature; Probstein 1994, p. 193).
Here, the zeta potential is defined as the electric potential at the shear plane (where the
no-slip condition is applied). Using the Debye–Hückel approximation, Rice & Whitehead
(1965) first described the EOF profile in a cylindrical tube by solving the steady Stokes
equation for a Newtonian fluid. Given the linearity of the Stokes equation, the EOF profile
is simply (arithmetically) superposable with PDF. Since Rice & Whitehead’s paper, many
researchers have examined EOF velocity fields in a variety of contexts. This includes work
in cylindrical channels with high zeta potentials (Levine et al. 1975), channels with axially
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varying zeta potentials (Anderson & Idol 1985), porous media (Coelho et al. 1996; Gupta,
Coelho & Adler 2006), annular geometries with both low (Tsao 2000) and finite (Kang,
Yang & Huang 2002) zeta potentials and rectangular channels (Wang et al. 2007; Mondal,
Misra & De 2014). Additionally, note that applying a pressure gradient to a channel can
cause a streaming potential to form (Scales et al. 1992). If substantial, this streaming
potential can induce some amount of EOF. Hence, understanding the behaviour of EOF
can be important even in the absence of an externally applied electric field, particularly in
channels with thick EDLs relative to the channel radius (Kim & Kim 2018; Riad, Khorshidi
& Sadrzadeh 2020).

The interplay between EOF and PDF introduces interesting flow dynamics that
significantly affect solute dispersion. Datta & Kotamarthi (1990) first analysed Taylor–Aris
dispersion for coupled EOF and PDF in cylindrical tubes, deriving an effective dispersion
coefficient under long-time regimes. They also identified the optima of both the flow Péclet
number and the relative magnitudes of PDF and EOF to minimise the theoretical plate
height (Huang 2021). However, Datta & Kotamarthi’s (1990) work had several limitations.
For example, they did not present a derivation of their effective dispersion coefficient.
They offered no benchmarking with other models (such as computational fluid dynamics
models of dispersion or Brownian dynamics simulations). Datta & Kotamarthi (1990) also
focused exclusively on the long-time (quasi-steady) regime. Griffiths & Nilson (1999) later
presented the coefficient of effective dispersion for pure EOF in both cylindrical tubes (a
special case of Datta & Kotamarthi’s model) and a flow between large parallel plates.
For both geometries, Griffiths & Nilson (1999) considered the case of low zeta potential.
Griffiths & Nilson (1999) used an asymptotic method rather than the area-averaging
method of Stone & Brenner (1999), yet they considered a solution that is valid only in long-
time regimes. Griffiths & Nilson (2000) later generalised their models with numerical
solutions to account for large zeta potentials. Zholkovskij, Masliyah & Czarnecki (2003)
subsequently analysed the long-term dispersive behaviour of solute under pure EOF in a
channel with an arbitrary cross-section. Further analyses by Dutta & Leighton (2003) and
Zholkovskij & Masliyah (2004) examined the effects of channel geometries on dispersion
in coupled EOF and PDF, again focusing only on long-time regimes. Dutta (2007) later
investigated dispersion caused by EOF in a rectangular channel with low zeta potential.
Thereafter, Paul & Ng (2012) analysed dispersion in pure EOF in a rectangular channel
under low zeta potential across all time regimes.

More recent studies of solute dispersion have continued to focus largely on the long-
term limit of the problem. For example, Dejam, Hassanzadeh & Chen (2015) examined
dispersion in combined EOF and PDF in porous channels, while Hoshyargar et al. (2018)
analysed the effects of viscoelastic fluids on dispersion, both in long-time regimes. Thus,
most of the literature regarding Taylor–Aris dispersion of combined EOF and PDF is
applicable only in physical regimes where Pe<<σx/a, where σx is the characteristic
width of the solute zone. This limitation is particularly important as microfluidic transport
is oftentimes rapid enough that this quasi-steady regime does not apply (Stone & Kim
2001). Lastly, we note that Taylor-type analysis also offers an approximation of the radial
distribution of solute, and this radial distribution has never been addressed for neither EOF
nor combined EOF and PDF.

To our knowledge, all previous analyses of Taylor dispersion for coupled EOF and PDF
focused on the long-term dispersion behaviour and were not able to provide a prediction
of both the short- and long-term evolution of the solute zone. In the current study, we
address this by presenting a more comprehensive analysis of Taylor–Aris dispersion for
coupled EOF and PDF in cylindrical tubes. We first derive an expression for the EOF
velocity profile that is valid for an EDL of arbitrary thickness relative to the channel radius.
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Figure 1. Schematics of a solute transported in a cylindrical tube of inner radius a under a combination of PDF
and EOF. A solute zone of characteristic length of σx is subjected to a flow consisting of combinations of steady
PDF, u p(r), and steady EOF, ue(r), (with finite EDL thickness) along the axial direction, x . (a) Pressure-
driven flow and EOF in the same direction. (b) Pressure-driven flow in opposition to EOF. The resulting net
flow profile is denoted as u(r), and Debye length is denoted as λD . Both the tube radius and Debye length are
depicted enlarged relative to the axial length of the tube for clarity of presentation.

We then present a long-time analysis of the solute dispersion. To our knowledge, this
is the first presentation of such a derivation and first analysis of the radial component
of the resulting distribution. We next apply the MoM to analyse dispersion conditions
across all time regimes. To this end, we derive the first two integral moments of the solute
zone and examine specific initial conditions of solute. We benchmark both our Taylor-
type and MoM formulations against Brownian dynamics simulations for a broad range
of cases, including various time scales; flow Péclet numbers; relative magnitudes of EOF
versus PDF; and tube radii relative to the Debye length. Finally, we present methods and
analytical expressions useful in minimising dispersion for combined PDF and EOF in all
time regimes. Specifically, we find optima associated with the relative magnitudes of EOF
and PDF and the optimal Péclet number to minimise band broadening across all time
regimes.

2. Formulation of the basic flow and solute transport problem

2.1. Flow field and basic problem description
We study the flow and dispersion of a neutral (uncharged) solute subject to simultaneous
PDF and EOF in a cylindrical tube of inner radius a . Figure 1 shows schematics of
an initial condition of the solute and example flow profiles. The flow is generated from
applied axial pressure differentials (resulting in a Poiseuille-type flow component, see,
e.g. Langlois & Deville 2014) and/or by EOF caused by the presence of a finite sized
EDL at the wetted wall and an electric field applied along the axis of the tube. The EDL
may or may not overlap with itself at the centre of the tube (see Appendix A). We will
denote the characteristic axial width of the solute zone as σx and assume the solute is of
uniform molecular diffusivity (D) throughout the tube. The Debye length is denoted as
λD . Let r∗ = r/a denote the dimensionless radial coordinate and φ = a/λD be the tube
radius scaled by Debye length. For EOF, we consider a general electrolyte and a wall zeta
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potential sufficiently weak such that the Debye–Hückel approximation holds (Probstein
1994). We will further neglect the effects of streaming potential on the fluid velocity field.
Note the latter effects should not create new shapes of the velocity field but may introduce
a coupling between EOF and PDF which is not explicitly treated here. We provide a deriva-
tion of the electric potential field and EOF velocity profile, valid for an EDL of arbitrary
thickness relative to the channel radius, in Appendix A. From (A11), the electric potential
field within the tube is given by ψ(r∗)= ζ I0(φr∗)/I0(φ), where I0(z) is a zeroth-order
modified Bessel function of the first kind and ζ is the zeta potential. Further, from (A14),
the EOF velocity profile can be expressed as ue(r∗)= uHS(1 −ψ(r∗)/ζ ) where uHS =
−εe Eζ/μ is the Helmholtz–Smoluchowski velocity scale. Here, εe is the permittivity of
the fluid (assumed to be uniform throughout the tube), E is the magnitude of the applied
electric field and μ is the dynamic viscosity of the fluid. For a compact notation, we define
the following dimensionless cross-sectional average of the radial electric potential:

η=
1∫

0

2r∗ψ(r∗)
ζ

dr∗ = 2
φ

I1(φ)

I0(φ)
. (2.1)

Taking the area average of the EOF profile

〈ue〉 = uHS

⎛
⎝1 −

1∫
0

2r∗ψ(r∗)
ζ

dr∗
⎞
⎠= uHS(1 − η) . (2.2)

Further, for the case of a thick EDL relative to the tube radius (φ� 1), we can expand
I0 using a Taylor series expansion. Neglecting terms of order O[φ4] and higher, we can
approximate

ue(r
∗)≈ uHS

φ2

4

(
1 − r∗2). (2.3)

Thus, as the EDL becomes thicker relative to the radius of the channel, EOF tends to a
parabolic profile, and φ informs the bulk velocity of the flow.

The PDF profile is given as u p(r∗)= 2〈u p〉(1 − r∗2) with 〈u p〉 denoting the area-
averaged PDF profile. A tube subject to both pressure gradients and EOF has a net velocity
profile given by u(r∗)= ue(r∗)+ u p(r∗). Combining with (2.2), we can express the full
velocity profile as

u(r∗)= 2〈u p〉
(
1 − r∗2)+ 〈ue〉

1 − η

(
1 − I0(φr∗)

I0(φ)

)
. (2.4)

The area average of (2.4) is simply 〈u〉 = 〈ue〉 + 〈u p〉. Lastly, we take the deviation from
this area average as

u′(r∗)= u(r∗)− 〈u〉 = 〈u p〉
(
1 − 2r∗2)+ 〈ue〉

1 − η

(
η− I0(φr∗)

I0(φ)

)
. (2.5)

Figure 1(a) shows a flow profile where PDF and EOF are in the same direction,
corresponding to values of 〈u p〉> 0 and 〈ue〉> 0. Figure 1(b) shows a flow profile where
EOF is opposed by PDF, corresponding to values of 〈u p〉< 0< 〈ue〉.

Figure 2 shows examples of the well-known axial flow profiles of combined PDF
and EOF in coordinates of u(r∗) versus the dimensionless inner radius, r∗. We show
velocity profiles for three combinations of 〈u p〉 and 〈ue〉 (three line colours) such that
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Figure 2. Example axial flow profiles for three combinations of PDF and EOF, and two values of the tube
radius scaled by the Debye length, φ. The ordinate shows dimensionless radius, r∗, and the abscissa is the flow
velocity, u(r∗). The three line colours correspond to cases of EOF in opposition to bulk PDF, EOF and PDF
in the same direction and PDF in opposition to bulk EOF. For each combination of EOF and PDF, profiles are
shown for φ values of 10 and 30 (different line types). All curves were produced with unit bulk velocity.

〈ue〉 + 〈u p〉 = 1. For each combination of 〈u p〉 and 〈ue〉, we present profiles for φ values
of 10 and 30 (different line types). We shall later show and discuss EOF profiles where
〈u p〉< 0< 〈ue〉 which are useful for minimising the variance of the solute zone. That is,
PDF in opposition to bulk EOF can be used to reduce dispersion for a fixed value of overall
bulk velocity.

2.2. Convective diffusion of solute
We will consider the advective diffusion of a neutral solute subject to the aforementioned
velocity profiles. The governing equation, boundary conditions and initial condition for
the concentration c(r, x, t) of a solute are

∂c

∂t
+ u(r)

∂c

∂x
= D

(
1
r

∂

∂r

(
r
∂c

∂r

)
+ ∂2c

∂x2

)
; ∂c

∂r

∣∣∣∣
r = a,0

= 0,

xn ∂
mc

∂xm
→ 0 as |x | → ∞ for n,m ≥ 0, c(r, x, t = 0)= c(r, x, 0) . (2.6)

Here, the boundary condition at r = 0 is a result of the assumed azimuthal symmetry and
c(r, x, 0) denotes the initial solute distribution. We shall consider two analytical solution
methods for this equation in §§ 3 and 4.

