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Abstract

For any integer ¢ > 2, we prove a local limit theorem (LLT) with an explicit convergence rate for the
number of parts in a uniformly chosen 7-regular partition. When ¢ = 2, this recovers the LLT for partitions
into distinct parts, as previously established in the work of Szekeres [‘Asymptotic distributions of the
number and size of parts in unequal partitions’, Bull. Aust. Math. Soc. 36 (1987), 89-97].
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1. Introduction and statement of results

A partition A of size n is a nonincreasing sequence of positive integers
A =(A1,4,,...,4;) whose entries, called parts, sum to n. For any integer ¢ > 2, a
t-regular partition of a positive integer n is a partition in which each part appears
less than ¢ times. Let p,(n) denote the number of such partitions of n. These
partitions have been extensively studied and are connected to a wide range of
problems in combinatorics and number theory. For example, when ¢ = 2, this gives
the partitions into distinct parts, also called distinct partitions. This special case has
rich arithmetic significance. Indeed, Ono [11] provided explicit recursions that relate
distinct partitions to special values of L-functions associated to elliptic curves. More
recently, Ballantine et al. [2] analysed hook length biases arising in comparisons
between distinct and odd partitions. For general ¢ > 2, Hagis [7] applied modular
transformations and exponential sum estimates to obtain a Rademacher-type formula
for p(n), from which an asymptotic formula follows directly.

From a probabilistic perspective, Erdés and Lehner [5] were the first to study
the distribution of the number of parts in distinct partitions. They proved that the
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associated random variable is asymptotically normal (that is, it satisfies a central limit
theorem (CLT)). A local limit theorem (LLT) for this case was later established by
Szekeres [14] using a more delicate analysis [13]. See also the work of Hwang [8] and
Mutafchiev [10] for further generalisations developed along different directions. For
t > 3, a CLT was obtained by Ralaivaosaona [12]. In this paper, we strengthen and
extend these results by proving an LLT for all # > 2. To keep the paper self-contained,
our unified analysis also provides an alternative proof of the CLT.

To study the limiting distribution of the number of parts in 7-regular partitions in a
systematic way, we make use of the bivariate generating function

Gi(w,7) = Z Z pu(m,n) W' = ]_[(1 +wd + w4+ w0 (L)

n=0 m=0 Jj=1

where p,(m,n) counts the number of f-regular partitions of n with exactly m parts.
For every n € Zs1, under the associated uniform measure, we can consider a random
variable Y,(n) given by

— p[(m9 n)
pi(n)

The following theorem [5, 12] illustrates the limiting behaviour of Y,(#) in distribution.

P(Y,(n) = m) :

THEOREM 1.1. For a fixed t € Zs), the sequence {Y(n)} is asymptotically normal,

that is,
log ¢
Yi(n) ~ Wcog +VKn''* - N(O, 1),
where
aVt—1 t—1 (logt)?
C=C, := , K=K =—-—="1. 1.2
! Vor T 2c 203 (1.2

More precisely, for every x € R,

1 X
tim B(Y,(n) < ‘/ﬁcog’ + VKl x) = \/% f P du = o). (13)
n—oo T Jooo

EXAMPLE 1.2 (4-regular partitions). For ¢ = 4 and n = 1000, we compute

D pam, 1000)w™ = w + S00w? + 83333 + - -

m>0

+ 841211289w" + 8936481w™ + 24502w7.

In Figure 1, we plot the coefficients p4(m, 1000) and give a table which illustrates
an approximation of the left-hand side of (1.3), denoted by Pjgpo(x), showing that
P1o00(x) = P(x).
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FIGURE 1. p4(m, 1000) and asymptotics for the cumulative distribution for n = 1000.

Next, we provide an asymptotic formula for p,(m, n) when m varies within a range
depending on n, which gives a local insight into how the mass function approximates

the normal curve (compare Figure 1).

THEOREM 1.3. Fix t € Zsj, and define C and K as in (1.2). Assume the positive
integers m and n are such that

n logt
Pmn =P =m— “/_Tg = 0,n%). (1.4)

Then, as n — oo,

pinm = 2oy - SN 1 0001,

As an immediate application of Theorem 1.3, we obtain an LLT for Y,(n).

