EXTREMAL PROPERTIES OF HERMITTIAN MATRICES. I1
M. MARCUS, B. N. MOYLS, AND R. WESTWICK

1. Introduction. Let H be an n-square Hermitian matrix with eigen-
values %1 > h2 > ... > h, Fan (2) showed that

[max Z (Hxy ;) = Z h,

¢ |
I 14
[mm Zl (ijv x:) = Z hn—k+.7
k=1,2 ...,n, where the max and min are taken over all sets of £ ortho-

normal (o0.n.) vectors in unitary #n-space V,. Marcus and McGregor (3) have
generalized this result in the case that H is non-negative Hermitian. For
vectors X1, ..., %, 7 < m,in V,, letx; A x2 A ... A x,denote the Grassmann
exterior product of the x;; it is a vector in V,,, where

( , )

m = .

r

The rth compound of H is a Hermitian transformation of V,, defined by

C,(Hyxi: AN...Nx,=Hx, A... A\ Hx,.

For 1 <7 < k < n, denote by @, the set of () distinct sequences w =

{71,..., 1.} of integers such that 1 < 7; < ... <%, < k. For a set of vectors
X1, ..., %X in V,, set
Xp =Xy A oo A Xiype
Let
(2) g = g(xlr .. xk) —mzk (C (H)xwy xw)
and let E,(ay, . .., a;) be the rth elementary symmetric function of the num-
bers ai, . . ., a;. Marcus and McGregor showed that
3) {mgx g=E,(hi,..., ")
min g = E,(byjr1y .-+, Fa),
where the max and min are taken over all sets of £ o.n. vectors x1, . . ., x; in

V,. This result reduces to (1) when » = 1. In the present note we extend this
result to the case where H is an arbitrary Hermitian matrix.
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2. Results.

THEOREM. Let 1 <7 < k < n and let H be a Hermitian matrix with etgen-
values hy > ... > h,. Then
max g = max E,(hy, ..., ke By gysity ..., bn)¥
o< <k

min g = min Er(hl y e ety h’s; hn——k+s+11 sy hn)v
o< s<k

(4)

where the max and min of g are taken over all sets of k o.n. vectors x1, ..., x; in
Va.

Proof. Let L = L(xi,...,x;) denote the subspace spanned by the o.n.
vectors X1, . . ., ¥x; and let P be the orthogonal projection of V, into L. Then,
since P is Hermitian,

g, .. x) = 2 (Cr(H)xy, Cr(P)xy)

weQkr
= ZQ (Cr(PH)xwv xw)
weQRkr
= trace of C,(4)
= ET<>\1, “ e ey )\k>y
where A4 is the Hermitian transformation PH restricted to L, and Ay > ... >
\: are the eigenvalues of 4. It is known (1, p. 33) that for 1 < j < &,
(5) hy > N5 > ha—is s
Let R, (k) be the set of real k-tuples A = (A1, ..., ), M1 > ... 3> Ay, satis-
fying the inequalities (5). Thus the values of g are bounded by the extreme
values of E,(\) = E,(\1,...,\;) as X\ ranges over R;(h). We shall discuss

the maximum value of E,(\) in the following lemmas. Corresponding results
hold for the minimum. For the moment we restrict ourselves to the case in
which the #; are distinct.

LEMMA 1. Let by > ... > h, be given real numbers. Let 1 < r < k < n, and

let

(6) v = max E,(\).
NeRk(h)

Then there exists ueRy(h) such that

(7) -Er(l‘) =7

and u1 > ... > M.

Proof. When r = 1, the unique solution of (7) is: u; =h;, j=1,...,k
Hence suppose that 2 < r < k.

