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Abstract
Fairness in service robotics is a complex and multidimensional concept shaped by legal, social and techni-
cal considerations. As service robots increasingly operate in personal and professional domains, questions
of fairness – ranging from legal certainty and anti-discrimination to user protection and algorithmic trans-
parency – require systematic and interdisciplinary engagement.This paper develops a working definition of
fairness tailored to the domain of service robotics based on a doctrinal analysis of how fairness is understood
across different fields. It identifies four key dimensions essential to fair service robotics: (i) furthering legal
certainty, (ii) preventing bias and discrimination, (iii) protecting users from exploitation and (iv) ensur-
ing transparency and accountability. The paper explores how developers, policymakers and researchers can
contribute to these goals. While fairness may resist universal definition, articulating its core components
offers a foundation for guiding more equitable and trustworthy human–robot interactions.
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1. Introduction
Service robots are personal or professional use robots that perform practical tasks for humans, such
as handling objects, transporting them from and to different places and providing physical support,
guidance or information (ISO 8373:ISO, 2021 Robotics Vocabulary; Fosch-Villaronga & Roig, 2017).
For instance, Roomba is a vacuum cleaner robot that autonomously navigates domestic spaces to
clean the floors, or delivery robots like those from Starship used in university campuses or office
buildings to transport food or packages from one location to another without human intervention.
Given their usefulness in both domestic and professional contexts, service robots are expected to be
widely deployed for different facets of human life, which range from simple tasks tomore complicated
ones in care, such as improving children and vulnerable populations’ quality of life (Boada, Maestre
& Genís, 2021).

Despite the significant contributions service robots bring to daily applications, legal, ethical and
societal concerns arise due to the various contexts of application, which range from public spaces
to personal and intimate spheres, multiple embodiments and interactions with different populations,
including vulnerable users such as the elderly and children (Boada et al., 2021; Salvini, Paez-Granados
& Billard, 2021; Wangmo, Lipps, Kressig & Ienca, 2019). These issues involve complex dimensions,
including safety, transparency, opacity, trust and accountability, often context-sensitive (Felzmann,
Fosch-Villaronga, Lutz & Tamò-Larrieux, 2020; Winfield, 2019). Given that regulations tend to be
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technology-neutral to ensure applicability over time, as a result, these concepts have multiple mean-
ings and result in a problematic understanding of how they operationalize in concrete embodied
robotic systems such as service robots, including socially and physically assistive robots (Giger et al.,
2019; Danielescu, 2020; Liu, Nie, Yu, Xie & Song, 2021; Felzmann, Fosch-Villaronga, Lutz & Tamo-
Larrieux, 2019a). This regulatory ambiguity becomes especially pressing when service robots are
deployed in socially sensitive contexts – such as eldercare settings, where a robot assisting with daily
routinesmight unintentionally reinforce gendered assumptions by defaulting to female voices or care-
giver roles – where their decisions and behaviors can reinforce or exacerbate existing societal biases
(Groppe & Schweda, 2023).

This brings us to the question of fairness – a foundational but often ambiguously defined con-
cept in both ethical and legal discussions around robotics. Fairness is a contemporary ethical and
legal concern that is fundamental for safe robots and mitigates the effects of other concerns (Boada
et al., 2021). Fairness is a multifaceted term, enclosing nondiscrimination and equality as the main
components (Caton & Haas, 2024). Its prominence in existing frameworks is linked to the risks and
power asymmetries of the deployment of artificial intelligence (AI), errors in algorithmic and human
decision-making, socioeconomic inequalities, lack of diversity, privacy concerns and inadequate poli-
cies in society (Calleja, Drukarch & Fosch-Villaronga, 2022; Leslie et al., 2023; Wangmo et al., 2019).
Its importance lies in ensuring safety and preventing unjust outcomes, including discriminatory
consequences and social concerns like gender stereotypes (Londoño et al., 2024).

While there has been significant research on fairness and technology in general (Schwartz et al.,
2022; Whittaker et al., 2019), there is a gap in comprehensive frameworks that assess fairness at mul-
tiple levels within the context of service robots. Indeed, in complex cyber-physical systems such as
service robots, fairness issues may not be evident, as it could be attributable to causes like robot
designer bias, model prototyping, data, algorithmic or systemic biases in legislation and standards
(Winfield, 2019; Fosch-Villaronga & Drukarch, 2023; Leslie et al., 2023). For instance, if the data
used to train service robots contain biases – such as gender or sex stereotypes, discriminatory infor-
mation about certain demographics, or underrepresentation of certain groups – the robots might
behave unfairly for different populations. This would explain why speech recognition systems might
work better for peoplewith certain accents while strugglingwith others (Fossa& Sucameli, 2022) (i.e.,
American-English robots in a low-income Indian context, Singh, Kumar, Fosch-Villaronga, Singh &
Shukla, 2023), or why systems might recognize better light and male faces rather than dark-skinned
female faces (Addison, Bartneck & Yogeeswaran, 2019). The difference with other AI-based systems
is that the physical design or appearance of these robots can also introduce bias. A robot’s embodi-
ment may lead to unintended preferences or exclusions. For example, a robot designed to look like a
female nursemay reinforce stereotypical gender roles at work (thewrong idea that nurses are reserved
jobs for women) (Fosch-Villaronga & Poulsen, 2022). In more specific examples, excluding anatomi-
cal differences between genders (i.e., breast and pelvis) in certain robots (exoskeletons, for instance),
may also lead to the design of robots that may provide better assistance to men than women (Fosch-
Villaronga & Drukarch, 2023). And, on the last note, the safety standards that govern how these
robots should be built and used can also be biased. Since many of these standards focus on one
aspect (typically safety, which traditionally refers to physical safety, Martinetti, Chemweno, Nizamis
& Fosch-Villaronga, 2021) and are created by private companies or small groups of stakeholders, they
might not consider the needs and perspectives of diverse groups (e.g., people from different cultures,
with disabilities, or various socioeconomic backgrounds) (Haidegger et al., 2013). This could lead to
robots that do not serve all people fairly – an especially critical concern given the close proximity
these technologies have with end users and the influence they may exert on social norms.