2.3. Brownian dynamics simulations
We will employ Brownian dynamics simulations (Schlick 2002) to benchmark our
analytical solutions of the concentration field, effective dispersion coefficient, radial solute
distribution and optimal relative magnitudes of EOF and PDF to minimise dispersion.
Each of our Brownian dynamics simulations consisted of 5000 point particles. We
considered particles distributed initially uniformly across the cross-section of the tube.
At each time step in these simulations, each particle is subject to an advection as
per (2.4) and a diffusion (random) displacement. The system was allowed to evolve
according to the first-order forward Euler method. For each test case, multiple simulations
with random seed initial conditions were run, and the reported results represent their
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average. In this work, we use an identical Brownian dynamics simulation model to
that of Chang & Santiago (2023) (except for the fact that we here use finer time steps
and consider only a channel of uniform radius). This provides a benchmark for the
accuracy of our simulations. Additionally, further details around the Brownian dynamics
simulations may be found in Chang & Santiago (2023). Lastly, all simulation code and
results required to recreate the figures of this manuscript may be found on GitHub
(csamuel133/Taylor_dispersion_EOF_PDF_Alltime).

3. Taylor dispersion solution of the quasi-steady regime
We here present a derivation of the effective Taylor dispersion (Taylor 1953) for combined
PDF and EOF. We will use an area-averaging and deviation formulation (and notation)
similar to that of Stone & Brenner (1999). Accordingly, we seek to derive the two-
dimensional solute concentration field in regimes where the observation time scale is
large with respect to the characteristic time of transverse diffusion, for flows described in
§ 2.1. We expand the concentration and flow fields into cross-sectional averages, defined
as 〈(.)〉 = (1/πa2)

∫ a
0 2πr(.)dr , and deviations therefrom, (.)′, such that (.)′ = (.)− 〈(.)〉.

First, we expand (2.6) as

∂〈c〉
∂t

+ ∂c′

∂t
+ 〈u〉 ∂〈c〉

∂x
+ u′(r)

∂〈c〉
∂x

+ 〈u〉 ∂c′

∂x
+ u′(r)

∂c′

∂x
=

D

(
1
r

∂

∂r

(
r
∂c′

∂r

)
+ ∂2〈c〉
∂x2 + ∂2c′

∂x2

)
; ∂c′

∂r

∣∣∣∣
r = a,0

= 0. (3.1)

Taking the area average of this equation

∂〈c〉
∂t

+ 〈u〉 ∂〈c〉
∂x

= D

(
∂2〈c〉
∂x2

)
−
〈
u′(r)

∂c′

∂x

〉
. (3.2)

Subtracting (3.2) from (3.1), we derive an expression for the deviation variable c′

∂c′

∂t
+ u′(r)

∂〈c〉
∂x

+ 〈u〉 ∂c′

∂x
+ u′(r)

∂c′

∂x
= D

(
1
r

∂

∂r

(
r
∂c′

∂r

)
+ ∂2c′

∂x2

)
+
〈
u′(r)

∂c′

∂x

〉
.

(3.3)
The latter equation is again subject to the condition that ∂c′/∂r |r=a,0 = 0. Let co denote
the characteristic scale (magnitude) of the area-averaged concentration of solute and co

′
denote the (much smaller) characteristic scale for the deviation from this average. We
non-dimensionalise (3.3) using

r∗ = r

a
; xσ ∗ = x

σx
; t∗ = t〈u〉

σx
; û′ = u′(r)

〈u〉 ; 〈û〉= 〈u〉
〈u〉 ; c′∗ = c′

co
′ ; 〈c〉∗ = 〈c〉

co
. (3.4)

Note that we choose the width of the solute cloud as the characteristic axial scale. This
choice is different than that of Taylor (1953) and Stone & Brenner (1999), who chose a
macroscopic, dimensional length L along the channel to a detector. This is an important
distinction as combined (and opposed) PDF and EOF profiles with zero area-averaged net
(bulk) velocity result in a dynamic condition wherein the solute zone disperses but its
centroid does not move. In the latter case, a distance to a detector L has no meaning. As
in Taylor’s (1953) original analysis, we assume that the magnitude of the area-averaged
concentration field is much larger than the magnitude of the deviation therefrom. Next,
we assume that the characteristic axial width of the solute cloud is much greater than the
inner radius of the tube (σx � a). Further assuming the characteristic advection time of
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the cloud over σx is large compared with radial diffusion time, we consider three smallness
parameters as follows:

ε= a

σx
<< 1; a

σx

〈u〉 a

D
= εPe<< 1; co

′

co
<< 1. (3.5)

Here, Pe = a〈u〉/D is the flow Péclet number. Our non-dimensionalisation of (3.3) then
becomes

εPe
co

′

co

∂c′∗

∂t∗
+ εPe û′ ∂〈c〉∗

∂xσ ∗
+ εPe

co
′

co
〈û〉 ∂c′∗

∂xσ ∗
+ εPe

co
′

co
û′ ∂c′∗

∂xσ ∗
=

co
′

co

(
1
r∗

∂

∂r∗

(
r∗ ∂c′∗

∂r∗

))
+ ε2 co

′

co

∂2c′∗

∂x2
σ ∗

+ εPe
co

′

co

〈
û′ ∂c′∗

∂xσ ∗

〉
. (3.6)

Keeping only terms with one smallness parameter, and keeping only the radial term in
dimensionless form, we find

u′(r)
∂〈c〉
∂x

≈ D

a2

(
1
r∗

∂

∂r∗

(
r∗ ∂c′

∂r∗

))
. (3.7)

This approximate balance between the non-uniform advective dispersion and the radial
diffusion is a classic result for Taylor dispersion (Taylor 1953). Next, we multiply (3.7) by
r∗ and integrate,

∂〈c〉
∂x

∫ [
r∗
(

〈u p〉
(

1 − 2r∗2
)

+ 〈ue〉
1 − η

(
η− I0(φr∗)

I0(φ)

))]
dr∗ =

∂〈c〉
∂x

(
〈u p〉

(
r∗2

2
− r∗4

2

)
+ 〈ue〉

1 − η

(
η

r∗2

2
− r∗ I1(φr∗)

φ I0(φ)

))
≈ D

a2

(
r∗ ∂c′

∂r∗

)
+ C. (3.8)

We use the boundary condition at r∗ = 1 to see that the constant of integration C must
vanish. We divide by r∗, multiply both sides by a2/D, and integrate from 0 to r∗, arriving
at

c′(r, x, t)= c′(0, x, t)+ a2

D

∂〈c〉
∂x

( 〈u p〉
4

(
r∗2 − r∗4

2

)

+ 〈ue〉
1 − η

(
η

r∗2

4
− I0(φr∗)− 1

φ2 I0(φ)

))
. (3.9)

Applying cross-sectional averaging, we are left with

0 = c′(0, x, t)+ a2

D

∂〈c〉
∂x

( 〈u p〉
12

+ 〈ue〉
1 − η

(
η

8
− η

φ2 + 1
φ2 I0(φ)

))
. (3.10)

Subtracting (3.10) from (3.9), we derive

c′(r, x, t)= a2

D

∂〈c〉
∂x

( 〈u p〉
4

(
r∗2 − 1

3
− r∗4

2

)

+ 〈ue〉
1 − η

(
−η

8
+ η

φ2 + η
r∗2

4
− I0(φr∗)
φ2 I0(φ)

))
. (3.11)
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Figure 3. The four figure panels show axial solute concentration profiles corresponding to four combinations
of the Péclet number based on EOF, Pee, the Péclet number based on PDF, Pep , and the tube radius scaled by
Debye length, φ. The ordinate shows dimensionless solute concentration, c∗(x ′∗|r∗, τ )= πa3c(x ′∗|r∗, τ )/N ,
and the abscissa is dimensionless axial position in a frame moving at the solute bulk velocity, x ′∗ = x∗ − τ Pe.
In each panel, solute concentration curves are shown at three values of dimensionless time (different
line colours) for three distinct dimensionless radial positions (different line types), resulting in nine total
concentration profiles per panel. The dimensionless solute concentration is obtained by evaluating (3.40) for
an initial ‘top hat’ of solute with a width negligible to the final axial width of the solute and then normalising
the solute concentration as c∗(x ′∗|r∗, τ )= πa3c(x ′∗|r∗, τ )/N .

Equation (3.11), combined with our solution for ∂〈c〉/∂x , will provide an analytical
expression for the unsteady, two-dimensional (radial and axial) distribution of the solute.
To our knowledge, this is the first reported expression for the radial concentration of solute
for combined EOF and PDF. We will use (3.11) to show solute concentration profiles
versus axial position for several values of r∗ in figure 3. We will then visualise the two-
dimensional solute concentration field in figures 4 and 5, and visualise the radial solute
distribution alone in figure 6. Returning to (3.9), we take the derivative with respect to x ,
multiply by u′(r), and apply cross-sectional averaging

〈
u′(r)

∂c′

∂x

〉
= 2a2

D

∂2〈c〉
∂x2

1∫
0

⎡
⎢⎢⎣

r∗
(

〈u p〉
(
1 − 2r∗2)+ 〈ue〉

1 − η

(
η− I0(φr∗)

I0(φ)

))
×( 〈u p〉

4

(
r∗2 − r∗4

2

)
+ 〈ue〉

1 − η

(
η

r∗2

4
− I0(φr∗)− 1

φ2 I0(φ)

))
⎤
⎥⎥⎦dr∗.

(3.12)

Expanding the right-hand side of (3.12) and simplifying yields 17 terms. We collect these
into three groups as follows:
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x*
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Pee = 0

φ = Any
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φ = 10
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φ = 10
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Pee = 100

φ = 30

Figure 4. Benchmark comparisons between Brownian dynamics simulations and the analytical solution of the
quasi-steady solute concentration field at three values of dimensionless time, τ = tD/a2. The figure shows
dimensionless radius, r∗, on the ordinate and dimensionless axial position, x∗, on the abscissa. The top
half of each panel shows individual particles from the Brownian dynamics simulations and the bottom half
of each panel shows the concentration field predicted by the analytical solution in (3.40). Panels show four
combinations of the Péclet number based on PDF, Pep , the Péclet number based on EOF, Pee, and the tube
radius scaled by Debye length, φ. The far left of the panels shows the flow profile used to generate the data for
each row. Figure was produced with a Péclet number of Pe = 100 (§ B of the SM has similar figures for Pe =
20 and 1000).

〈
u′(r)

∂c′

∂x

〉
= 2a2

D

∂2〈c〉
∂x2

×
1∫

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈u p〉2

4

(
r∗3 − 5r∗5

2
+ r∗7

)

+〈u p〉〈ue〉
1 − η

⎛
⎜⎜⎝
ηr∗3

2
− 5ηr∗5

8
− r∗ I0(φr∗)

φ2 I0(φ)
+ 2r∗3 I0(φr∗)

φ2 I0(φ)

−r∗3 I0(φr∗)
4I0(φ)

+ r∗5 I0(φr∗)
8I0(φ)

+ r∗

φ2 I0(φ)
− 2r∗3

φ2 I0(φ)

⎞
⎟⎟⎠

+
( 〈ue〉

1 − η

)2

⎛
⎜⎜⎜⎝
η2r∗3

4
− ηr∗ I0(φr∗)

φ2 I0(φ)
− ηr∗3 I0(φr∗)

4I0(φ)

+r∗ I0(φr∗)2

φ2 I0(φ)
2 + ηr∗

φ2 I0(φ)
− r∗ I0(φr∗)
φ2 I0(φ)

2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dr∗.

