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Abstract

In this article, we clarify the relation between the squeezing function and the Fridman invariant
corresponding to a general domain Ω (not necessarily convex), where Ω is defined by

Ω =

{
z ∈ Cr1 × Cr2 × · · · × Crs :

∑
i∈Ik

||zi||mi < 1, 1 ≤ k ≤ p
}
,

with Ik ∩ Il = ∅ if k � l, I1 ∪ I2 ∪ · · · ∪ Ip = {1, 2, . . . , s}, n = r1 + r2 + · · · + rs and mi > 0 for all i.
Furthermore, we give an example of a domain whose squeezing function corresponding to Ω is not
plurisubharmonic.

2020 Mathematics subject classification: primary 32F45; secondary 32H02.
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1. Introduction

Nonavailability of the Riemann mapping theorem in Cn (n ≥ 2) makes the study
of biholomorphic equivalence of different domains an interesting and important
activity. This leads to different types of holomorphic invariants to establish analytic
and geometric properties of bounded domains. The squeezing function is one such
holomorphic invariant, which has been intensively studied in the last few years. In
2012, Deng et al. [2] introduced the squeezing function SΩ by building on the work of
Liu et al. [11, 12] and Yeung [16].

Let D ⊆ Cn be a bounded domain. For z ∈ D and an injective holomorphic mapping
f : D→ Bn with f (z) = 0, define

SD(z, f ) = sup{r : Bn(0, r) ⊆ f (D)},
where Bn denotes the unit ball in Cn and Bn(0, r) denotes the ball centred at the origin
with radius r in Cn. The squeezing function on D, denoted by SD, is defined by
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2 A. Kumar [2]

SD(z) = sup
f
{SD(z, f )},

where the supremum is taken over all injective holomorphic mappings f : D→ Bn

with f (z) = 0.
Fornæss, in his talk [3], posed the question, ‘What is the analogous theory of the

squeezing function when the model domain is changed to the unit polydisc instead of
the unit ball?’ Considering this question, Gupta and Pant [7] introduced the squeezing
function corresponding to the polydisc by taking injective holomorphic mappings into
the unit polydisc and discussed some of its properties.

Rong and Yang [14] introduced the generalised squeezing function by taking
injective holomorphic mappings into a bounded, balanced and convex domain in Cn.
The definition uses the Minkowski function for balanced domains. The Minkowski
function for the balanced domain Ω, denoted by ρΩ, is defined by

ρΩ(z) = inf{t > 0 : z/t ∈ Ω}, z ∈ Cn.

Gupta and Pant [8] introduced the d-balanced squeezing function by taking injective
holomorphic mappings into a bounded, d-balanced and convex domain in Cn. They
used the d-Minkowski function to define their squeezing function.

Motivated by this work, Chrih and Khelifi [1] introduced the squeezing function
corresponding to a general domain Ω ⊆ Cn defined by

Ω =

{
z ∈ Cr1 × Cr2 × · · · × Crs :

∑
i∈Ik

||zi||mi < 1, 1 ≤ k ≤ p
}
, (1.1)

with Ik ∩ Il = ∅ if k � l, I1 ∪ I2 ∪ · · · ∪ Ip = {1, 2, . . . , s}, n = r1 + r2 + · · · + rs and
mi > 0 for all i.

Note that Ω is bounded, balanced, but not necessarily convex and provides a
concrete model space with which to work. Observe that the unit ball and the unit
polydisc are special cases ofΩ. The definition of the squeezing function corresponding
to the general domain Ω is formulated as follows.

Let D ⊆ Cn be a bounded domain. For z ∈ D and an injective holomorphic mapping
f : D→ Ω with f (z) = 0, define

SΩD(z, f ) = sup{r : Ω(r) ⊆ f (D)},

where

Ω(r) =
{
z ∈ Cr1 × Cr2 × · · · × Crs :

∑
i∈Ik

||zi||mi < r, 1 ≤ k ≤ p
}
.

