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Görtler vortices induced by concave curvature in supersonic turbulent flows are
investigated using resolvent analysis and large-eddy simulations at Mach 2.95 and
Reynolds number Reδ = 63 500 based on the boundary-layer thickness δ. Resolvent
analysis reveals that the most amplified coherent structures manifest as streamwise counter-
rotating vortices with optimal spanwise wavelength 2.4δ at cut-off frequency f δ/u∞ =
0.036, where u∞ is the freestream velocity. The leading spectral proper orthogonal
decomposition modes with spanwise wavelength approximately 2δ align well with the
predicted coherent structures from resolvent analysis at f δ/u∞ = 0.036. These predicted
and extracted coherent structures are identified as Görtler vortices, driven by the Görtler
instability. The preferential spanwise scale of the Görtler vortices is further examined
under varying geometric and freestream parameters. The optimal spanwise wavelength
is insensitive to the total turning angle beyond a critical value, but sensitive to the
concave curvature K at the same turning angle. A limit spanwise wavelength 1.96δ,
corresponding to an infinite concave curvature as K → ∞, is identified and validated.
Increasing the freestream Mach number or decreasing the ratio of wall temperature to
freestream temperature reduces the optimal wavelength normalised by δ, while variations
in freestream Reynolds number have negligible impact. Additionally, a modified definition
of the turbulent Görtler number GT based on the peak eddy viscosity in boundary layers
is proposed and employed to assess the occurrence of Görtler instability.

Key words: supersonic flow, turbulent boundary layers, absolute/convective instability

1. Introduction
Compressible turbulent boundary layers (TBLs) over concave surfaces are crucial in
configurations such as aerofoils and scramjet engines. The combined effects of concave
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streamline curvature, adverse pressure gradients and bulk compression in flows over
concave surfaces destabilise TBLs to promote turbulent mixing, as highlighted by
Bradshaw & Young (1973) and Bradshaw (1974). According to Floryan (1991), the
excited centrifugal effects affect TBLs from three aspects: (i) directly influencing turbulent
structures by the wall curvature effect, (ii) generating secondary flows known as Görtler
vortices, and (iii) impacting turbulent structures via Görtler vortices. The second effect is
also referred to as Görtler instability. However, the behaviours and characteristics of the
induced Görtler vortices in turbulent flows remain inadequately understood compared to
those in laminar flows.

Early studies focused on experiments to explore the impact of concave curvature
K = δ/r on turbulence, where δ is the boundary-layer thickness, and r is the curvature
radius. Hoffmann, Muck & Bradshaw (1985) experimentally investigated the impact
of curvature on incompressible TBLs. They concluded that the wall curvature directly
dominates turbulent structures when the curvature is not strong enough, while the Görtler
vortices are more influential at a moderate curvature K = δ/r � 0.01. The critical value
suggests that strong curvature is necessary to form Görtler vortices due to fuller TBLs
(Floryan 1991). In supersonic flows, Jayaram, Taylor & Smits (1987) compared TBLs
over concave surfaces with curvatures 0.02 and 0.1 to those over a compression ramp
(K → ∞) with the same turning angle 8◦. The study revealed that turbulent fluctuations
respond rapidly in regions with large curvature to alter turbulent structures. The authors
also reported a dip below the logarithmic law, but did not detect longitudinal roll cells
in their experiments. Later, Barlow & Johnston (1988a,b) observed that longitudinal roll
cells wander side to side without preferred spanwise locations when the freestream is
relatively free of spanwise non-uniformities, indicating that these roll cells are unsteady.
However, a stationary pattern of large-scale roll cells was found when introducing steady
weak disturbances using small vortex generators. These stable structures were observed in
time-averaged visualisations with the spanwise wavelength approximately 1–2 times the
boundary-layer thickness. A similar steady pattern with the help of upstream vortex gener-
ators was also discussed by Schuelein & Trofimov (2011) in supersonic compression ramp
cases. Different patterns of the large-scale motions highlight the influence of upstream
disturbances, as summarised by Floryan (1991) and Priebe et al. (2016). Donovan, Spina &
Smits (1994) investigated the response of the large-scale motions to a short concave region
but with a strong concave curvature K = 0.08. They reported that the centrifugal effects
amplify turbulence levels and skin friction compared to flat plates with similar pressure
distributions. Later, Wang & Wang (2016) analysed the break-up process in the concave
region from large-scale structures to smaller ones with high-resolution flow visualisation,
finding that the vortices tend to break up faster under more significant concave curvature.

In recent years, high-fidelity numerical simulations have been employed to investigate
turbulent structures over concave surfaces. Tong et al. (2017) performed direct numerical
simulations (DNS) to study supersonic TBLs over a curved ramp with K = 0.02 and
turning angle ϕ = 24◦ at Mach 2.95. They discovered a mode at f δ/u∞ = 0.017 with
regular spatial structures distributed in the spanwise direction using dynamic mode
decomposition, where u∞ is the freestream velocity. These structures resemble the
spanwise structures of Görtler vortices in laminar flows. Sun, Sandham & Hu (2019)
compared TBLs over concave surfaces with two different radii to those over a flat plate,
and reported prominent low-frequency fluctuations (within the range f δ/u∞ = 0.2−0.4)
on concave surfaces due to large-scale structures. They noted that Görtler instability
primarily affects the outer layer, forming Görtler-like vortices, while the inner layer
remains largely unaffected. These vortices facilitate rapid momentum exchange between
the inner and outer parts of TBLs, enhancing turbulence intensity and Reynolds stresses.
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Wang et al. (2019) also observed similar momentum exchange processes driven by large-
scale roll cells, achieved through ejection and sweep events that transport high-momentum
flow towards the wall, and low-momentum flow towards the outer edge. They suggested
that these large-scale roll cells originate from very-large-scale motions in the absence
of upstream artificial disturbances. Wu, Liang & Zhao (2019) numerically investigated
the small curvature case studied by Jayaram et al. (1987) at K = 0.02 and ϕ = 8◦, but
with a lower reference Reynolds number. They found that the outer peak of the energy
spectra falls in the lower-wake region due to the turbulence amplification effect. However,
they demonstrated that log-region superstructures primarily contribute to outer–inner
interactions in the concave region, i.e. large/small-scale interactions, enhancing turbulence
modulation strength significantly. In a recent study, Tong et al. (2023) carried out DNS to
characterise the effect of concave curvature on the wall shear stress and heat flux. They
emphasised the leading role of the outer large-scale structures in contributing to the mean
wall shear stress and wall heat flux.

Previous studies have primarily examined the effects of concave curvature on turbulent
statistical properties, emphasising how wall curvature and Görtler vortices significantly
alter turbulent structures. However, the Görtler vortices themselves in turbulent flows,
particularly their spatial–temporal structures and scales, remain poorly understood. These
vortices, characterised by counter-rotating roll cells in laminar flows, are challenging to
visualise in turbulent flows due to the presence of complex small-scale structures (Wang
et al. 2019). Additionally, while many studies have shown that the spanwise wavelength of
Görtler vortices is typically approximately 2δ, Guo et al. (2024) also reported structures
with spanwise wavelength approximately 1.2δ. Therefore, the spanwise scales of Görtler
vortices also need to be thoroughly examined.

In recent years, resolvent analysis (McKeon & Sharma 2010) has become an attractive
tool for studying coherent structures in turbulent flows. This method identifies the most
amplified response for a given input forcing, and has been successfully applied to predict
coherent structures in turbulent jets (Schmidt et al. 2018; Lesshafft et al. 2019; Maia et al.
2024) and channel flows (McKeon 2017; Bae, Dawson & McKeon 2020; Fan et al. 2024),
as well as to investigate the low-frequency dynamics of turbulent separation bubbles (Hao
2023; Cura et al. 2024).

The present study aims to investigate the features of Görtler vortices in supersonic
turbulent flows using resolvent analysis and large-eddy simulations (LES). We will focus
on the spatial–temporal structures and spanwise scales of these vortices. Resolvent analysis
will be used to predict the most amplified coherent structures on concave surfaces.
These predictions will be compared with structures extracted by proper orthogonal
decomposition (POD) and spectral proper orthogonal decomposition (SPOD) based
on the LES dataset. We expect the predicted structures to be Görtler vortices, with
Görtler instability as the dominant amplification mechanism. Finally, we will explore how
geometric and freestream parameters influence the preferential spanwise scale of Görtler
vortices and predict their occurrence.