Our contribution addresses this gap by providing a comprehensive framework for understanding
fairness within the domain of robotics. As indicated, robots represent a complex intersection of vari-
ous elements (software and physical embodiment), which implies that multiple factors can influence
their performance and potentially lead to unfair outcomes. To that end, we have conducted a study to
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gain a more comprehensive understanding of the problem of fairness in robotics. Doctrinal research
has been used to clarify the various definitions of fairness used within the specific context of service
robots. This type of analysis allows us to identify and catalog the underlying themes and perspectives
associated with the semantics of the term “fairness.” An interdisciplinary framework that integrates
insights from law, ethics, social sciences and human–computer interaction (HCI) has been used. In
this regard, building on previous research (Leslie et al., 2023), our approach has been to dissect the
different elements that make up robots, identifying those that may result in unfair performance.

The structure of the paper is as follows. After explaining the methodological approach followed,
we explore the dimensions of the phenomenon of fairness within the domain of service robots. In this
section, we examine various understandings of fairness that we consider aremutually complementary
and are necessary for achieving fairness. In concrete: fairness (i) as objectivity and legal certainty; (ii)
as prevention of bias and discrimination; (iii) as prevention of exploitation of users; and, (iv) finally,
as transparency and accountability. We then propose a framework for fairness in service robotics,
which builds upon the identified dimensions and provides a working definition. The design of our
study is conditioned by several key factors. First, the implementation of service robotics is still in its
early stages, as is its intersection with AI. This means that there is a limited amount of data avail-
able on unfair behavior exhibited by robots (Cao & Chen, 2024; Hundt, Agnew, Zeng, Kacianka &
Gombolay, 2022) or discriminatory practices toward robots (Barfield, 2023b). Additionally, existing
literature primarily focuses on the identification of biases and potential solutions, but with a particu-
lar emphasis on data-related issues, often overlooking other relevant aspects such as the influence
on embodiment in stereotypes or unfair outcomes (Lucas, Poston, Yocum, Carlson & Feil-Seifer,
2016). Finally, we close the paper with our conclusions, reflecting on the implications of the proposed
framework and identifying avenues for future research and application.

2. Methods
We conducted multidisciplinary doctrinal research to develop a comprehensive framework for
understanding fairness in the domain of service robotics. Doctrinal research, traditionally rooted
in legal scholarship, involves the critical analysis, interpretation and synthesis of existing theories
and normative principles. It enables the abstraction of concepts and their systematic integration
into coherent structures of meaning (Bhat, 2020). This methodological strength makes it particu-
larly well suited for addressing fairness – a concept that is both value-laden and context-dependent
(Stamenkovic, 2024) – by allowing us to examine its diverse articulations across domains and distill
them into a structured, unified framework.

In our case, doctrinal analysis provides the foundation for identifying, comparing and reconciling
how fairness is conceptualized in law, ethics, social sciences and technical disciplines. Rather than
proposing a new empiricalmodel, we aim to build conceptual clarity andnormative depth – outcomes
for which doctrinal research is especially well equipped. Thus, this approach directly supports our
goal of constructing a framework that not only maps existing understandings of fairness but also
offers guidance for its application in the complex sociotechnical environment of service robotics.This
capacity is further amplifiedwhen doctrinal research is combinedwith interdisciplinary perspectives,
which help surface context-specific dimensions and variations in meaning (Ishwara, 2020).

In line with this, we examined how fairness is conceptualized not only in legal literature but also
across a range of research domains, in order to construct a framework that reflects its multifaceted
role in service robotics. In particular, we reviewed literature from five key areas: (1) Robotics and
Human–Robot Interaction (HRI), (2) Artificial Intelligence (AI) and Machine Learning (ML), (3)
Law and Regulation, (4) Ethics and Philosophy of Technology and finally (5) Social Sciences and
Psychology. Although scientific literature constitutes our primary source, we also considered legal
texts, ethical guidelines and regulatory sources. Examining these areas of knowledge allowed us
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to identify the diverse and intersecting factors that shape the concept of fairness, emphasizing its
multidimensional nature in the context of robotic systems and HRIs.

From a legal perspective, the principles that emerged from our analysis include legal certainty
(Braithwaite, 2002; Shcherbanyuk, Gordieiev & Bzova, 2023), antidiscrimination (Council Directive
2005/29/EC; Rigotti & Fosch-Villaronga, 2024) and consumer protection (Cartwright, 2015; Lim &
Letkiewicz, 2023). Ethically, our analysis highlighted fairness theories grounded in equity (Adams,
(2015)) and justice (Folger & Cropanzano, 2001; Rawls, 1971) as core normative foundations that
consistently inform debates on responsibility, distribution and legitimacy in technological contexts.
Similarly, our examination of the sociotechnical literature revealed recurring concerns related to bias
and user vulnerability, particularly in robot-mediated environments (Addison et al., 2019; Fosch-
Villaronga & Poulsen, 2022). In the psychological and HCI domains, empirical studies highlighted
perceptions of fairness, trust and accountability as central themes in HRI (Cao & Chen, 2024; Chang,
Pope, Short & Thomaz, 2020; Claure, Candon, Shin & Vázquez, 2024).

