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Abstract
A modification of the semi-empirical theory of stratified turbulent flow, which includes an equation for the density
fluctuations (the potential energy of turbulence), is applied to describe the effect of internal gravity waves (IWs)
on the small-scale turbulence. After considering the periodic IWs, special attention is paid to the action of internal
solitons, such as the classical Gardner solitons and a strongly nonlinear solitary wave regularly observed in the
Oregon Bay of the USA. It is confirmed that the presence of potential energy allows the existence of finite turbulence
at any Richardson number.

1. Introduction

Internal solitons in the ocean (ISWs) are, arguably, the most commonly observed kind of solitary waves
(or structures close to them) in nature. Despite a relatively long history of such observations, many
related theoretical problems remain unsolved. It refers, among others, to strongly nonlinear solitons
that cannot be described by the classical Korteweg-de Vries equation and its numerous modifications.
Strongly nonlinear solitons are rather common in the ocean, particularly on oceanic shelves where they
are generated by the barotropic tide. There are many works on the observation and description of soliton-
like waves in the shelf regions [1–7]. An even more complex factor is that in the oceanic conditions,
internal solitons always interact with other motions of different scales, including currents, turbulence
and surface waves. All that contributes to the ‘internal weather’ and, in particular, to the dynamics
of biological components and impurities responsible for the ecological environment. Here we limit
ourselves to one, albeit broad, class of processes: the interactions between internal waves (IWs) and
small-scale turbulence. This, in turn, can be conditionally broken into several problems. The one is the
attenuation of internal waves due to turbulent viscosity and diffusion [8–11]. Another is how internal
waves generate turbulence, which is observed almost everywhere in the ocean, including its deep areas. It
is often associated with shear instability that, according to the classical Miles–Howard theory, is possible
if Ri < ¼, where Ri is the Richardson number [12, 13], and the eventual generation of turbulence. At the
same time, turbulence is regularly observed for larger values of Ri. For a developed turbulence when the
semi-empirical description is valid, the turbulence can be maintained under a softer condition, Ri < 1.
However, in many cases, turbulence exists at Ri > 1, i.e., for a much stronger stratification [14–19].
The explanation of that is based on a modification of the classical semi-empirical theory of turbulence
suggested in Ostrovsky and Troitskaya [20], where the kinetic equation for the distribution function of
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velocity and density fluctuations was used. This approach reduces the number of arbitrary constants
in the semi-empirical equations and, more importantly, it adds an equation for the potential energy of
turbulence, which is proportional to the variance of density fluctuations. As a result, the restriction on
the value of Ri can be completely removed so that turbulence energy can remain finite at any finite
velocity shear. The application of this theory to the turbulence dynamics under the action of shear
flow in different areas of the ocean was studied in refs [20–24]. The case of internal waves is similar
but more complicated because the results depend not only on the IW amplitude but also on the ratio
between the time scales of the wave and those of generation and relaxation of turbulent energy. There
exists extensive literature regarding turbulence generation by instability and breaking of internal waves
(e.g. [25–27], and references therein). Here we are interested in the effect of non-breaking IW supporting
turbulence long after a breaking event. This effect was observed in the laboratory experiment [28], where
a standing internal wave amplified turbulence penetrating downwards from a vibrating perforated grid.
For the oceanic observations, we discuss below the effect of strong internal solitons on turbulence at
large Richardson numbers.

Theoretical descriptions of stratified turbulence and the corresponding numerical modeling methods,
besides the classical semi-empirical (gradient) schemes (RANS), use Large Eddy Simulation (LES) and
direct numerical simulation (DNS). The difference between these schemes is based on the degree of
resolution of turbulent pulsations and their energy spectrum. Over the past 30 years, new approaches
have been developed to study the characteristics of stratified turbulence based on the spectral approach
(e.g [29]). These models potentially allow for a more consistent description of the unsteady processes
of interaction between turbulence and internal waves than RANS models. More references can be found
in Gladskikh et al. [23]. For the problems considered here, we refer to the direct numerical simulation
of the IW action on turbulence [30].