2. Geometry and freestream conditions
As sketched in figure 1, the flow configuration in this study involves a concave surface
with total turning angle ϕ = 20◦ and curvature radius r = 50δ (K = 0.02). A Cartesian
coordinate system is established with the origin at the beginning of the concave
surface. The computational domains for the Reynolds-averaged Navier–Stokes (RANS)
simulations and LES are also marked in the figure. The freestream parameters are taken
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Figure 1. Computational domains and boundary conditions: r is the curvature radius, ϕ is the turning angle, x0
is at (−1.76δ, 0), the reference station, and xin is at (−22.5δ, 0), the station of the chosen one-dimensional ve-
locity profile from the RANS base flow. The RANS domain and LES domain refer to the computation domains
for RANS simulations and LES, respectively. Boundary conditions for RANS and LES are also marked.

from Zheltovodov et al. (1990), with Mach number M∞ = 2.95, density ρ∞ = 0.314
kg m−3, statistic temperature T∞ = 108 K, and Reynolds number Reδ = 63 500 with
δ = 2.27 mm. The boundary-layer thickness δ is defined as 99 % of the freestream velocity
at the reference station x0 (see figure 1).

3. Theoretical and numerical approach

3.1. Governing equations
The compressible Navier–Stokes equations in operator form are given as

∂U
∂t

=N (U), (3.1)

where U is the vector of conservative variables, and N denotes the nonlinear Navier–
Stokes operator. For the RANS equations, U is the vector of Favre-averaged variables, and
N is the nonlinear RANS operator. In the case of LES, the governing equations are the
Favre-filtered Navier–Stokes equations, with U representing the vector of Favre-filtered
variables, and N representing the nonlinear LES operator. The Favre filter is defined as
〈 f 〉 = ρ f /ρ̄, where an overline denotes the spatial filter (Garnier, Adams & Sagaut 2009).

The working fluid is assumed to be a perfect gas with Prandtl number Pr = 0.72 and
specific heat ratio 1.4. The molecular viscosity μ is calculated from Sutherland’s law, and
the turbulent Prandtl number Prt is chosen to be 0.9.

3.2. The RANS solver
The Boussinesq assumption is employed in the RANS equations to model the Reynolds
stresses, with the eddy viscosity μt obtained from the Spalart–Allmaras turbulence model
(Spalart & Allmaras 1992). An in-house finite-volume solver called PHAROS (Hao, Wang
& Lee 2016; Hao & Wen 2020) is used to obtain RANS base flows. The modified Steger–
Warming scheme (MacCormack 2014) is applied in computing the inviscid fluxes, and the
viscous fluxes are solved using a second-order central difference scheme. The implicit line
relaxation method proposed by Wright, Candler & Bose (1998) is employed for pseudo-
time marching. The computation domain and boundary conditions are also marked in
figure 1. The far-field boundaries follow the freestream conditions. The supersonic outflow
boundary uses a simple extrapolation, and an isothermal no-slip condition with fixed
temperature 275.4 K is applied to the wall.
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3.3. The LES solver
Implicit LES are also conducted using PHAROS. The low-dissipative sixth-order kinetic
preserving scheme (Pirozzoli 2010) combining the AUSM+-up scheme (Liou 2006) with
the fifth-order weighted essentially non-oscillatory reconstruction (Jiang & Shu 1996) is
used to solve the inviscid fluxes, switched by the Jameson sensor (Jameson, Schmidt &
Turkel 1981). Time integration is performed using a third-order low-storage Runge–Kutta
scheme, with time step 9 ns. The total simulation time is approximately 10 ms. Flow
samples are collected for duration 8.1 ms (2200δ/u∞).

The computational domain for LES is reduced appropriately, as depicted in figure 1.
The spanwise width of the domain is set as 6δ. The inflow boundary employs the extended
digital filter technology (Touber & Sandham 2009; Ceci et al. 2022) and a one-dimensional
profile extracted from the RANS base flow, as marked at station xin at (−22.5δ, 0) in
figure 1. The profile is chosen to ensure that the boundary-layer thickness δ at station x0 is
2.27 mm after a turbulence recovery process. Supersonic outflow boundary conditions are
specified at the upper and right boundaries. The grid is progressively coarsened at these
boundaries, combined with a sponge zone of thickness approximately 3δ near the upper
boundary to damp the flow variables to the freestream values to avoid any reflections
(Mani 2012). Periodic boundary conditions are used in the spanwise direction. The wall
is assumed to be no-slip and isothermal with Tw = 275.4 K. The grid measures 1423 ×
181 × 301 in the streamwise, wall-normal and spanwise directions, respectively. The mesh
is uniform in the streamwise and spanwise directions, with grid resolutions �x+ ≈ 19,
�y+

w ≈ 1.0 and �z+ ≈ 9 at the reference station x0.

3.4. Resolvent analysis
Resolvent analysis is based on the scale separation assumption, which posits a sufficient
scale gap between large-scale coherent structures and turbulent fluctuations. Globally
stable flows can be modelled as a noise amplifier (Huerre & Monkewitz 1990) and
investigated using resolvent analysis (Sipp & Marquet 2013). To study the linear forced
dynamics of a noise amplifier flow, a small-amplitude forcing f ′ is introduced into the
linearised Navier–Stokes equations, given as

∂U ′

∂t
=AU ′ +B f ′, (3.2)

where A is the linearised operator evaluated using a base flow from RANS results or LES
Favre-averaged results, and U ′ is the perturbation term around the base flow. The operator
B is to constrain the forcing field to a localised region (Bugeat et al. 2019). Both U ′ and
f ′ are assumed to be harmonic in time and the spanwise direction, given as

U ′(x, y, z, t) = Û(x, y) exp(iβz − iωr t),

f ′(x, y, z, t) = f̂ (x, y) exp(iβz − iωr t), (3.3)

where β is the spanwise wavenumber, and ωr is the angular frequency. Substituting (3.3)
into (3.2) gives

− iωr Û =AÛ +B f̂ . (3.4)

Introducing the resolvent operator R= (−iωrI −A)−1 and the identity operator I , (3.4)
can be written as a relationship between the constrained forcing and its linear response,
given by

Û =RB f̂ . (3.5)
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To seek the most energetic amplification between the forcing and the response, the optimal
gain σ is defined as

σ 2(ωr , β) = max
f̂

‖Û‖2
E

‖ f̂ ‖2
E

. (3.6)

The Chu energy norm (Chu 1965) is applied to the response and the forcing to evaluate
their respective energies. As discussed by Bugeat et al. (2019), (3.6) can be converted to
an eigenvalue problem. The problem is discretised similarly to the flow solver, except that
a central scheme is used to solve the inviscid fluxes in smooth regions detected by a shock
sensor (Hendrickson, Kartha & Candler 2018). At the left-hand and upper boundaries,
all perturbations are set to zero. At the right-hand boundary, a simple extrapolation is
used. The wall conditions are u′ = v′ = w′ = 0, T ′ = 0 and ∂p′/∂n = 0. Sponge zones with
thickness 5δ are implemented to the left-hand, right-hand and upper boundaries to gradu-
ally damp the perturbations to zero (Mani 2012). Finally, the implicitly restarted Arnoldi
method implemented in ARPACK (Lehoucq, Sorensen & Yang 1996), interfaced with the
MUMPS (Amestoy et al. 2001) open library, is used to solve the eigenvalue problems.

It should be noted that the resolvent analysis solver adapted is for laminar flows (Hao
et al. 2023), while incorporating the effective viscosity μe f f = μ + μt and effective heat
conductivity kef f = μ/Pr + μt/Prt to model turbulent fluctuations (Fan et al. 2024). The
explicit expressions of the operators A, B and R in laminar flows can be found in Bugeat
et al. (2019). In this study, the perturbation of μt is not considered, meaning that μt is
assumed to be frozen everywhere, consistent with Cura et al. (2024).

3.5. Local stability analysis
In local stability analysis (LSA), the perturbation U ′ is expressed as

U ′(x, y, z, t) = Û1-D(y) exp [i(αr + iαi )x + iβz − iωr t] , (3.7)

where Û1-D(y) is the one-dimensional eigenfunction, αr is the real streamwise
wavenumber, and αi is the spatial growth rate. A negative value of αi indicates that the
corresponding mode is unstable. Notably, the effective viscosity μe f f and the concave
curvature K (Ren & Fu 2014) are adopted to conduct LSA. Substituting (3.7) into the
linearised Navier–Stokes equations yields an eigenvalue problem, which is solved using
the Eigen (Guennebaud, Jacob & 2010) library at given values of β and ωr . The boundary
conditions are consistent with those in § 3.2.

3.6. Spectral proper orthogonal decomposition
Spectral proper orthogonal decomposition (Lumley 1967; Towne, Schmidt & Colonius
2018; Schmidt et al. 2018) extracts coherent structures from the perspective of energy
from flow data. It seeks a set of orthogonal bases to represent the overall power spectra
in time and space optimally. Hence SPOD is ideal for identifying coherent structures in
turbulent flows.