COROLLARY 1.4. Fixt € Zs, and let X be an arbitrary bounded subset of R. Then, as

n— oo,
log ¢ 1
sup \/?nl/4 P(Y[(n) = {—\/ﬁ o8 + @nl/“ xJ) - — —x2/2 =0 (n_l/lo)
xeX C \/ﬂ

This paper is organised as follows. In Section 2, we recall several standard properties
of the dilogarithm function and derive some key estimates using a variant of the
Euler—Maclaurin summation formula. In Section 3, we first obtain a certain asymptotic
formula by applying the saddle-point method, and use it to determine the limiting
distribution through the moment generating function and a continuity theorem from
probability theory. In Section 4, we implement the saddle-point method in two
variables to prove Theorem 1.3, which directly implies Corollary 1.4.
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2. Preliminaries

2.1. The dilogarithm function and a related identity. We now mention some
properties of the dilogarithm function and refer to [1, 16] for details. The series
expansion of the dilogarithm function for |z| < 1 is

00

L@ =) 5.

n=1
The integral representation,
“log(1 -
0 u

implies that Li,(z) can be defined for every z € C. The dilogarithm function has a
logarithmic branch point at z = 1, where it is continuous and satisfies Li,(1) = 7%/6.
A standard choice for the branch cut is along the positive real line starting from 1,
which corresponds to the principal branch of the logarithm, so that Li,(z) is analytic
in the cut plane C \ [1, c0).

LEMMA 2.1. Fixt € Zs, and define C as in (1.2). Then,
f logl+e  +e >+ +e % dx = C2
0

PROOF. By the change of variable v = ¢7*, the left-hand side becomes

! 0 ¢ 5
d log(1 — log(1 —
f10g(1+v+v2+--~+v’_1)—v:lim(f Md\/—f og( V)dv)
0 v o—1- 0 v 0 v

Liy (o'
= lim (Lix(®) - o) )) -,
6—1- 1
where we use the continuity and the special value of Liy(z) at z = 1. ]

2.2. The Euler-Maclaurin summation formula and some auxiliary estimates.
To study the asymptotic behaviour of various functions represented by infinite
products, it is convenient to take the logarithm and analyse the associated infinite series
with the help of the Euler—-Maclaurin summation formula. A function f : (0, c0) — C
has rapid decay at infinity if there exists some € > 0 such that f(x) = O(x~'¢) as
x — oo. In [15], Zagier showed that the classical Euler—Maclaurin summation formula
can be applied to derive an asymptotic expansion of the form

N-
Y rom =g [ rods-
k=0

J=0

¥ Bis1 (0)F0(0)

—ksTr P TONEN. @D

as B — 0%, where Bj(x) are the Bernoulli polynomials, o € R*, N €Z,; and
f :(0,00) — C is a smooth function such that f and all of its derivatives have rapid
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decay at infinity. For an analogue of (2.1) in the case of complex variables, we refer
to [3, Theorems 1.2 and 1.3].
We now derive some auxiliary estimates for the proof of our main results.

LEMMA 2.2. For afixed t € Zs, and an arbitrary positive real number w, as 3 — 0F,

Z log(1 +we™ + .- 4 wlem 1P = 5w _ % log(1 +w+---+ w1 + 0,(8),
=1
2.2)
ol
wj \_ Bw)
Z (elﬁ w e — Wt) TR +0,(), (2.3)
>1
W] elﬂ W] tze]tﬁ B ZB(W)
Z ((e/ﬁ —wy2 (el — Wr)z) RE +0,(D), (2.4)
where
B(w) = f log(1 +we™ + w?e™ + -+« 4w le™ =0y gy, (2.5)
0

PROOF. Note that the left-hand side of (2.2) can be written as ), f,.((j + 1)8), where

Fux) = log(1 + we™ + w?e ™™ + ... 4 w770
for x>0, and £,(0) = log(1 +w + w? +--- + w'!). Clearly, the function f,(x) is
infinitely differentiable at zero and all of its derivatives have rapid decay at infinity.
In particular,
Y powte F 44 (1= Dwi e x w' w

@) = = - . (2:6)
w

1 +we™ +w2e 2 4 ... 4 wi-le=(=Dx e —wh e¥ -

Applying (2.1) with N =1,

wa((ﬁl)ﬁ)— ffw(X)dx B,(1)£(0) + O:(B),

Jz0

which implies the estimate in (2.2).

