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ON THE GENERALISED SQUEEZING FUNCTION
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Abstract

In this article, we clarify the relation between the squeezing function and the Fridman invariant
corresponding to a general domain Q (not necessarily convex), where Q is defined by

Q:{zec”xChx.nxcﬂ:Z)mwh<Llsk5p}

i€l

with LN =0 if k#I, LULU---Ul,={1,2,...,s}, n=ri+r+---+r, and m; >0 for all i.
Furthermore, we give an example of a domain whose squeezing function corresponding to € is not
plurisubharmonic.
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1. Introduction

Nonavailability of the Riemann mapping theorem in C* (n > 2) makes the study
of biholomorphic equivalence of different domains an interesting and important
activity. This leads to different types of holomorphic invariants to establish analytic
and geometric properties of bounded domains. The squeezing function is one such
holomorphic invariant, which has been intensively studied in the last few years. In
2012, Deng et al. [2] introduced the squeezing function Sg by building on the work of
Liu et al. [11, 12] and Yeung [16].

Let D € C" be a bounded domain. For z € D and an injective holomorphic mapping
f : D — B" with f(z) = 0, define

Sp(z, f) = sup{r : B"(0,r) € f(D)},

where B” denotes the unit ball in C" and B"(0, r) denotes the ball centred at the origin
with radius r in C". The squeezing function on D, denoted by Sp, is defined by
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2 A. Kumar [2]

Sp(z) = Sl;p{SD(L Hh

where the supremum is taken over all injective holomorphic mappings f : D — B”"
with f(z) = 0.

Forness, in his talk [3], posed the question, ‘What is the analogous theory of the
squeezing function when the model domain is changed to the unit polydisc instead of
the unit ball?” Considering this question, Gupta and Pant [7] introduced the squeezing
function corresponding to the polydisc by taking injective holomorphic mappings into
the unit polydisc and discussed some of its properties.

Rong and Yang [14] introduced the generalised squeezing function by taking
injective holomorphic mappings into a bounded, balanced and convex domain in C".
The definition uses the Minkowski function for balanced domains. The Minkowski
function for the balanced domain €2, denoted by pgq, is defined by

paz) =inf{t >0:z/t€Q}, zeC".

Gupta and Pant [8] introduced the d-balanced squeezing function by taking injective
holomorphic mappings into a bounded, d-balanced and convex domain in C". They
used the d-Minkowski function to define their squeezing function.

Motivated by this work, Chrih and Khelifi [1] introduced the squeezing function
corresponding to a general domain Q2 C C" defined by

Q= {zEC" XC?x.--xCh": Z||z,-||’”’ <11 SkSp}, (1.1)
i€l
with L, N =0 if k#1, I UIQU"'UI[, ={L,2,...,s}, n=r +r+---+ry; and
m; > 0 for all i.

Note that Q is bounded, balanced, but not necessarily convex and provides a
concrete model space with which to work. Observe that the unit ball and the unit
polydisc are special cases of Q. The definition of the squeezing function corresponding
to the general domain Q is formulated as follows.

Let D € C" be a bounded domain. For z € D and an injective holomorphic mapping
f D — Qwith f(z) = 0, define

Sz, f) = sup{r : Q(r) € (D)},
where

Q(r):{zeC”XC”X"‘XCH:Z”Zi”mi<r’1§kSp}'

i€ly
The squeezing function corresponding to Q on D, denoted by S%, is defined by
Sp@) = Sl}p{Sg(z, Hh

where the supremum is taken over all injective holomorphic mappings f : D — Q with
f(z) = 0. For many interesting properties of S%, we refer to [1].
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The Fridman invariant is another holomorphic invariant of bounded domains,
introduced by Fridman in [5]. Let D € C" be a bounded domain and Q € C" a bounded
homogeneous domain. For z € D, the Fridman invariant, denoted by K is defined by

1

W@ =inf{~ B € @2 - D),
r

where f : Q — D is an injective holomorphic mapping and Bg(z, r) is a ball centred at

z with radius r with respect to the d-metric (which is either the Carathéodory metric

or the Kobayashi metric). Nikolov and Verma [13] considered a modification of hgd,

which is denoted by H2" and defined by
HY(z) = sup{tanhr : BL(z,r) € f(Q), f : Q — D},

where f : Q — D is an injective holomorphic mapping. In [13], Nikolov and Verma
gave a relation between the squeezing function and the Fridman invariant:

Sp(z) < H\(2) < Hp(2), ze€D, (1.2)

where Hj(z) and Hf)(z) denote the Fridman invariant for QQ = B" with respect to the
Carathéodory metric and Kobayashi metric, respectively. In [15], Rong and Yang
proved that this relation holds for generalised squeezing functions.