3. Identifying the dimensions of fairness in service robotics
Mulligan, Kroll, Kohli andWong (2019) extensively discussed the different conceptualizations of fair-
ness across disciplines and how this creates confusion owing to the lack of a common vocabulary.
For instance, a computer scientist might think about fairness in terms of how an algorithm processes
data equally for everyone; a sociologist might focus on whether the system perpetuates inequality
in society; and a legal expert might consider fairness from the standpoint of individual rights and
whether the system abides by laws. Even though they all use the word “fairness,” these different per-
spectives can lead to confusion because they do not mean the same thing in different contexts. In
other words, fairness is a context-specific concept that is universally difficult to define (McFarlane
v McFarlane (2006) UKHL 24; Mehrabi, Morstatter, Saxena, Lerman and Galstyan (2021); Londoño
et al., 2024) and that has interdisciplinary connotations that can have different meanings based on
how one approaches it (Rigotti & Fosch-Villaronga, 2024).

In this sense, fairness has been viewed in terms of justice (Rawls, 1971; Colquitt & Zipay, 2015),
proportionate reward from work (Adams, 2015), accountability (Folger & Cropanzano, 2001) and
so on, resulting in diverging discussions and understandings, each with its merit. For instance, in
robotics literature, fairness has been analyzed in the context of human–robot collaboration, where
certain studies examine fairness from the angle of how humans perceive the fairness of task alloca-
tion while in human–robot teams (Chang et al., 2020; Chang, Trafton, McCurry & Thomaz, 2021).
In Cao and Chen (2024), the authors study how robots’ fair behaviors impact the human partner’s
attitude and their relationship with the robots, highlighting that humans are likely to reward robots
that demonstrate cooperative behaviors and penalize those exhibiting self-serving or unfair actions,
much like they do with other humans.

Conceptualizing fairness for service robotics is challenging inter alia because this field often
involves elements of the spheres above, such as law, social sciences, computer science and engineer-
ing. Technological advancements have resulted in these robots having sophisticated capabilities (Lee,
2021), and these robots usually operate in an ever-changing environment among humans (Sprenger
&Mettler, 2015). As a gamut of laws and standards governs these robots, as they interact with humans
physically and socially, and incorporate various hardware and software elements including AI, var-
ious interdisciplinary fields are relevant to fairness in service robots. Thus, adopting the fairness
frameworks of any of these areas would be insufficient.

Despite the difficulty in identifying fairness for service robotics, it is still the need of the hour.
In service robotics, the increasing gap between policy development and technological advancements
leads to a regulatory mismatch, which may cause robot developers to overlook crucial safety consid-
erations in their designs, affecting the well-being of many users (Calleja et al., 2022; Fosch-Villaronga
et al., 2025). This, in turn, leads to issues such as the legal frameworks overly emphasizing the need
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for physical safety while not paying due heed to other essential aspects, including cybersecurity, pri-
vacy and psychological safety (Martinetti et al., 2021). Additionally, one is confronted with the reality
that service robots might not interact with the users in a “fair” manner because of not accounting
for culture-specific designs (Mansouri & Taylor, 2024). Thus, four dimensions of fairness in service
robotics as distilled from analysis of the literature are presented in this section.

3.1. Fairness as legal certainty
The challenges present with laws being unable to keep pace with the rapid growth of technology
adequately termed the Collingridge dilemma (Collingridge, 1980) or the pacing problem (Marchant,
2011), is a pressing issue for service robotics. Even though robotic technology is a critical sphere, given
the close cyber-physical interaction robots have with users, the existing regulatory framework does
not adequately address all aspects (Goffin and Palmeri, Fosch-Villaronga, 2019; Goffin & Palmieri,
2024; Palmerini et al., 2016). The problem becomes even more pronounced when we consider that
the software powering autonomous systems introduces an added layer of complexity, particularly
in terms of meeting compliance standards and regulatory requirements. While cloud-based services
– such as speech recognition, navigation and AI – can help offload computational tasks and make
robotsmoremodular, they also fragment system responsibility acrossmultiple actors.This dispersion
complicates compliance, as traditional regulatory frameworks tend to operate in silos and may not
adequately address the interconnected nature of these systems. As a result, ensuring regulatory align-
ment across hardware manufacturers, software providers and cloud service operators becomes an
increasingly complex challenge (Fosch-Villaronga & Millard, 2019; Setchi, Dehkordi & Khan, 2020;
Wangmo et al., 2019).

EU law does not define robots, and no comprehensive law targets robots (Fosch-Villaronga &
Heldeweg, 2018). A number of legislations could apply to service robotics depending on the uses and
functionalities of the robots, such as the General Data Protection Regulation (GDPR) (Regulation
(EU) 2016/679) (if the robot processes personal data), the Toy Safety Directive (if the robot is a toy)
and the Medical Devices Regulation (if the robot is a medical device). While recently enacted leg-
islations such as the Machinery Regulation and the Artificial Intelligence Act (AIA) can also apply
to robots, these are still not statutes targeted at robotics and providing a comprehensive regulatory
framework (Mahler, 2024). This lack of clarity on the law governing robotics presents dilemmas
regarding whether the current legal framework is sufficient or whether a new specific law is needed
for robotics (Fosch-Villaronga & Heldeweg, 2018). Further, as mentioned before in this paper, the
lack of proper regulation can lead to safety and inclusivity issues in service robotics.