To prove (2.3), note that from (2.6), the left-hand side can be written as
B! 320 8w(( + DB), where g,,(x) := —xf{"(x). Then, the estimate follows by using
(2.1) with N = 1 and the fact that g,,(0) =0

For (2.4), we write the left-hand side as 8% 350 h((j + 1)B), where hy(x) :=

2 £2 (). From lim, e x2 £ (x) = lim, e x£,,(x) = 0, we have

fw iy (x) dx = =2 fw xfPD(x) = me £ () dx.
0 0 0

Thus, the claimed estimate follows from (2.1) with N =2 and the fact that
hy(0) = h(0) = 0. O

https://doi.org/10.1017/5S0004972725100555 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972725100555

6 T. Bhowmik and W.-L. Tsai [6]

LEMMA 2.3. With the same assumptions as in Lemma 2.2, as B — 0%,

w w' 1 ) -
Z(elﬁ—w_ejfﬁ—wt)_ﬁlog(l-’-w-’-w tootw )+Ot(1), (2-7)
A PwieP Lyw+2w?+ -+ (= DHw'!
Z( 'ﬁwe o wwe t2): _(W - 2 : )tv—vl )+O’(1)’ (2.8)
21 (eF =w)y> (P —w) B\ T+w+w?+---+w
jwe rwijel” ) : 2 —1
: - — =—logl+w+w +- -+ + O,(1). 2.9
; ((elﬂ —w)?2 (&P —wh)? B og(l +w+w W) (1) (2.9)
PROOF. Using (2.6), we can write the left-hand side of (2.7) as X5 fw(( + 1)),
where

we™ +2w2e™ . 4 (1 — DTl (Y
1 +we™ +w2e 2 4 - 4 witle=(=Dx

fw(x) ==

Note that fooo fo(x)dx = log(1 + w+w? + -+« + w'=), and also that f,,(x) and its deriva-
tives have rapid decay at infinity. Thus, the claimed estimate in (2.7) follows after
using (2.1) with N = 1. For the remaining estimates, we again use (2.6) to express the
left-hand sides of the equations as ;>0 g,,((j + 1)B) and B! 2j>0 bw((G + 1)B), where
gw(x) := —f&vl)(x) and b,,(x) := —xfgvl)(x). Then, the claims in (2.8) and (2.9) follow after
applying (2.1) with N = 1 and N = 2, respectively. ]

If w belongs to a bounded subset of positive reals, then the error terms for the
estimates in Lemmas 2.2 and 2.3 are uniform with respect to w. In particular, we can
allow w to vary in a neighbourhood of 1 as 8 — 0*. We will require these estimates in
a hybrid fashion, where w = ¢~ for some real number @ — 0 and 8 — 0% at the same
time. The main terms of the estimates in Lemmas 2.2 and 2.3 can be simplified using
the following expansions:

t—1
B(w) = C? —alogt + Ta2 +0,(a?), (2.10)
2 -1 -1 2
log(l+w+w +---4+w )=10gt—Ta+O,(oz ), (2.11)
w+2wr+ -+ (= Dw'h -1 £-1, 3
= - +0 . 2.12
T+w+w2+-- +wl 7 ¢ T @ o) (2.12)

The expansions in (2.11) and (2.12) follow from an elementary computation. For
(2.10), we put w=¢"* in (2.5) and compute the Taylor expansion at @ =0. In
particular, the constant term C? follows from Lemma 2.1.