The squeezing function corresponding to Ω on D, denoted by SΩD, is defined by

SΩD(z) = sup
f
{SΩD(z, f )},

where the supremum is taken over all injective holomorphic mappings f : D→ Ωwith
f (z) = 0. For many interesting properties of SΩD, we refer to [1].
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[3] The generalised squeezing function 3

The Fridman invariant is another holomorphic invariant of bounded domains,
introduced by Fridman in [5]. Let D ⊆ Cn be a bounded domain andΩ ⊆ Cn a bounded
homogeneous domain. For z ∈ D, the Fridman invariant, denoted by hΩ

d

D , is defined by

hΩ
d

D (z) = inf
{1

r
: Bd

D(z, r) ⊆ f (Ω), f : Ω→ D
}
,

where f : Ω→ D is an injective holomorphic mapping and Bd
D(z, r) is a ball centred at

z with radius r with respect to the d-metric (which is either the Carathéodory metric
or the Kobayashi metric). Nikolov and Verma [13] considered a modification of hΩ

d

D ,
which is denoted by HΩ

d

D and defined by

HΩ
d

D (z) = sup{tanh r : Bd
D(z, r) ⊆ f (Ω), f : Ω→ D},

where f : Ω→ D is an injective holomorphic mapping. In [13], Nikolov and Verma
gave a relation between the squeezing function and the Fridman invariant:

SD(z) ≤ Hc
D(z) ≤ Hk

D(z), z ∈ D, (1.2)

where Hc
D(z) and Hk

D(z) denote the Fridman invariant for Ω = Bn with respect to the
Carathéodory metric and Kobayashi metric, respectively. In [15], Rong and Yang
proved that this relation holds for generalised squeezing functions.

In Theorem 2.1 of this article, we find the analogous result to (1.2) for the squeezing
function SΩD, where Ω is given in (1.1). In Theorem 2.3, we give some lower and upper
bound estimates for the squeezing function SΩD of some special domains which are
analogous to [15, Theorem 2.1]. In Theorem 2.8, we give some lower and upper bound
estimates for the Fridman invariant HΩD .

In [4], Fornæss and Scherbina gave an example of a domain for which the squeezing
function corresponding to the unit ball is nonplurisubharmonic. Rong and Yang
in [15] gave examples of domains for which the generalised squeezing function is
nonplurisubharmonic. Motivated by their work, Gupta and Pant in [6] gave an example
of a domain for which the d-balanced squeezing function is nonplurisubharmonic.

In Theorem 3.1, we give an example of a domain D for which SΩD is nonplurisubhar-
monic.

2. SΩ
D

and HΩ
D

Let us fix some notation. We denote the unit polydisc in Cn by Dn, and the
polydisc with centre zero and radius r in Cn by Dn(0, r). Let D ⊆ Cn be a domain.
The Carathéodory pseudo-distance between z1, z2 ∈ D, denoted by cD(z1, z2), is

cD(z1, z2) = sup
f
{tanh−1 |p| : f : D→ D holomorphic, f (z1) = 0, f (z2) = p}.

For z = (z1, z2, . . . , zn), a = (a1, a2, . . . , an) ∈ Dn,

tanh cDn (z, a) = max
1≤i≤n

∣∣∣∣∣
zi − ai

1 − aizi

∣∣∣∣∣. (2.1)
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For a real number λ > 0,

Ωλ =

{
z ∈ Cr1 × Cr2 × · · · × Crs :

∑
i∈Ik

||zi||λ < 1, 1 ≤ k ≤ p
}
,

where Ik ∩ Il = ∅ if k � l, I1 ∪ I2 ∪ · · · ∪ Ip = {1, 2, . . . , s}, n = r1 + r2 + · · · + rs and

Ωλ(r) =
{
z ∈ Cr1 × Cr2 × · · · × Crs :

∑
i∈Ik

||zi||λ < r, 1 ≤ k ≤ p
}
.

Let α = mini mi and β = maxi mi, where the mi > 0 are given in (1.1). If mi ≥ 1 for
all i, then by [9, Proposition 2.3.1(c)], it is easy to see that

(∑
i∈Ik

||zi||mi

)1/α
≤ tanh cΩ(0, z) ≤

(∑
i∈Ik

||zi||mi

)1/β
(2.2)

for z = (z1, z2, . . . , zs) ∈ Ω and 1 ≤ k ≤ p. Note that by [9, Proposition 2.3.1(a)], the
right-hand inequality (2.2) holds for all mi > 0. If K is a compact subset of Ω such that
Ω \ K is connected, then

dK
cΩ(z) = min

w∈K
tanh[cΩ(z, w)], z ∈ Ω \ K.

THEOREM 2.1. Let D be a bounded domain in Cn and Ω in (1.1) be homogeneous.
Then:

(1) (SΩD(z))β/α
2 ≤ HΩ

c

D (z) ≤ HΩ
k

D (z) for z ∈ D if all mi ≥ 1;
(2) (SΩD(z)/s)1/α ≤ HΩ

c

D (z) ≤ HΩ
k

D (z) for z ∈ D if at least one mi < 1.