Having legal clarity in this sphere can lead to a better position for all concerned stakeholders
so that manufacturers know how to produce legally compliant robots, users know their rights and
duties while interacting with robots, and regulators know how to supervise the robots placed in the
EuropeanUnion (EU)market and further the safety for users.Therefore, we argue that the principle of
legal certainty, as recognized in Europe, can be a crucial plank for further fairness in service robotics.
Legal certainty is an essential facet of the rule of law, a fundamental principle of EU law – both for the
Council of Europe (2011, 2016) and the EU (EuropeanCommission, n.d.-b). It is a legal theory “aimed
at protecting and preserving the fair expectations of the people” (Shcherbanyuk et al., 2023). Several
Court of Justice of the EU judgments have evoked this principle in diverging contexts, and the scope
of this principle has expanded over the years (van Meerbeeck, 2016). A vital component of the legal
certainty principle is that laws should be clear and precise so that natural and legal persons know their
rights and duties and can foresee the consequences of their actions (European Commission, n.d.-b;
Shcherbanyuk et al., 2023). When applied to the service robotics context, stakeholders should clarify
their roles, rights and responsibilities. Of course, we do notmean to suggest thatmanufacturers ought
to be allowed to use the lack of regulatory clarity as a justification for not ensuring the safety of their
robots, and they should still be fully accountable for the robots they develop.

https://doi.org/10.1017/cfl.2025.10013 Published online by Cambridge University Press

https://doi.org/10.1017/cfl.2025.10013


6 Eduard Fosch-Villaronga et al.

3.2. Fairness as preventing bias and discrimination
Fairness in ML is an extensively researched field (Pessach & Shmueli, 2022). There is yet to be a
consensus on what fairness is in this context, too, given the complexity of the issue and the dif-
ferent dimensions associated with it (Caton & Haas, 2024). In this context, the FAIR Principles –
guidelines aimed at ensuring that data is Findable, Accessible, Interoperable and Reusable – specif-
ically highlight the importance of enabling machines to automatically discover and utilize data
(Wilkinson et al., 2016). In Rigotti and Fosch-Villaronga (2024), it was highlighted that when it
comes to the use of AI in recruitment, different stakeholders, such as job applicants and human
resource practitioners, view fairness in markedly different ways. Fairness has been defined in algo-
rithmic decision-making as an absence of prejudice or favoritism based on intrinsic or acquired traits
(Mehrabi et al., 2021). Therefore, many studies in this sphere view fairness from the prism of bias and
discrimination. Some studies deal with fairness in ML, which explicitly acknowledge that unfairness,
bias and discrimination are interchangeable terms (Pessach & Shmueli, 2022).

Coming to service robotics, robots are fundamentally designed to serve humans, making it essen-
tial to address ethical considerations, among which fairness and, in particular, biases have become
critical issues that have recently gained significant attention not only among scholars (Wang et al.,
2022) but also among policymakers and regulators.1 Similar to the concept of fairness, the term “bias”
takes on different interpretations depending on the context and the specific academic discipline in
which it is applied (FRA, 2022). In AI, for example, bias is usually defined as “a systematic error in the
decision-making process that results in an unfair outcome” (Ferrara, 2023). To some extent, this defi-
nition can be applied to the field of robotics; however, it remains overly simplistic as it fails to consider
the significant impact of a robot’s physical embodiment and the specific context in which it operates.
For example, Fosch-Villaronga and Özcan (2019) highlight design challenges in certain lower-limb
exoskeletons, demonstrating the importance of realizing these concepts within the context of these
hardware factors. In this regard, robots are inherently complex entities, and their design can be shaped
by various sources of bias, for instance, if robots that simulate nurses include breasts, skirts or talk
in a female voice tone (Fosch-Villaronga & Poulsen, 2022; Londoño et al., 2024; Tay, Jung & Park,
2014). This complexity arises from the interplay between technological, social and regulatory factors
that influence how robots are conceived and function (Boyd & Holton, 2018; Šabanović, 2010). In
this paper, we identify two primary sources of bias that impact robot design and, consequently, could
lead to unfair performance: (1) design choices and physical embodiment and (2) the data used for
training and decision-making processes.

The role of embodied AI or virtual assistant, changes the game’s rules. As humans, we asso-
ciate human-likemachines with intelligence or empathy, unknowingly creating deep bonds (Scheutz,
2012).The eye region can decide the level of trustworthiness, and facial color cues and luminance can
increase the level of likability, attractiveness and trustworthiness in machines. Young or old appear-
ance controls trustworthiness and explicit facial ethnicity (Song & Luximon, 2020). An embodied
agent can produce positive emotions better than a virtual one, especially anthropomorphism, imbu-
ing them with a higher sense of vitality (Yang & Xie, 2024). An example can be found in education, as
a humanoid robot promotes … secondary responses conducive to learning” and sets a level of expec-
tations for it to be able to engage socially (Belpaeme, Kennedy, Ramachandran, Scassellati & Tanaka,
2018).

A significant aspect of embodiment can be found in color. In a survey to determine the emotional
response to color, 55 percent saw white as “clean,” followed by 27 percent who chose blue (Babin,
2013). It is mentioned in the article that many associate black with mourning in Western cultures,
and that is why it is absent from medical facilities and equipment (Babin, 2013). Most robots will be

1See, for example, the European Parliament resolution of 14 March 2017 on fundamental rights implications of big data:
privacy, data protection, non-discrimination, security and law-enforcement (2016/2225(INI)).
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designed in light colors, to convey cleanliness and familiarity and to promote positive user percep-
tions. Such design choices may help reduce discomfort by enhancing perceived safety and warmth
(Rosenthal-Von Der Pütten& Krämer, 2014).2 However, such choices are not neutral. The overrepre-
sentation of white-colored robots may reinforce implicit racial biases, as users tend to project human
stereotypes – including racial ones – onto robots. In experiments, people were more likely to ascribe
negative traits or act aggressively toward darker-skinned robots compared to white ones, even when
the robots were functionally identical (Addison et al., 2019; Bartneck et al., 2018).A robot’s height
also plays a role in emotional response, with studies suggesting that taller robots can elicit intimi-
dation or fear, whereas robots positioned lower than eye level tend to feel less threatening and more
approachable (Hiro & Ito, 2016). Bias in color can also be found in the Robot Shooter Bias, where
it is more likely to shoot faster at a darker-colored robot than a lighter one (Addison et al., 2019).
Moreover, a white-colored robot will receive less discrimination than a black or rainbow-colored one
of the same type (Barfield, 2021).

