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Jet penetration into soft gels is essential for optimising fluid delivery in medical therapies,
biomedical engineering, and soft robotics. In this work, we visualise the jet flow of a
Newtonian fluid into a soft viscoplastic gel using camera imaging and time-resolved
tomographic particle image velocimetry (PIV) systems. The flow is primarily governed
by the Reynolds number (Re = 350 − 5000) and the effective viscosity ratio (m up to 22).
We observe three flow regimes – mixing, jellyfish, and fingering – with transitions between
them quantified in the Re − m plane. An experimentally informed, systematic, practical,
semi-analytical modelling framework is developed to estimate jet penetration depth over
time, incorporating PIV results and an approximate functional decomposition approach to
describe the velocity distribution and Reynolds stress contributions. The model provides
reasonable estimations across all three regimes.

Key words: jets, plastic materials

1. Introduction
The study of jets has been a long-standing area of interest, beginning with da Vinci’s
foundational observations (da Vinci 1510) and advanced by Stokes (1851), Rayleigh (1878),
and Reynolds (1962). These early investigations laid the groundwork for understanding jet
dynamics, which continue to drive modern research into complex jet interactions with soft
gels. Understanding jet penetration into soft gels (Bantawa et al. 2023; Li & Gong 2024),
whose viscoplasticity endows them with the unique ability to behave as both fluids and
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solids (Balmforth et al. 2014; Bonn et al. 2017), is crucial for optimising fluid delivery
across various fields. In medical applications, the penetration depth of jets in soft gels
used as scaffolds for tissue engineering (Bailey & Appel 2024) determines the efficacy of
therapeutic delivery systems (Taheri et al. 2022), including needle-free injections (Jones
et al. 2019; Schoppink & Rivas 2022). Jet penetration is also essential for bio-printing (Xie
et al. 2022), liquid-in-liquid printing (Bazazi et al. 2022; Xie et al. 2023), and improving
precision in soft robotics for tasks such as gripping and manipulating delicate objects
(Cianchetti et al. 2018). Despite these advancements, a fundamental question remains:
how does jet penetration evolve over time, and to what extent can a jet penetrate a non-
Newtonian soft gel upon injection?

Numerical models and velocimetry techniques, such as particle image velocimetry
(PIV), have been crucial in analyzing jet dynamics in complex scenarios, including
turbulent and non-Newtonian flows (Philippe et al. 2005; Pickering et al. 2021; Usta et al.
2023). PIV studies, in particular, have provided detailed insights into jet instabilities,
mixing, and unsteady behaviours in various media (Davies et al. 1963; Dombrowski
et al. 2005; Vessaire et al. 2020; Gauding et al. 2021; Hassanzadeh et al. 2023). Recent
research, albeit focused on Newtonian fluids, also shows that fluid viscosity significantly
influences jet penetration dynamics (Guyot et al. 2020). The dynamics of single-fluid
viscoelastic jets have long been studied (Hosokawa et al. 2023), but research on fast jets
in viscoplastic fluids – defined by yield stress and complex rheology – is still nascent
and rapidly advancing (Jalaal et al. 2019). However, there is currently no model in the
literature that predicts jet penetration dynamics into soft non-Newtonian materials, in
particular viscoplastic ones. In this context, we conduct jet flow experiments in this study,
injecting a Newtonian fluid into a soft viscoplastic gel (Balmforth et al. 2014; Thompson
& Soares 2016), identifying the flow regimes, and developing an experimentally informed,
simplified, semi-analytical model to estimate jet penetration depth based on PIV data.

2. Experimental setting
The jet was generated using a gear pump (ISMATEC MCP-Z Standard, 1 % accuracy)
to inject fluid vertically through a centrally positioned, long cylindrical nozzle (diameter,
D̂, of 0.432 mm and length of 0.0508 m) into a transparent rectangular tank (20 × 10
× 10 cm3); see figure 1. In this study, dimensionless quantities are hatless to distinguish
them from the dimensional hatted quantities. The Newtonian jet fluid (dyed deionised
water) was injected into a soft viscoplastic gel (transparent Carbopol solution (Carbomer
940), Making Cosmetics Co.); both were miscible and had a density of ρ̂ ≈ 997 kg m−3,
measured using a high-precision density metre (Anton Paar, DMA 35N).