The key point in SPOD is to accurately estimate the cross-spectral density (CSD) tensor
from a time series (Towne et al. 2018). The CSD matrix at each frequency is estimated by

Ŝ(ωk) = Q̂(ωk) · Q̂
∗
(ωk), (3.8)

where Q̂(ωk) is the data matrix at kth frequency ωk , and (·)∗ is the Hermitian transpose.
The problem is transformed to a series of eigenvalue problems at frequency ωk , given as

ŜW Ψ̂ = Ψ̂ Λ̂, (3.9)
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Figure 2. Contour of Mach number distribution at M∞ = 2.95, Reδ = 63 500. The open circle indicates the
end of the concave surface.

or via the method of snapshots,

Q̂
∗
WQ̂Θ̂ = Θ̂Λ̂, Ψ̂ = Q̂Θ̂, (3.10)

where W is the weight matrix, Λ̂ gives the eigenvalues, and the SPOD modes Ψ̂ are
recovered using the eigenvectors Θ̂ . The Chu energy norm (Chu 1965) is commonly used
in the weight matrix W for compressible flows.

Of particular interest is the most energetic SPOD mode, which corresponds to the largest
eigenvalue, often referred to as the optimal or leading SPOD mode. A low-rank feature
is observed when the optimal eigenvalue is significantly larger than the others. In this
scenario, the physical mechanism associated with the optimal mode becomes dominant
and prevalent (Schmidt et al. 2018).

4. Spatial–temporal structures

4.1. Response to upstream disturbances
Figure 2 presents the Mach number contour of the time- and spanwise-averaged flow
obtained from LES. The verification of our LES solver is discussed in Appendix A. In
the concave surface region, a series of compression waves is generated due to an adverse
pressure gradient. These waves converge downstream of the concave surface, forming a
shock wave. Figure 3 shows the distributions of the skin friction coefficient C f and the
wall pressure coefficient C p. These coefficients are defined as

C f = 2τw

ρ∞u2∞
, C p = 2pw

ρ∞u2∞
, (4.1)

where τw and pw are the wall shear stress and pressure, respectively. The behaviour of C f
shows a sudden decrease at the onset of the concave surface, followed by an approximately
linear increase across the concave region. Similarly, the pressure coefficient C p displays a
corresponding increasing trend throughout this region.

Resolvent analysis is then performed to study responses of the linear dynamic system
(3.5) to upstream forcings, utilising the LES-computed mean flow as the base flow (Touber
& Sandham 2009). The eddy viscosity μt in the LES base flow is computed from

μt = Cμρ
k2

ε
, (4.2)
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Figure 3. Distributions of (a) the skin friction coefficient C f , and (b) the wall pressure coefficient C p , at
r = 50δ and ϕ = 20◦. Open circles indicate the end of the concave region.
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Figure 4. (a) Optimal gains as a function of the spanwise wavenumber βδ at frequencies St = 3.6 ×
10−4, 3.6 × 10−3, 3.6 × 10−2. (b) Optimal gains at βδ = 2.6 over a range of frequencies. The black dashed
line in (a) means local maxima, while in (b) it denotes the approximate cut-off frequency St = 0.036. The red
dashed lines indicate the cut-off frequency.

where Cμ = 0.09, ρ is the averaged density, and ε is the rate of dissipation of turbulent
kinetic energy (Pope 2001). The turbulent kinetic energy k is defined as k = (1/2) ×
(〈u′′u′′〉 + 〈v′′v′′〉 + 〈w′′w′′〉), where 〈u′′u′′〉, 〈v′′v′′〉 and 〈w′′w′′〉 are the Reynolds stress
components. The forcing station is set to x = −10δ. It should be noted that the optimal
response is insensitive to the forcing location (see Appendix B).

Figure 4(a) compares optimal gains at three frequencies St = 3.6 × 10−4, 3.6 ×
10−3, 3.6 × 10−2 over a range of spanwise wavenumbers βδ. Here, the frequency is
defined as St = f δ/u∞. The overlap of optimal gains at St = 3.6 × 10−4 and St = 3.6 ×
10−3 indicates that the optimal gains do not change significantly with further reductions
in frequency. For St = 0.036, the optimal gains are slightly lower than those at the other
two frequencies. Interestingly, all three optimal gain curves peak at the same spanwise
wavenumber βδ = 2.6. Figure 4(b) presents the optimal gains at the peak wavenumber
βδ = 2.6 as a function of St . The distribution exhibits characteristics consistent with a
first-order low-pass filter (Hunter 2001), demonstrating peak gains in the low-frequency
regime St < 0.01. Beyond St = 0.01, a gradual attenuation of optimal gain is observed,
transitioning to a linear decay pattern when exceeding St = 0.04. An approximate cut-off
frequency St = 0.036 is identified through the intersection of the St < 0.01 and St > 0.04
trends (marked in red) (Hunter 2001). This critical frequency denotes the threshold beyond
which the linear system experiences a marked reduction in optimal gains. The selection of
this specific cut-off frequency is further substantiated by SPOD analysis results, as detailed
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Figure 5. (a) Amplitude of the optimal forcing. (b,c) Real parts of u′ and w′ of the optimal response at
St = 0.036 and βδ = 2.6. Open circles indictae the end of the concave region.

in § 4.2.2. The highest frequency considered in this study is St = 0.072, which is at least
one order lower than the characteristic frequency of TBLs, thereby satisfying the scale
separation assumption.

Figure 5 shows the optimal forcing and corresponding response at St = 0.036 with
spanwise wavenumber βδ = 2.6. The forcing corresponds to streamwise vortices, since
the amplitudes of the wall-normal component |v′| and the spanwise component |w′|
are larger than that of the streamwise component |u′|. The lift-up mechanism works to
transform the streamwise vortices into streamwise streaks in the flow response (Abreu
et al. 2020; Hao et al. 2023). The optimal response of u′ displays streamwise streaks
within and downstream of the concave region, while w′ is characterised by streamwise
counter-rotating vortices, as shown in figures 5(b,c). Upstream of the concave region, no
apparent coherent structures can be observed. It is evident that concave curvature plays a
vital role in forming and strengthening these coherent structures. In the concave region, the
curved streamlines excite centrifugal effects. The secondary effect, known as the Görtler
instability, becomes the dominant amplification mechanism in forming the streamwise
vortices due to the large concave curvature 0.02 (Hoffmann et al. 1985). Therefore, the
streamwise counter-rotating vortices generated in the concave region are identified as
Görtler vortices. In addition, these structures are similar in appearance, differing only
in their streamwise lengths across the frequency band St = 0.01−0.04, which strongly
indicates that they are driven by the same physical mechanism.

Furthermore, one can notice that the streamwise vortices are progressively strengthened
in the concave region due to continuous centrifugal effects, resulting in a more pronounced
u′ and w′ in the latter half of the concave surface, as shown in figures 5(b,c). The
three-dimensional perturbation field of u′ reconstructed using the optimal response at
St = 0.036 and βδ = 2.6 is presented in figure 6. An intuitive comparison of the Görtler
structures can be observed at different stations in the figure. At the beginning of the

1012 A29-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
22

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10229


Z. Zhang, J. Hao and K.C.K. Uy

6
0

0

3

5 10 15 20z/δ

x/δ

u′ −3 3

Y

X

Z0

Figure 6. Three-dimensional reconstructed perturbation field of u′ using the optimal response at St = 0.036
and βδ = 2.6. The stations, from left to right, are ϕ = 0◦, ϕ = 5◦, ϕ = 10◦, ϕ = 15◦ and ϕ = 20◦, respectively.
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Figure 7. (a) Distributions of the Chu energy density integrated in the wall-normal direction at St = 0.036
and βδ = 2.6, and the curvature of the streamline passing through (x0, 0.3δ). (b) The most unstable spatial
growth rate at St = 0.036 from LSA as a function of spanwise wavenumbers βδ at stations ϕ = 5◦, ϕ = 10◦
and ϕ = 15◦. The black dashed line in (a) indicates the most unstable spatial growth rate predicted by LSA at
station ϕ = 10◦, while in (b) it means the local maximum βδ = 2.98 at ϕ = 10◦. The open circle indicates the
end of the concave region.

concave surface (station ϕ = 0◦), weak spanwise structures are visible. Downstream of this
station, the Görtler structures begin to grow. By the end of the concave surface, both the
size and strength of the Görtler structures are significantly enhanced compared to values
upstream.