PROOF. For part (1), since cD ≤ kD, it follows that HΩ
c

D (z) ≤ HΩ
k

D (z) for all z ∈ D.
To prove the first inequality, let us assume that SΩD(z) = r > 0 for some z ∈ D. By
[1, Theorem 2.5], there exists an injective holomorphic mapping f : D→ Ω such that
f (z) = 0 and Ω(r) ⊆ f (D) ⊆ Ω.

Consider the injective holomorphic mapping g : Ω→ Cn given by g(ξ) = r1/αξ. Let
w = (w1, w2, . . . , ws) ∈ Ω and g(w) = (w′1, w′2, . . . , w′s). Then,

∑
i∈Ik

||w′i ||
mi =
∑
i∈Ik

||r1/αwi||mi ≤ r
∑
i∈Ik

||wi||mi < r

for 1 ≤ k ≤ p. This implies that g(Ω) ⊆ Ω(r). Therefore, h = ( f −1 ◦ g) : Ω→ D is an
injective holomorphic mapping with h(0) = z.

We claim that Bc
D(z, tanh−1 rβ/α

2
) ⊆ h(Ω). To prove our claim, consider

w = (w1, w2, . . . , wn) ∈ Bc
D(z, tanh−1 rβ/α

2
) and f (w) = (w′1, w′2, . . . , w′s). By (2.2),

rβ/α
2
> tanh cD(z, w) ≥ tanh cΩ(0, f (w)) ≥

(∑
i∈Ik

||w′i ||mi

)1/α
(2.3)
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[5] The generalised squeezing function 5

for 1 ≤ k ≤ p. Let a = (w′1/r
1/α, w′2/r

1/α, . . . , w′s/r
1/α). By (2.3),

∑
i∈Ik

∥∥∥∥∥
w′i

r1/α

∥∥∥∥∥
mi

≤
∑
i∈Ik

||w′i ||
mi

rβ/α
< 1

for 1 ≤ k ≤ p. It follows that a ∈ Ω with h(a) = w. Therefore, w ∈ h(Ω), which proves
our claim. Hence, if all mi ≥ 1,

(SΩD(z))β/α
2 ≤ HΩ

c

D (z) ≤ HΩ
k

D (z), z ∈ D.

For part (2), assume that mi ≥ 1 for some i. Proceeding as in part (1), we claim that
Bc

D(z, tanh−1(r/s)1/α) ⊆ h(Ω). Observe that Ω ⊆ Ωβ and therefore,

tanh cΩβ(0, ξ) ≤ tanh cΩ(0, ξ) for all ξ ∈ Ω. (2.4)

To prove our claim, consider w = (w1, w2, . . . , wn) ∈ Bc
D(z, tanh−1(r/s)1/α) and

f (w) = (w′1, w′2, . . . , w′s). By (2.2) and (2.4),
(r
s

)1/α
> tanh cD(z, w) ≥ tanh cΩβ(0, f (w)) =

(∑
i∈Ik

||w′i ||β
)1/β

(2.5)

for 1 ≤ k ≤ p. Let a = (w′1/r
1/α, w′2/r

1/α, . . . , w′s/r
1/α). By (2.5),

∑
i∈Ik

∥∥∥∥∥
w′i

r1/α

∥∥∥∥∥
β

≤
∑
i∈Ik

||w′i ||β

rβ/α
<

1
sβ/α

for 1 ≤ k ≤ p. It follows that a ∈ Ωβ(1/sβ/α). It is easy to see that Ωβ(1/sβ/α) ⊆ Ω.
Therefore, a ∈ Ω with h(a) = w, which proves our claim. If all mi < 1, take β = 1 in
the above argument and the proof follows the same lines. Hence, if at least one mi < 1,

(SΩD(z)
s

)1/α
≤ HΩ

c

D (z) ≤ HΩ
k

D (z), z ∈ D. �

REMARK 2.2. In the case Ω = Bn, we can take α = β = 1. It follows that Theorem 2.1
implies (1.2).

THEOREM 2.3. Let Ω be as in (1.1). If K is a compact subset of Ω such that D = Ω \ K
is connected, then:

(1) SΩD(z) ≥ (dK
cΩ(z))β if Ω is homogeneous;

(2) SΩD(z) ≤ (d∂KcΩ (z))α if all mi ≥ 1;
(3) SΩD(z) ≤ s(d∂KcΩ (z))α if at least one mi < 1.