Social bias comes in many forms and may lead to discrimination. Discrimination can be pre-
sented in the form of sexism, racism, stereotypes and xenophobia. This can manifest in various ways,
such as hospitality and tourism companies that use service robots, where the robot’s embodiment and
design choices (i.e., gender, color and uniform) can, in turn, awaken negative emotions from employ-
ees (Seyitoğlu & Ivanov, 2023). Discrimination can also manifest through large language model
(LLM)-driven robots engaging in decision-making processes and discriminatory behavior based on
significant, well-known ethical concerns perpetuating existing social injustices. In this regard, Zhou
(2024) demonstrates that LLM-driven robots exhibit negative performance when interacting with
racial minorities, certain nationalities or individuals with disabilities.

In addition, the rapid progress in ML and the expansion of computing power in recent years
have significantly enhanced the learning capabilities of robots (Hitron, Megidish, Todress, Morag &
Erel, 2022). These advancements have facilitated the development of more complex robot behavior,
enabling robots to perform tasks that require sequential decision-making in dynamic environments.
Thus, ML has propelled the growth of robotic domains across the spectrum, from simple automation
to complex autonomous systems (Londoño et al., 2024).Most robot learning algorithms follow a data-
driven paradigm (Londoño et al., 2024), allowing robots to learn automatically from vast datasets
with guidance or supervision (Nwana, 1996; Rani, Liu, Sarkar & Vanman, 2006). The learning pro-
cess optimizes models to perform specific tasks, such as navigation (Singamaneni et al., 2024). These
methods are essential in helping robots generalize their behavior to various contexts and environ-
ments, making learning a key component in developing intelligent robotic systems (Soori, Arezoo &
Dastres, 2023).

However, with this reliance on data and ML comes the introduction of biases, which can emerge
both in the data used to train these models (Shahbazi, Lin, Asudeh & Jagadish, 2023) and the algo-
rithms that process this data – in this sense, algorithmic bias primarily stems from the software used
in the ML process (Takan et al., 2023) – . As a result, the ethical implications of these biases, partic-
ularly in the domain of robot learning, are becoming increasingly significant (Alarcon et al., 2023).
The risks associated with AI bias could be even more severe when applied to robots, as they are often
seen as autonomous entities and operate without direct human intervention (Hitron et al., 2022).
Data and algorithm biases in the functioning of AI have been widely detected across various fields.
In healthcare, biases have been identified in automated diagnosis and treatment systems (Obermeyer,
Powers, Vogeli & Mullainathan, 2019). In applicant tracking systems, these biases can influence can-
didate selection and exclusion (Frissen, Adebayo & Nanda, 2023). In online advertising, algorithms

2The uncanny valley was defined by Mori (1970/2005) as “Climbing a mountain is an example of a function that does not
increase continuously: a person’s altitude y does not always increase as the distance from the summit decreases owing to the
intervening hills and valleys. I have noticed that, as robots appear more humanlike, our sense of their familiarity increases
until we come to a valley. I call this relation the ‘uncanny valley.” See Mori M. (1970). The uncanny valley. Energy, 7, 33–35.
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may target ads unequally across different groups (Lambrech et al., 2024). Additionally, in image gen-
eration tools, biases have been found to perpetuate visual stereotypes (Naik, Gostu & Sharma, 2024).
Lastly, predictive policing tools have shown discriminatory tendencies, exacerbating social justice
issues (Alikhademi et al., 2022).

3.3. Fairness as preventing exploitation of users
In European consumer law, unfairness primarily addresses imbalances in contractual relation-
ships. Following the EU’s framework, such imbalances may stem from the terms of a contract
or the commercial practices surrounding it. The concept of “unfair” is central in two primary
Directives within the EU’s consumer protection framework: Directive 93/13 on unfair terms in
consumer contracts and (Directive 2005/29/EC) on unfair business-to-consumer practices in the
internal market. These Directives aim to protect consumers from exploitative practices, acknowl-
edging the structural asymmetries in information and bargaining power between consumers
and businesses (Willett, 2010). Additionally, in the specific area of consumer law focused on
product safety, fairness is also regarded as a central objective of regulation. In this sense, the
Recommendation of theCouncil onConsumer Product Safety of theConvention on theOrganisation
for Economic Co-operation and Development recognizes that “compliance with product safety
requirements by all economic operators can support a safe, fair and competitive consumer product
marketplace.”

In this context, the term “unfairness” emerges in two specific areas within the sphere of economic
relations between consumers and businesses. First, it reflects the informational and economic asym-
metries between businesses and consumers (fairness in consumer relations), and second, it serves as
a condition for ensuring consumer safety in the marketplace (fairness in markets). The former used
to arise through abusive clauses and practices, while the latter arose when minimum safety standards
were not guaranteed. Thus, in the specific field of robotics, unfairness, understood as the failure to
prevent the exploitation of users, could arise in both contexts.