To study the spatial energy growth rate of the optimal response in the concave region, the
integrated wall-normal Chu energy density along the streamwise direction at St = 0.036
and βδ = 2.6 is presented in figure 7(a). The Chu energy density increases exponentially
in the concave region, and peaks downstream of the region. The concave curvature
K of the streamline passing through (x0, 0.3δ) stays constant in the concave region,
indicating uniform centrifugal effects at different streamwise stations. Consequently, the
energy of the coherent structures is exponentially amplified in the concave region under
consistently strong centrifugal effects. The slope of the black dashed line is predicted by
LSA at station ϕ = 10◦ at St = 0.036 and βδ = 2.6. There is good agreement between
the growth rate from LSA and resolvent analysis at the same station, which indicates
that the energy growth is mainly attributed to the convective-type non-normality, i.e. the
Görtler instability. Figure 7(b) depicts the most unstable spatial growth rates at St = 0.036
predicted by LSA at three stations as functions of spanwise wavenumbers βδ. Although
the peak wavenumbers of the three lines differ slightly, they are centred around βδ = 2.98.
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Figure 8. Comparisons of wall-normal distributions of streamwise velocity and spanwise velocity
perturbations from LSA and resolvent analysis at stations (a) ϕ = 5◦, (b) ϕ = 10◦ and (c) ϕ = 15◦, at St = 0.036
and βδ = 2.6. Distributions are normalised by their respective maximum streamwise velocity perturbation
amplitudes.
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Figure 9. Iso-surface of streamwise velocity u/u∞ = 0.55, coloured by wall-normal distance.

There is a small discrepancy between the peak wavenumbers predicted by LSA and
resolvent analysis. This discrepancy is reasonable, as the wavenumber predicted by LSA
is locally optimal, while the global optimal wavenumber from resolvent analysis may vary
due to non-parallelism and non-modal effects (Hanifi, Schmid & Henningson 1996; Tumin
& Reshotko 2003). Figure 8 compares the wall-normal distributions of the amplitudes of
u′ and w′ obtained from two methods at the three stations ϕ = 5◦, ϕ = 10◦ and ϕ = 15◦.
Here, u′ peaks near the wall then decreases linearly, while w′ exhibits two peaks: one near
the wall, and another near the edge of the TBL. The trends of u′ and w′ are almost the same
at three streamwise stations of the two results, with minor differences in the location of the
second peak of w′ and the wall-normal range of the large amplitude of u′. It is confirmed
that the most amplified disturbances in resolvent analysis are the Görtler vortices.

4.2. Validation of predicted coherent structures

4.2.1. Amplification of turbulence intensity
Figure 9 illustrates the instantaneous iso-surface of streamwise velocity u/u∞ = 0.55,
coloured by wall-normal distance. On the flat plate, only a few near-wall vortices are
visible, whereas large-scale vortices are prominent in the concave region. The centrifugal
effects in this region continue to drive low-momentum flow outwards, thereby enhancing
the momentum exchange between low- and high-momentum flows (Wang et al. 2019).
Additionally, it is noteworthy that the spanwise scale of the vortices in the concave region
gradually increases.

1012 A29-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
22

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10229


Z. Zhang, J. Hao and K.C.K. Uy

0.012

(a) (b)

0.008

0.004

0
0.2 0.4 0.6 0.8 1.0

yn/δ

R
M

S
+

T
u
rb

u
le

n
t 

k
in

et
ic

 e
n
er

g
y

ϕ = 5°

x0

ϕ = 10°

ϕ = 15°

ϕ = 20°

  0.020

0.015

0.010

0.005

0

0 0.2 0.4 0.6 0.8 1.0

yn/δ

〈u′′u′′〉〈v′′v′′〉〈w′′w′′〉〈u′′v′′〉〈u′′u′′〉〈v′′v′′〉〈w′′w′′〉〈u′′v′′〉

Figure 10. Wall-normal distributions of (a) turbulent kinetic energy k, (b) root mean square values RMS+,
normalised by u2∞. The black dashed line in (a) denotes yn/δ = 0.26. In (b), the dashed and solid lines
correspond to the reference station (x0) and the end of the concave region (ϕ = 20◦), respectively.

Figure 10(a) shows the wall-normal distributions of the turbulent kinetic energy k
at the reference station x0 and the four different turning angle stations in the concave
surface. At station x0, k peaks at a near-wall location, primarily due to high- and low-
speed streaks. In the concave region, the inner part of k is slightly enhanced, while the
outer part experiences significant amplification. Continuous centrifugal effects amplify
turbulent fluctuations, leading to a noticeable increase in the outer part of k across various
stations. A second peak of k, associated with the large-scale vortices shown in figure 9,
occurs at approximately yn/δ = 0.26 at the end of the concave surface.

Figure 10(b) compares wall-normal distributions of Reynolds stress components 〈u′′u′′〉,
〈v′′v′′〉, 〈w′′w′′〉 and 〈u′′v′′〉 at the reference station x0 and the end of the concave
surface ϕ = 20◦. Compared to the undisturbed TBL, all Reynolds stress components show
significant changes at ϕ = 20◦. The trends of 〈v′′v′′〉 and 〈w′′w′′〉 are the same as those at
station x0, although their amplitudes are increased. In contrast, 〈u′′u′′〉 exhibits a notable
discrepancy in the outer layer. After a decrease from the inner peak, 〈u′′u′′〉 increases
again to form a secondary peak influencing yn/δ = 0.1−0.6. The outer peak of 〈u′′u′′〉
is associated with the large-scale structures highlighted in figure 9. Moreover, the peak
of k in the outer layer at the station ϕ = 20◦ is mainly contributed by the streamwise
component 〈u′′u′′〉. Notably, the near-wall part of the component 〈u′′v′′〉 changes sign at
station ϕ = 20◦, which is attributed to mathematical contaminations between longitudinal
and wall-normal velocities in Cartesian coordinates (Wu et al. 2019). Similar distributions
in k and Reynolds stress components were also discussed by Wu et al. (2019) and Sun
et al. (2019).

4.2.2. Modal analysis
The POD analysis is performed on y–z slices in the concave region to study spatial
structures of large-scale vortices. Here, the entire state vector q ′ = [ρ′, u′, v′, w′, T ′] is
used, combined with the Chu energy norm (Chu 1965). The fluctuation variables are
normalised with the freestream parameters. The convergence analysis of POD modes is
discussed in Appendix C.

Figure 11 demonstrates the components u′ and w′ of the leading POD modes at stations
ϕ = 10◦ and ϕ = 20◦, as well as mode energy distributions. Three pairs of spanwise
structures can be observed in figures 11(a,b) at station ϕ = 10◦. The component u′ is
characterised by streamwise streaks, and w′ features streamwise counter-rotating vortices.
The most energetic spatial structures closely resemble the coherent structures predicted by
resolvent analysis in figure 6. At station ϕ = 20◦, the spatial structures behave analogously
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Figure 11. Leading POD modes of (a) u′, (b) w′ at station ϕ = 10◦, and (d) u′, (e) w′ at station ϕ = 20◦.
(c,f ) The mode energy distributions at the two stations.

to those at ϕ = 10◦. The spanwise scale at both stations is approximately λz = 2δ, leading
to three pairs of spanwise structures. Regarding the energy distribution, the energy ratio of
the leading POD mode at both stations is minimal, falling below 5 %. Most of the energy
is captured by numerous high-order modes. In addition, the sum of eigenvalues at station
ϕ = 20◦ is 0.57, compared to 0.24 at station ϕ = 10◦. The rise of total energy agrees well
with the turbulence amplification caused by the centrifugal effects discussed in § 4.2.1.

Nevertheless, it should be emphasised that conventional POD modes may conflate
dynamically distinct phenomena when different flow features exhibit comparable energy
content at disparate frequencies (Towne et al. 2018; Mendez, Balabane & Buchlin 2019).
This multi-modal coupling characteristic fundamentally limits the temporal discrimination
capability of energy-based decomposition methods. To overcome this limitation, we use
the frequency-resolved method named SPOD to investigate the spatial–temporal features
of the coherent structures induced by the concave surface.

The SPOD is first performed on the spanwise mid-plane using a temporal segment
249.1δ/u∞. Welch’s method (Welch 1967) with 50 % overlap combining a Hamming
window is employed to minimise spectral leakage. Notably, the specific choice of window
function shows negligible impact on the results, as equivalent frequency spectra are
obtained when using a Hann window. A convergence analysis of the SPOD modes is
provided in Appendix C. The spectrum is presented in figure 12(a), where the 99 %
bounds indicate the variance of the leading mode. A characteristic frequency St = 0.036
of the leading mode is identified. Figure 12(b) compares the normalised eigenvalues at
St = 0.036. A low-rank feature is observed, with the optimal SPOD mode containing 65 %
of the total flow energy – significantly more energetic than the other suboptimal modes at
this frequency.