2.3. A continuity theorem from probability theory. A classical result for deter-
mining the limiting distribution of a sequence of random variables {X, }, not necessarily
in the same probability space, is Lévy’s continuity theorem, which relates the
associated sequence of characteristic functions with convergence in distribution. Later,
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Curtiss derived a corresponding result in the form of a moment generating function
(MGF), which is more convenient in many applications if the corresponding MGFs
exist (see [4] for the definition of MGF and related results). We will apply a refined
version of the Curtiss result, which allows us to simplify our analysis.

THEOREM 2.4 [9, Theorem 2]. Let a < b, and let M(X,,;r) and M(X;r) be MGFs of
the random variables X,, and X, respectively. If

lim M(X,;;r) = M(X;r) fora<r<b,

then the sequence {X,} converges to X in distribution.

3. Proof of Theorem 1.1

We rewrite the generating function from (1.1) as

Giw, ) = ) Pea) 2" = [ [+ wd +w?e =070, 3y

n>0 Jj=1

where P.o(w) = 1 and, for every n > 1,

Pro(w) i= Y pilm mw'™.

m=0

To identify the distribution of Y,(n), we will apply Theorem 2.4 to a normalised version
of Y,(n). Hence, we require an asymptotic formula for P;,(w) as w tends to 1 at a
certain rate with respect to n.

PROPOSITION 3.1. For an arbitrary u € Rsq, let w, := exp(—u/n'/*). Then, as n — oo,

n'*ulogt Ku®

Prp(wy) = exp (ZC\/_ - c + T)(l +0,(n V7).

VC
2ntn3/4
REMARK. Although the choice of the quantity n'/* in w, might not be obvious at
this point, it is essentially the magnitude of the standard deviation of Y,(n). While we
could proceed only considering w, as a sequence converging to 1 and later identify
the right choice from a certain condition, this explicit choice allows us to simplify the
expressions for the error terms in our analysis. One can apply Wright’s circle method
to obtain an asymptotic formula for the variance of Y;(n).

PROOF OF PROPOSITION 3.1. Applying Cauchy’s theorem to (3.1), for 0 < zp < 1,

1 (7 .
Pru(wy) = " f exp(g:(wy; 20¢")) do, (3.2)

T

where g,(w,; z) := Log(z™"G,(w,, 7)) for 0 < |z] < 1. Here, Log (-) denotes the principal
value of the logarithm, with the imaginary part belonging to (-, ]. We apply the
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saddle-point method to estimate the integral in (3.2). We first need to determine
— P ey . _ :
Zo = e P such that g, "(w,; z0) = 0. Since

(1) ]WnZJ th;ZU ) ] 1
W}’l’ s -|—n K}
(a3 2) = [Z(l -w,d 1 —whzl z
the condition gfl)(wn; eP) = 0 yields the equation

D ( Wa ) .
iBr — B — oyt )
= e]ﬁ Wy, el B \
Substituting the estimate from Lemma 2.2 and then solving for ,, we obtain

VB(u; n)
\/_

where B(u; n) := B(w,) and, by the expansion (2.10),

Bn= ———(1+0i(n")), (3.3)

ulogt . (t - Du?
At v

Next, we estimate gﬁz)(wn; 20), applying Lemma 2.2 together with ,, from (3.3),

) iBn 2.2 1 LBy
5 ~ Jw el jtwl e 1 _
P (W ePry = &% E :( —— - )_ &g (wy; e P1)
=1

B(u;n) = C* — + 0,7,

(g/ﬁn — Wn)2 (ellﬁu — Wiz)z

2B(u; n)
_ 2B
=e (—3131 +Ot(1))
232
— 2B -1
— ( P )(1+Ot(n ))+Ot(1))

32
2” (1+ 0, %)). (3.4)

By a similar argument, g§3)(w,,; e Py = O,(n?). Then, we split the integral in (3.2) as
Pt;n(wn) =L +1,

where

1 ; 1 ,
I = — exp{g(wn; e P} do, I := — exp{g:(wy; e P} .
2n 16]<n=5/7 2n |6]>n-5/7

To estimate /;, we consider the Taylor expansion of g,(w,;z) around zg = e,

8iWn32) = giwas € + 1eP(wys e Pz = eP)? + O, (z — eP)).
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For z = e+ with |6] < n=>/7, by applying (3.3),
z—eP = (1+ 0B+ O0m™")) = i6+ 0,/

and hence,

_ _ 0 _ _
giwys €y = g(wyePr) — Egﬁz)wn;e By + 0,(n~17).