In Theorem 2.1 of this article, we find the analogous result to (1.2) for the squeezing
function Sg, where Q is given in (1.1). In Theorem 2.3, we give some lower and upper
bound estimates for the squeezing function Sg of some special domains which are
analogous to [15, Theorem 2.1]. In Theorem 2.8, we give some lower and upper bound
estimates for the Fridman invariant Hg.

In [4], Fornass and Scherbina gave an example of a domain for which the squeezing
function corresponding to the unit ball is nonplurisubharmonic. Rong and Yang
in [15] gave examples of domains for which the generalised squeezing function is
nonplurisubharmonic. Motivated by their work, Gupta and Pant in [6] gave an example
of a domain for which the d-balanced squeezing function is nonplurisubharmonic.

In Theorem 3.1, we give an example of a domain D for which Sg is nonplurisubhar-
monic.

Q Q
2. SD and HD

Let us fix some notation. We denote the unit polydisc in C* by D", and the
polydisc with centre zero and radius r in C" by D"(0,r). Let D € C" be a domain.
The Carathéodory pseudo-distance between z, 2o € D, denoted by cp(z1,22), is

cp(z1,22) = supftanh™ [p| : £ : D — D holomorphic, f(z;) = 0, f(z2) = p}.
f

FOI'Z = (ZlazZ’ e ,Zn),a = (al’az’ e ’an) € D’l’
% —a;
tanh ¢pn(z, @) = max |——|. 2.1
I<isn| 1 —@a;z;
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For a real number A > 0,

Qﬂ={zecrlxc&x-..xC’x:Z||zi||ﬂ<1,1skgp},

iely

where I}, ﬂI,:(Z)ifk;él,IlU12U~--UI[,={1,2,...,s},n=r1+r2+---+r5and

Q) = {zeC” XxC?x---xC": lezilll <rl skSp}.
iely
Let @ = min; m; and 8 = max; m;, where the m; > 0 are given in (1.1). If m; > 1 for
all 7, then by [9, Proposition 2.3.1(c)], it is easy to see that

1/B

(> ||z,-||'"f)w < tanh ca(0,9) < ( ) i) 2.2)

iely i€l

for z =(21,22,...,2;) € Q and 1 < k < p. Note that by [9, Proposition 2.3.1(a)], the
right-hand inequality (2.2) holds for all m; > 0. If K is a compact subset of Q such that
Q\ K is connected, then

d;,() = mintanh[ca(z, w)l,  z€ Q\K.

THEOREM 2.1. Let D be a bounded domain in C" and Q in (1.1) be homogeneous.
Then:

(1) (2P < HY(2) < HY () forz € D if all m; > 1;
(2) (S@)/9)'* <H¥(2) < Hgk(z)forz € D if at least one m; < 1.

PROOF. For part (1), since cp < kp, it follows that Hg'(z) < Hgk(z) for all z € D.
To prove the first inequality, let us assume that Sg(z) =r >0 for some z € D. By
[1, Theorem 2.5], there exists an injective holomorphic mapping f : D — Q such that
f(2) =0and Q(r) C f(D) C Q.

Consider the injective holomorphic mapping g : Q — C” given by g(¢) = r'/?¢. Let

w=(wi,wa,...,w,) € Qand g(w) = (W}, w),...,w;). Then,
2wl = > e wd < v ) il <
i€l i€ly i€l

for 1 < k < p. This implies that g(Q) C Q(r). Therefore, h = (f' 0 g) : Q — D is an
injective holomorphic mapping with 2(0) = z.