Figures 13(a,b) display the real parts of u′ and w′ of the optimal SPOD mode at
St = 0.036. In response to upstream turbulent forcings, streamwise streaks of u′ and w′ are
observed within and downstream of the concave region. Notably, both u′ and w′ exhibit
stronger intensities in the latter half of the concave surface, indicating an enhancement
of the coherent structures in this region. This enhancement process and the coherent
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end of the concave surface.

structures resemble those obtained from resolvent analysis at the same frequency, as shown
in figure 5. To quantitatively compare the leading SPOD mode with the optimal resolvent
modes, we calculate the projection coefficient γ using the equation

γ =
∣
∣
∣‖Ψ̂ 1SPOD, Û1RES‖E

∣
∣
∣

‖Ψ̂ 1SPOD‖E × ‖Û1RES‖E
, (4.3)

where Ψ̂ 1SPOD represents the leading SPOD mode, while Û1RES denotes the optimal
resolvent modes over several spanwise wavenumbers. The notation ‖ · ‖E denotes the Chu
norm (Chu 1965). A value γ = 0 indicates orthogonality between the two modes, while
γ = 1 signifies perfect alignment (Abreu et al. 2020; Fan et al. 2024). Notably, the leading
SPOD mode Ψ̂ 1SPOD(x, y) combines Fourier modes at various wavelengths implicitly,
while Û1RES(x, y) represents structures at a single specified wavelength explicitly. Hence
this projection quantifies the structural similarity between the coherent structures captured
by the leading SPOD mode and those predicted by resolvent analysis, while simultaneously
identifying the dominant wavelength in the SPOD mode through the peak γ (βδ). Cura
et al. (2024) also successfully made the projection between the leading SPOD mode
obtained using particle image velocimetry data in a planar and resolvent modes to
investigate the low-frequency dynamics of turbulent separation bubbles. Figure 14 shows
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Figure 14. Projection coefficients γ between the optimal SPOD mode and resolvent modes over varying
spanwise wavenumber at St = 0.036. The black dashed line indicates local maximum βδ = 2.95.

the projection coefficients γ between the optimal SPOD mode and the predicted resolvent
modes at St = 0.036 over various spanwise wavenumbers. The peak alignment, γ = 0.94,
is very close to 1, indicating an almost perfect match between the two modes. The optimal
response is strongly associated with observed streamwise streaks in SPOD. Moreover, the
coefficient reaches its maximum at spanwise wavenumber βδ = 2.95, which corresponds
well with the optimal wavenumber predicted by resolvent analysis and the most unstable
wavenumber identified by LSA.

Hence there is a strong correlation between the optimal SPOD mode and the optimal
response. The relation between SPOD and resolvent analysis has been discussed by Towne
et al. (2018), Schmidt et al. (2018) and Abreu et al. (2020). When forcings are unit-variance
white noise, SPOD is equivalent to resolvent analysis. In real turbulent flows, biased and
nonlinear forcings (Morra et al. 2021) result in differences between SPOD and resolvent
modes. However, a close match between the leading SPOD mode and the optimal resolvent
mode can be achieved when the resolvent operator identifies a dominant amplification
mechanism (Abreu et al. 2020). In such cases, the leading SPOD modes and the optimal
resolvent modes are insensitive to the correlation of nonlinear forcings E( f̂ f̂

∗
), where

E(·) is the expectation operator. Therefore, the similarity of mode shapes and the high
alignment between the leading SPOD mode and the optimal response suggest that the
same physical mechanism, namely the centrifugal effects, dominates the most energetic
coherent structures. In other words, the Görtler instability primarily amplifies upstream
forcings and forms the Görtler vortices.

Furthermore, the flow statistics characterised at the peak frequency St = 0.036 in the
streamwise direction make it reasonable to choose the frequency as the approximate cut-
off frequency. The optimal SPOD modes within the frequency band St = 0.01−0.04
also resemble those obtained from resolvent analysis, with the SPOD mode being
more energetic at St = 0.036 due to coloured forcings. Consequently, resolvent analysis
successfully captures flow structures in the streamwise direction, and serves as an effective
tool for studying Görtler instability. The next step is to compare the spanwise scales from
both methods, and investigate the formation process of Görtler vortices in the spanwise
direction under the influence of centrifugal effects.

The SPOD is then conducted on y–z slices in the concave region using the sine-
taper SPOD (Yeung & Schmidt 2024). The peak frequencies of the first SPOD modes
at different stations do not consistently align with St = 0.036, as shown in table 1.
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Station ϕ = 10◦ ϕ = 15◦ ϕ = 20◦

Peak frequency 0.024 0.031 0.021

Table 1. The peak frequencies at different stations of the leading SPOD modes.
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Figure 15. Real parts of the optimal SPOD modes of u′ and w′ at stations (a,d) ϕ = 10◦, (b,e) ϕ = 15◦ and
(c,f ) ϕ = 20◦, at St = 0.036.

This variation is expected because Görtler vortices are active over a frequency band
St = 0.01−0.04, as discussed in § 4.1. The coherent structures and spanwise scales of
the leading SPOD modes within this frequency band are quite similar. Here, we focus
on the coherent structures at St = 0.036 to quantitatively assess their spanwise scales and
structures. Figure 15 depicts the real parts of u′ and w′ of the leading SPOD modes at
three stations ϕ = 10◦, ϕ = 15◦ and ϕ = 20◦, at St = 0.036. At station ϕ = 5◦, the Görtler
vortices are not fully developed (not shown here). The Görtler vortices emerge at stations
ϕ = 10◦, where u′ displays pairs of streamwise streaks, and w′ shows pairs of streamwise
counter-rotating vortices. Downstream of this station, the coherent structures at station
ϕ = 15◦ and ϕ = 20◦ remain unchanged.

The spanwise scales of the Görtler vortices at these stations are approximately
consistent, averaging approximately 2δ. However, it is noteworthy that some vortices
exceed 2δ, while others are smaller, suggesting that the spanwise structures exhibit a
degree of irregularity. This phenomenon is expected and related to nonlinear effects in
turbulent flows. The predicted optimal spanwise wavelength 2.4δ by resolvent analysis is
slightly larger than the 2δ captured by the optimal SPOD mode. The minor discrepancy is
attributed to upstream biased forcings. In resolvent analysis, upstream forcings are treated
as unbiased, while real turbulent fluctuations are biased and coloured (Morra et al. 2021).
These coloured forcings tend to concentrate most of the energy in near-wall streaks and
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very-large-scale motions, explaining the expected 2δ patterns observed in the optimal
SPOD mode. Overall, resolvent analysis effectively models the Görtler vortices in terms
of spatial–temporal features.

Unsteady motions of the Görtler vortices can be recovered using the first five SPOD
modes within the frequency band St = 0.01−0.04, which contain at least 50 % of total
energy at a given frequency (Nekkanti & Schmidt 2021; Yeung & Schmidt 2024). The
choice of this frequency band is based on two factors: first, the cut-off frequency band
discussed in § 4.1, and second, the dynamic modes strongly related to Görtler vortices
at frequencies 0.0115, 0.0172 and 0.0223 found by Tong et al. (2017). The unsteady
spanwise motions of the Görtler vortices can be observed from time series (see the
supplementary movie). The large-scale Görtler vortices undergo a series of unsteady
behaviours, including lateral wandering, merging into larger vortices, and splitting into
several smaller ones. These merging and splitting behaviours are related to the spanwise
motions of vortices, with varying lateral velocities leading to interactions between vortex
pairs. No preferred vortex locations are found from the reconstructed data, consistent with
experimental findings (Barlow & Johnston 1988a,b; Schuelein & Trofimov 2011).

5. Scaling of Görtler vortices
The alignment between the leading SPOD modes obtained from the LES dataset
and resolvent modes based on the LES base flow confirms the validity of resolvent
analysis for capturing Görtler vortices dynamics. While resolvent analysis with LES base
flows achieves high fidelity, a systematic parametric investigation of the spanwise scale
sensitivity to geometric and freestream parameters – across multiple configurations –
would be computationally prohibitive if relying solely on LES-based resolvent analysis.
To balance accuracy and practicality, we adopt RANS-based resolvent analysis for the
parametric study in this section. To validate this approach, § 5.1 first compares RANS-
based resolvent analysis results against the LES-based methodology, demonstrating
quantitative agreement in mode structures and optimal gains. Subsequent subsections then
leverage RANS-based analysis to examine parameter dependencies, with the validated
methodology ensuring robustness of the conclusions.