For the proof of Theorem 2.3, we need the following results.

RESULT 2.4 [10, Theorem 1.2.6]. Let Ω ⊆ Cn be a domain. If K ⊂ Ω is a compact set
such that D = Ω \ K is connected, then each holomorphic function f on D extends to
a holomorphic function F on Ω.
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RESULT 2.5 [9, Proposition 2.2.15]. Let Ω ⊆ Cn be a balanced domain. Then, Ω is
pseudoconvex if and only if the Minkowski function ρΩ is plurisubharmonic.

PROOF OF THEOREM 2.3. For part (1), let g : Ω→ Ω be an automorphism of Ω
such that g(z) = 0 for some z ∈ D. Then, h = g|D : D→ Ω is an injective holomorphic
mapping with h(z) = 0. We claim that Ω((dK

cΩ(z))β) ⊆ h(D) ⊆ Ω. To prove this, let
w = (w1, w2, . . . , ws) ∈ Ω((dK

cΩ(z))β). By (2.2),

(dK
cΩ(z))β >

∑
i∈Ik

||wi||mi ≥ (tanh cΩ(0, w))β (2.6)

for 1 ≤ k ≤ p. Since g is an automorphism, it follows that

(tanh cΩ(0, w))β = (tanh cg(Ω)(g(z), g(w′)))β = (tanh cΩ(z, w′))β (2.7)

for some w′ ∈ Ω with w = g(w′). By (2.6) and (2.7), tanh cΩ(z, w′) < dK
cΩ(z) =

minw∈K tanh[cΩ(z, w)]. This implies that w′ � K, which verifies our claim. Hence,

SΩD(z) ≥ (dK
cΩ(z))β.

For part (2), assume that SΩD(z) = r > 0 for some z ∈ D. By [1, Theorem 2.5],
there exists an injective holomorphic mapping f : D→ Ω such that f (z) = 0 and
Ω(r) ⊆ f (D) ⊆ Ω. By Result 2.4, there is a holomorphic mapping F : Ω→ Cn such
that F = f |Ω. By Result 2.5 and following the argument used in [15, Theorem 2.1],
F(Ω) ⊆ Ω. It is easy to see that F(∂K) ∩ F(D) = ∅.

Next, we show that r1/α ≤ d∂KcΩ (z). If possible, let r1/α > d∂KcΩ (z). Assume that
d∂KcΩ (z) = tanh cΩ(z, a) for some a = (a1, a2, . . . , as) ∈ ∂K and F(a) = (w′1, w′2, . . . , w′s).
Therefore, by (2.2),

r1/α > tanh cΩ(z, a) ≥ tanh cΩ(0, F(a)) ≥
(∑

i∈Ik

||w′i ||mi

)1/α

for 1 ≤ k ≤ p. Thus, F(a) ∈ Ω(r). This is a contradiction because F(∂K) ∩ F(D) = ∅.
Hence, SΩD(z) ≤ (d∂KcΩ (z))α.

For part (3), first assume that there is mi ≥ 1 for some i. By following similar
arguments to those in part (2), we show that (r/s)1/α ≤ d∂KcΩ (z). If possible, let
(r/s)1/α > d∂KcΩ (z). Let d∂KcΩ (z) = tanh cΩ(z, a) for some a = (a1, a2, . . . , as) ∈ ∂K and
F(a) = (w′1, w′2, . . . , w′s), then

(r
s

)1/α
> tanh cΩβ(0, F(a)) =

(∑
i∈Ik

||w′i ||β
)1/β

for 1 ≤ k ≤ p so that F(a) ∈ Ωβ((r/s)β/α). It is easy to see that Ωβ((r/s)β/α) ⊆ Ω(r).
Thus, we get F(a) ∈ Ω(r). This is a contradiction because F(∂K) ∩ F(D) = ∅. Hence,
SΩD(z) ≤ s(d∂KcΩ (z))α. If all mi < 1, take β = 1 in these arguments and the proof follows
the same lines. �
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COROLLARY 2.6. Let Ω in (1.1) be homogeneous such that mi = m ≥ 1 for all i. If K
is a compact subset of Ω and D = Ω \ ∂K is connected, then

SΩD(z) = (d∂KcΩ (z))m, z ∈ D.