Let Ty%,(h) be the set of A = (N1, ...,y € Ry(h) such that E,(\) = v
and Ay > ... > A, Then T%:1(h) is not void by the continuity of the elemen-

*If s = 0 (or k) the initial (or terminal) segment is missing.
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tary symmetric functions. Let m be the least integer such that T, (%) is not
void. Then m must equal k for, if not, we shall show that there exists v €
Ty.my1(h). Suppose then that p € Ty, (k), where

(8) BL> o> = = By D Bl > ... > g
From (5) and (8) we have

9 b > By > fmg1 = pm = o1 = By > Haoppeo1 > Anopise
Furthermore,
(10) Er(#) = ,U'mEr—l(ﬁm) + Er(ﬁm)

= MtEr—l(ﬁt) + Er(ﬁt)
where E,(#;) means E (1, ..., i1, Bsp1, « - ., 4). (If 7 =k, E. () = 0.)
Now E. 1(fin) = E,_1(&) = 0. For, if E,(§,) > 0, then for p' = (uy, ...,
:u'm+67"-vp'k)r

Er(”’,) = (:um + 5) Er~l(ﬁm) + Er(ﬁm) > Er(ﬁ)

for 6 > 0, and, by (8) and (9), &’ € Ri(h) for 6 sufficiently small. This contra-
dicts (6). Similarly, if E, (i) <0, E, (") > E,(u) for "’ = (u1, ..., uy —
8 ...,m). Hence E,(u) = E,(f,) is independent of pu,. Set v; = u; for
j # m, and choose »,, > un so that v, < hy and v, < vp_1 (if m > 1). Then
14 € Tkm+1(h)

LEMMA 2. Under the hypotheses of Lemma 1,

(11) Y = max Ef(hly R} hsv hn—k+3+ly sy hn)
0<s<k

.Proof. Since the lemma is obviously true when » = 1, and also when & = #,
suppose that 2 <7 < &k < n. By Lemma 1, Ty (k) is not empty. Let S, (h),
1 < ¢ <k, be the set of those N € Ty (h) for which \, = h;,j=1,...,¢q;
and let Sio (k) be the set of N € Ty (k) for which A\ < k;. Let s be the largest
integer such that Si;(%) is not empty. If s = &, there is nothing to prove.
Otherwise let u € Sis(%). Then

”j=hn—k+frj=5+17"-vk;

for, if not, we shall show that there exists v € S;,11(h), contradicting the
choice of s.

Let ¢ be the least integer greater than s for which py > hy_pyy. Ift = s + 1,
hy > p, by the maximality of s; while if £ > s + 1

he 2> Boipi-1 = Boo1 > py
Thus
Ry > py > hn—k+t-

It follows that E,_i(@,) = 0, since otherwise we could vary u; up or down to
increase E,(u) (see (10)) while keeping u in Ty (k).
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Thus

(12) E.(u) = E, (7).

Set
v, =pj=1,...,5s, (if s > 0)
Vgp1 = hs+1,
v;=uin,j=5s+2,...,¢ @et>s+1)
vi=unj=t+1,...,k, Gf B > t).

In effect, u is replaced by k.41, and the resulting p,'s are re-indexed to restore
the ordering. By (12), E,(v) = E,(u). It is then a straightforward matter to
verify that » € Sy s+1(k). This completes the proof of the lemma.

We are now in a position to complete the proof of the theorem. If the eigen-

values of H are distinct, then for o.n. xy, ..., x,

g(xy, ..., %) < max E,(N)

NeRk(R)
= ET(hlr ceey hs: hn—k+s+ly e ooy hn)

for some s, 0 < s < k. Now g attains this value for o.n. eigenvectors y1, ..., ¥
corresponding to ki, . . ., kg, By—gistr, - - -, By, respectively. Thus

max g = max E,(hy, ..., hsy Bu—pysity o o+ Ha).

0<s<k

A similar result holds for the minimum. That these results remain valid when
the eigenvalues of H are not all different follows by a continuity argument.

REFERENCES

1. R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1 (New York, 1953).

2. Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations, I, Proc.
N.A.S. (U.S.A)), 35 (1949), 652-5.

3. M. Marcus and J. L. McGregor, Extremal properties of Hermitian matrices, Can. J. Math.,
8 (1956), 524-31.

The University of British Columbia

https://doi.org/10.4153/CJM-1959-038-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1959-038-7