The Carbopol solutions were assumed to follow the viscoplastic Herschel–Bulkley
model (Balmforth et al. 2014):{

τ̂ = τ̂y + κ̂ ˆ̇γ n, τ̂ > τ̂y,

ˆ̇γ = 0, τ̂ � τ̂y,
(2.1)

confirmed via rheometry (DHR-3, TA Instruments). In Equation (2.1), τ̂ , ˆ̇γ , τ̂y , κ̂ ,
and n represent the shear stress, shear rate, yield stress (0 − 4.3 Pa), fluid consistency
index (0.001 − 1.64 Pa·sn), and power-law index (0.4 − 1), respectively. Accordingly, the
effective viscosity of the ambient viscoplastic fluid is defined using the jet characteristic
shear rate (V̂0/D̂): μ̂a = τ̂y(V̂0/D̂)−1 + κ̂(V̂0/D̂)n−1, where the mean injection velocity
(V̂0) ranged from 0.9 m to 11 ms−1, resulting in μ̂a ranging from 0.001–0.022 Pa·s. The
jet fluid viscosity (μ̂ j ) was 0.001 Pa·s.
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Figure 1. Schematic of experimental setup with camera imaging and PIV techniques.

Our backlit setup, featuring light-emitting diode arrays and a digital camera (Basler
acA2040–90um), captured jet flow images at 25 frames per second, which were processed
using in-house codes to determine the temporal jet penetration depth. A time-resolved
tomographic PIV system (LaVision) (Buzzaccaro et al. 2013; Hassanzadeh et al. 2023)
analyzed the velocity fields by seeding both jet and soft gel with polyamide tracer particles
(60 µm diameter, 1030 kg m−3 density). A high-speed pulsed Nd laser (532 nm, 30 mJ per
pulse) created a 5 cm laser illumination volume, with images captured by four high-speed
CMOS cameras (Phantom VEO-E 340L) with 60 mm lenses (Nikon Micro Nikkor) and
synchronised by a PTU-X unit. The system was calibrated with a 3D calibration plate,
and 3D voxel volumes were reconstructed from particle intensity data, with velocity fields
extracted via 3D cross-correlation. PIV images were processed (using DaVis 10 software)
on a supercomputer (Micro Logo).

The key dimensionless numbers governing the jet flow reduce to the Reynolds number
(Re):

Re = ρ̂V̂0 D̂

μ̂ j
, (2.2)

which ranges from 350–5000, and the effective viscosity ratio (m), obtained by balancing
the characteristic viscous stresses in the jet and ambient fluids:

μ̂a

(
V̂0

D̂

)
∼ τ̂y

(
V̂0

D̂

)−1

+ κ̂

(
V̂0

D̂

)n−1

⇒ m = μ̂a

μ̂ j
=

τ̂y

(
V̂0
D̂

)−1 + κ̂
(

V̂0
D̂

)n−1

μ̂ j

≡ Bn + κ̂

μ̂ j

(
V̂0

D̂

)n−1

, (2.3)
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Figure 2. (a) Sequence of experimental snapshots of mixing (Re ≈ 1250, m ≈ 3), jellyfish (Re ≈ 1600, m ≈ 4),
and fingering (Re ≈ 1000, m ≈ 13) regimes. Snapshots at t̂ = 0.29, 0.80, 1.42, 2.65, and 3.18 seconds (mixing
regime, supplementary video 1); t̂ = 0.63, 3.26, 5.04, 7.05, and 9.03 seconds (jellyfish regime, supplementary
video 2); and t̂ = 0.91, 3.46, 11.91, 18.85, and 25.79 seconds (fingering regime, supplementary video 3).
(b) Regime classification in Re − (Re/m) plane, showing mixing, jellyfish, and fingering regimes, with dashed
(3.1) and solid (3.2) line transition boundaries. Triangle-square and square-circle symbols mark transitions
between fingering-jellyfish and jellyfish-mixing regimes, respectively. Pink dotted line represents an alternative
relation using a third-order expansion of (3.1), given by Remixing→jellyfish

c = (Re/m) + (1/120)((Re/m)2) −
(4/106)((Re/m)3).