COROLLARY 2.7. Let Ω in (1.1) be homogeneous and D = Ω \ K as in Theorem 2.3.
Then:

(1) HΩ
k

D (z) ≥ HΩ
c

D (z) ≥ (dK
cΩ(z))β

2/α2
for z ∈ D if all mi ≥ 1;

(2) HΩ
k

D (z) ≥ HΩ
c

D (z) ≥
(dK

cΩ(z))β/α

s1/α for z ∈ D if at least one mi < 1.

THEOREM 2.8. Let Ω in (1.1) be homogeneous and K be a proper analytic subset of
Ω. Then, for D = Ω \ ∂K:

(1) (d∂KcΩ (z))β
2/α2 ≤ HΩ

c

D (z) ≤ (d∂KcΩ (z))α
2/β2

for z ∈ D if all mi ≥ 1;

(2)
(d∂KcΩ (z))β/α

s1/α ≤ HΩ
c

D (z) ≤ (d∂KcΩ (z))α
2/β2

for z ∈ D if at least one mi < 1.

PROOF. For part (1), by Theorems 2.1(1) and 2.3(1),

HΩ
c

D (z) ≥ (d∂KcΩ (z))β
2/α2

, z ∈ D.

We show that HΩ
c

D (z) ≤ (d∂KcΩ (z))α
2/β2

. Suppose in contrast that HΩ
c

D (z) > (d∂KcΩ (z))α
2/β2

.
Then, there exists r such that tanh r > (d∂KcΩ (z))α

2/β2 ≥ d∂KcΩ (z), and an injective
holomorphic mapping f : Ω→ D such that f (0) = z and Bc

D(z, r) ⊆ f (Ω) ⊆ D.
Let d∂KcΩ (z) = tanh cΩ(z, a) for some a ∈ ∂K. By the Riemann removable sin-
gularity theorem, cD(z1, z2) = cΩ(z1, z2) for all z1, z2 ∈ D. This implies that
Bc

D(z, r) = {ξ ∈ D : cΩ(z, ξ) < r}. It is easy to see that a ∈ Bc
Ω

(z, r). Since the topology
induced by the Carathéodory pseudometric on a bounded domain is equivalent to
the Euclidean topology, it follows that there exists ε > 0 such that Bn(a, ε) ⊆ Bc

Ω
(z, r).

Then, Bn(a, ε) \ ∂K ⊆ Bc
D(z, r) ⊆ f (Ω).

Let g = f −1 : Bn(a, ε) \ ∂K → Ω. By the Riemann removable singularity theorem,
there is a holomorphic mapping h : Bn(a, ε)→ Ω such that h(ξ) = g(ξ) for all
ξ ∈ Bn(a, ε) \ ∂K. By Result 2.5 and following the argument used in [15, Theorem 2.8],
ρΩ(h(ξ)) = 1 for all ξ ∈ Bn(a, ε) ∩ ∂K. By the maximum principal of plurisubharmonic
functions, ρΩ(h(ξ)) ≡ 1, which is a contradiction.

For part (2), by Theorems 2.1(2) and 2.3(1),

HΩ
c

D (z) ≥
(d∂KcΩ (z))β/α

s1/α , z ∈ D.

Similarly, as argued in part (1),

HΩ
c

D (z) ≤ (d∂KcΩ (z))α
2/β2

, z ∈ D. �
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COROLLARY 2.9. Let Ω in (1.1) be homogeneous with mi = m ≥ 1 for all i and let K
be a proper analytic subset of Ω. Then, for D = Ω \ ∂K,

HΩ
c

D (z) = d∂KcΩ (z), z ∈ D.

3. Nonplurisubharmonic SΩ
D

THEOREM 3.1. Let Ω ⊆ C2 be a domain of the form (1.1) such that mi = m for all i.
Assume that v = max{∑i∈Ik

rm/2
i , 1 ≤ k ≤ p}. Choose ε such that 0<ε < r< (1/v)1/m<1,

D2(0, r) ⊂ Ω and B2(Q, ε) ⊂ Ω for Q = (0, r). Let K = ∂D2(0, r) \ B2(Q, ε) and
D = Ω \ K. Then, SΩD is not plurisubharmonic.

PROOF. Denote H = {z = (z1, z2) ∈ Cn : z2 = 0}. We show that SΩD(0) ≥ rm. To see
this, consider the identity function I : D→ Ω. Clearly, I is an injective holomorphic
mapping with I(0) = 0. It is easy to see that Ω(rm) ⊆ I(D). Thus,

SΩD(0) ≥ rm.