5.1. The RANS-based resolvent analysis
Figure 16(a) compares the normalised optimal gains from LES- and RANS-based
resolvent analysis at St = 0.036. The RANS results exhibit a marginally higher peak
wavenumber βδ = 2.75 compared to the LES-based value βδ = 2.6. This minor shift
aligns with expectations from eddy viscosity μt discrepancies between the methodologies,
as discussed in a flat plate case by Cossu, Pujals & Depardon (2009). Figure 16(b) further
reveals that both LES and RANS profiles share similar μt trends, peaking near yn/δ = 0.5,
though the RANS-based μt magnitude exceeds the LES value by approximately 50 %.
Despite these differences, the optimal responses of u′ and w′ at βδ = 2.75 shown in
figures 16(c,d) resemble the optimal responses in figures 5(b,c) and the leading SPOD
mode in figures 13(a,b) at the same frequency St = 0.036. Quantitative validation is
further supported by a peak projection coefficient γ = 0.9 between the leading SPOD
mode and the RANS-based optimal response at βδ = 2.95. These results collectively
indicate that the most amplified dynamics revealed by resolvent analysis is insensitive to
the relatively small differences in the μt distributions (Cossu et al. 2009; Fan et al. 2024).
Pickering et al. (2021) demonstrated that the classical eddy-viscosity models (e.g. RANS)
behave identically to an optimal eddy-viscosity model in aligning the most energetic
mode. This agreement also underscores that the predicted most energetic response and
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Figure 16. (a) Normalised optimal gains based on LES and RANS base flows at St = 0.036. (b) Distributions
of μt at the reference station x0 from LES and RANS base flows. (c,d) Real parts of u′ and w′ based on the
RANS base flow at St = 0.036 and βδ = 2.75. Open circles indicate the ends of the concave surface.

scales derived from RANS-based μt , despite inherent modelling uncertainties, retain
physical fidelity and provide reliable predictions. Consequently, the subsequent parametric
investigations in this study employ RANS-based flows, balancing computational efficiency
with demonstrated predictive fidelity.

5.2. Geometric parameters
Two geometric parameters are considered: the total turning angle ϕ, and the curvature
radius r . It should be noted that the frequency is set to St = 0.036, which is a representative
frequency for Görtler vortices.

Figure 17(a) shows the distributions of the optimal gains at different turning angles for a
constant curvature radius r = 50δ. Three peaks are marked in figure 17(a), corresponding
to ϕ = 0◦, ϕ = 5◦ and ϕ � 10◦. No centrifugal effects are excited at ϕ = 0◦ because it
belongs to the flat plate. Consequently, the peak wavenumber βδ = 1.86 corresponds to
coherent structures in zero pressure gradient cases, as reported by Cossu et al. (2009),
Alizard et al. (2015) and Abreu et al. (2020). We do not discuss coherent structures in
flat plate cases further, as there are no centrifugal effects. When the total turning angle
increases to ϕ = 5◦, weak centrifugal effects cause the optimal wavenumber to shift to
βδ = 2.59. As the total turning angle increases to ϕ = 10◦, the optimal wavenumber shifts
again due to the elongated region affected by the centrifugal effects. Further increasing
the turning angle no longer changes the optimal wavenumber, which indicates that the
optimal wavenumber is unrelated to the turning angle when ϕ � 10◦. This observation is
consistent with our modal analysis results, where the spanwise scale changes slightly at
the middle and end of the concave surface, as shown in figures 11 and 15. There may be
a critical angle for a specific concave radius r beyond which the optimal wavenumber is
independent of the turning angle. The critical value is approximately ϕ = 10◦ for r = 50δ.
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Figure 17. (a) Normalised optimal gains at different turning angles as functions of spanwise wavenumbers βδ.
(b) Distributions of integrated Chu energy density along the wall-normal direction at different turning angles at
their respectively optimal wavenumber. The inset in (a) represents the real part of w′ for the optimal response
in the case ϕ = 30◦, while the arrows indicate local maxima for different cases. The black dash-dotted line in
(b) indicates the beginning of the concave surfaces, the black dashed line represents the predicted increasing
trend by LSA in figure 7(a), and the open circles denote the ends of the concave surfaces.
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Figure 18. (a) Optimal wavenumbers and (b) corresponding distributions of integrated Chu energy density at
different concave curvatures. The insets in (a) represent the real parts of w′ of the optimal responses, in the
cases K = 0.014 and K = 0.067, and the red dashed line indicates βδ = 3.2. The black dashed line in (b) marks
the beginning of the concave surface, while the open circles in (b) represent the ends of the concave surfaces.

Additionally, changes in the total turning angle at the same concave radius do not alter the
coherent structures qualitatively, as shown in the inset of figure 17(a) in the case ϕ = 30◦.
Notably, no flow separation occurs in these cases.

Figure 17(b) shows the distributions of the integrated Chu energy density along the wall-
normal direction for different total turning angles at their respective optimal wavenumbers.
A direct comparison of the Chu energy across different cases is reasonable because the
Chu energy is normalised by the energy of the forcing. The Chu energy densities exhibit
a similar exponential increase in the concave region, which agrees well with the spatial
growth rate predicted by LSA. This common increasing trend is due to the constant
streamline concave curvature K in the concave region, while different turning angles have
different Chu energy levels at the ends of the concave surfaces.

The second geometric parameter is the curvature radius r , which corresponds to
the concave curvature K . Figure 18(a) illustrates the optimal wavenumbers at different
concave curvatures for a constant total turning angle ϕ = 20◦. The optimal wavenumber
rises sharply at small K and more gradually at larger values, with only a minor increase
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Figure 19. (a) Distributions of concave curvatures of three streamlines passing through (x0, 0.01δ), (x0, 0.05δ)

and (x0, 0.15δ) in a 20◦ compression ramp case. (b) Normalised optimal gains as functions of spanwise
wavenumbers βδ at St = 0.036 for different geometries. The black lines in (a) denote the mean separation
and reattachment points. Local maxima at βδ = 3.3 are indicated by the black dashed line in (b).

between K = 0.083 and K = 0.1. It is predicted that further increasing K will cause
the optimal wavenumber to converge towards a specific constant value, approximately
βδ = 3.2, as indicated by the red dashed line in the figure. The coherent structures in
the cases K = 0.014 and K = 0.067 shown in the insets of figure 18(a) resemble those at
K = 0.02 in figure 5, which implies that changes in concave curvature do not affect the
coherent structures qualitatively.

Figure 18(b) presents the integrated Chu energy density along the wall-normal direction
at different concave curvatures at their respective optimal wavenumbers. The exponentially
increasing trends in the concave region are evident for cases at different curvatures. Unlike
the consistent trend observed in figure 17(b), the trends differ for various curvatures.
Specifically, a large curvature results in a rapid increase in Chu energy density. The rapid
increase of fluctuation energy in a large concave curvature region aligns with previous ex-
perimental findings (Jayaram et al. 1987). Although the region influenced by the centrifu-
gal effects is short at a large curvature, the Chu energy density still reaches a high level.

An infinite curvature K → ∞ represents a 20◦ compression ramp configuration.
However, achieving K → ∞ for a streamline in real flows is impossible because an adverse
pressure gradient will cause a separation bubble that alters the curvature. Figure 19(a)
shows the concave curvature distributions of three streamlines passing through (x0, 0.01δ),
(x0, 0.05δ) and (x0, 0.15δ) in a 20◦ compression ramp case. The concave curvatures are
at large values near the separation and reattachment points, but remain small close to
the corner. The two pronounced curvature peaks near these points are significantly larger
than the critical value 0.01 (Hoffmann et al. 1985), making the optimal wavenumber
approach the upper boundary βδ = 3.2 under the individual influence of the centrifugal
effects. However, in a dynamic system of turbulent flows with a separation bubble, bubble
dynamics and the centrifugal effects coexist. The bubble dynamics may dominate the
centrifugal effects on the main amplification mechanism in the dynamic system predicted
by resolvent analysis. As mentioned by Hao (2023), in a 25◦ compression ramp case, the
local maxima of the optimal gain are related to the bubble dynamics, while the Görtler
instability is insignificant.

To validate the predicted upper boundary value and illustrate the large concave curvature
effects, the three streamlines in figure 19(a) are established as walls of new geometries
to isolate the separation bubble. For comparison, an additional geometry with a straight
line connecting the separation and reattachment points is also considered. Figure 19(b)
compares the optimal gains obtained using the four new geometries. As expected, all four
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Figure 20. Normalised optimal gains as functions of spanwise wavenumbers βδ at different (a) Mach number,
(b) temperature ratio, and (c) Reynolds number, at r = 50δ and ϕ = 20◦. The red arrows in (a,b) indicate
increasing trends, and the black dashed line in (c) means a local maximum.

cases share an analogous trend and a common peak βδ = 3.3, i.e. λz = 1.9δ, which is
close to the 2δ Görtler structures reported by experiments (Schuelein & Trofimov 2011;
Zhuang et al. 2017) and numerical simulations (Loginov, Adams & Zheltovodov 2006;
Priebe et al. 2016) in compression ramp cases. Furthermore, the Görtler structures are also
found in impinging shock interactions (Pasquariello, Hickel & Adams 2017; Li et al. 2022)
where separation bubbles also exist. Obviously, the coupled effects of separation bubbles
with the Görtler instability influence the Görtler structures slightly. Therefore, the upper
boundary value provides some valuable insights into characterising the spanwise scales of
Görtler vortices with separation bubbles.