where the modified Bingham number is defined as Bn = (τ̂y/μ̂ j (V̂0/D̂)), ranging from
0 to 2, and m spans from 1 to 22. In other words, m provides a measure of how the
viscosity and yield stress effects of the ambient fluid influence the jet flow, balancing
inertial and viscous forces through their Reynolds number ratios, i.e., m ≡ Re/Re†, where
Re† = ρ̂V̂0 D̂/μ̂a defines the ambient fluid’s Reynolds number. Note that, as n is already
embedded in the definitions of both Bn and m, its influence as a separate parameter may
be less significant. Thus, m and Re† mainly characterise the flow dynamics; nevertheless,
they do not fully span the dimensionless space, but numerical computations, free from
experimental constraints, can systematically explore their effects (Thompson & Soares
2016), a task for future work.

3. Experimental results
In a typical experiment (figure 2a), dyed jet fluid is injected from a nozzle into transparent
viscoplastic fluid, penetrating into it as the jet advances. The maximum axial distance
reached at a given time is defined as the jet penetration depth (L̂ p). Results are presented
in dimensionless form using D̂ for lengths, V̂0 for velocities, and D̂/V̂0 for times, unless
otherwise stated. Our results reveal the existence of three regimes: mixing, jellyfish, and
fingering. The upper row of figure 2(a) shows the mixing regime, which occurs at high
Re and low m, where significant mixing between the jet and soft gel is observed, along
with an initial stable region. At higher m and lower Re, the middle row illustrates the
jellyfish regime, i.e., a newly identified flow state, reported for the first time in viscoplastic
fluids, and characterised by a vortex ring around the jet tip caused by instabilities. This
vortex grows, and the jet radius expands transversely due to the higher m. With further
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increases in m and decreases in Re, the lower row shows the fingering regime, where the jet
fluid initially penetrates the yield-stress fluid before becoming trapped (Hassanzadeh et al.
2023), eventually forming evolving fingers. Moreover, our PIV analysis reveals fluctuations
within each regime, with an average fluctuation intensity – defined as the ratio of turbulent
to total kinetic energy – at y ≈ 40 of approximately 60 %, 30 %, and 55 % for the mixing,
jellyfish, and fingering regimes, respectively.

As shown in figure 2(b), the three morphological regimes – mixing, jellyfish, and
fingering – can be classified using Re and m. Here, the transition from mixing (at high
Re†) to jellyfish, and then to fingering (as Re† decreases), is influenced by a combination
of inertial and effective viscous forces. The critical transition between the mixing and
jellyfish regimes is given by:

Remixing→jellyfish
c = 200 m (m − 1) , 1 � m � 22, O(102)� Re � O(104). (3.1)

While the simplified relation in (3.1) provides a convenient approximation, a more precise
transition can be obtained through higher-order expansions, as shown by the dotted line
(Remixing→jellyfish

c = (Re/m) + (1/120)((Re/m)2) − (4/106)((Re/m)3)) in figure 2(b).
The fingering regime emerges as m increases, particularly with higher yield stress in

the soft gel. The critical transition Reynolds number between the jellyfish and fingering
regime is given by:

Re jellyfish→fingering
c = 15 m (m − 1) , 1 � m � 22, O(102)� Re � O(104). (3.2)

4. Model development and comparison with experiments
We develop an experimentally guided, semi-analytical model to estimate the jet
penetration depth into the soft gel over time. The model is based on dimensionless motion
equations for momentum and continuity in a cylindrical coordinate system (with (r, θ, y)

denoting radial, tangential, and axial directions; see figure 3a):

Re†
(

∂v
∂t

+ v · ∇v
)

= −∇ p + ∇ · τ , (4.1)

∇ · v = 0, (4.2)

where v = (vr , vθ , vy) represents the velocity field, p the pressure, and τ the stress
tensor. Using Re† in (4.1) simplifies the analysis by encapsulating the viscoplastic
fluid’s rheology into an effective viscosity, reflecting the dominant inertial-to-viscous
force ratio. This approach captures the gel’s resistance properties, governed by its
yield stress and characteristic shear rate, which critically influence the jet penetration
depth and flow morphology. While it aligns with the observed flow transitions (mixing,
jellyfish, and fingering, as shown in figure 2b), it neglects local variations in viscosity,
detailed mixing mechanisms, and secondary flow dynamics, such as vortex and finger
formation.