Let us assume that m ≥ 1. Observe that D2(0, r) ∩ H = {z = (z1, 0) : |z1| < r} ⊆ D ∩ H.
For z = (z1, 0) ∈ D2(0, r) ∩ H with 0 < |z1| < r, by Theorem 2.3(2),

SΩD(z) ≤
(

min
w∈∂K

tanh[cΩ(z, w)]
)m

. (3.1)

Let w′ = (az1, 0), where a = r/|z1|. Then, w′ ∈ ∂K and therefore, by (3.1),

SΩD(z) ≤
(

min
w∈∂K

tanh[cΩ(z, w)]
)m
≤ (tanh[cΩ(z, w′)])m. (3.2)

It is easy to see that D2(0, (1/v)1/m) ⊆ Ω. By the decreasing property of the
Carathéodory metric,

(tanh cΩ(z, w′))m ≤
(

tanh cD2

( z
(1/v)1/m ,

w′

(1/v)1/m

))m
. (3.3)

By (3.2), (3.3) and (2.1),

SΩD(z) ≤
∣∣∣∣∣
v1/mz1(a − 1)
1 − v2/maz1z1

∣∣∣∣∣
m
≤
(v1/m(r − |z1|)

1 − v2/mr|z1|

)m
. (3.4)

Note that
(v1/m(r − |z1|)

1 − v2/mr|z1|

)m
< rm (3.5)

for |z1| > η = r(v1/m − 1)/v1/m(1 − r2v1/m). By (3.4) and (3.5),

SΩD(z) ≤ SΩD(0) (3.6)
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for z = (z1, 0) ∈ D2(0, r) ∩ H with |z1| > η. Observe that η < r because r < (1/v)1/m.
Let the maximum of SΩD(z) for z = (z1, 0) ∈ D2(0, r) ∩ H and |z1| ≤ η be attained at
some ξ ∈ D(0, η). Then,

SΩD(z) ≤ SΩD(ξ) (3.7)

for z = (z1, 0) ∈ D2(0, r) ∩ H with |z1| ≤ η. By (3.6) and (3.7),

SΩD(z) ≤ max(SΩD(0), SΩD(ξ))

for all z ∈ D2(0, r) ∩ H. This implies that SΩD |D2(0,r)∩H does not satisfy the maximum
principle. Hence, SΩD is not plurisubharmonic.

Let us now assume that m < 1. Similarly, as argued above, by Theorem 2.3(3),

SΩD(z) ≤ s
∣∣∣∣∣
v1/mz1(a − 1)
1 − v2/maz1z1

∣∣∣∣∣
m
≤ s
(v1/m(r − |z1|)

1 − v2/mr|z1|

)m
.

Note that

s
(v1/m(r − |z1|)

1 − v2/mr|z1|

)m
< rm

for |z1| > η′ = r(v1/ms1/m − 1)/v1/m(s1/m − r2v1/m). This implies that

SΩD(z) ≤ SΩD(0) (3.8)

for z = (z1, 0) ∈ D2(0, r) ∩ H with |z1| > η′. Observe that η′ < r because r < (1/v)1/m.
Let the maximum of SΩD(z) for z = (z1, 0) ∈ D2(0, r) ∩ H and |z1| ≤ η′ be attained at
some ξ′ ∈ D(0, η′). Then,

SΩD(z) ≤ SΩD(ξ′) (3.9)

for z = (z1, 0) ∈ D2(0, r) ∩ H with |z1| ≤ η′. By (3.8) and (3.9),

SΩD(z) ≤ max(SΩD(0), SΩD(ξ′))

for all z ∈ D2(0, r) ∩ H. This implies that SΩD |D2(0,r)∩H does not satisfy the maximum
principle. Hence, SΩD is not plurisubharmonic. �

The next result is a generalisation of Theorem 3.1 for higher dimensions.

THEOREM 3.2. Let Ω ⊆ Cn be a domain of the form (1.1) such that mi = m for
all i. In addition, assume that v = max{∑i∈Ik

rm/2
i , 1 ≤ k ≤ p}. Choose ε such that

0 < ε < r < (1/v)1/m < 1, Dn(0, r) ⊂ Ω and Bn(Q, ε) ⊂ Ω for Q = (0, 0, . . . , r). Let
K = ∂Dn(0, r) \ Bn(Q, ε) and D = Ω \ K. Then, SΩD is not plurisubharmonic.

PROOF. The proof is similar to that for Theorem 3.1 and we omit the details. �
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