Although the robot market is still in its early stages, robots may become suitable for widespread
consumer adoption in the near future (Randall & Šabanović, 2024). If many consumers could access
robotic markets, market asymmetry issues will likely become a significant concern. As demonstrated,
informational asymmetries are particularly pronounced in technical contexts such as financial ser-
vices (Cartwright, 2015; Lim & Letkiewicz, 2023). In robotics, as with other high-tech products,
making an optimal and efficient purchasing decision requires a deep understanding of numerous
complex technical aspects. In this sense, most consumers could be vulnerable to unfair commercial
practices related to the functionality or performance of a particular robot, or they could be pressured
into accepting unfair clauses in consumer contracts (Hartzog, 2014).

Furthermore, significant concerns about unfairness, especially regarding the prevention of con-
sumer exploitation, would likely stem from security and safety issues. This issue can also be seen as a
problem of informational asymmetry (Choi & Spier, 2014; Edelman, 2009). Without adequate safety
regulations, consumers face an adverse selection problem, as they cannot discern which products
(robotic devices, in this case) may pose economic or physical risks.

The issue of unfairness in robot performance becomes significantly more concerning when con-
sumer vulnerability is considered. Nowadays, consumer vulnerability is “a dynamic state that varies
along a continuum as people experiencemore or less susceptibility to harm due to varying conditions
and circumstances” (Salisbury et al., 2023). In this sense, older adults, children or individuals with
disabilities may have limited capacity to recognize or respond to inconsistencies or deficiencies in
a robot’s functionality (Søraa & Fosch-Villaronga, 2020). For instance, if a robotic device designed
to assist elderly users fails to perform accurately, the consequences could range from diminished
quality of life to serious physical harm. Furthermore, vulnerable users may be less likely to under-
stand or challenge technical failures, especially if the system lacks transparency features or provides
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insufficient recourse for complaints.This amplifies the potential for exploitation and places these con-
sumers at a heightened risk, making robust regulatory standards and clear accountability for robot
performance essential to protect their well-being. In this sense, fairness could also be understood as
protecting consumers from deceptive robots. Leong and Selinger (2019) show how deceptive anthro-
pomorphism can lead users to trust or bond with robots in ways that may not be in their best interest.
As a countermeasure, robots should be designed with transparency cues that clearly indicate they are
machines – such as maintaining robotic voice patterns or using visual indicators of artificiality –
especially in contexts involving vulnerable populations (Felzmann et al., 2019a).

3.4. Fairness as transparency and accountability
At its core, transparency entails rendering AI systems’ decision-making processes and underlying
algorithms understandable and accessible to users and stakeholders (Felzmann et al., 2020; Larsson
&Heinz, 2020).This is particularly needed given the complexity and opacity often inherent in AI sys-
tems and the significant risks they can pose to fundamental rights and public interests (Eschenbach,
2021). Transparency helps users understand how decisions are made, which is essential for building
trust and ensuring accountability (Felzmann, Villaronga, Lutz & Tamò-Larrieux, 2019b).

In HRI, research on transparency has mainly focused on the explainability of systems, look-
ing at either how easily the robot’s actions can be understood (intelligibility) or how well users
grasp the robot’s behavior (understandability) (Fischer, 2018). The results are mixed: some studies
report no significant findings, while others point out the drawbacks of transparency (Felzmann et al.,
2019b). These include disrupting smooth interactions and leading to misunderstandings or inaccu-
rate assumptions about the robot’s abilities in specific contexts if it is too transparent about its course
of action. Other research emphasizes technical limitations, showing that transparency can createmis-
leading distinctions, prioritize visibility over proper comprehension, and sometimes even cause harm
(Ananny & Crawford, 2018).

In the context of robotics, transparency also can refer to users knowing how robots collect, pro-
cess and use data (Felzmann et al., 2019a). For example, robots that assist vulnerable populations,
like children or older adults, must be clear about how decisions are made, particularly if those
decisions impact users’ well-being. Unlike privacy regulations, transparency is not just about dis-
closing information but ensuring that this information is meaningful and understandable to users
and stakeholders. This is especially important because, as research shows, transparency can improve
accountability by providing insights into decision-making processes (Lepri, Oliver, Letouzé, Pentland
& Vinck, 2018). Accountability requires that those responsible for the robot – manufacturers, devel-
opers or deployers – are answerable for the robot’s decisions. Although part of the community has
reasoned about whether there is a responsibility gap if the robot learns as it operates (Johnson, 2015),
it is the contemporary understanding, also as reflected from the EU regulations (the AIA in concrete)
that transparency plays a key role by enabling different stakeholders, including authorities to inspect
and users to challenge decisions that are significant for them. This is particularly important when
robots are used in sensitive areas like healthcare, where biased or inaccurate decisions could have
serious consequences (Cirillo et al., 2020). However, as noted in the literature, accountability is not
automatic, even with transparency. Systems can be transparent but still avoid accountability if there
are no mechanisms to process and act on the disclosed information (Felzmann et al., 2020).

4. Furthering fairness in service robotics
Against this background, in this paper, we understand fairness as the broad and all-encompassing
concept that it is without attempting to define it exhaustively. As mentioned, while much discussion
on fairness is centered around bias and discrimination, and these are, in fact, essential elements, this
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paper does not address fairness solely from this lens. Other elements, such as the weaker party pro-
tection rationale inherent in consumer protection law, are also relevant for fairness in service robotics
because manufacturers could be better financially and information-wise than the users (Kotrotsios,
2021). Therefore, in line with the four identified dimensions, the definition of fairness in service
robotics proposed in this paper, which is primarily centered on a user safety perspective, is as follows:

Fairness in service robotics refers to the responsible and context-aware approach to the design, deploy-
ment, and use of robotic systems, with a focus on preventing harm, reducing systemic and individual
inequalities, and upholding individual rights.