Thus,

n=>7

_ xXp(&i(wns e ) [ f

1
! 2

02
exp( = 5 8P wise ) do|a + 0,67 ). (33)
_n-5I7
We now show that the integral in /; can be taken from —oco to co with a negligible
error. More precisely, the contribution from the tails tends to zero sub-exponentially
with respect to n, as we have the estimate

* 6> o 0
f exp( - — gﬁz)(wn; e_ﬁ”))dé < f exp ( - —n_5/7g§2)(w,,; e‘ﬁ")) do
51 2 =517 2
2 L 7.2 B
= exp( - =n g (wyse "))
317 (W eBr) 2 ’
1 1/14)
< - = , 3.6
exp( C n (3.6)

and the same bound for the integral from —co to —n=>/7 because the integrand is an
even function. Computing the Gaussian integral and applying the estimate from (3.4),

” & o -8 _ 2 _YCr -1/4

Rewriting the integral in (3.5), and substituting the evaluations from (3.6) and (3.7),

_ , C eXp(gt(wn;e_'B“)) 177
11 = E . T(] + O,(l’l ))

Next, we show that I, does not contribute to the asymptotic formula of Py.,(w,).
To estimate I,, we express the absolute value of the integrand as
G[(Wn, e—ﬁn+i9)

Gi(Wp, e7Pr)

—Bn+if

lexp(g:(wn; e P1+0))| = exp(g,(wy; € P))

By some algebraic manipulations,

G, P02 =T |

jz1

(1 = whe )2 4 2wl e=i(1 - cos jt@)]
(1 — wpe )2 + 2w,e (1 — cos j§) I
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and hence,
2W;e_jt:3n .
Gl(wn,e_ﬁ"+i9) ) B l_[ 1+ W(l — cosﬂ@)
Gl B | =L 2w
(1 — wye )2 J
Since w, < 1, forevery j > 1,
2w, 2wy,

- < -
(1 — Wﬁ[e‘]tﬁn)2 (] — Wne_]tﬁn)2 ’
and so, we can write

Gt (er ’ e_ﬁn+i9)

2 2w, e b -1
/< l+—" (- '9]
Gi(Wy, e Pr) 1—” (1 = cosj®)

— —-,,2
LI = wae
tj

2w,e P -1
< 1_[ [1+L(1—cosj9)] ,

—_ 7]Bn 2
Jisj<vi (1 —wy,ePr)
Hj

where the last inequality follows because each factor of the infinite product is bounded
above by 1. Note that w, — 17 and B, ~ C/+/n as n — oo. Thus, for all sufficiently
large n and vn < j < 2+/n, there is a positive constant « such that

2w,e P
——— 2K,
(1 — wyePn)?

uniformly in 7 and j. Whenever n=>/7 < |0] < x, this yields

2
< [] tr+x(=cosjor! <exp(-2n) (3.8)

Vin<j<2vn
Hj

Gy(wp, e P+)
Gt(wnv e_'Bn)

for some explicit constant ¢ > 0. The final inequality in (3.8) follows by a standard
argument (see, for example, [6, pages 430—431]), and so we do not repeat it here.
Applying (3.8), for sufficiently large n,

G[(Wn, e_ﬁn+i9)
G (W, eiﬁ")

exp(g:(wa; e 1))

2n n=37<|h|<n

do < exp(g;(wy; ePry —nd).

|| <

Combining the asymptotics of /; and /5, we obtain

« =B
Pratnn) = 1 - SEEWRED (14 0,01, (3.9)

34
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Then, we estimate g,(w,; e ") by applying Lemma 2.2 and (3.3),

gi(wysePry = Z log(1 + wye ™ 4 wle™Pn 4. 4 yi=le =iy 4 g
21

B(u; 1
= (Z;n) ~3 logt + nB, + O,(n~ %
1
= 2nB(u; n)(1 + O,(n™")) — = 5 logt+ O,(n™ %)
n'*ulogt Ku?