(3.13)
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Figure 5. Benchmark comparisons between Brownian dynamics simulations and the analytical solution of the
quasi-steady solute concentration field at three values of dimensionless time, τ = tD/a2. Solute zones were
subject to flows wherein EOF is perfectly opposed by PDF to achieve a net flow with zero area-averaged bulk
velocity. Panels show solute zones for four values of the tube radius scaled by Debye length, φ. The figure
shows dimensionless radius, r∗, on the ordinate and dimensionless axial position, x∗, on the abscissa. The top
half of each panel shows individual particles from the Brownian dynamics simulations and the bottom half of
each panel shows the concentration field predicted by the analytical solution in (3.40). The far left of the panels
shows the flow profile used to generate the data for each row. Figure was produced with Péclet numbers based
on EOF bulk velocity and PDF bulk velocity of Pee = 100 and Pep = −100, respectively.

Evaluating the integral in (3.13), we obtain

〈
u′(r)

∂c′

∂x

〉
= −a2

D

∂2〈c〉
∂x2

⎛
⎜⎜⎝

〈u p〉2

48
+ 〈u p〉〈ue〉 η

1 − η

(
1
12

− 2
φ2 + 16

φ4

(
1 − η

η

))

+ 〈ue〉2
(

η

1 − η

)2(3
8

+ 2
φ2 − 1

ηφ2 − 1
η2φ2

)
⎞
⎟⎟⎠ .

(3.14)
Table 1 lists the relevant integrals involving modified Bessel functions of the first kind
which were used in this evaluation. Next, for a compact notation, we define

γp = 1
48

γpe = η

1 − η

(
1
12

− 2
φ2 + 16

φ4

(
1 − η

η

))

γe =
(

η

1 − η

)2(3
8

+ 2
φ2 − 1

ηφ2 − 1
η2φ2

)
, (3.15)

which allows us to express (3.14) as〈
u′(r)

∂c′

∂x

〉
= −a2

D

∂2〈c〉
∂x2

(
〈u p〉2γp + 〈u p〉〈ue〉 γpe + 〈ue〉2 γe

)
. (3.16)
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Figure 6. Comparisons between the analytical solution and Brownian dynamics simulations of the normalised
quasi-steady radial distribution of solute at three values of dimensionless time, τ . The radial distribution is
normalised as c′(r∗, x∗, τ )/〈c〉(x∗ = τPe, τ ) where 〈c〉(x∗ = τPe, τ ) is the area-averaged concentration at the
mean axial position of solute. Dimensionless radius, r∗, is shown on the ordinate and dimensionless axial
position, x∗, is shown on the abscissa. The top half of each panel shows the radial solute distribution calculated
from the Brownian dynamics simulations and the bottom half of each panel shows the analytical solution (given
by the second term on the right-hand side of (3.40)). Panels show four combinations of the fraction of bulk
velocity caused by pressure, β, and the tube radius scaled by Debye length, φ. The dotted black lines denote two
axial standard deviations of the Brownian particles’ position about their mean position. Figure was produced
with a Péclet number of Pe = 100.

Substituting (3.16) into (3.2), we derive the following one-dimensional, unsteady partial
differential equation describing the area-averaged concentration field:

∂〈c〉
∂t

+ 〈u〉 ∂〈c〉
∂x

= ∂2〈c〉
∂x2

(
D + a2

D

(
〈u p〉2γp + 〈u p〉〈ue〉 γpe + 〈ue〉2 γe

))
. (3.17)

The first, third and second parenthetic terms on the right-hand side respectively capture
the effects of dispersion caused by PDF alone, by EOF alone and by the coupled, non-
superposable effects of simultaneous PDF and EOF. From the latter equation, the effective
dispersion coefficient valid for the Taylor-type limit of the problem is

Deff = D + a2

D

(
〈u p〉2γp + 〈u p〉〈ue〉 γpe + 〈ue〉2 γe

)
. (3.18)

Note that, in analogy to Taylor’s (1953) original analysis, (3.17) has the form of a one-
dimensional unsteady diffusion equation with the molecular diffusivity replaced by an
effective dispersion coefficient given by (3.18). As such, the solution is an initial value
problem that requires an initial axial distribution of the area-averaged solute. However,
the solution of (3.17) does not accurately predict the evolution of solute until sufficient
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1
I0(φ)

∫ 1
0 r∗ I0(φr∗)dr∗ = I1(φ)

φ I0(φ)
= η

2
.

1
I0(φ)

∫ 1
0 r∗3 I0(φr∗)dr∗ = 2I2(φ)+ φ I3(φ)

φ2 I0(φ)
= η

2
− 2
φ2 + 2η

φ2 .

1
I0(φ)

∫ 1
0 r∗5 I0(φr∗) dr∗ = I3(φ)

I0(φ)

(
8
φ3 + 1

φ

)
= η

2
− 4
φ2 + 8η

φ2 + 32η
φ4 − 32

φ4 .

1

φ2 I0(φ)
2

∫ 1
0 r∗ I0(φr∗)2 dr∗ = I0(φ)

2 − I1(φ)
2

2φ2 I0(φ)
2 = 1

2φ2 − η2

8
.

Table 1. Integrals applicable to the evaluation of (3.13).

time has passed relative to the characteristic time of transverse diffusion, a2/D. In other
words, this solution is valid as long as the solute variance gained in early times (during the
pre-asymptotic dispersion regime) is small compared with either the initial variance or the
variance gained due to the (long-term) Taylor dispersion. We will soon explore predictions
by this solution given specific initial conditions. In § 4, we will derive dispersion solutions
(given various initial conditions) which are valid for both short and long times. Next,
we note that (3.18) is equivalent to the solution reported by Datta & Kotamarthi (1990)
for the dimensional dispersion coefficient (see their equation (37)). Datta & Kotamarthi
reported deriving their solution by applying a Taylor-type analysis but, as mentioned
earlier, did not present a derivation in any detail. Further, we note that (3.18), for pure
PDF (〈u p〉 = 〈u〉), reduces to Aris’ (1956) classic solution of Deff = D + D−1a2〈u p〉2γp.
Additionally, for pure EOF (〈ue〉 = 〈u〉), (3.18) becomes Deff = D + D−1a2〈ue〉2γe, which
agrees analytically with Griffiths & Nilson’s (1999) solution of the coefficient of effective
dispersion (their equation (38); see § A of the supplementary material (SM) for proof).

Next, we scale the expression for the dispersion coefficient. To this end, we note that
〈u p〉 and 〈ue〉 are signed quantities. They are also variables which are fully independent
of each other (e.g. they can be independently controlled in an experiment). Hence, we
define here two corresponding (signed) Péclet numbers of the form Pep = a〈u p〉/D and
Pee = a〈ue〉/D. For both, we use the characteristic length scale of the cylinder radius.
The non-dimensional dispersion coefficient is then

D∗
eff =

Deff

D
= 1 + Pe2

pγp + PepPeeγpe + Pe2
eγe. (3.19)

The last three terms on the right-hand side again capture the effects of pure PDF, coupled
PDF and EOF and pure EOF. Because the values of γ are functions of φ (cf. (3.15)), D∗

eff
is a function of only three dimensionless parameters: Pep, Pee and φ.

Before continuing our presentation, we briefly compare our (3.19) with the non-
dimensional dispersion coefficient presented by Datta & Kotamarthi (1990). The latter
authors chose to combine the signed quantities 〈u p〉 and 〈ue〉 as a sum within a single
global Péclet number of the form Pe = (〈u p〉 + 〈ue〉)a/D. Further, they chose to use the
ratio β = 〈u p〉/〈u〉 to distinguish between the effects of EOF and PDF. Their approach
yields the following result:

D∗
eff = 1 + Pe2

(
β2γp + β (1 − β) γpe + (1 − β)2 γe

)
. (3.20)
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(a) Analytical solution

Equation (3.32)

Brownian dynamics
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1.5
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0β

(b)

φ = a/λD φ = a/λD

– (D*
eff –1)48

Pe2

Figure 7. Contour plots of our quasi-steady analytical solution (a) versus Brownian dynamics simulations
(b) of the normalised effective dispersion coefficient. In both cases, the effective dispersion coefficient is
normalised as 48Pe−2(D∗

eff − 1) where D∗
eff is the effective dispersion coefficient. This non-dimensional

quantity is plotted versus the fraction of bulk velocity caused by pressure, β, and the radius scaled by Debye
length, φ. The panels cover the entire dynamics of quasi-steady dispersion for all relative EDL thicknesses
and many velocity profiles. The white dashed lines show the variance-minimising contour for values of β as a
function of φ. These lines are obtained from (3.32) for the analytical solution and numerically for the Brownian
dynamics simulations.

In this formulation, D∗
eff is again a function of three parameters, but these are now φ, β

and Pe. We note this combination of two velocity scales into a single Péclet number is
most useful to characterise dispersion when EOF and PDF act in the same direction. We
recommend the formulation of (3.19) for cases wherein EOF and PDF are in opposition.
When EOF and PDF are opposed and nearly equal in magnitude, Pe approaches zero
while β approaches infinity at the same rate and evaluation of (3.20) is more cumbersome
than (3.19).

We can rewrite (3.20) as follows:

48
Pe2

(
D∗

eff − 1
)

= 48
(
β2γp + β(1 − β) γpe + (1 − β)2 γe

)
. (3.21)

This formulation enables exploration of the full solution and in a manner most useful
when EOF and PDF are not perfectly opposed. We will use this formulation to plot and
benchmark the grouping 48Pe−2(D∗

eff − 1) in heatmaps where the independent variables
are β and φ (see figure 7). Further, we will benchmark D∗

eff against Brownian dynamics
simulations for the case of perfectly opposed PDF and EOF in figure 8. Lastly, we note
(3.21) conveniently reduces to unity for the case of parabolic flow. Parabolic flow is
achieved by pure PDF or for combinations of PDF and EOF with thick EDLs (since
thick-EDL solutions also lead to parabolic EOF).

We now continue with our derivation for the two-dimensional concentration field. We
first evaluate the solution of (3.17) for an initial delta function condition for the solute of
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Figure 8. Contour plots of our quasi-steady analytical solution (a) versus Brownian dynamics simulations
(b) of the dimensionless effective dispersion coefficient for the case of perfectly opposed EOF and PDF. The
dimensionless dispersion coefficient D∗

eff is plotted versus the Péclet number based on PDF, Pep , and the radius
scaled by Debye length, φ. The Péclet number based on PDF is fixed to be equal in magnitude but opposite
in sign to the Péclet number based on EOF, Pee. For perfectly opposed PDF and EOF, D∗

eff decreases as φ
decreases.

the form

〈c〉(0, 0)= N

A
δ(0), (3.22)

where N/A is the moles of solute per unit cross-sectional area of the channel, and the
delta function δ(x) has dimensions of inverse length. Defining x ′ = x − 〈u〉t as an axial
coordinate for a reference frame moving at net bulk velocity, the area-averaged solute
distribution for this fundamental case is

〈c〉(x ′, t)= N

A

1√
4πDeff t

exp
(−(x ′)2

4Deff t

)
. (3.23)

This solution can be interpreted as the Green’s function (also know as heat kernel) for
(3.17) which, as we discuss in the next section, can be used to construct a wide variety of
solutions for more complex initial conditions. Further, the first derivative of (3.23) with
respect to axial dimension is

∂〈c〉
∂x ′ = − N

A

x ′

4
√
π
(
Deff t

)3 exp
(−(x ′)2

4Deff t

)
= − x ′

2Deff t
〈c〉(x ′, t). (3.24)

Equations (3.23) and (3.24) can be combined with (3.11) to obtain a solution of the
full two-dimensional, unsteady solute concentration for a delta function initial condition
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as follows:

c
(
r∗, x ′, t

)= 〈c〉 + c′ = N

A

1√
4πDeff t

exp
(−(x ′)2

4Deff t

)

− Na2x ′

4AD
√
π
(
Deff t

)3 exp
(−(x ′)2

4Deff t

)( 〈u p〉
4

(
r∗2 − 1

3
− r∗4

2

)

+ 〈ue〉
1 − η

(
−η

8
+ η

φ2 + η
r∗2

4
− I0(φr∗)
φ2 I0(φ)

))
. (3.25)

To our knowledge, (3.25) is the first reported expression which provides both the axial and
radial distribution of solute for combined EOF and PDF.