We claim that Bj(z, tanh™! A/ “2) C h(Q). To prove our claim, consider
w=(wi,wa,...,w,) € By(z, tanh™! rﬁ/“z) and f(w) = (W}, w},...,wp). By (2.2),

) 1/a
#1% > tanh ep(z, w) > tanh ca(0, F(w)) > ( > ||w;||mf) 2.3)

iely
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forl <k<p.Leta= (w’l/rl/",w’z/r'/“, . owl/ri®) By (2.3),

2

iely

w
i

rl/ar

i lwiII™
l

Pl

<1

for 1 <k < p. It follows that a € Q with h(a) = w. Therefore, w € h(Q2), which proves
our claim. Hence, if all m; > 1,

(2P <HY () <HY (). zeD.

For part (2), assume that m; > 1 for some i. Proceeding as in part (1), we claim that
BS\(z, tanh™ (r/5)"/%) C h(Q). Observe that Q C QF and therefore,

tanh cqs(0, &) < tanhcq(0,£) forall £ € Q. 2.4)
To prove our claim, consider w = (wy,wa,...,w,) € B}(z, tanh™!(r/s)"/*) and
fw) = Wi, w),...,wp). By (2.2) and (2.4),
1/a 1/
(f) > tanh cp(z, w) > tanh cqr(0, f(w)) = (Z ||w;||ﬁ) 2.5)
s

i€l
for] <k<p.Leta= (w’l/rl/“,w’z/rl/“, . ..,w;/rl/“). By (2.5),

p w1
2

< _— —
- rﬂ/a sﬁ/a
i€l iely

for 1 <k < p. It follows that a € QA(1/s%/). Tt is easy to see that QF(1/s5/%) C Q.
Therefore, a € Q with h(a) = w, which proves our claim. If all m; < 1, take § =1 in
the above argument and the proof follows the same lines. Hence, if at least one m; < 1,

Q
=

/
w;

rl/(t

1/a )
) < Hg'(z) < Hgk(z), z€D. O

REMARK 2.2. In the case QQ = B", we can take @ = 8 = 1. It follows that Theorem 2.1
implies (1.2).

THEOREM 2.3. Let Q be as in (1.1). If K is a compact subset of Q such that D = Q \ K
is connected, then:

(1) Sg(z) > (d{;(z))ﬁ if Q is homogeneous;
(2) Sp@) < (dof @) ifallm; > 1;
(3) Sp(2) < s(d%%(2))” if at least one m; < 1.

For the proof of Theorem 2.3, we need the following results.
RESULT 2.4 [10, Theorem 1.2.6]. Let Q € C" be a domain. If K C Q is a compact set
such that D = Q \ K is connected, then each holomorphic function f on D extends to
a holomorphic function F on Q.
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RESULT 2.5 [9, Proposition 2.2.15]. Let Q C C" be a balanced domain. Then, Q is
pseudoconvex if and only if the Minkowski function pq is plurisubharmonic.

PROOF OF THEOREM 2.3. For part (1), let g: Q — Q be an automorphism of Q
such that g(z) = 0 for some z € D. Then, h = g|p : D — Q is an injective holomorphic
mapping with h(z) = 0. We claim that Q((dX (2)) € (D) € Q. To prove this, let
w = (Wi, wa, ..., wy) € QX (2))P). By (2.2),

(g @)Y > Z [Iwill™ = (tanh cq(0, )Y’ (2.6)

i€ly
for 1 <k < p. Since g is an automorphism, it follows that

(tanh cq(0, )Y’ = (tanh cy0)(g(2), g")Y = (tanh ca(z, w")Y’ (2.7)

for some w' € Q with w=gWw’). By (2.6) and (2.7), tanhcq(z,w’) < dgz(z) =
min,,cx tanh[cq(z, w)]. This implies that w’ ¢ K, which verifies our claim. Hence,

Sp2) > (dX ).

For part (2), assume that Sg(z) =r>0 for some z € D. By [, Theorem 2.5],
there exists an injective holomorphic mapping f : D — Q such that f(z) = 0 and
Q(r) € f(D) € Q. By Result 2.4, there is a holomorphic mapping F : Q — C" such
that F = f|qg. By Result 2.5 and following the argument used in [15, Theorem 2.1],
F(Q) € Q. It is easy to see that F(OK) N F(D) = 0.