Returning to the theme of this paper, we consider the model mentioned above, where the given mean
fluid velocity field u(r, t) depends on time due to an internal wave. In these cases, the general equations
derived in [20] (see also [21, 23]) are reduced to the equations for the turbulent kinetic energy (TKE,
K) and turbulent potential energy (P) in the form [8, 20]:
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Here, N2(z) = (g/d)dd/dz is the squared Brunt–Vaisala (buoyancy) frequency, g is the gravity
acceleration, and d(z) is the mean density. C and D are empirical constants (in what follows, they are
taken C =D = 0.09), L is the outer scale of turbulence, and G is the anisotropy parameter, which depends
on the ratio s = Lz

Lx
of the vertical to horizontal correlation scales of turbulence. As shown in Ostrovsky

and Troitskaya [20], if s ≪1 (strongly anisotropic “pancake” turbulence), then G is close to 1, and the
common gradient theory, neglecting potential energy, is valid. In the quasi-isotropic case, typical of
small-scale turbulence, s is close to 1 and G significantly differs from 1, so that equations (1) must be
solved together. Here, G = 0.5 is taken.

2. Turbulence affected by a periodic IW

Some characteristic features of the process can be elucidated from considering the effect of a sinusoidal
(linear or weakly nonlinear) internal wave mode; note that equations (1) for turbulence remain nonlinear.
A single IW mode with the velocity components uz = W, ux = U for such waves has the form

W = A sin(kzz) cos(lt − kxx), U = A(kz/kx) cos(kzz) sin(lt − kxx). (2)
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Figure 1. Effect of the internal waves of different frequencies on a turbulent layer in a given vertical
cross-section (x = 0). Parameters in (2) are x = 0, and z = 5 m, L = 1. (a) A = 0.02 m/s, ω = 0.04 rad/s,
N = 0.049 rad/s; (b) A = 0.01 m/s, ω = 0.0019 rad/s, N = 0.01645 rad/s. Blue: kinetic, orange: potential
energy. The dashed line in the bottom plot is for the classic model without potential energy (only the
first equation (1) with G = 1).

Figure 1 shows two cases, both with the last terms responsible for diffusion neglected in (1). Here,
equations (2) are local, and the depth z enters as a parameter.

Figure 1 illustrates two qualitatively different kinds of turbulence evolution. For a high-frequency
internal wave, the turbulent energy reaches a constant level with relatively small oscillations at a fre-
quency 2l around it. For a longer wave, turbulence energy follows the wave energy. Note that within
the classical theory, such a process, among others, was briefly considered by Ivanov et al. [31]. In that
case, the turbulence level can drop to practically zero (dashed line in the bottom plot) when the semi-
empirical approach becomes inapplicable. In the system (1), where the turbulent potential energy is
significant, such an effect is less pronounced, as there is no critical level of Ri.

The above results are valid if the vertical scale of the wave mode is large (small kz). Otherwise, the
diffusion terms in (1) are important. Figure 2 illustrates their effect.

In these cases, the saturation of the energy level occurs more slowly, and in the high-frequency case
(a), an additional modulation with a period of about 4000 remains.
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Figure 2. Evolution of turbulent energies with the diffusion effect. The parameters are the same as
in Figure 1, at kz = 10kx = 0.1π. They correspond to the cases (a) and (b) in Figure 1.

3. Effect of solitons

3. 1. The post-soliton stage

The action of localized internal waves, including solitary waves, on turbulence depends on the relation-
ship between the duration of the soliton and the characteristic time of turbulence variation, so that it
may either follow the wave profile in a quasi-stationary way or react with a delay. Rather universal is
the turbulence decay after the soliton impact, when u = 0. Due to the Kolmogorov-type dissipation, the
values of K and P become small. At this stage, the last two terms in both equations (1) are of the order
of K3/2, whereas the terms with N2 are of the order of K1/2. Hence, asymptotically, the terms with N2

would dominate. Since these terms have opposite signs for positive K and P, the two equations (1) can
be compatible only if these terms go to zero. As a result, asymptotically we have

3P = K/(1 − G), G ≠ 1. (3)

If (3) is met, equations (1) are separated, and the solution for K at K(t0) = K0 is

K (t ≥ t0) =
K0[

1 + C
√

K0(t − t0)/2L
]2 . (4)

As will be seen below, these simple relations can be true even shortly after the soliton.
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Figure 3. The solitons (6) for k = 0.6, 0.95, and 1–10−8 (from the smaller to the larger).