One might argue that the shock structures of the four cases are significantly different
from those with the separation bubble in the 20◦ compression ramp case. However,
an equal strength of the concave curvature is the essential parameter for separately
investigating the Görtler vortices in compression ramp cases.

5.3. Freestream parameters
Additional cases are considered to investigate the influence of freestream parameters on
the spanwise scales of Görtler vortices, including the unit Reynolds number Re∞, Mach
number M∞, and temperature ratio Tw/T∞. We isolate the influence of one parameter
by keeping the other two parameters unchanged. The cases with the original freestream
parameters are referred to as the baseline cases.

Optimal gains as a function of the scaled wavenumber βδ at different freestream
parameters are shown in figure 20. The optimal wavenumber increases with an increase in
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Figure 21. Preferential wavenumbers as a function of concave curvature for a constant turning angle ϕ = 20◦.

M∞. A similar increasing trend is shown in figure 20(b) when decreasing the temperature
ratio Tw/T∞, although the change is slight. Figure 20(c) depicts the optimal gains
at different freestream Reynolds numbers Re∞. The optimal wavenumber βδ = 2.73
is shared by different Reynolds number cases, implying that the optimal wavenumber
predicted by resolvent analysis is independent of the freestream Reynolds number, when
normalised using the boundary-layer thickness.

Figure 21 shows the optimal wavenumbers as a function of concave curvature under
different flow conditions. Trends similar to the baseline cases are observed at different
flow parameters, with a rapid rise when K is small, and a slow rise when K is large. The
upper boundary corresponding to K → ∞ can also be determined for various freestream
parameters. As discussed in § 5.2, the upper boundary value can be regarded as an
approximate wavenumber of the Görtler vortices in cases with a separation bubble. Hence
the Mach number effect can be verified qualitatively by different supersonic or hypersonic
compression ramp cases. At M∞ = 2.95, the structures of 2δ were observed from time-
averaged skin friction distribution by Loginov et al. (2006). When M∞ = 6, the Görtler
structures downstream of the separation bubble are changed to 1.2δ, as shown by Guo et al.
(2024). The decrease in the wavelength of Görtler vortices is consistent with our findings.
The decreasing trend may be related to compressibility effects, which will be investigated
in a future study. Furthermore, the Reynolds number independent relation is verified, as the
optimal wavenumbers overlap for the two Reynolds number cases at different curvatures,
in agreement with experimental findings by Schuelein & Trofimov (2011) in turbulent
separated flows.

Our results offer quantitative insights into predicting the scale of Görtler vortices.
Future efforts should focus on exploring the coupling effects between separation bubbles
and Görtler instability in compression ramps, as well as impinging shock interactions in
turbulent flows.

6. Occurrence of Görtler instability
The results from resolvent analysis and LSA are examined in § 4.1. The LSA provides
accurate predictions for both the spatial growth rate and the spanwise wavelength of the
Görtler mode, consistent with values predicted by resolvent analysis. Consequently, LSA
can be employed to estimate the spatial growth rate of the Görtler mode, thereby assessing
the occurrence of Görtler vortices.
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Two parameters are usually used to evaluate Görtler instability in turbulent flows: the
concave curvature K , and the Görtler number GT . The definition of GT in laminar flows
is given by

GT = ρ∞u∞
μ∞

θ

√
θ

r
, (6.1)

where θ represents the boundary-layer momentum thickness. Tani (1962) suggested using
the eddy viscosity μt to replace the molecular viscosity μ∞ for defining GT in turbulent
flows. He followed a simple assumption of a constant eddy viscosity μt = 0.018ρ∞u∞δ∗
for outer layers of incompressible TBLs (Clauser 1956), where δ∗ is the boundary-layer
displacement thickness. This leads to the following expression for the turbulent Görtler
number:

GT = θ

0.018δ∗

√
θ

r
. (6.2)

Smits & Dussauge (2006) extended the turbulent GT to compressible flows while using
the same assumption of a constant eddy viscosity. However, the assumption of a constant
μt in outer layers of TBLs may not be appropriate. One can refer to Abe & Antonia
(2019) and figure 16(a) for distributions of μt in incompressible and compressible flows,
respectively. Furthermore, the empirical formula overestimates μt in the outer layer of
TBLs. For instance, the formula gives μt/μ∞ = 365, which is significantly higher than the
peak values μt/μ∞ = 125 and 86 at the reference station x0 from RANS and LES. Such
an overestimation causes an underestimation of the turbulent GT . Different modelling
approaches for μt based on DNS/LES databases and RANS models of zero pressure
gradient flat plates lead to slight variations in the peak μt,peak values in TBLs. To
investigate the critical GT under different flow conditions, we choose the peak value
μt,peak at the reference station x0 from the RANS results (see figure 16a) as the reference
value to replace the μ∞ in calculating the turbulent GT , given as

GT = ρ∞u∞
μt,peak

θ

√
θ

r
. (6.3)

As we mentioned before, the critical value K = 0.01 for inducing streamwise vortices
was proposed by Hoffmann et al. (1985), and used by Loginov et al. (2006) and Priebe
et al. (2016) in turbulent separated flows. Smits & Dussauge (2006) also suggested that
the critical value K is approximately 0.03 in Mach 3 flows, and changes as Mach number
changes. However, our LES results clearly show that Görtler vortices begin to manifest at
K = 0.02, indicating that the value 0.03 may be somewhat overestimated.

Moreover, the critical GT for turbulent flows has not been established (Floryan 1991).
Many researchers (Loginov et al. 2006; Priebe et al. 2016; Tong et al. 2017) have used the
critical value 0.6 in laminar flows (Görtler 1954) as a criterion for turbulent flows (calcu-
lated from (6.2)). However, the value would increase to a range 1.8–2.4 if calculated using
the correct μt . Given that the growth rate predicted by LSA agrees well with the resolvent
analysis result, LSA is used in this study to determine the critical GT based on (6.3).

Figure 22(a) presents the maximum spatial growth rates at station ϕ = 10◦ predicted
by LSA, with the peak GT of streamlines passing through (x0, 0.5δ) for the baseline
cases across varying concave curvatures. It can be observed that as GT progressively
diminishes, the maximum growth rate −αiδ exhibits a concomitant decline. A maximum
spatial growth rate −αiδ < 0 signifies that the Görtler mode remains unexcited, resulting in
the absence of Görtler vortices. A zero growth rate is attained at GT = 0.3, corresponding
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Figure 22. (a) The maximum spatial growth rate −αi δ at station ϕ = 10◦ predicted by LSA at St = 0.036.
(b) The optimal wavenumber βθ from resolvent analysis, along with the most unstable wavenumber βθ from
LSA of the baseline cases as a function of Görtler number GT . The Görtler numbers are extracted from
streamlines passing through (x0, 0.5δ) . The black dashed line in (a) indicates zero growth rate. The black
line in (b) indicates Λ = 215, where Λ = (ρ∞u∞/μt,peak)λz

√
λz/r is a dimensionless wavelength parameter

(Saric et al. 1994).

to K = 0.00143. The predicted GT = 0.3 is close to the laminar critical value 0.6 (Görtler
1954), but the curvature K = 0.00143 is significantly lower than the experimentally
obtained empirical value 0.01 for turbulent flows (Hoffmann et al. 1985). The critical GT
becomes 0.45 when using μt,peak from LES. Both values are much lower than the previous
empirical range 1.8–2.4 (calculated using (6.3)). It should be noted that different modelling
methods for μt may lead to a slight change in the critical GT values, although the trends
remain similar. Essentially, the critical value 0.6 in laminar flows (or 0.4638 in Floryan
& Saric 1982) is an empirical guideline at the incompressible limit. However, El-Hady
& Verma (1984) found that the critical GT increases with rising M∞, which indicates
that this guideline may not be suitable for all laminar flow scenarios, such as varying
Mach numbers and wall temperatures. There may not be a solid criterion for compressible
laminar and turbulent flows. Thus we do not aim to specify a precise critical GT , but rather
provide an approximate range 0.3–0.45 to offer meaningful guidance on the occurrence
of Görtler vortices in compressible turbulent flows. Future work will incorporate multi-
fidelity μt from DNS/LES datasets to refine this range, but our current results provide a
conservative estimate for design purposes.