We assume that the jet dynamics develop over a thin, elongated layer with thickness
ζ and length 	. This allows us to define an arbitrary small aspect ratio ε = ζ/	, and we
rescale our variables as follows:

εy = y∗ , εt = t∗ , εp = p∗ , vr = εv∗
r , vθ = εv∗

θ . (4.3)
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Re† (∂v/∂t + v ˙ 
∇v) = − ∇p + ∇ ˙ 

τ

v (t, r, θ, y) = v (r, y)  + v′ (t, r, θ, y) 

Re† (∂vy/∂t + vr ∂vy/∂r + vθ/r ∂vy/∂θ  + vy ∂vy/∂y) 

=1/r ∂/∂r  (r ∂vy/∂r)  + 1/r2 ∂2vy/∂θ2  

vr  ∂vy/∂r + vy ∂vy/∂y

∇ ˙ 
v = 0

= 1/Re†(1/r ∂/∂r  (r ∂vy/∂r))  − [∂v′
yv

′
y/∂y

             − 1/r ∂ (rv′
rv

′
y)/∂r]

vy = Ψ (η)U (y)

v′
yv

′
y = Φ(η)S(y), v′

rv
′
y = χ (η)S(y)

α = 
∫ 
0

∞
Ψ 3ηdη Ψηdη, β = 2π

∫ 
0

∞
(ηΨ ′2 − ΨΨ ′)dη, /

∫ 
0

∞

γ = 
∫ 
0

∞
ΨΦηdη  ζ = �2π

∫ 
0

∞
Ψ (χ + χ′η)dη/

∫ 
0

∞

U = dLp/dt

Lp(t)

Ψηdη,

/�∫ 
0

∞
Ψηdη

v
y/

[v
y]

c
v
′ rv
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[v
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Figure 3. Modelling framework and results: (a) Newtonian jet injection into a viscoplastic fluid, showing
jet centreline (dashed-dot), coordinates, and penetration depth (L̂ p) at Re ≈ 1000 and m ≈ 4.5. Normalised
axial velocity (b), axial Reynolds stress (c), and radial-axial Reynolds stress (d) versus η at different axial
distances, with brighter symbols indicating greater distances (30 � y � 100). Each row corresponds to mixing,
jellyfish, and fingering regimes (left to right). Fitted velocity curves (dashed-dotted) are cosh(η)−1.539 (mixing),
cosh(η)−1.300 (jellyfish), and cosh(η)−0.864 (fingering), consistent with (Pope 2000). Fitted axial Reynolds
stress curves (dashed) are cosh(η)−2.226, cosh(η)−1.594, and cosh(η)−0.623, and fitted radial-axial Reynolds
stress curves (solid) are 0.22 sinh(η) cosh(η)−2.5, 0.12 sinh(η) cosh(η)−3, and 0.2 sinh(η) cosh(η)−2.6 for the
respective regimes. Mean squared errors between fitted and measured velocity profiles are 0.38 % (mixing),
0.08 % (jellyfish), 4.47 % (fingering), with Reynolds stress errors in a comparable range. (e) S(y), versus y,
with fitted curves 0.0039e−0.018y (solid), 0.0044e−0.043y (dashed), and 0.0031e−0.045y (dotted).