3.2. The effect of Gardner solitons

As the first example, consider the action of solitons, which are the solutions of the classic Gardner
equation (e.g. [1]). The vertical shear of the horizontal fluid velocity in a wave mode corresponding to
(1) has the form uz = U(t, x) fz(z). In the dimensionless variables, the factor U satisfies the equation

Ut + Ux + 6(U − U2)Ux + Uxxx = 0. (5)

Here (5) is written in the original variables x and t, adding the velocity of a long linear wave, c0 = 1.
In physics, the corresponding equation is still weakly nonlinear, but unlike the KdV solitons, its solitary
solutions can broaden with amplitude, up to its limiting value when the soliton becomes flat-top. This
is also characteristic of strongly nonlinear solitons [1, 2]. The solitary solutions of (5) are [1]:
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− tanh

k
2

(
x − t − k2t − Δ

)]
,

Δ = k−1arctanh(k), 0 ≤ k ≤ 1. (6)

At small k, this solution is close to the KdV soliton, whereas near k = 1, it defines a flat-top soliton.
The examples are plotted in Figure 3.

Consider first the local, non-diffusive model. In eqs. (1), we let N2 = 0.25 and (df /dz)2 = 0.2 at a given
level of z. The local Richardson number is Ri = N2/uz

2 = 1.25/U2. Figure 4 shows the time dependence
of Ri for three values of the parameter k in (6). It exceeds unity for all times, so that the classic gradient
model would prevent any support of turbulence by such a wave.

The corresponding solutions of equations (1) are shown in Figure 5. As in the previous section, the
local, non-diffusive model is valid if the vertical scale of the velocity field is sufficiently large. The
diffusive case was calculated for a mode proportional to cos(kzz) with kz = 0.1π, as in the case of a
sinusoidal wave.

Again, because of the effect of potential energy, turbulence exists at all Richardson numbers. Note
that, in agreement with (3), here K = 1.5 P for, roughly, t ≥ 10. The inertial character of the process
is evident, and the solutions (3) and (4) are valid almost immediately after the soliton. Figure 6 shows
a 3D plot showing the space-time behavior of the kinetic energy of turbulence under the action of a
flat-top soliton.

Note that, in this case, the diffusive terms in eqs. (1) significantly diminish the level of turbulent
energy.
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Figure 4. Variation of local Richardson number for the solitons shown in Figure 3, with the same values
of k.

3.3. Effect of strong internal solitons on turbulence in the ocean

Applications to real field data in the ocean and the atmosphere are more complicated due to the simul-
taneous action of different uncontrolled factors. As a result, the available publications rarely present
sufficient quantitative data to be used in the theory. Here the model (1) is applied to the oceanic data
described by Moum et al. [14], where the effect of strongly nonlinear internal solitons on small-scale
turbulence was observed off the North-Western Pacific coast of the USA. Even though rather scarce
quantitative data are given, the figures illustrating the effect allow us to make reasonable estimates.
Some preliminary results have been illustrated in our short presentation [24]. Note also that some top-
ics of the present paper have been briefly outlined in the review paper of one of the authors published
earlier [11] with a reference to this paper as being prepared. Here we further study this problem.

For the time dependence of soliton parameters, we use the echosounder images of the leading soliton
in the observed group shown in several figures of [14]. In its Figure 7, the plots are supplemented by
isolines of density (isopycnals), color images of fluid velocity, and turbulent kinetic energy dissipation
rate. The latter is a commonly measured turbulence characteristic in the ocean, and where possible, we
shall verify theoretical results by comparison with the data of the turbulent dissipation rate.

Figure 7 here shows the time profile of the leading solitary wave in the group.
Note that the corresponding isopycnal is depressed from about 10 m to about 36 m, which testifies

to a very strong nonlinearity. Moreover, according to Figure 2 of [14], the total water depth in the
observation area is 100 m or slightly more. Therefore, the wave moves down a significant part of the
total water layer.