= ZC\/E— Tg + T - 510gt+0,(n 1/4).
Finally, we substitute this estimate of g,(w,;zo) in (3.9) to get the desired asymptotic
formula. O

PROOF OF THEOREM 1.1. For every n > 1, we normalise the random variable Y,(n)
by
Y.(n) — v/n(log1)/C

VEat

For arbitrary r € R, we compute the moment generating function

Z,(n) =

M(Z,(n): —r) = Z pi(m, n) (_ mr n1/4r10gt)

+
= pn) VKn!/4 VKC
Prn(wy) (n”“rlogt)
= exp ,
P.,(1) vKC

where w, = exp(—r/\/fnl/“) for all n > 1. Taking u = r/VK in Proposition 3.1, we
directly get an asymptotic formula for P,.,(w,). In particular, for u = 0,

C
Pia1) = F\/t_fﬁ/“ exp2CVR)(1 +O0,(n” ). (3.10)

Substituting these asymptotic expansions and then letting n — oo, we obtain
lim M(Z(n); =) = e 2
Hence, Theorem 2.4 implies that {Z,(n)} converges in distribution to N(0, 1). O
4. Proofs of Theorem 1.3 and Corollary 1.4
PROOF OF THEOREM 1.3. For arbitrary (@, 8) € R X R, we let
Di={w=wpe? :wp=e %, -n<p<m), D :={z=z0e":20=€eP -1<0<n).

Then, applying Cauchy’s theorem to (3.1),

Gowa) 1 "
pim.n) = (2m)2 fD , f@ e dvde= f ) f explgi(v ) dpdo. (4)
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where g;(w,z) := Log G{(w,z) —mLogw —nLogz. To estimate (4.1) via the
saddle-point method, we need to choose a and g such that

0 0
%gt(wa Z)l(Wo,Zo) = a_th(W’ Z)l(WQ,Zo) = 0

up to suitable error. These conditions yield the saddle-point equations

t . sl
> ( Mo _ D )—m > ( wo It )—n 4.2)
5 B 1) 5 B 1) .
= e]ﬂ wo e]ﬁ WO = e]ﬁ wo e]ﬂ WO

For m and n satisfying (1.4) and p = m — v/n log t/C, we choose @ and 8 depending on
n by
o C plogt
a=q, = ———, =B, = — + —=
K+n F=F \n  2CKn

where the constants C and K are the same as in Theorem 1.1. Applying Lemmas 2.2
and 2.3 together with (2.11) and (2.12), we see that with these values of @ and 3, the
saddle-point conditions (4.2) become

Z ( wo o ) — l(logt— ga/ + Ot(az)) +0,(1)

= B —wy e — wy/ B 2
n logt -1
_ (% Ll Ot(nl/lg))( log 7 — Ta) +0,n'®)
_ y/nlogt

+p0+ O,(n'""® = m+0,n'"®),

C
and similarly,

Z( Jwo T )_ I(Cz—a’logt+0t(az))+0’(1)

= efﬁ—wo_eﬁﬁ—w6 B
_(n _ pynlogt s\ 2, P1og! 5/9
(@ -Fag rou e+ ) o)

=n+ 0,0,

which are sufficient for our purposes. We break the double integral (4.1) into two parts
and focus on the arcs near ¢ = 0 and 6 = 0,

w=e " gl <n”'} and {z=eP 0 <n”), (4.3)
as some estimates analogous to (3.8) ensure that the integrals over the complementary
arcs have subexponentially small contribution compared with (4.3). As in the proof of

Proposition 3.1, we now expand the integrand over (4.3) in a Taylor series expansion
centred at (wy, z9). Recall that

Log Gi(w,z) = Z Log(1 + we + w?z¥ + .- + w1070,
=1
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After computing the partial derivatives, we see that

8w, 2) = log G,(wo, 20) — (AP + 28,40 + C,0%)

twi i jitw!