3.1. Unsteady, two-dimensional solutions for arbitrary initial conditions
Given the linearity of (3.17), we leverage a Green’s function to present the concentration
field as a function of arbitrary initial conditions. The Green’s function for this case is
the solution of (3.17) for a delta function initial condition (Cole 2011). From (3.23), the
Green’s function is

G
(
x ′, t |xi

)= 1√
4πDeff t

exp

(
− (

x ′ − xi
)2

4Deff t

)
. (3.26)

Whence, combining with (3.11), we construct the solution to some arbitrary initial
condition 〈c〉(x ′, 0) as follows:

c
(
r∗, x ′, t

)
=

∞∫
−∞

G
(
x ′, t |xi

)〈c〉(xi , 0)dxi + f

⎛
⎝ ∂

∂x ′

∞∫
−∞

G
(
x ′, t |xi

)〈c〉(xi , 0)dxi , r∗
⎞
⎠

=
∞∫

−∞
G
(
x ′, t |xi

)〈c〉(xi , 0)dxi − a2

2Deff Dt

⎛
⎝ ∞∫

−∞

(
x ′ − xi

)
G
(
x ′, t |xi

)〈c〉(xi , 0)dxi

⎞
⎠

×
( 〈u p〉

4

(
r∗2 − 1

3
− r∗4

2

)
+ 〈ue〉

1 − η

(
−η

8
+ η

φ2 + η
r∗2

4
− I0(φr∗)
φ2 I0(φ)

))
. (3.27)

3.2. Variance growth valid for any initial condition
We derive a general expression for the growth of the solute area-averaged variance valid
for any initial condition. Let v2 denote the axial variance of the solute about the axial mean
defined such that

v2(〈c〉(x ′, t))= 1
N

∞∫
−∞

x ′2〈c〉(x ′, t)dx ′. (3.28)
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Equation (3.28) can be expressed in terms of G(x ′, t |xi ) as follows:

v2
(〈c〉(x ′, t)

)= 1
N

∞∫
−∞

x ′2
∞∫

−∞
G(x ′, t |xi )〈c〉(xi , 0)dxi dx ′

= 1
N

∞∫
−∞

〈c〉(xi , 0)

∞∫
−∞

x ′2G(x ′, t |xi )dx ′dxi

= 1
N

∞∫
−∞

〈c〉(xi , 0)

∞∫
−∞

x ′2
(

1√
4πDeff t

exp
(−(x ′ − xi )

2

4Deff t

))
dx ′dxi .

(3.29)

We recognise the last interior integral as the second moment of a Gaussian with mean xi
and variance 2Deff t . This implies

1
N

∞∫
−∞

〈c〉(xi , 0)

∞∫
−∞

x ′2
(

1√
4πDeff t

exp
(−(x ′ − xi )

2

4Deff t

))
dx ′dxi =

2Deff t

N

∞∫
−∞

〈c〉(xi , 0)dxi + 1
N

∞∫
−∞

xi
2〈c〉(xi , 0)dxi . (3.30)

Therefore, variance grows as

v2(〈c〉(x ′, t))= 2Deff t + v2(〈c〉(x ′, 0)). (3.31)

That is, the solute variance for all time is simply the sum of its initial value and 2Deff t .

3.3. Minimisation of variance for transporting solute over arbitrary axial distances
We here derive analytical expressions and present methods to minimise the axial variance
of solute as it is transported over an arbitrary, non-zero axial distance. As such, we do not
consider the case of 〈u〉 = 0 (e.g. wherein EOF and PDF are perfectly opposed), ensuring
the parameter β = 〈u p〉/〈u〉 remains finite.

First, we consider the relatively rare case where the practitioner can vary the relative
EDL thickness (φ) as is possible in some nanochannel systems. To minimise variance
growth, the EDL should be made as relatively thin as possible (φ→ ∞) as this minimises
dispersion.

Next, we consider a more practical situation. Assume the channel geometry and Debye
length of a system are fixed. This fixes the relative EDL thickness φ. To minimise variance,
(3.20) shows that we should consider both β and Pe. From (3.31), we see that minimisation
of variance in terms of the parameter β implies a minimisation of Deff. We proceed by
taking the partial derivative of (3.20) with respect to β and setting the resulting expression
equal to zero. The variance-minimising value of β, denoted here as βo, is then

βo = γpe − 2γe

2
(
γpe − γe − γp

) . (3.32)

Interestingly, and somewhat counterintuitively, we find that βo is determined completely
by φ and is independent of Pe. For any one value φ, there is a unique combination of EOF
and PDF which minimises variance and is applicable to all bulk velocities, tube radii and
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Figure 9. The fraction of bulk velocity associated with pressure required to minimise the growth of the solute
variance, βo, as a function of the tube radius scaled by Debye length, φ. The inset shows the variance-
minimising normalised flow profiles, ûo(r∗), for select values of φ of 1, 5, 10, 25 and 50. Opposing EOF
with PDF can be used to suppress dispersion.

solute diffusivities (which determine Pe). We shall see that this optimum velocity profile
shape is achieved by opposing EOF with progressively stronger PDF as the EDL becomes
thicker (we will discuss this further when presenting figure 9). Datta & Kotamarthi (1990)
also identified this optimum βo (see equation (50) of Datta & Kotamarthi 1990). However,
we note that Datta & Kotamarthi focused their presentation on the minimisation of the
theoretical plate height. Theoretical plate heights are traditional figures of merit for species
separation systems, including electrophoresis and chromatography, which aim to capture
the number of peaks detectable using a certain column (i.e. channel) length (see Huang
2021). We here will instead focus on the more fundamental problem of minimising Deff
and axial variance. Lastly, we henceforth denote the flow profile based on a value of β = βo
as uo(r∗) (and define ûo(r∗)= uo(r∗)/〈u〉).

Next, we explore the effects of flow Péclet number on the minimum dispersion
conditions. From (3.31), assuming some negligible initial width of the solute (compared
with its final value), the final variance of the solute cloud reduces simply to 2Deff t . First,
we non-dimensionalise the solute variance as 2D∗

effτ = 2Deff t/a2, where τ = t D/a2 is the
dimensionless time. We wish to minimise 2D∗

effτ for some finite distance travelled L or, in
dimensionless form, L∗ = L/a. To proceed, we first multiply (3.20) by the dimensionless
time τ = L∗/Pe

L∗

Pe
D∗

eff =
L∗

Pe
+ L∗ Pe

(
β2γp + β (1 − β) γpe + (1 − β)2 γe

)
. (3.33)

We differentiate the right-hand side of (3.33) with respect to Pe and set this equal to zero

− L∗

Pe2 + L∗(β2γp + β (1 − β) γpe + (1 − β)2 γe

)
= 0. (3.34)
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Recall we here assume Pe �= 0. Multiplying (3.34) by Pe2, the roots of the resulting
equation can be expressed as

Peo = ±
√

1

β2γp + β (1 − β) γpe + (1 − β)2 γe
. (3.35)

This compact expression yields the Péclet number that minimises the rate of growth of
the variance per unit of axial distance travelled. Since we assumed a negligible initial
width of the solute, the resulting variance-minimising Pe is independent of L∗. Note the ±
simply reflects the symmetry of the system for bulk velocities in the ‘positive’ or ‘negative’
direction and can therefore be discarded. Equation (3.35) then provides the optimum Péclet
number to minimise variance for transporting solute for any values of the parameters β
and φ. If one considers variations of β (i.e. adjustments of the relative strength of EOF
and PDF), then the substitution of (3.32) into (3.35) conveniently reduces Peo to a function
of only the fixed parameter φ. If instead β is taken to be fixed, then (3.35) provides Peo
as a function of both φ and the value of β. In either case, the relations βPe = Pep and
(1 − β)Pe = Pee can be used to find the variance-minimising PDF and EOF components
once Peo is known.

We note that (3.35) may be interpreted as the variance-minimising ratio of advective to
diffusive flux for transporting solute. In regimes where advection only slightly increases
dispersion (e.g. dominant EOF with a thin EDL), the dispersion is dominated by molecular
diffusion. In such regimes, the time to transport solute should then be minimised by
increasing the EOF velocity and Pe. Hence, Peo will be large for such velocity fields. We
shall show (in the discussion of figure 10) that, for finite φ, Peo achieves a maximum (with
respect to β) at the variance-minimising combination of EOF and PDF, βo. To demonstrate
this, we differentiate (3.35) with respect to β and set the resulting quantity equal to zero

∂Peo

∂β
= −1

2

(
β2γp + β (1 − β) γpe + (1 − β)2 γe

)− 3
2

× ∂

∂β

(
β2γp + β (1 − β) γpe + (1 − β)2 γe

)
= 0. (3.36)

The prefactor parenthetic term on the right-hand side (raised to −3/2) is always non-zero.
Therefore, the right-hand side of (3.36) vanishes only when β = βo. Hence, we conclude
that (at a fixed value of φ) the Peo function achieves a maximum at βo.

Lastly, we note that our (3.35) is mathematically equivalent to Datta & Kotamarthi’s
(1990) equation (51). However, we again point out that Datta & Kotamarthi derived their
optimal Pe by minimising the theoretical plate height (and we here do not need to invoke
such figures of merit).

3.4. Example solution for a ‘top hat’ initial condition
In the case of an initial ‘top hat’ of solute, centred at x ′ = 0, the initial conditions are

〈c〉(x ′, 0)=
{

ci |x ′| ≤ Lo

0 |x ′|> Lo
. (3.37)

Here, ci denotes the initial concentration of solute (with units of moles per litre) and Lo
denotes half of the initial width of the ‘top hat’. First, we compute the convolution of this
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Figure 10. Surface plots for analytical solutions of the quasi-steady state, variance-minimising Péclet number,
Peo. In (a), a surface of Peo is plotted as a function of the fraction of bulk velocity caused by pressure, β, and the
tube radius scaled by Debye length, φ. For constant values of φ, Peo exhibits a maximum at the aforementioned
variance-minimising fraction of bulk velocity caused by pressure, βo. In (b), a surface of 2D∗

effτ is plotted for
solute travelling an example dimensionless axial distance of L∗ = τPe = 50 as a function of β and Pe. Here,
the white circle indicates the minimum of 2D∗

effτ as determined analytically by (3.32) and (3.35). Figure 10(b)
was produced with an example relative EDL thickness of φ = 50.

initial condition with Green’s function as

Lo∫
−Lo

ci√
4πDeff t

exp
(−(x ′ − xi )

2

4Deff t

)
dxi = ci

2

(
erf

(
Lo − x ′√

4Deff t

)
+ erf

(
Lo + x ′√

4Deff t

))
.