3.4. Quasistatic approximation

Consider first the quasi-static approximation, supposing that the soliton duration is longer than the time
needed for saturation of the turbulence parameters. For the field experiment (Figure 15 of [14]), vertical
profiles of horizontal velocity and density are shown for a vertical cross-section marked by the dot in
Figure 7. We digitized and interpolated these profiles, as shown in Figure 8. The motion of the density
jump (here at about 30 m depth) seen in Figure 8b will be considered further in the paper.

As mentioned in Moum et al. [14], the data for fluid velocity obtained from ADCP is rough, so further
averaging is justified. Then, we found the depth dependence of the functions (du/dz)2 and N2 entering
the system (1), where u is the horizontal velocity. Their variation in depth is shown in Figure 9.
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Figure 5. Evolution of kinetic and potential energies at z = 5. From lower to upper pairs of curves:
k = 0.6, 0.95, and 1–10–8. Blue-kinetic, maroon-potential energy of turbulence. (a) Without diffusion,
(b) with diffusion.

Figure 10 shows the resulting profile of the Richardson number Ri = N2/(du/dz)2. For almost all
depths considered (from 15 to 42 m), Ri > 1, and again, the turbulence can be supported by the wave
only because of the effect of its potential energy.

Substituting (du/dz)2 and N2 as functions of z into (1), we obtain the depth dependence of kinetic
and potential energies as shown in Figure 11. Figure 12 shows the corresponding distribution of the
TKE dissipation rate Y = CK3/2/L, which is a rather common value measured in oceanic experiments
as a characteristic of turbulence level [14, 15].

3.5. Non-stationary processes

The above results qualitatively correspond to the data of [14]. Indeed, the turbulence level has two
maxima, one near the water surface (supposedly because of wind wave breaking), another at a depth of
about 38 m, not far from the experimental data. However, there are some discrepancies. In particular,
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Figure 6. 3D plot of kinetic turbulent energy for k = 1–10−8.

Figure 7. Time profile of the leading soliton, digitized (dashed) and interpolated (solid) from the
echosounder image shown in [14]. The black dot marked in Figure 9 of that paper shows the approxi-
mate position of the contact device, measuring the wave vertical profile as shown in their Figure 15.

Figure 8. Depth dependencies of horizontal velocity u (left) and normalized excess density f = (d −
d0)/d0 (right). Here it is taken d0 =1000 kg/m3. Dashed lines: digitized plots of those in [14]. Solid
lines: their polynomial interpolations.

the TKE dissipation rate (about 5.10−5 m2/s3) exceeds by about an order the data of the cited paper
indicated by a color bar in its Figure 6. To evaluate the applicability of the quasistatic approach, we
considered a transient process by solving non-stationary equations (1) for the same data as those used
above. One result is shown in Figure 13.

Figure 14 shows the corresponding variation of dissipation rate.
As seen from these figures, the transient process takes about 10–15 min, which is comparable to

the duration of the soliton shown in Figure 7. Therefore, to determine the dynamics of turbulence in
the field of a strongly nonlinear soliton of internal waves, it is necessary to take into account the time
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Figure 9. Interpolated depth dependencies of functions (du/dz)2 (a) and N2 (b). Here, u is the horizontal
component of fluid velocity (for a long wave considered here, the vertical velocity variation can be
neglected in this context).

Figure 10. Depth dependence of Richardson number Ri = N2/(du/dz)2.

Figure 11. Depth dependence of kinetic (solid line) and potential (dashed line) energies in the qua-
sistatic approximation, L = 1 m.
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Figure 12. Depth dependence of TKE dissipation rate in the quasistatic approximation.

Figure 13. Growth of turbulent kinetic (left) and potential (right) energies from small initial values to
saturation at three depths, 10, 30, and 40 m.

Figure 14. Growth of the turbulence dissipation rate at different depths.
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Figure 15. Variation of squared vertical shear of the horizontal fluid velocity.

dependence of the squared horizontal velocity shear
(
mu
mz

)2
and the squared Brunt–Vaisala frequency N2,

which are present in system (1).