Therefore, the motion equations in the leading order can be found as:

O
(
Re†ε3)= −∂ p∗

∂r
+ O

(
ε2), (4.4)

O
(
Re†ε3)= −∂ p∗

∂θ
+ O

(
ε2), (4.5)

Re†ε

(
∂vy

∂t∗
+ v∗

r
∂vy

∂r
+ v∗

θ

r

∂vy

∂θ
+ vy

∂vy

∂ y∗

)
= −∂ p∗

∂ y∗ + 1
r

∂

∂r

(
r
∂vy

∂r

)

+ 1
r2

∂2vy

∂θ2 + O
(
ε2), (4.6)

1
r

∂(rv∗
r )

∂r
+ 1

r

∂v∗
θ

∂θ
+ ∂vy

∂ y∗ = 0, (4.7)
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which, considering ε 	 1 with a fixed εRe† (implying Re† ∝ 1/ε � 1), leads to the
following axial momentum equation:

Re†ε

(
∂vy

∂t∗
+ v∗

r
∂vy

∂r
+ v∗

θ

r

∂vy

∂θ
+ vy

∂vy

∂ y∗

)
= −∂ p∗

∂ y∗ + 1
r

∂

∂r

(
r
∂vy

∂r

)
+ 1

r2
∂2vy

∂θ2 , (4.8)

where p∗ = p∗(y) only. Now, it can be transformed back to the original variable scaling
to reach:

Re†
(

∂vy

∂t
+ vr

∂vy

∂r
+ vθ

r

∂vy

∂θ
+ vy

∂vy

∂y

)
= 1

r

∂

∂r

(
r
∂vy

∂r

)
+ 1

r2
∂2vy

∂θ2 , (4.9)

in which the pressure gradient term is neglected, following the fact that pressure does not
depend on r and pressure is constant at larger radial distances from the jet centreline, in line
with the literature (Guimarães et al. 2023). Also, this is due to the dominance of inertial
and viscous forces, as the gel’s yield stress and viscosity primarily govern penetration
depth and morphology.

We now derive the Reynolds-averaged form of (4.9), by decomposing the velocity into
its mean (bar notation) and fluctuating (prime notation) components in the form of:

v (t, r, θ, y) = v (r, y) + v′ (t, r, θ, y) , (4.10)

where the overbar denotes circumferential and ensemble averaging, resulting in the
following leading order motion equations:

vr
∂vy

∂r
+ vy

∂vy

∂y
= 1

Re†

(
1
r

∂

∂r

(
r
∂vy

∂r

))
−
[

∂v′
yv′

y

∂y
+ 1

r

∂
(
rv′

rv′
y
)

∂r

]
, (4.11)

1
r

∂ (rvr )

∂r
+ ∂vy

∂y
= 0, (4.12)

where v′
yv′

y and v′
rv′

y are dominant Reynolds stresses (confirmed by PIV), and the flow
is assumed to be statistically steady.

As shown in figure 3(b–d), the profiles of vy/(vy)c, v′
yv

′
y/(v

′
yv

′
y)c and v′

rv
′
y/(v

′
yv

′
y)c

(with the subscript c denoting the centreline) exhibit an approximate scaling behaviour,
with the scaling variable defined as:

η = r

r1/2
, (4.13)

in which r1/2(y) represents the radial distance from the centreline where the mean
velocity drops to half of its centreline value, characterising the jet’s lateral spread (Pope
2000; Kuhn et al. 2021). Note that, although dispersions and deviations from a universal
scaling collapse are observed, particularly in the fingering regime (figure 3e), where
localised stress effects and flow confinement introduce variations in the velocity profile,
our assumed approximate scaling captures the dominant trends and serves as a practical
approximation for a simplified model. Thus, a degree of dependence on η allows the mean
velocity, vy , to be approximately expressed via a functional decomposition:

vy = U (y)Ψ (η), (4.14)

where Ψ (η) is found for a representative experiment in each regime via PIV data fitting
(figure 3b). Similarly, for the dominant Reynolds stress terms, we write:

v′
yv

′
y = S(y)Φ(η), v′

rv
′
y = S(y)χ(η), (4.15)

where S(y), Φ(η), and χ(η) are found for each regime via PIV data fitting (figure 3c–e).
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Multiplying the Equation (4.11) by vy and integrating it over volume gives:

∫ y

0

∫ ∞

0

(
vrvy

∂vy

∂r
+ v2

y
∂vy

∂y

)
2πrdrdy =

∫ y

0

∫ ∞

0

⎡
⎣ 1

Re†

(
vy

∂2vy

∂r2 + vy

r

∂vy

∂r

)
− vy

∂v′
yv

′
y

∂y
− vy

r

∂
(

rv′
rv

′
y

)
∂r

⎤
⎦2πrdrdy, (4.16)

where y the dummy variable of integration. Using the continuity equation, the
left-hand side of (4.16) is reformulated. The term vy(∂

2vy/∂r2) is decomposed as
1/2(∂2(v2

y)/∂r2) − ((∂vy/∂r)2); the first component, contributing only ∼7 % across all
regimes based on the PIV results, is neglected, yielding a simplified expression after some
algebra:

3
2

∫ y

0

∫ ∞

0
v̄2

y
∂v̄y

∂y
2πrdrdy = 1

Re†

[∫ y

0

∫ ∞

0
v̄y

∂v̄y

∂r
2πdrdy −

∫ y

0

∫ ∞

0

(
∂v̄y

∂r

)2

2πrdrdy
]

−
∫ y

0

∫ ∞

0
v̄y

∂v′
yv′

y

∂y
2πrdrdy

−
∫ y

0

∫ ∞

0

vy

r

∂
(

rv′
rv′

y

)
∂r

2πrdrdy. (4.17)

Subsequently, using the approximate functional decomposition approach ((4.13), (4.14),
and (4.15)), along with integration by parts gives:

1
2

[
U 3r2

1/2

∫ ∞

0
Ψ 32πηdη − U 3(0)r2

1/2(0)

∫ ∞

0
Ψ 32πηdη

]

= 1
Re†

[∫ y

0

∫ ∞

0
U 2Ψ Ψ ′2πdηdy −

∫ y

0

∫ ∞

0
U 2Ψ ′22πηdηdy

]

−
∫ y

0

∫ ∞

0
Ur2

1/2Ψ S′Φ2πηdηdy −
∫ y

0

∫ ∞

0
Ur1/2Ψ S

(
χ + χ ′η

)
2πdηdy, (4.18)

Now, multiplying and dividing (4.18) by
∫∞

0 Ψ 2πηdη, isolating the jet flux (Q), and
applying the boundary condition (U (0) = 1), we eventually arrive at:

1
2
αQ

(
U 2 − 1

)
= − 1

Re†

∫ y

0
U 2βdy −

∫ y

0
QS′γ dy −

∫ y

0

√
QU Sζdy, (4.19)

where the prime denotes the derivative and the model-derived parameters α, β, γ , and ζ

are functions of the jet velocity and Reynolds stress profiles:
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α =
∫∞

0 Ψ 3ηdη∫∞
0 Ψ ηdη

,

β = 2π
∫∞

0

(
ηΨ ′2 − Ψ Ψ ′

)
dη,

γ =
∫∞

0 Ψ Φηdη∫∞
0 Ψ ηdη

,

ζ = √
2π

∫∞
0 Ψ

(
χ + χ ′η

)
dη√∫∞

0 Ψ ηdη

.

(4.20)

In (4.19), Q = Ur2
1/2
∫∞

0 2πηΨ dη = Q0 + Qe, where Q0 is the injection flux and Qe

accounts for entrainment, with PIV analysis showing Qe contributes 23–30 % across
regimes. However, for simplicity and analytical tractability, we assume Q ≈ Q0 = π/4
(constant), acknowledging a jet momentum underestimation. Also, since the last term
in (4.19) (radial-axial Reynolds stress contribution) has a secondary effect on axial
momentum transport, with PIV measurements showing its impact is 4–15 % of dominant
terms across regimes, we omit it for simplicity.