This broad approach is essential to preserve fairness’s expansive and evolving nature, which
remains a fundamental regulatory and ethical goal. To give practical shape to this definition, we
propose a framework based on four dimensions: legal certainty, prevention of bias and discrimi-
nation, protection against user exploitation and the promotion of transparency and accountability.
The remainder of this section outlines specific measures aimed at furthering these dimensions, as
depicted in Fig. 1:

4.1. Legal certainty: clarity and precision as a valuable tool
Legal certainty is a complex regulatory goal. While overly detailed rules might prove ineffective,
broader guiding principles might provide more adaptable and meaningful direction (Braithwaite,
2002). Principles alone, however, are not sufficient; legal certainty depends on their integration into
a well-defined legal regime that enables actors to anticipate legal outcomes. In the context of service

Figure 1. Fairness in service robotics.
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robotics, this requires coordinated efforts from academia, industry, and policymakers and can be
furthered in two ways.

First, the evidence-based policymaking efforts of the EU, as outlined in the “Better Regulation
agenda” (European Commission, n.d.-c) and the “Knowledge 4 Policy” platform (European
Commission, n.d.-e), offer promising foundations for robotics regulation. Evidence-based policy-
making seeks to ground legal decisions in scientific data and analysis (Pflücke, 2024), helping ensure
that regulatory choices are guided by objective and rational criteria rather than other considerations
such as political ideologies (Princen, 2022). In the context of robotics, this would mean using cogent
scientific evidence to promote legal certainty and fairness (Calleja et al., 2022).

Second, knowledge brokering – the practice of linking research and policy through science
communication and multi-stakeholder engagement – can also contribute to robotics regulation
design (Bielak, Campbell, Pope, Schaefer & Shaxson, 2008; Turnhout, 2013). Knowledge brokers
act as intermediaries between researchers and policymakers, helping translate scientific insights
into actionable guidance while retaining trust, transparency and legitimacy (Gluckman, Bardsley &
Kaiser, 2021). Several EU-funded projects have already contributed to this goal, including RoboLaw
(RoboLaw, 2014), INBOTS (European Commission, n.d.-f), SIENNA (European Commission, n.d.-
g), H2020COVRLIAISON (LeidenUniversity, n.d.-a) andH2020 Eurobench PROPELLING (Leiden
University, n.d.-b). More in particular, advancing fairness and achieving regulatory certainty in ser-
vice robotics using scientific methods for policy formation is the core of the (omitted for reviewing
purposes) project (Leiden University, n.d.-c).

4.2. Bias and discrimination: addressing embodiment and data considerations
Bias in AI systems has long been recognized as a major fairness challenge, particularly when algo-
rithms are trained on datasets that underrepresent or misrepresent specific demographic groups
(Verhoef & Fosch-Villaronga, 2023). In such cases, models may reproduce and even amplify existing
social inequalities (Howard & Borenstein, 2018; Yapo & Weiss, 2018). While expanding datasets and
increasing diversity may help, algorithms optimized to identify patterns in historical data are still
prone to reflecting the structural imbalances embedded within that data.

To detect these biases, scholars inML rely on fairnessmetrics such as equal opportunity difference,
odds difference, statistical parity difference, disparate impact and theTheil index (González-Sendino,
Serrano, Bajo & Novais, 2023). These mathematical tools offer structured ways of identifying dispar-
ities in how models perform across groups. However, such metrics often fall short of capturing the
broader societal and contextual harms that biased systems can produce – particularly when fairness
is reduced to statistical parity alone (Carey & Wu, 2022, 2023).

These limitations become even more pronounced in service robotics, where bias is not confined
to data or decision outputs but also emerges through physical design and human interaction. Unlike
purely virtual AI, service robots are embodied agents – they move through physical space, engage
with people face-to-face and signal meaning through voice, gesture and form. Their hardware and
interface design can unintentionally convey stereotypes or reinforce normative assumptions about
gender, race, ability or cultural identity.

Howard and Borenstein (2018) highlight such risks through examples including a robot peace-
keeper, a self-driving car and amedical assistant – each demonstrating how bias in design or behavior
can have tangible, unequal impacts depending on the context of deployment.

Given this complexity, mitigating bias in service robotics must begin at the conceptualization
and design stage. Manufacturers need to account for how robots are perceived and how different
users might experience them. Robots such as social robots and exoskeletons should be developed
with attention to diversity and inclusion, especially regarding sex, gender and cultural represen-
tation (Barfield, 2023a; Fosch-Villaronga & Drukarch, 2023; Søraa & Fosch-Villaronga, 2020).
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Reembodiment – adapting a robot’s physical or behavioral presentation based on the people it inter-
acts with – has been proposed as one way to foster cultural sensitivity and reduce stereotyping (Reig
et al., 2021).

This area is evolving rapidly, and several promising technical and policy responses continue to
emerge. The Regulation (EU) 2024/1689 (AIA) takes an important step in this direction, explicitly
addressing fairness through the lens of bias and non-discrimination. Recital 27 emphasizes that AI
systems must be developed inclusively to avoid “discriminatory impacts and unfair biases that are
prohibited by Union or national law.”

4.3. Preventing exploitation of users: service robots as nondeceptive machines
Preventing the exploitation of users is a key component of fairness, particularly in contexts where
individualsmay be in aweaker informational or bargaining position compared tomanufacturers.This
concern is especially relevant in service robotics, where automated systems can subtly influence user
behavior, exploit cognitive biases or obscure information through complex interfaces or persuasive
design.