Next, we show that r'/* < d?(z). If possible, let r'/* > d%%(z). Assume that
d‘gf(z) = tanh cq(z, a) for some a = (a1, az, .. .,as5) € 0K and F(a) = (W}, w),...,w)).

Therefore, by (2.2),

1/a
/% > tanh cq(z, a) > tanh ¢ (0, F(a)) > (Z ||W;||mi)
icl;
for 1 < k < p. Thus, F(a) € Q(r). This is a contradiction because F(0K) N F(D) = 0.
Hence, Sp(2) < (d%%(2))".
For part (3), first assume that there is m; > 1 for some i. By following similar
arguments to those in part (2), we show that (r/s)/® < dff(z). If possible, let

(r/s)% > d7%(z). Let d?(2) = tanh ca(z,@) for some a = (ar,aa,...,a,) € 9K and
F(a) = (W}, w),...,w)), then
Ve 1/8
(f) > tanh cgs(0, F(a)) = (Z mes)
N
i€l

for 1 <k < p so that F(a) € Q%((r/s)?/?). It is easy to see that QB((r/s)P/?) C Q(r).
Thus, we get F(a) € Q(r). This is a contradiction because F(0K) N F(D) = (. Hence,
Sp(2) < s(d%(2))”. If all m; < 1, take B = 1 in these arguments and the proof follows
the same lines. O

https://doi.org/10.1017/50004972725100610 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972725100610

[7] The generalised squeezing function 7

COROLLARY 2.6. Let Q in (1.1) be homogeneous such that m; = m > 1 for all i. If K
is a compact subset of Q and D = Q \ 0K is connected, then

S(z2) = @ ()", zeD.

cQ

COROLLARY 2.7. Let Q in (1.1) be homogeneous and D = Q \ K as in Theorem 2.3.
Then:

(1) HS' @) = HS (@) = (dE @Y forze D ifall m; > 1;

( ff,( ))ﬂ/“
S

(2) HQ (2> HY () > for z € D if at least one m; < 1.

THEOREM 2.8. Let Q in (1.1) be homogeneous and K be a proper analytic subset of
Q. Then, for D = Q\ 0K:
(1) (@K@ < HY (2) < (@K @)" ¥ forze D ifall m; > 1;
2 (d% ()P

gl/a
PROOF. For part (1), by Theorems 2.1(1) and 2.3(1),

<HY ()< (dfg’f(z))"z/'g2 for z € D if at least one m; < 1.

HY (2) = @X@)f'”, zeD.

We show that HQ () £ (dc52 (2)* ' . Suppose in contrast that HQ (z) > (dcQ (Z))”

Then, there exists r such that tanhr > (d%%(z))” B > d%(z), and an injective
holomorphic mapping f:Q — D such that f(0) =z and Bj(z,r) C f(£) C D.
Let dff (z) = tanhcq(z,a) for some a € dK. By the Riemann removable sin-
gularity theorem, c¢p(z1,22) = co(z1,22) for all z;,zp € D. This implies that
Bj(z,r) ={€ € D : cq(z,€) < r}. It is easy to see that a € Bg,(z, r). Since the topology
induced by the Carathéodory pseudometric on a bounded domain is equivalent to
the Euclidean topology, it follows that there exists € > 0 such that B"(a, €) C B(,(z, r).
Then, B"(a, 6) \ 0K C B (z,1) € f(Q).

Let g = £~ : B"(a, e) \ 0K — Q. By the Riemann removable singularity theorem,
there is a holomorphic mapping 4 : B"(a,€) — Q such that h(¢) = g(¢) for all
¢ € B'(a, e) \ 0K. By Result 2.5 and following the argument used in [15, Theorem 2.8],
pa(h(€)) = 1forall ¢ € B"(a, €) N K. By the maximum principal of plurisubharmonic
functions, po(h(€)) = 1, which is a contradiction.

For part (2), by Theorems 2.1(2) and 2.3(1),

BK(Z)),B/Q

Q° cQ
HD (Z) > T, z€D.
Similarly, as argued in part (1),
HY () < (@ @)"F, zeD. o
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COROLLARY 2.9. Let Q in (1.1) be homogeneous with m; = m > 1 for all i and let K
be a proper analytic subset of Q. Then, for D = Q\ 0K,

HY (2) =d’®(z), zeD.