(3.38)
For the radial distribution of solute, we calculate

Lo∫
−Lo

ci (x ′ − xi )√
4πDeff t

exp
(−(x ′ − xi )

2

4Deff t

)
dxi = ci

√
Deff t√
π

(
exp

(
−(Lo − x ′)2

4Deff t

)

− exp
(

−(Lo + x ′)2

4Deff t

))
. (3.39)

Substituting (3.38) and (3.39) into (3.27), we see that, in the ‘top hat’ case, the overall
concentration field can be expressed as

c(r∗, x ′, t)= ci

2

(
erf

(
Lo − x ′√

4Deff t

)
+ erf

(
Lo + x ′√

4Deff t

))

− a2ci

2D
√
πDeff t

(
exp

(
−(Lo − x ′)2

4Deff t

)
− exp

(
−(Lo + x ′)2

4Deff t

))

×
( 〈u p〉

4

(
r∗2 − 1

3
− r∗4

2

)
+ 〈ue〉

1 − η

(
−η

8
+ η

φ2 + η
r∗2

4
− I0(φr∗)
φ2 I0(φ)

))
.

(3.40)

Again, (3.40) is valid for the Taylor-type limit of the problem (cf. (3.4) and (3.5)).
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4. Method of moments solution for transient dispersive behaviour
We present a solution for the integral moments of the solute zone which is valid for all
times. Our solution will also be valid for solute zones with arbitrary axial widths. We
follow the MoM solution method originated by Aris (1956), as significantly expanded
and developed by Barton (1983). Barton advanced the MoM by employing eigenfunction
expansions from Sturm–Liouville theory to derive general expressions for the integral
moments of the concentration field. Barton’s analysis applies to arbitrary flow profiles
and arbitrary channel cross-sections. We will here use Barton’s general framework to
analyse the behaviour of solute subject to coupled EOF and PDF in a cylindrical tube.
We note there are several key differences between our MoM formulation and our quasi-
steady, Taylor-type analysis from § 3. First, the conditions Pe<<σx/a and a/σx << 1
are not required for our MoM formulation. Second, consistent with the MoM, we non-
dimensionalise axial position with the inner radius of the tube and not the characteristic
width of the solute cloud (x∗ = x/a). Third, we non-dimensionalise the concentration
field with the total moles of solute in the tube and the characteristic volume of the tube
(c∗(r∗, x∗, τ )= πa3c(r∗, x∗, τ )/N ). Lastly, we non-dimensionalise our velocity profile
as follows:

χ(r∗)= a

D
u(r∗)= 2Pep

(
1 − r∗2)+ Pee

1 − η

(
1 − I0(φr∗)

I0(φ)

)
. (4.1)

The latter can be interpreted as a Péclet number in terms of the (radially varying) velocity
profile. In terms of these newly defined variables, the dimensionless convection–diffusion
equation and boundary conditions are

∂c∗

∂τ
+ χ(r∗) ∂c∗

∂x∗ = 1
r∗

∂

∂r∗

(
r∗ ∂c∗

∂r∗

)
+ ∂2c∗

∂x∗2 ; ∂c∗

∂r∗

∣∣∣∣
r∗=1,0

= 0,

(x∗)n ∂
mc∗

∂x∗m
→ 0 as

∣∣x∗∣∣→ ∞ for n,m ≥ 0, c∗(r∗, x∗, τ = 0)= c∗(r∗, x∗, 0). (4.2)

Defining c∗
n(r

∗, τ )= ∫∞
−∞(x

∗)nc∗(r∗, x∗, τ )dx∗ as the nth moment of solute along the
axial direction, we can multiply (4.2) by (x∗)n and integrate with respect to x∗, yielding

∂c∗
n

∂τ
= 1

r∗
∂

∂r∗

(
r∗ ∂c∗

n

∂r∗

)
+ n (n − 1) c∗

n−2 + nχ(r∗)c∗
n−1;

∂c∗
n

∂r∗

∣∣∣∣
r∗=1,0

= 0,

c∗
n(r

∗, τ = 0)= c∗
n(r

∗, 0). (4.3)

Taking an area average of (4.3)

d Mn

dτ
= n (n − 1) 〈c∗

n−2〉 + n〈χ(r∗)c∗
n−1〉; Mn(τ = 0)= Mn(0) . (4.4)

Here, Mn(τ )=
∫ 1

0 2r∗c∗
n(r

∗, τ )dr∗ and Mn(0) are respectively the nth moment of the
solute zone and the initial value of the nth moment of solute. Equation (4.4) is then
the governing initial value problem for the nth moment of the concentration field. We
note that solutions from (4.4) for the nth moment of solute depend upon the solutions of
c∗

n−1(r
∗, τ ) and c∗

n−2(r
∗, τ ) from (4.3). In this way, solutions for the higher-order moments

of solute must be ‘built up’ from solutions of lower-order moments of solute along the axial
direction. To this end, we will solve (4.3) with the method of separation of variables. Given
the cylindrical geometry of our formulation, the Sturm–Liouville eigenvalue problem
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(Amrein, Hinz & Pearson 2005) associated with our solution method is(
d

dr∗

(
r∗ d

dr∗

)
+μi r

∗
)

fi = 0; d fi

dr∗

∣∣∣∣
r∗=1

= 0, fi is finite. (4.5)

The orthonormal eigenfunctions and discrete eigenvalues of (4.5) are

fi (r
∗)= J0(αi r∗)

J0(αi )
;μi = α2

i . (4.6)

Here, Jv(z) denotes a Bessel function of the first kind of order v, and αi is the ith root of
J1(z). As previously mentioned, Barton (1983) provided a general formulation of the first
moment of the concentration field in terms of the eigenfunctions associated with arbitrary
tube geometries and arbitrary velocity profiles. Importantly, Barton showed that the first
moment of the concentration field satisfies the equation

M1(τ )= τPe +
∞∑
i

〈
c∗

0(r
∗, 0) fi

〉 〈χ fi 〉
(

1 − e−μi τ

μi

)
. (4.7)

Without loss of generality, we have assumed that M1(0)= 0. To apply Barton’s approach
to the current geometry and velocity fields, we must evaluate the following eigenfunction-
weighted area average of the velocity profile in (4.1)

〈χ fi 〉 = 2

1∫
0

[
r∗ J0

(
αi r∗)

J0(αi )

(
2Pep

(
1 − r∗2)+ Pee

1 − η

(
1 − I0(φr∗)

I0(φ)

))]
dr∗

= −8Pep

αi
2 − Pee

1 − η

(
ηφ2

αi
2 + φ2

)
. (4.8)

The substitution of (4.8) into (4.7) then provides the axial mean of the solute zone
as a function of the eigenfunction-weighted area average of arbitrary initial conditions,
〈c∗

0(r
∗, 0) fi 〉.

In this work, we discuss the term 〈c∗
0(r

∗, 0) fi 〉 for two interesting initial conditions. The
first initial condition we will consider is the case of solute that is distributed uniformly
across the cross-section of the tube. For such initial conditions

〈c∗
0(r

∗, 0) fi 〉 ∝
1∫

0

r∗ J0(αi r∗)
J0(αi )

dr∗ = 0, (4.9)

so (4.7) reduces to simply M1(τ )= τPe (where Pe is a signed quantity or zero). The latter
reflects the fact that the solute zone (eventually) moves at the net bulk velocity of the flow.
The second initial condition we will consider is an initial delta distribution of solute at r∗ =
0. From the definition of the delta distribution, 〈c∗

0(r
∗, 0) fi 〉 = 2J0(0)/J0(αi ), whence

M1(τ )= τPe +
∞∑
i

2
J0(αi )

(−8Pep

αi
2 − Pee

1 − η

(
ηφ2

αi
2 + φ2

))(
1 − e−αi

2τ

αi
2

)
. (4.10)

In the limit as τ → ∞, (4.10) again reflects the fact that the solute zone ultimately moves
at bulk velocity. Also, (4.10) shows that the mean of the solute cloud will in general
deviate from that predicted by our quasi-steady solution. In most practical applications,
this deviation is small and negligible. Further, in contrast to our quasi-steady solution,
the mean axial location of the solute as predicted by this MoM formulation depends
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explicitly on the initial condition of solute. As per (4.9), this dependence vanishes for
initial distributions of solute which are uniform across the cross-section of the tube,
simplifying the problem of solving for higher-order moments of the solute zone. Given
this, we shall only consider such initial conditions in our solution of the variance of the
solute zone.

Before continuing we explicitly write here the quasi-steady limits of (4.7) and (4.10) for
the case of pure PDF. Substituting Pep = Pe and transforming into a moving frame given
by M ′

1(τ )= M1(τ )− τPe, the values of M1(τ ) specified by (4.7) and (4.10) each reduce,
respectively, to

lim
τ→∞ M ′

1(τ )= −8Pe lim
τ→∞

∞∑
i

αi
−4〈c∗

0(r
∗, 0) fi

〉(
1 − e−αi

2τ
)

= −8Pe
∞∑
i

αi
−4〈c∗

0(r
∗, 0) fi

〉
, (4.11)

and

lim
τ→∞ M ′

1(τ )= −16Pe lim
τ→∞

∞∑
i

αi
−4 1

J0(αi )

(
1 − e−αi

2τ

)
= −16Pe

∞∑
i

αi
−4 1

J0(αi )
.

(4.12)
Equations (4.11) and (4.12) agree with Aris’ (1956) solution for the mean axial location of
the solute. Specifically, (4.11) is equivalent to Aris’ (21) and (4.12) is equivalent to Aris’
(32) for an initial delta distribution of solute at r∗ = 0.

Now that we have a solution for the first moment of solute, we can proceed with the
separation of variables solution to ‘build up’ our solution for the second moment of solute,
as previously mentioned. Accordingly, Barton (1983) further showed that the second
moment of the solute distribution about the axial mean (again, for arbitrary geometries
and velocity fields) behaves as follows:

v2(τ )= M2 − (M1)
2 = v2(0)+ 2

(
1 +

∞∑
i

〈χ fi 〉2

μi

)
τ − 2

∞∑
i

〈χ fi 〉2
(

1 − e−μi τ

μi
2

)
.

(4.13)
For the current work, 〈χ fi 〉 and μi are given by (4.8) and (4.6), respectively. Equation
(4.13) applies to solute that is initially distributed uniformly across the cross-section of
the tube. Useful in comparing our MoM and quasi-steady formulations, we also define the
transient effective dispersion coefficient to be half the rate of change of variance

1
2

d(v2(τ ))

dτ
= D∗trns

eff = 1 +
∞∑
i

(
〈χ fi 〉2

μi
− 〈χ fi 〉2 e−μi τ

μi

)
. (4.14)

(We note that Barton neither discusses this formulation nor makes this comparison.)
Equation (4.14) provides the transient effective dispersion coefficient as a function of four
dimensionless parameters (Pep, Pee, τ and φ), and is also useful to the case of perfectly
opposed EOF and PDF. However, because (4.14) is a function of four parameters, it is
difficult to present clear visualisations of different regimes of the solution. To remedy this,
we will again formulate the dispersion coefficient in terms of the parameter β and a Péclet
number based on the sum of the EOF and PDF bulk velocities, Pe = (〈u p〉 + 〈ue〉)a/D.
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Figure 11. Benchmark comparisons between Brownian dynamics simulations and the analytical solution of
the early, transient growth of the effective dispersion coefficient normalised as 48Pe−2(D∗trns

eff − 1) (non-solid
curves) versus dimensionless time, τ = tD/a2. The non-solid curves show the analytical solutions as derived
from the MoM. The open markers show Brownian dynamics simulations benchmarking of the solutions. Curves
in (a) are indexed by varying values of the tube radius scaled by Debye length, φ. Curves in (b) are indexed by
varying values of the fraction of bulk velocity caused by pressure, β. The translucent horizontal line segments
denote the analytical, quasi-steady state solutions.