The existing and upcoming legal initiatives at the EU level provide a strong foundation for address-
ing these risks. Consumer protection law looks at fairness as a principle designed to prevent exploita-
tion of consumers who have a weaker bargaining position and less information than businesses,
whether such exploitation is by way of mala fide contractual clauses (Council Directive 93/13/EEC),
or material distortion of consumer behavior (Directive 2005/29/EC), or concluding online contracts
from a distance without providing adequate information (Directive (EU) 2023/2673).

Recently, the European Commission (EC) published its report on the fitness check related to “dig-
ital fairness” for consumers, which culminated in the observation that further measures, including
legal certainty and simplification of rules, were required to protect consumers online (European
Commission, n.d.-a). These measures can go a long way in service robotics, where users may not
fully understand how decisions are made, or how their behavior is shaped by the system (Felzmann
et al., 2019a).

The AIA also provides a regulatory mechanism to address manipulation and deception risks.
Article 5(1)(a) prohibits the use of AI systems that exploit vulnerabilities of specific user groups in
ways that cause harm. As service robots increasingly integrate AI capabilities, the effective imple-
mentation and enforcement of these provisions will be essential to ensuring that such systems do not
mislead, manipulate or otherwise take unfair advantage of users (e.g. Article 5(1)(a), AIA).

4.4. Transparency and accountability: finding trust in understandable systems
Effective enforcement of EU legislations applicable to service robotics are foundational for ensur-
ing transparency and accountability in these systems, particularly since recent legal initiatives have
sought to address different elements of these robots. For instance, transparency and accountability
are core elements highlighted in the recently adopted AIA, which can address these aspects in ser-
vice robots that have AI systems. All embodied service robots made available in the EU market are
also likely to fall under the scope of the Machinery Regulation 2023 (Regulation (EU) 2023/1230),
(similar to the Machinery Directive 2006), which prescribes obligations for the economic operators
(manufacturers, importers and distributors) of these robots. These economic operators are inter alia
required to ensure that certain essential health and safety requirements are met by the robots (e.g.,
Article 10(1), Machinery Regulation 2023). Further, Article 5(1)(a) of the GDPR specifies that per-
sonal data should be processed in a “fair” manner. The meaning of fairness itself is unclear and not
further elaborated (Clifford&Ausloos, 2018). However, the EuropeanData Protection Board (EDPB)
recently stated regarding transparency under the GDPR that transparency is fundamentally linked
to fairness and not being transparent about the processing of personal data is likely to be unlawful
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(EDPB, 2025).The overall framework provided by GDPR also ensures accountability of entities when
it comes to the processing of personal data by service robots.

5. Conclusions
This paper has explored what fairness means in the context of service robotics, aiming to capture its
normative, legal, technical and social dimensions. Through doctrinal research, supported by a mul-
tidisciplinary review, we proposed a working definition of fairness that considers both software and
physical embodiment in robotics. Our analysis focused on four key dimensions of fairness that can
advance service robotics in a fair manner: (i) Furthering legal certainty, (ii) Preventing bias and dis-
crimination, (iii) Preventing exploitation of users and (iv) Ensuring transparency and accountability.
These dimensions serve not as a rigid checklist, but as guiding principles for fostering fairer practices
in the design, deployment and governance of service robots.

At the regulatory level, service robotics presents specific challenges that often fall between the
cracks of broadly defined, technology-neutral legal frameworks. While technology neutrality in reg-
ulation ensures broad applicability, it can also obscure the specific risks posed by service robots. The
principle holds that regulations should avoid privilege or disadvantage particular technologies, and
should instead focus on the functions they perform or the outcomes they produce (Greenberg, 2015).
However, service robots – operating in both personal and professional environments – where fairness
concerns are deeply entangled with social vulnerability, human–machine interaction and embed-
ded power asymmetries. In these environments, fairness becomes a core component of both safety
and legitimacy, raising questions around bias, exclusion, privacy and the adequacy of current policy
frameworks.

Central to this approach is a recognition that fairness cannot be addressed solely through legal or
technical mechanisms. It also requires reflexivity – a continuous awareness of how researchers’ own
values, assumptions and social positions shape the knowledge they produce (Palaganas, Sanchez,
Molintas & Caricativo, 2017). The reflection process involves a continuous dialogue (through intro-
spection) between the assumptions and values that researchers bring into their field of study and
the social ecosystems in which they are embedded. This, in turn, enriches the process and results
(Palaganas et al., 2017). Reflexive researchers engage in the production of evidence-based scientific
findings with an awareness that there is no true objectivity, only aspirations. It is therefore necessary
for authors to critically examine their appeal for “pure” legal certainty, acknowledging the influence
of their own worldview throughout the research process.

This need for reflexivity extends to knowledge brokers as well, who mediate between academic evi-
dence and policy decisions (Fosch-Villaronga et al., 2025). It is also imperative that policymakers
engage with this knowledge in a reflective manner, free from political bias, recognizing that their
decisions carry tangible consequences in the real world. Complementing reflexivity, efforts under-
taken by researchers to minimize biases and to embark on long-term projects can also be helpful
to achieve fairer outcomes. In this regard, reviewing each other’s work as peers can help academics
minimize their biases in their work, consider how their worldview is presented in their articles, and,
ultimately, achieve a greater and fairer model for the next generation of scientists in quantitative and
qualitativemethods. Using slow science and embarking on long-term projects can, in turn, foster col-
laborations and can also help assess the quality of research and entrust academics to reflect on their
work and biases (Frith, 2020). In short, while complete objectivity is unattainable, acknowledging
one’s positionality can support more transparent, inclusive and responsible policymaking.

Ultimately, while perfect fairnessmay remain aspirational, critically engagingwith its complexities
– conceptually, legally and ethically – can help create more equitable and trustworthy HRIs.
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