Q

3. Nonplurisubharmonic Sg

THEOREM 3.1. Let Q C C? be a domain of the form (1.1) such that m; = m for all i.
Assume that v = max{};c, Pl <k < p). Choose € such that 0<e<r<(1/v)'/"m<1,

D2(0,7) € Q and B*(Q,e) c Q for Q= (0,r). Let K =0D*0,r)\B*(Q,€) and
D = Q\ K. Then, Sg is not plurisubharmonic.

PROOF. Denote H = {z = (z1,22) € C" : 20 = 0}. We show that Sg(O) > r". To see
this, consider the identity function / : D — Q. Clearly, [ is an injective holomorphic
mapping with 7(0) = 0. It is easy to see that Q(r") C I(D). Thus,

S20) > 1.

Let us assume that m > 1. Observe that D*(0, ) N H = {z = (z1,0) : |zl < r} CD N H.
For z = (z1,0) € D*(0, 7) N H with 0 < |z;] < r, by Theorem 2.3(2),

Q . mn
%@sw%WMmmmD. 3.1)
Let w' = (az;,0), where a = r/|z1|. Then, w’ € K and therefore, by (3.1),
$5(2) < ( min tanhlea(z w)])" < (tanhlca(z, w)l)". (3.2)

It is easy to see that D?(0,(1/v)!/")C Q. By the decreasing property of the
Carathéodory metric,

(tanh cq(zw)" < ( tanh ch((l/ T ) (33)

By (3.2), (3.3) and (2.1),

vimzia - (v = )\"
$2) < |———2 4————%. 3.4
() 1 —v2¥maz, 7, 1 —v?mrizy| G
Note that
v =z ) \"
—_— " 3.5
( 1- vz/’”rlzll) < (3-5)
for |z;| > n = r(!/™ — 1) /yt/™(1 — r?v!/™). By (3.4) and (3.5),
Sh(z) < S3(0) (3.6)
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for z = (z1,0) € D*(0,r) N H with |z;] > 1. Observe that 7 < r because r < (1/v)'/™.
Let the maximum of Sg(z) for z = (z1,0) € D*(0,r) N H and |z;| < i be attained at
some & € D(0,n). Then,

52(2) < $2&) (3.7
for z = (z1,0) € DX(0, r) N H with |z1| < 5. By (3.6) and (3.7),
$84(z) < max(S3(0), S5(£))

for all z € D*(0,r) N H. This implies that Sngz(o,r)ﬁH does not satisfy the maximum
principle. Hence, Sg is not plurisubharmonic.
Let us now assume that m < 1. Similarly, as argued above, by Theorem 2.3(3),

vimzia-1)

m 1/m m
v (r = z1)
S$(z) < < ( ) .
p@) <s 1 —v2/mgz,7, s 1 —v2/my|z|
Note that
(Vl/m(r— |Z1|))'" <
1 —v2/my|z|
for |z;| > i’ = r(wt/mst/m — 1) jyl/m(st/m — y2pl/m) This implies that
Sp(z) < Sp0) (3.8)

for z = (z1,0) € D*(0, 7) N H with |z;| > 17/ Observe that 5’ < r because r < (1/v)'/".
Let the maximum of Sg(z) for z = (z1,0) € D*(0,r) N H and |z;] < 1’ be attained at

some &’ € W Then,
SpR) < SpE) (3.9)
for z = (z1,0) € D*(0, ) N H with |z;| < 1’. By (3.8) and (3.9),
Sp(z) < max(Sp(0), SHE")

for all z € D*(0,r) N H. This implies that S2|p2,)nn does not satisfy the maximum
principle. Hence, Sg is not plurisubharmonic. ]

The next result is a generalisation of Theorem 3.1 for higher dimensions.

THEOREM 3.2. Let Q C C" be a domain of the form (1.1) such that m; = m for
all i. In addition, assume that v = max{} r;"/ Zl1<k< p}. Choose € such that

O<e<r<1/nYm" <1, D0,r) cQ and B"(Q,e) c Q for Q=(0,0,...,r). Let
K =90D"(0,r)\ B"(Q, €) and D = Q\ K. Then, S(D2 is not plurisubharmonic.

PROOF. The proof is similar to that for Theorem 3.1 and we omit the details. ]
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