Then, letting û(r∗)= u(r∗)/〈u〉, we write

〈χ fi 〉 = Pe
(−8β
αi

2 − (1 − β)

1 − η

(
ηφ2

αi
2 + φ2

))
= Pe〈ûfi 〉. (4.15)

Substituting (4.15) into (4.14), we may now again define a bulk Péclet-independent
dispersion parameter as

48
Pe2

(
D∗trns

eff − 1
)= 48

∞∑
i

( 〈ûfi 〉2

μi
− 〈ûfi 〉2e−μi τ

μi

)
. (4.16)

The right-hand side of (4.16) is a function only of the dimensionless parameters β, φ and
τ . This makes it easier to visualise than (4.14). We use the effective dispersion coefficient
provided by (4.16) in most subsequent figures. Further, (4.16) asymptotes to our quasi-
steady solution of the normalised dispersion coefficient (given by (3.21)) as τ → ∞ (we
will note this in the discussion of figure 11).

We note that for the special case of pure PDF (Pep = Pe), (4.13) reduces to Barton’s
(1983) solution for the variance of solute in a cylindrical tube (Barton’s equation (5.4)).
Further, again for pure PDF, (4.14) analytically reduces to Taghizadeh et al.’s (2020)
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solution for the transient effective dispersion coefficient (Taghizadeh et al.’s equation
(7.3)). Taghizadeh et al. analysed the dispersion of solute subject to purely PDF in
a cylindrical tube across all time regimes. They applied a cross-sectional-averaging
method and derived an analytical expression for the aforementioned transient effective
dispersion coefficient, as well as an associated one-dimensional convection–diffusion
equation (Taghizadeh et al.’s equation (6.6)). To find solutions to this area-averaged
convection–diffusion equation, Taghizadeh et al. relied on a (numerical) finite element
method. Lastly, for Pep = Pe and in the limit as τ → ∞, (4.14) reduces to Aris’ (1956)
solution for the steady effective dispersion coefficient (Aris’ equation (26)). Hence, our
solutions for the solute variance and effective dispersion coefficient agree with and reduce
to those of Aris (1956), Barton (1983) and Taghizadeh et al. (2020) for the special case of
pure PDF.

Lastly, we offer a note regarding the second or third moments about the mean for
the current velocity fields. For arbitrary initial conditions, such a solution requires the
evaluation of the following integral:

1∫
0

r∗ I0
(
φr∗) J0(αi r

∗)2dr∗. (4.17)

We know of no analytical solution to this integral.

4.1. Minimisation of variance for transporting solute over a fixed axial distance
We analytically explore the minimisation of variance for transporting solute over some
fixed axial distance of interest. This treatment considers, for example, an engineering
situation in a microfluidic device where a cloud of solute is transported a distance L
from one location in a microchannel to a second location over some characteristic time
τo. The following analysis allows the user of this device to maximise the area-averaged
concentration of the arriving solute by minimising dispersion. Importantly, and in contrast
to the optimisation in § 3.3, this analysis applies to values of the characteristic transport
time τo that are any duration relative to the characteristic time of transverse diffusion,
a2/D. In particular, the following analysis is applicable to processes which are brief
(in terms of τo) compared with the transverse diffusion time. The fixed value of solute
transport distance is here relevant (whereas the precise distance of transport was irrelevant
in § 3.3). We are only interested in minimising variance for moving solute, so we preclude
the case of 〈u〉 ≈ 0. First, if φ may be varied, then it should be made as large as possible
to help minimise variance (as mentioned in § 3.3). However, we henceforth assume φ to
be finite and fixed. Because we assumed 〈u〉 �= 0, it is convenient to optimise the velocity
profile in terms of the parameters β = 〈u p〉/〈u〉 and Pe. Substituting (4.15) into (4.13), we
first present the variance of the solute zone in terms of these parameters

v2(τ )= v2(0)+ 2

(
1 + Pe2

∞∑
i

〈û fi 〉2

μi

)
τ − 2Pe2

∞∑
i

〈û fi 〉2
(

1 − e−μi τ

μi
2

)
. (4.18)

Given this formulation, we will show that the value of β required to minimise variance
for transporting solute over a fixed distance (henceforth denoted β trns

o (τo)) depends only
on the characteristic dimensionless time to transport solute over that given distance, τo,
and the dimensionless parameter φ. Now, we solved the steady Stokes equation for our
velocity profile. Hence, upon injection of solute into the tube, all parameters related to the
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velocity field (e.g. β, φ and Pe) are immediately ‘set’ and cannot vary with time. For the
minimisation, we differentiate (4.18) with respect to β, substitute τ = τo, and then set the
resulting quantity equal to zero

∂

∂β
(v2(τo))=

∞∑
i

∂

∂β
〈ûfi 〉2

(
τo

μi
− 1 − e−μi τo

μ2
i

)
= 0. (4.19)

The only value dependent on β in (4.19) is 〈û fi 〉2, so we evaluate as follows:

∂

∂β

(
〈û fi 〉2

)
= 2

(−8β
αi

2 − (1 − β)

1 − η

(
ηφ2

αi
2 + φ2

))(−8
αi

2 + 1
1 − η

(
ηφ2

αi
2 + φ2

))

= 2β

(
64
αi

4 − 16
αi

2(1 − η)

(
ηφ2

αi
2 + φ2

)
+ 1

(1 − η)2

(
ηφ2

αi
2 + φ2

)2)

+ 16
αi

2(1 − η)

(
ηφ2

αi
2 + φ2

)
− 2

(1 − η)2

(
ηφ2

αi
2 + φ2

)2

. (4.20)

We substitute (4.20) into (4.19) and rearrange to find

β trns
o (τo)

=

∞∑
i

(
1 −μiτo − e−μi τo

)
μ2

i

(
8
αi

2

(
ηφ2

αi
2 + φ2

)
− 1
(1 − η)

(
ηφ2

αi
2 + φ2

)2)

∞∑
i

(
μiτo − 1 + e−μi τo

)
μ2

i

(
64 (1 − η)

αi
4 − 16

αi
2

(
ηφ2

αi
2 + φ2

)
+ 1
(1 − η)

(
ηφ2

αi
2 + φ2

)2) .

(4.21)

The latter expression provides the unique value of β that minimises the dispersion across
all time regimes. Equation (4.21) depends only on τo and φ. For example, if we specify
the value of τo as the characteristic time to transport solute through a tube, then (4.21) can
be used to find the fixed value of β trns

o (τo) that minimises variance for such transport. We
note that (4.21) asymptotes to βo of our quasi-steady solution as τo → ∞ (see figure 12).

Next, we are also interested in deriving the optimum Péclet number Petrns
o to minimise

the variance for transporting the solute over some fixed dimensionless axial distance of
interest, L∗. To this end, we substitute τ = L∗/Pe into (4.18), then set the derivative with
respect to Pe equal to zero

∂ (v2)

∂ (Pe)
= − L∗(

Petrns
o

)2
+

∞∑
i

⎛
⎜⎝ L∗〈û fi 〉2

μi
− 2Petrns

o 〈û fi 〉2

μ2
i

+ 2Petrns
o 〈û fi 〉2e

−μi L∗
Petrns

o

μ2
i

+ L∗〈û fi 〉2e
−μi L∗
Petrns

o

μi

⎞
⎟⎠= 0.

(4.22)

Multiplying by (Petrns
o )2 and rearranging, (4.22) can be expressed as

− L∗ +
∞∑
i

(
L∗(Petrns

o

)2 〈û fi 〉2

μi

(
1 + e

−μi L∗
Petrns

o

)
+ 2

(
Petrns

o

)3 〈û fi 〉2

μ2
i

(
e

−μi L∗
Petrns

o − 1

))
= 0.

(4.23)
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Figure 12. Deviation of the transient value of the variance-minimising fraction of bulk velocity caused by
pressure, β trns

o (τo), from the quasi-steady state value, βo, versus the characteristic dimensionless time of
interest, τo. The curves are indexed by the tube radius scaled by Debye length, φ. The inset is a closeup for
the interval of 0< τo < 0.1. Dispersion caused by predominantly EOF with very thin EDLs (e.g. φ > 50) very
quickly asymptotes to quasi-steady state dynamics.

We will now explain the process to find the optimum combination of β and Pe to
minimise variance for transporting solute over a fixed axial distance (again assuming φ
to be fixed). Recall from (4.15) that 〈û fi 〉 and therefore (4.23) are functions of β. Thus,
to find the global optimum value of Petrns

o for a fixed value of L∗, we first substitute
the β trns

o (τo) function as given by (4.21) into (4.23). We then substitute τo = L∗/Petrns
o

into (4.23). Next, we solve the resulting equation for Petrns
o using the Newton–Raphson

method (Engquist 2015, pp. 1023–1028) or some other root-finding method. Once we have
Petrns

o for a given value of L∗, we can again use the relationship τo = L∗/Petrns
o to find the

corresponding value of τo. Next, using (4.21), we compute the specific value of β trns
o (τo)

at that value of τo. Thus, this process gives the fixed global optimum values of Pe and β
to minimise variance for transporting solute over a dimensionless distance L∗. Lastly, per
figure 13, we note that Petrns

o asymptotes to Peo as L∗ → ∞.

5. Results and discussion
We first visualise our analytical solution for the concentration field given a ‘top hat’ initial
condition (equation (3.40)). Figure 3 shows solute concentration profiles, determined
from the quasi-steady solution. Each curve shows the normalised solute concentration,
c∗(x ′∗|r∗, τ )= πa3c(x ′∗|r∗, τ )/N , on the ordinate. The abscissa is a dimensionless axial
position in a frame moving at solute bulk velocity, x ′∗ = x∗ − τ Pe. These curves are axial
profiles from the two-dimensional unsteady solution at select radial coordinates and select
times as indicated in the figure. Profiles are shown for four combinations of Pee, Pep and φ,
corresponding to the four figure panels. Each individual panel shows solute concentration
profiles at three distinct values of dimensionless time (different line colours) for three
separate radial positions (different line types), resulting in nine solute profiles per panel.
EOF with thin EDLs results in very little solute dispersion and thus exhibits the highest
solute concentrations. In contrast, EOF with relatively thick EDLs or PDF causes the
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Figure 13. Solutions related to the transient variance-minimising Péclet number, Petrns
o . In (a), Petrns

o is
plotted as a function of the dimensionless axial distance of travel, L∗. The non-solid curves indicate
transient solutions from the MoM. The translucent horizontal line segments denote the associated quasi-steady
state solutions. The quasi-steady and transient solutions agree asymptotically after approximately L∗ = 100.
(b) Variance, v2(τo = L∗/Pe), of the solute zone after travelling a dimensionless axial distance of L∗ = 100 as
a function of Péclet number, Pe. The red dots indicate minima of v2(τo) as determined from the solution of
Petrns

o from (4.23). For both panels, curves are indexed by the tube radius scaled by Debye length, φ. Figure 13
was produced by setting τo = L∗/Pe and β = β trns

o (τo).

solute to disperse quickly. Additionally, the radial deviation of solute is relatively small
for all values of τ shown, but easily observable for τ ≤ 5.

