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Abstract. The shapes of light curves and of radial velocity curves are 
two main predictions of the hydrodynamical models of Cepheids. Of the 
two, the velocity curves are more robust numerically and therefore, more 
suitable for comparison with the observations. In this report, we present 
accurate Fourier parameters for an extensive set of classical Cepheid 
velocity curves. Published radiative models reproduce the observations 
very well, with only small discrepancies present. We estimate the center 
of the u>2 — 2^o resonance to occur at PT = 9.947 ± 0.051 day. 

We have collected from literature accurate velocity data for 131 classical 
Cepheids. The data have been fitted with the Fourier sum (sine decomposition), 
and standard Fourier parameters Rni = An/A\ and 4>n\ = 4>n — ncpi have been 
calculated. The errors are estimated with formulae of Petersen (1986). For 92% 
of stars a{4>2\) < 0.15, with the average of o-{<j>2\) = 0.08. The fit dispersion is 
typically ~ 1 km s - 1 . Our new data supersede the previous sample of Kovacs, 
Kisvarsanyi, & Buchler (1990). 

The behavior of the first overtone Cepheids is discussed in detail by Kienzle 
et al. (1999). Here, we focus on the fundamental-mode Cepheids. In Fig. 1 
we present 82 stars with best-quality solutions. The selection criteria are: a) 
at least 25 data points, b) (r((j>2i) < 0.15, and c) fit dispersion below 2 km 
s - 1 . The trends displayed by the velocity Fourier parameters are very similar to 
those of the light curves (Simon & Moffett 1985). The progressions of <j>2\ and 
<̂ 3i with the period are very tight, in agreement with the theoretical expectations 
(Buchler, Moskalik, & Kovacs 1990). The trends seen in Fig. 1 are caused by 
u>2 « 2wo resonance, which occurs at PT « 10 day. The plot is the Fourier 
representation of the well-known Hertzsprung progression. 

Open circles in Fig. 1 represent the Sequence "A" of hydrodynamical 
Cepheid models of Moskalik, Buchler, & Marom (1992). Its 2:1 resonance occurs 
at 10.2 d. The models reproduce the data quite well, especially considering that 
no fine tuning has been performed. The only significant discrepancy is seen at 
P = 10.5 — 12.5 day, where the observed foi seems to decrease, whereas the 
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Figure 1. A\ (in km s_ 1) , R2i, 4>2i and <foi for radial velocity curves 
of selected sample of fundamental-mode Cepheids (filled circles, see 
text). Hydrodynamical models of Sequence A of Moskalik et al. (1992) 
are plotted with open circles. 

model 021 increases. We note that the theoretical behavior of 02i in this range 
of periods is highly model dependent: 02i can either increase to 9.1 or decrease 
to 2.8 (27T ambiguity). Both behaviors have been encountered in the numerical 
simulations (see Moskalik et al. 1992 for discussion). 

The data of Fig. 1 can be used to determine the exact position of the 
u>2 = 2wo resonance. This can be achieved by the least squares fitting of the 
models to the velocity data. As has been shown by Buchler et al. (1990), 
velocity 021 is a unique function of the resonant period ratio P2/P0, viz. 021 = 
f(P2/Po). Following the approach of Kienzle et al. (1999), we assume that 
along the instability strip the period ratio is given by the approximate expression 
P2/P0 = 0 .5(P/Pr)

_ a . The fit of the above two formulae to the 021 data yields 
the resonant period of 

Pv = 9.947 ± 0.051 day. 
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