It is worth noting that the critical values obtained, whether for laminar or turbulent
flows, are only of reference significance. Only when GT is much larger than the critical
value will the Görtler vortices manifest obviously in flows. In practice, determining the
critical GT experimentally poses significant challenges due to the low energy growth rates,
which necessitates a long concave surface to allow Görtler vortices to develop observable
amplitudes. However, the finite length of models artificially truncates this growth process,
leading to overestimated critical GT values – often exceeding theoretical predictions
by orders of magnitude. Consequently, Görtler vortices may remain undetected even in
configurations where GT far surpasses the theoretical threshold. The determined GT and
K by LSA represent theoretical lower bounds.

Figure 22(b) compares the optimal wavenumber from resolvent analysis with the most
unstable wavenumber obtained from LSA as a function of GT for the baseline cases. When
GT is small, i.e. the concave curvature is small, the wavenumbers from both methods
align closely with each other. Notably, both analyses yield wavenumbers that fall along
the line Λ = 215 when βθ < 0.18, which is consistent with the constant-Λ assumption
in laminar flows (Tani 1962; Saric et al. 1994). However, a discrepancy occurs when
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GT > 1.2. In this case, the most unstable wavenumber from LSA remains on the line
Λ = 215, while the optimal wavenumber from resolvent analysis gradually converges to a
constant value as GT increases, in agreement with the upper boundary value in figure 18.
This discrepancy is attributed to non-parallelism and non-modal effects (Hanifi et al.
1996; Tumin & Reshotko 2003). Additionally, figure 22(b) also provides an approximation
for the spanwise wavenumbers of Görtler vortices within the Görtler number range
0.3–1.2.

7. Conclusions
The spatial–temporal features of Görtler vortices in supersonic turbulent flows over
concave surfaces are investigated using resolvent analysis and LES. Resolvent analysis
predicts an optimal response with the spanwise wavelength λz ≈ 2.4δ and the cut-off
frequency St = 0.036, based on an LES base flow at Mach 2.95 and Reδ = 63 500 over
a concave surface with a total turning angle ϕ = 20◦ and curvature radius r = 50δ. The
optimal resolvent mode manifests as streamwise counter-rotating vortices in the concave
region, identified as the Görtler vortices, which are consistent with the spatial structures
in laminar flows (Görtler 1954; Floryan 1991). The dominant amplification mechanism
is the Görtler instability. The integrated Chu energy density increases exponentially in
the concave region, with the growth rate closely matching LSA results. Furthermore, the
optimal wavelength and mode shapes predicted by LSA also align well with those obtained
by resolvent analysis.

These predictions are validated against the same LES dataset. The centrifugal effects
promote momentum exchange and enhance turbulence intensity, with a second peak of
turbulent kinetic energy occurring at yn/δ = 0.26. The POD analysis is performed on y–z
slices at stations ϕ = 10◦ and 20◦. The most energetic spatial structures at the two stations
are similar streamwise counter-rotating vortices with spanwise wavelength approximately
2δ. Additionally, coherent structures in the spanwise mid-plane and several y–z planes are
extracted using SPOD. The leading SPOD mode of the spanwise mid-plane peaks at St =
0.036, resembling the optimal output from resolvent analysis at the same frequency. The
highest projection coefficient between the leading SPOD mode and the optimal resolvent
response is approximately 0.94. The leading SPOD modes at three streamwise stations
ϕ = 10◦, ϕ = 15◦ and ϕ = 20◦ also show similar spanwise structures around 2δ, consistent
with the reconstructed structures using the optimal resolvent mode. The good agreement
between the optimal SPOD modes and the resolvent mode implies that resolvent analysis
accurately captures the Görtler vortices.

Further investigations are conducted to reveal how the preferential spanwise wavelength
of Görtler vortices scales with varying geometric and freestream parameters. The optimal
wavelengths are insensitive to the total turning angle beyond a critical value. However,
they change as the concave curvature varies at the same turning angle. A limit wavelength
λz = 1.96δ (βδ = 3.2), corresponding to infinite curvature K → ∞, is identified and
validated using a 20◦ compression ramp case by isolating the separation bubble. This
value provides valuable insights into the Görtler instability in turbulent separated flows.
The limit wavelength decreases with an increasing Mach number M∞ and a decreasing
temperature ratio Tw/T∞, remaining unchanged with varying Reynolds number Re∞
when normalised using the boundary-layer thickness δ. Additionally, a modified definition
of the turbulent Görtler number GT is proposed using the peak eddy viscosity in TBLs.
The critical Görtler number GT = 0.3−0.45 and curvature K = 0.00143 are determined by
LSA and serve as conservative estimates for evaluating the occurrence of Görtler vortices
in the baseline cases.
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The optimal forcings responses may provide guidance for flow control strategies. For
instance, these optimal forcings can be used through plasma actuators (Ribeiro & Taira
2024) to suppress or enhance the strengths of Görtler vortices. Future studies will discuss
control strategies in detail.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10229.
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Appendix A. Verification of the LES solver
The qualities of the TBL at the reference station x0 are discussed in this appendix.
Figure 23(a) compares the mean values of density ρ, streamwise velocity U , and
temperature T from LES with the experimental data (Zheltovodov et al. 1990). Good
agreement is observed for all three variables. Figure 23(b) presents the Van Driest
transformed velocity, defined as

U+
V D = 1

uτ

∫ U

0

√
ρ

ρw

dU, (A1)

where uτ is the wall-fraction velocity, and ρw is the mean density at the wall. The
transformed velocity profile aligns well with the classical solutions, specifically U+

V D = y+
and U+

V D = (1/0.41) log(y+) + 5.1, as well as the experimental data (Zheltovodov et al.
1990). Additionally, the density-scaled RMS values are compared with the compressible
DNS results (Bernardini & Pirozzoli 2011; Tong et al. 2017). Our LES results show a good
match with these studies.

Figure 24 shows the spanwise correlations at stations ϕ = 10◦ and ϕ = 20◦. The
correlations are negligible when the distance is beyond 1.5δ at both stations, which
suggests that the computational domain in this simulation is sufficiently wide.

Appendix B. Effect of the forcing location
Figure 25 compares the optimal gains obtained from different forcing locations at St =
0.036. The forcing locations are positioned at 10δ upstream of the concave region and
across the entire domain, respectively. The two results show strong agreement, indicating
that the optimal response is insensitive to the forcing location. This insensitivity confirms
that the dominant amplification mechanism arises from upstream disturbances rather than
localised forcing in the concave wall region, consistent with the convective instability
characteristics of globally stable flows. Restricting the analysis to upstream disturbances
excludes the possibility that large-scale structures may be generated by localised forcing
in the curved wall region.

Appendix C. Convergence analysis
This appendix aims to verify the statistical convergence of the computed POD and SPOD
modes. According to Lesshafft et al. (2019) and Abreu et al. (2020), the number of samples
is a key factor in achieving the convergence of these modes. The correlation coefficient α
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Figure 23. (a) Distributions of mean qualities, (b) Van Driest transformed mean velocity profiles, and
(c) comparisons of density-scaled RMS at the reference station x0.
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Figure 24. Spanwise correlations at (a) ϕ = 10◦ and (b) ϕ = 20◦ at two wall-normal stations.

between the modes obtained using different subsets is used to analyse the convergence,
defined as

α =
∣
∣‖Φ100 %, Φ75 %‖E

∣
∣

‖Φ100 %‖E × ‖Φ75 %‖E
, (C1)

where Φ denotes the POD modes or the leading SPOD modes within the frequency band
St = 0.01−0.04. The subscripts 75 % and 100 % indicate that the modes are obtained
using 75 % and 100 % of the total samples, respectively. The 75 % subset represents either
the former or the latter 75 % of the original dataset. A value of α close to 1 indicates
convergence (Lesshafft et al. 2019; Abreu et al. 2020). Figure 26(a) shows the correlation
coefficients of the first nine POD modes, with α � 0.93 for the first two modes. Notably,
α is approximately 0.99 for the first mode, which is of particular interest. Figure 26(b)
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Figure 25. Normalised optimal gains at St = 0.0361 as a function of spanwise wavenumbers with different
forcing locations.
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Figure 26. Correlation coefficients α to quantify the statistical convergence of (a) POD and (b) SPOD modes.

compares the correlation coefficients of the leading SPOD modes of different stations and
mid-span plane within St = 0.01−0.04. Here, α � 0.93 is maintained for all frequencies.
The results from the two 75 % subsets agree well with those obtained using the whole
dataset. Therefore, the POD and SPOD modes are considered converged.
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