We next compare our expression for the concentration field resulting from a ‘top
hat’ initial condition (cf. (3.40)) with Brownian dynamics simulations to benchmark our
analytical model. Figure 4 shows comparisons for the temporal evolution of the solute
concentration field at an example bulk Péclet number of 100. The radius of the tube has
been enlarged relative to the axial length for clarity of presentation. The three columns
(solute shown in blue, orange and green) correspond to values of dimensionless time,
τ = tD/a2, of 2.5, 100 and 400, respectively. The dimensionless radius, r∗, is on the
ordinate and dimensionless axial position, x∗, is on the abscissa. The four rows are plots for
example values of Pep, Pee and φ, consistent with various combinations of EOF and PDF.
The analytical solution and Brownian dynamics simulations show excellent agreement for
all combinations of parameters. This figure shows the full, two-dimensional concentration
field, including the radial distribution of solute particles for both the Brownian dynamics
simulations and the solute stream (cf. (3.11)). The radial variation of solute for this Péclet
number is very slight. Figure 4 was made with a value of Pe = 100; we provide similar
figures for values of Pe = 20 and 1000 in § B of the SM.

As per (3.19), for Pep and Pee both greater than or equal to zero, the rate of growth of
the variance decreases as φ increases or Pep/Pee decreases. That is, for EOF and PDF
in the same direction, variance growth is smaller for thinner EDLs and/or larger relative
amounts of EOF compared to PDF.

Figure 5 shows comparisons between Brownian dynamics simulations and the analytical
solution of the temporal evolution of solute for the specific case where EOF is perfectly
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opposed by PDF (resulting in a flow with zero area-averaged bulk velocity). The plot
was constructed with example values of Pee = 100, Pep = −100 and four values of φ
(corresponding to the four rows). Dimensionless radius, r∗, is shown on the ordinate and
dimensionless axial position, x∗, is on the abscissa. The three columns (solute clouds in
blue, orange and green) correspond to values of dimensionless time, τ , of 5.0, 100 and 400,
respectively. The analytical solution and Brownian dynamics simulations show excellent
agreement for all combinations of parameters.

Figure 6 shows comparisons between the analytical solution (cf. (3.40)) and Brownian
dynamics simulations of the temporal development of the normalised radial distribution
of solute, c′(r∗, x∗, τ )/〈c〉(x∗ = τPe, τ )= c′(〈c〉|x∗=τPe)

−1. Here, 〈c〉(x∗ = τPe, τ ) is the
area-averaged concentration at the mean axial position of solute. For figure 6, we chose
an example Péclet number of 100. For the Brownian dynamics, we considered the average
results of 3000 separate simulation realisations with random seed initial conditions. In
each realisation, we tracked 5000 particles initially arranged in a disk and distributed
uniformly across the channel cross-section. The three columns correspond to values of
dimensionless time, τ , of 1.5, 3.0 and 4.0. The dimensionless radius, r∗, is on the ordinate
and dimensionless axial position, x∗, is on the abscissa. The range of x∗ is the same
within each column. The dotted black lines denote two standard deviations of the Brownian
particles’ axial positions about their mean position. The four rows correspond to the four
values of β and φ shown (parameters equivalent to the four rows of figure 4). As before,
Brownian dynamics simulations are plotted in the top half of each channel, and the Taylor-
type solution on the bottom. To aid comparison, the number densities estimated from the
Brownian simulations were smoothed via cubic interpolation to generate a scalar surface
that minimises the net curvature of the simulation data. The analytical solution shows very
good agreement with Brownian dynamics simulations for all choices of flow parameters.
At the mean axial position of the solute (x∗ = τPe), c′ is identically zero across the entire
channel cross-section. As the quantity x∗ − τPe grows large in magnitude, c′ is a relatively
small perturbation on the area-average concentration (and becomes smaller as τ increases).
For example, at τ = 4.0, the maximum observed magnitude of c′(〈c〉|x∗=τPe)

−1 at the axial
centreline was 0.12 (which we observed for pure PDF). By comparison, at τ = 10 (not
shown), the maximum value of c′(〈c〉|x∗=τPe)

−1 is 0.08. For τ = 100 (not shown), this
maximum magnitude of c′(〈c〉|x∗=τPe)

−1 is 0.02. Lastly, c′(〈c〉|x∗=τPe)
−1 approaches zero

much faster (temporally) for thin-EDL EOF than for either PDF or thick-EDL EOF. We
shall discuss this (and its effects on the characteristic time to reach quasi-steady dispersion
dynamics) further when presenting figure 11.

Next, figure 7 shows comparisons between the analytical solution (given by (3.21))
and Brownian dynamics simulations of the normalised effective dispersion coefficient,
48Pe−2(D∗

eff − 1), as a function of β and φ. The function 48Pe−2(D∗
eff − 1) reduces to

unity when the effective dispersion coefficient approaches that of the classical Taylor
dispersion for a simple parabolic flow profile. The analytical model shows excellent
agreement with the Brownian dynamics simulations across the entire regime of flows. This
includes both thin and thick (including overlapping) EDLs. The velocity fields evaluated
in figure 7 include flows with PDF supporting EOF as well as PDF in opposition to EOF.
The normalised dispersion coefficient 48Pe−2(D∗

eff − 1) decreases as φ increases (thinner
EDLs) for values of 0 ≤ β ≤ 1, and tends to increase as φ increases for values of β outside
this interval. Interestingly, for values of β near zero (EOF-dominated) and sufficiently
thin EDLs, 48Pe−2(D∗

eff − 1) is small and insensitive to β. Next, as mentioned earlier, the
flow profiles of thick EDLs asymptote to a parabola and so the dispersion in this regime
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is controlled solely by the bulk Péclet number, and D∗
eff asymptotes to the classic Taylor

dispersion value.
The contour (dashed curve) of minimum 48Pe−2(D∗

eff − 1) is given analytically by
(3.32). The analytical solution of the variance-minimising value of β as a function of φ
agrees very well with the minimum determined using the Brownian dynamics simulations.
We show an extended range of this curve (as well as example optimum flow profiles) in
figure 9.

Figure 8 shows comparisons between the analytical solution (from (3.19)) and Brownian
dynamics simulations of the dimensionless effective dispersion coefficient, D∗

eff, for the
case of perfectly opposed EOF and PDF, such that Pe = 0. The Péclet number based on
PDF is fixed to be equal in magnitude but opposite in sign to the Péclet number based on
EOF. We note that figure 8 applies to positive and negative values of Pep. The analytical
solution of D∗

eff shows excellent agreement with Brownian dynamics simulations for all
tested cases. Additionally, contrary to the case where EOF and PDF are in the same
direction, we see that D∗

eff tends to decrease as φ decreases. We attribute this to the fact that
(per (2.3)) the EOF profile assumes parabolic form for small values of φ, and so opposed
PDF and EOF combine to form a profile with near-zero velocity gradients.

In figure 9, we explore the opposition of EOF with PDF required to minimise the rate
of growth of the solute variance for all relative EDL thicknesses. We consider cases where
the net area-averaged bulk velocity is equal to unity. Note the latter assumption precludes
the trivial case where (thick EDL) parabolic EOF is used to exactly cancel out PDF,
leading to low velocities (and velocity gradients) throughout the channel. The outer part
of figure 9 shows the variance-minimising fraction of bulk velocity caused by pressure,
βo, as a function of φ (cf. (3.32)). In the inset of figure 9, we plot the normalised velocity
profiles (of EOF opposed by PDF) which lead to minimum dispersion for five example
values of the relative EDL thickness. First, βo decreases rapidly to large negative values as
EDLs become thick (φ below approximately 8). The latter is a somewhat counter-intuitive
result. For thick EDLs, a minimum dispersion condition with a fixed net bulk velocity of
unity implies a fairly large electric field opposed by increasingly strong PDF. This PDF
adds velocity gradients to the near-centreline regions of the flow. However, importantly,
this strong PDF opposition also increases the velocity differences between the wall and
near-wall regions (for φ below approximately ten), helping particles retarded by wall
effects ‘catch up’ to the rest of the solute zone. For thinner EDLs (increasing φ), the
EOF is inherently less dispersive, and the minimum dispersion rate can be achieved by
opposing with progressively lower magnitude PDF. Accordingly, βo asymptotes to zero
(from negative values) for large φ.

Next, we will visualise the expressions which we derived for minimal variance
growth of the solute. First, figure 10(a) shows the variance-minimising Péclet number,
Peo, as a function of the fraction of bulk velocity caused by pressure, β, and the
tube radius scaled by Debye length, φ. The Peo function reaches a maximum at βo
(cf. figure 9). In general, we observe that Peo is inversely related to the effective dispersion
coefficient (i.e. figure 10(a)’s colour map is the opposite of figure 7’s). We next consider
minimal dispersion conditions for travel of the solute over arbitrary lengths. As one
example, figure 10(b) shows a surface of the change in solute variance after travelling
a dimensionless axial distance of L∗ = τPe = 50 (given by 2D∗

effτ ) as a function of β and
Pe. Figure 10(b) was constructed with an example value of φ = 50. The white circle is the
minimum change in variance as predicted from our analytical solutions of βo and Peo from
(3.32) and (3.35), respectively. Similar to figure 7, there is a low-variance region for flows
dominated by EOF (β values near zero).
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Figure 11 shows comparisons between Brownian dynamics simulations and the
analytical solution (from our MoM formulation) of the early, transient behaviour of
the coefficient of effective dispersion. We show a normalised function of the transient
dispersion coefficient, 48Pe−2(D∗trns

eff − 1), versus dimensionless time, τ . Figure 11(a)
shows transient solutions for five values of the tube radius scaled by Debye length (φ)
for pure EOF. Figure 11(b) shows solutions for five values of β for a fixed relative tube
radius of φ = 25. Our MoM solution and Brownian dynamics simulations show excellent
agreement for all variations of φ and β we analysed, and for all time regimes. Interestingly,
dispersion caused by near-parabolic velocity profiles (e.g. φ < 10 or values of β near 1)
tends to take longer to asymptote to quasi-steady dynamics. In contrast, EOF-dominated
profiles with thin EDLs (e.g. β near 0 and φ > 25) more quickly asymptote to quasi-steady
dynamics. The characteristic time to reach quasi-steady dynamics is well known to be the
characteristic time of radial diffusion. For thin-EDL EOF (near-plug flow), the solute has
a much shorter distance to travel to homogenise across the EDL than for either thick-EDL
EOF or PDF (parabolic flow). For all cases, our quasi-steady and transient solutions (given
by (3.21) and (4.16), respectively) agree asymptotically after approximately dimensionless
time of τ = 0.5. To give some intuition, for a cylindrical channel of inner radius a = 50 m
and solute of molecular diffusivity D = 10−10 m2 s−1, τ = 0.5 corresponds to t = 12.5 s.

Next, we consider the optimum fraction of bulk flow caused by PDF (to minimise
dispersion) predicted by the MoM. As per the MoM solution, this optimum fraction varies
with time and approaches the βo of the quasi-steady solution. To this end, figure 12 shows
the deviation of the transient value of the variance-minimising fraction of bulk velocity
caused by pressure, β trns

o (τo), from the quasi-steady state value, βo, as a function of the
characteristic dimensionless time of interest, τo. Again, note that near-parabolic velocity
profiles (thick EDLs) take much longer to reach quasi-steady dynamics than flows with
very thin EDLs (larger values of φ). Interestingly (from a theoretical if not practical point
of view), for thin EDLs (φ greater than approximately 25), β trns

o (τo) ‘undershoots’ βo and
briefly predicts lower optimum values of β than the quasi-steady solution.