3.6. Dynamics of turbulence in the pycnocline

To describe the variation of the parameters
(
mu
mz

)2
and N2 at the pycnocline, we begin with the data

shown in Figure 8. As mentioned above, there is a density jump at a depth of 30 m in the density profile
(Figure 8, dashed line), where the turbulence is concentrated, as seen from the color scattering images
shown in [14]. According to Figures 6 and 15 of [14], the velocity u1 over the pycnocline is almost
independent of depth, except for the near-surface area. To find it, we use a relation between u1 and the
pycnocline displacement in a strong soliton given in [2]:

u1 =
c([ − h1)

[
. (7)

Here, c is the wave velocity (0.6 m/s in this case), h1 is the thickness of the upper layer (10–12 m in the
experiment [14]) over the pycnocline, and [ is the local depth of the pycnocline (this notation is slightly
different from that in [2], which is due to the choice of the starting point for depth measurements). The
temporal profile of the leading soliton [(t) is shown in Figure 7 above. To determine the dependence of
the horizontal velocity on time, we assume that the stratification remains unchanged in the pycnocline
at the soliton length (about 300 m), and equal to N2 = 0.0008 s−2. For this purpose, the soliton-like
displacement of the pycnocline shown in Figure 7 was approximated as:

[ = −12 + (14Tanh [0.007 (t − 350)] − 14Tanh [0.0035 (t + 350)]) m. (8)

Using (7), we obtain the time dependence of
(
mu
mz

)2
at the pycnocline in the form(

mu
mz

)2
=

(1.1.10−3(14Tanh[0.007(t − 350)] − 14Tanh[0.0035(t + 350)])2

(1.1.10−3(14Tanh[0.007(t − 350)] − 14Tanh[0.0035(t + 350)])2 s−2. (9)

It is shown in Figure 15.
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Figure 16. (a) The kinetic (blue) and potential (yellow) turbulent energy densities at the thermocline.
(b) TKE dissipation rate variation along the soliton.

The obtained values of N2 and
(
mu
mz

)2
are substituted into the local equations for K and P since the

diffusion terms are more than three orders of magnitude smaller than the other terms in (1).
Then, using equations (1), the kinetic and potential energies (Figure 16a) and the kinetic energy

dissipation rate (Figure 16b) are calculated.
The obtained results have good agreement with the data of [14], particularly with its Figure 7. First,

the order of calculated maximum dissipation rate is about 5.10−6 m2/s2, which corresponds to the max-
imum values shown in the color bar in Figure 7 of [14]. Note that the level of dissipation rate before
the soliton in the same figure, which can roughly be taken for background, is two orders smaller than
that. Second, due to the delay of turbulence development, the maximums of energy and dissipation rate
are shifted towards the rear part of the soliton, which also agrees with the sound scattering intensity
distribution shown in [14].

Note that the authors of [14] explain the existence of turbulence by the presence of microstructure
with a presumably small Richardson number, Ri < 1/4. However, as shown here, the observed values and
distributions of turbulent energy can be supported by the IW even at Richardson numbers significantly
exceeding unity.

4. Conclusions

The modification of the Reynolds-type equations for turbulence described above was suggested as early
as 1987. However, its applications to the observed processes in the stratified flows began only recently
[21–24]. Here, the effects of the internal waves, particularly internal solitons, have been considered. It is
confirmed that the finite-energy turbulence can exist at large Reynolds numbers (strong stratification),
and for a strong internal soliton, the theoretical estimates agree with the observational data, both quali-
tatively and by order of magnitude. This also helps to explain the ubiquitous presence of turbulence in
the ocean. Indeed, even when turbulence is generated by wave breaking events, its long-time existence
can be due to the support by non-breaking waves which are more common in most areas of the ocean.

Among the promising future developments, there is the description of the mutual action of internal
solitons and turbulence when a soliton dissipates during interaction. Attenuation of internal waves on
turbulence was studied in detail for sinusoidal internal waves, see a brief review of that in [11]. For these
processes, the variation of turbulence scales in time can be important [32]. This work is in progress.
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