Taking the derivative of (4.19) with respect to y, integrating, and applying the boundary
condition U (0) = 1 yield an analytical expression for the jet velocity:

U (y) =
(

1 − 2γ

α

∫ y

0
exp

(
2βy

αQ0 Re†

)
S′dy

) 1
2

exp
(

− βy

αQ0 Re†

)
, (4.21)

which is then integrated (via U = (dL p/dt)) to calculate the jet penetration depth (L p)
as a function of time. We can, thus, derive the variation in the jet penetration depth over
time based on the key parameters such as the jet velocity profiles, dominant Reynolds
stress, injection velocity, and flow rate. Figure 3(b) show the jet velocity profiles used
in our model, with α values of 0.25, 0.24, and 0.20, and β values of 5.8, 5.7, and 5.4
for the mixing, jellyfish, and fingering regimes, respectively. The Reynolds stress profiles
are detailed in figures 3(c) and 3(d), yielding γ values of 0.32, 0.35, and 0.41, for the
respective regimes. According to our PIV analysis for different cases, α, β, and γ vary by
up to ±8 %.

The profiles for Ψ (η), Φ(η), S(y) are extracted from PIV data and assumed constant
within each flow regime (mixing, jellyfish, fingering). Model-derived parameters α, β, and
γ encapsulate the axial velocity dynamics and interactions with Reynolds stresses, while
S(y) reflects axial decay, energy dissipation, and turbulence damping. These parameters,
assumed applicable without re-fitting for each experiment, enable efficient estimation of
L p over time. This provides a robust, validated approach, while simplifying analysis and
enhancing scalability across experimental scenarios.

Figure 4(a) compares the model’s outputs with experimental data across the three flow
regimes, applying the obtained values of α, β, and γ to all cases with similar flow regimes.
The model demonstrates reasonable estimations of the jet penetration depth over time, even
in the challenging fingering regime with high yield stress. In the mixing regime, the model
closely aligns with experimental values initially, with mid-time deviations converging
later as energy dissipation is accounted for. In the jellyfish regime, the model initially
overestimates the penetration depth but eventually aligns with experimental trends by the
end of the injection period. The inset in figure 4(b) shows the variation of L̂ p between
the model and experimental data, with initial overestimations likely due to unaccounted
losses near the nozzle exit. This discrepancy is somewhat corrected over time, although
occasional underestimations can also occur. The model’s accuracy generally improves
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Figure 4. (a) Jet penetration depth over time for experiments (symbols) and model (lines) across three flow
regimes: mixing (Re ≈ 1300, m ≈ 1, blue), jellyfish (Re ≈ 1300, m ≈ 4, red), and fingering (Re ≈ 1300, m ≈
11, green). (b) Model versus experimental results of L p at t ≈ O(103), both multiplied by Re to illustrate
the data spread. The solid line shows L̂Model

p = L̂Experiment
p . Data points’ face colour, size, and edge width

indicate Re, m, and Bn, with circles, squares, and triangles for mixing, jellyfish, and fingering regimes. Inset
shows model outputs vs. experimental results of L̂ p (dimensional) from t̂ = 0.4 s to the experiment end, with
black/red edges for start/end points and dashed lines for time variation.

over time across all flow regimes, although higher Re values result in greater deviations,
possibly due to underestimated Reynolds stresses. For a larger dataset, the main panel
in figure 4(b) demonstrates the model’s overall estimative capability but also indicates
increasing deviations at higher Re.

5. Conclusions
A Newtonian jet penetrating a soft viscoplastic gel was studied across viscosity ratios from
1 to 22 and Reynolds numbers between 350 and 5000. Our experiments identified three
distinct responses of the viscoplastic fluid: a mixing regime dominated by turbulence, a
jellyfish regime with vortex formation and radial jet expansion, and a fingering regime
where the jet becomes confined and forms localised fingers. To estimate the penetration
depth over time, we developed an experimentally informed semi-analytical model
incorporating key dimensionless parameters, such as effective viscosity and Reynolds
stresses, and leveraging an approximate scaling approach. The model demonstrates
reasonable estimations across all regimes, providing a robust framework for understanding
jet interactions with soft viscoplastic gels. However, it does not account for long-term
effects, such as dominant mixing or extensive finger formation, where nonlinearities and
instabilities become significant. Future work should address these complexities to extend
the model’s applicability to high-yield-stress environments and more intricate scenarios.
Finally, we investigated the problem in Re − m space, and future work incorporating other
dimensionless groups, such as the Bingham number and power-law index, could enhance
understanding of our jet flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.352.
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