Lastly, we present a visualisation of the variance-minimising Péclet number solution
from the MoM formulation. Figure 13(a) shows the variance-minimising Péclet number,
Petrns

o , as a function of the dimensionless axial distance of travel, L∗. For thin-EDL
EOF (large values of φ), Petrns

o takes a longer dimensionless axial distance to asymptote
to quasi-steady dynamics than for flows with near-parabolic profiles (small values of
φ). However, because Petrns

o is larger for larger values of φ, and we have the relation
τo = L∗/Pe, Petrns

o takes similar amounts of dimensionless time to asymptote to quasi-
steady dynamics, irrespective of the value of φ. The curves in figure 13(b) show variance
after travelling a dimensionless axial distance of L∗ = 100 as a function of Péclet number.
Figure 13 was created for a value of the ratio of PDF bulk velocity to net flow bulk velocity
of β = β trns

o (τo). Our analytical solution for Petrns
o (the red dots on figure 13(b), given

by (4.23)) successfully predicts the minimum variance in all tested cases. Additionally,
variance varies more rapidly with Péclet number for smaller values of φ than for larger
values.

6. Summary and conclusions
We performed a Taylor-type analysis for the long-term dispersive behaviour of a neutral
solute subjected to simultaneous PDF and EOF in a long, thin cylindrical tube. We
first derived a formulation for the EOF velocity profile, valid for an EDL of arbitrary
thickness relative to the channel radius. We then performed a classic scaling analysis of the
convection diffusion equation, demonstrating that axial dispersion due to the non-uniform
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velocity field must be in approximate balance with radial diffusion, which allowed us to
derive the coefficient of effective dispersion. In the process, we also derived the radial
deviation from the area-averaged concentration field. This allowed us to describe the full,
two-dimensional concentration field (including the radial component) as a function of the
initial conditions of the solute in long-time regimes. To our knowledge, this is the first
full description of the concentration field, with the radial component, for combined EOF
and PDF. Ours is also, to our knowledge, the first published derivation of the dispersion
coefficient for these flows.

Next, we described the behaviour of variance growth and presented analytical methods
to optimise the flow Péclet number and combination of EOF and PDF required to minimise
the rate of growth of the variance (for some finite axial length travelled). We demonstrated
that, to minimise the rate of growth of the variance, it is optimal to oppose EOF with
progressively stronger PDF as the EDLs become thicker. Additionally, we showed that
the optimum Péclet number tends to be inversely related to the effective dispersion of a
normalised flow regime (e.g. thin-EDL EOF with unit bulk velocity tends to have a large
optimum Péclet number whereas unit PDF has a low optimum Péclet number). Lastly,
we presented the unsteady, two-dimensional concentration field for the specific example
initial conditions of a ‘top hat’ of solute and an initial delta distribution of solute. The
major features of our analytical solutions were successfully benchmarked with Brownian
dynamics simulations. The latter included the dispersion coefficient, the two-dimensional
concentration field, the radial solute distribution and the optimum value of β to minimise
dispersion for a wide range of cases.

Next, we analysed the transient dispersive behaviour of the solute using the MoM. The
MoM maintains two key advantages over Taylor-type analysis in that solutions are valid
across all time regimes and the width of the solute cloud (including its initial width)
can be any size relative to the inner radius of the tube. We derived analytical solutions
for the axial mean and variance of the solute zone, allowing us to analyse the early
behaviour of the solute. We demonstrated that the transient effective dispersion coefficient
asymptotes to the quasi-steady effective dispersion coefficient. We presented analytical
methods to minimise the variance for transporting the solute over a fixed axial distance. As
expected, the transient parameters (including the Petrns

o and β trns
o (τo) functions) required

to minimise dispersion asymptote to the corresponding asymptotic values predicted by
the quasi-steady, Taylor-type analysis. The transient dispersion coefficient, D∗trns

eff , was
successfully benchmarked with Brownian dynamics simulations for a wide range of cases.
In all tested cases, our analytical models (both Taylor-type and MoM formulations) showed
excellent agreement with Brownian dynamics simulations.

One limitation of this work is that it is restricted to physical regimes with a sufficiently
low zeta potential such that the Debye–Hückel approximation applies. Further work might
treat the case of high zeta potential numerically (or using an analytical approximation).
An additional area for future work might also analyse early (transient) variance growth for
solutes whose initial distribution is non-uniform across the cross-section of the tube.

In conclusion, this work presented benchmarked (compared with Brownian dynamics
simulations) predictions of the behaviour of a neutral solute subjected to simultaneous
EOF and PDF in all time regimes. Additionally, we presented analytical methods to
minimise hydrodynamic dispersion in a wide range of physical regimes.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.335.
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for-profit sectors.
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Appendix A. Derivation of the electroosmotic flow velocity profile
We here derive an expression for the EOF velocity profile ue(r) in a cylindrical tube
under the Debye–Hückel approximation. To include the effect of an EDL overlapping
with itself at the channel centreline, we assume the ions in the channel are in equilibrium
with an electroneutral reservoir. The latter assumption neglects complex unsteady effects
associated with channel-to-reservoir charge transport, such as unsteady concentration
polarisation (Zangle, Mani & Santiago 2009). To begin, we first derive a formulation for
the electric charge density ρ(r) due to the presence of an EDL. Let r = (r, θ, x) denote
the general three-dimensional position vector, c = (0, θ, x) denote position at the axial
centreline of the channel, a = (a, θ, x) represent position at the slipping plane and w
indicate position within an electroneutral reservoir connected to the channel. Define μi
as the electrochemical potential of the ith species. At equilibrium there are no gradients
in the electrochemical potential, and the electrochemical potential and relevant boundary
conditions can be expressed as

∇μi (r)= ∇[kBT ln(ni (r))+ zi e ψ(r)] = 0;
ψ(c)=ψc, ψ(w)= 0, ψ(a)= ζ, ni (c)= nc

i , ni (w)= nres
i . (A1)

Here, kB is the Boltzmann constant, T is the absolute temperature, e is the elementary
charge, ζ is the electric potential at the slipping plane and ni (r) and zi are respectively the
ion density function and valence number of the ith species. First, we will derive an explicit
relationship between the ion density function and the electric potential field. We begin by
integrating (A1) in the radial coordinate

kBT

r∫
c

∂

∂r
(ln(ni (r)))dr = −zi e

r∫
c

∂

∂r
(ψ(r))dr. (A2)

Evaluating (A2), we may express the ion density function in terms of the ion density at the
axial centreline, the electric potential at the axial centreline and the electric potential field

ni (r)= nc
i exp

(
− zi e

kBT

(
ψ(r)−ψc)) . (A3)

We derive a relation between the ion density at the axial centreline and the ion density in
the reservoir. To this end, we rearrange (A1) as

kBT ∇(ln(ni (r)))= −zi e∇(ψ(r)) . (A4)

Next, define x : {[0, 1] → [c,w]|∇x μi (r)= 0} as a path between the axial centreline and
the reservoir at a constant electrochemical potential. Integrating (A4) along x

kBT
∫
x

∇(ln(ni (r))) · ds = −zi e
∫
x

∇(ψ(r)) · ds, (A5)

we arrive at the following formulation relating the ion density at the axial centreline, the
ion density in the reservoir and the axial centreline potential:

nc
i = nres

i exp
(

− zi e

kBT
ψc
)
. (A6)
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From (A3) and (A6), the electric charge density can be expressed as

ρ(r)=
∑

i

ezi n
res
i exp

(
− zi e

kBT
ψ(r)

)
. (A7)

Given this formulation of the electric charge density, we shall now derive an expression for
the electric potential field ψ(r) using the Debye–Hückel approximation. First, we apply
the Debye–Hückel approximation to (A7)

ρ(r)=
∑

i

ezi n
res
i exp

(
− zi e

kBT
ψ(r)

)
≈ −

∑
i

(zi e)2 nres
i

kBT
ψ(r) . (A8)

Let εe denote the permittivity of the fluid, which is assumed to be uniform throughout the
channel. We may then define the Debye length as

λD =
⎛
⎜⎝ εekBT

e2
∑
i

z2
i nres

i

⎞
⎟⎠

1
2

. (A9)

Note that (A9) is a Debye length defined in terms of the ion density in an electroneutral
reservoir. Proceeding with the derivation, we henceforth consider a long, thin channel,
so we neglect near-channel end edge effects (e.g. transition to the reservoir). Namely, we
consider locations in the channel of sufficient distance from the ends of the channel so that
we may approximate ψ(r)≈ψ(r). Substituting (A8) and (A9) into Gauss’s law

1
r

d
dr

(
r

dψ
dr

)
≈ ψ(r)

(λD)
2 ; dψ

dr

∣∣∣∣
r=0

= 0, ψ(a)= ζ. (A10)

Solving (A10) with the Frobenius method

ψ(r)≈ ζ
I0(r/λD)

I0(a/λD)
. (A11)

Equation (A11) analytically describes the electric potential field under the Debye–Hückel
approximation. Further, evaluating (A11) at r = 0, we see that the centreline electric
potential is given by

ψ(c)=ψc ≈ ζ

I0(a/λD)
. (A12)

That is, ψc reaches a maximum value of ζ for a very thick EDL relative to the tube radius
then decays rapidly (nearly exponentially) as a/λD grows large. Next, using the expression
for the electric potential field in (A11), we shall now derive a description of the EOF
velocity profile. Assuming the external electric field E is uniform and acts solely in the
axial direction, the Stokes flow equation can be expressed as

∇2
(

ue(r)− Eεe

μ
ψ

)
= 0; ue(a)= d(ue)

dr

∣∣∣∣
r=0

= 0, ψ(a)= ζ, (A13)

with μ denoting the dynamic viscosity of the fluid. The solution to (A13) is

ue(r)= −ζ Eεe

μ

(
1 − ψ(r)

ζ

)
= uHS

(
1 − ψ(r)

ζ

)
, (A14)
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where uHS = −μ−1ζ Eεe is the Helmholtz–Smoluchowski velocity scale. Substituting
(A11) into (A14)

ue(r)= −ζ Eεe

μ

(
1 − I0(r/λD)

I0(a/λD)

)
= uHS

(
1 − I0(r/λD)

I0(a/λD)

)
. (A15)

Equation (A15) provides an analytical formulation for the EOF velocity profile for an EDL
of arbitrary thickness relative to the channel radius. We achieve this by expressing (A15)
in terms of a Debye length defined using the ion density in an electroneutral reservoir at
equilibrium with the channel (cf. (A9)).

Note (A15) is nearly identical to the EOF velocity profile reported by Rice & Whitehead
(1965). However, Rice & Whitehead considered a theoretical cylindrical tube without an
associated electroneutral reservoir for their derivation. As such, Rice & Whitehead used
a Debye length defined simply through a ‘bulk ion density’. We interpret the latter as a
theoretical point where the ion density is electroneutral. We note that, when an EDL is
highly overlapped with itself, there is net charge throughout the regions of the channel
occupied by diffuse ions. Our approach here avoids these technicalities by considering a
channel in equilibrium with an electroneutral reservoir. In the end, we note that equation
(A15) is equivalent to Rice & Whitehead’s (1965) formulation for the EOF velocity profile
apart from this small discrepancy in the definition of the Debye length.
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