0 . JWo JW,,

+I¢Z(elﬁ wo ef’B—w’)+lez(eJﬁ—wo ef’ﬁ—wt)
0 j=1 0

3 29 02 03
+Oz(m {M —|¢2 |,—|¢3 l,l—J})+ma—im¢+nﬁ—in9,

B B BB

where
; 2 i . .0 i
A, = lz( -e’ﬁwo B t w(’)e/fﬁ ) 8, 12( Je/ﬁwo 3 Jf wf)enﬁ )
2L\ —wo? (@ —wp? 2L\ —wo? (@ —wpP

and

1 zé‘lﬁ j2t2wt e/tﬁ
C"::EZ( iﬂ s i Otz)'
2@ —woP (e = wp)
Applying the estimates from (2.2) and (2.7),

] o o - 1/18y _ ~13/90
l¢[ z; (ejﬁ — Wo B ejtﬁ - WE)) - m:| - Ot(|¢| n ) - Ot (}’l )7
j=
!

. it
iQ[Z( ‘JWo _ 4J 0 )_ n] = 0,6 n5/9) _ Ot(n_m/“),
izl

B — JB — il
e wo e W,

Also note that

| 3| - |$°6 - |6 - 16°| -
1971 0,110, ¢2 — 0,74, ¢3 —0,my, Lo omm,
B B B B

Substituting these estimates in the expansion of g;(w, z), and combining with (4.1),

a1/
pim,n) = w f eXpl—(And? + 28,060 + Co6%)) d db
_n—l/S

T

x (1 + 0,(n-‘/‘°)).
By Lemma 2.3 together with the expansions from (2.11) and (2.12),

i1 log
A= —+ 0", B,=-=

C2
14/18 _ ¢ 23/18
13 ) 2,3 +Oy(n ), Cn= B +Oi(n ).

For |¢| = n~'> and |6] = n™/7, as n — oo,
-1 /10 logt 23133 > Loy
n ~ o s Bn 6| ~ s 0" ~ — .
Antp? C 6] ~ 2c2 C ol

Thus, the same argument as in (3.6) shows that the lower and upper limits of the double
integral in p,(m,n) can be replaced by —co and +oo, respectively, with an error term
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that goes to zero subexponentially with respect to n. Then, we estimate the completed
double integral via the formula

f ) f ) exp{—(A,P* + 28,00 + C,6°)} dp do =

ACp— B2
where
(t—1)C*  (logt)? Kn? -
A~ B, = 54( - a0 = TH( + 07,
Substituting these estimates in the expression for p,(m, n) above gives
2¢ ~1/10
pim,n) = VR exp(g(wo, z0))(1 + O; (n™"1%)). (4.4)
Tn

Then, we estimate g,(wo, zo) by using Lemma 2.2 and (2.10) to give

g(wo, 20) = log G(e™®, ) + ma + np

1 -1 1 log ¢
= B(Cz —alogt+ —az) -3 logt + (p + \/ﬁ;g )a' +nB +0,(n""%)

4
1
=2CVn— —— — =logt + O,(n”"®).
Vn ZK\/_ 5 g i )
Substituting this in (4.4) yields the claimed asymptotic formula for p,(m, n). ]

PROOF OF COROLLARY .4. Recall the asymptotic formula for p,(n) from (3.10),

pi(n) = _ve_ exp(2CVn)(1 + O,(n™"7)).

2/t n3/4
By Theorem 1.3,
(m, n) 1 P
P - —— exp (- 2K\/_)(1+0(n 1/10)) 4.5)
t VinmKn

for all m satisfying p,,, = m — v/n(log1)/C = O,(n°'1®). For a bounded set X ¢ R and
an arbitrary x € X, we take

= {—\/ﬁbgt - \/I_(n1/4xJ.
C
Note that p,zn,n = K+\/nx* + O,(n'’*) uniformly for x € X. From (4.5),
logt 1
sup [VKn'/* P(Y,(n) - {M n «/En”“xJ) e =0,V
xeX C m
This completes the proof. ]
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