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We perform direct numerical simulations of turbulent channel flows. Secondary motions
are produced by applying a streamwise-homogeneous, spanwise-heterogeneous roughness
pattern of spanwise period Λs to the walls of the channel; their time evolution is observed.
Notice that, owing to the geometry, the secondary motions are streamwise-invariant at any
instant of time, so that no spatial development is seen. Once the secondary motions reach a
statistically steady state, the roughness pattern is suddenly removed, so that the secondary
motions decay. The time needed for the secondary motions to vanish is then measured;
in doing so, we distinguish between the streamwise-momentum pathways and the cross-
sectional circulatory motions that compose the secondary motions. Larger values of Λs are
generally associated with a longer time scale for the decay of the momentum pathways,
although this might not hold true for Λs/h > 4 (where h is the channel half-height). The
value of such a time scale for the circulatory motions, instead, saturates for Λs/h � 2;
this may be related to the observed spatial confinement of said circulatory motions. For
specific values of Λs (2 �Λs/h � 4), the volume-averaged energy associated with the
momentum pathways undergoes an unexpected transient growth with respect to its value
at the beginning of the decay. This might indicate that structures of such a specific size are
able to self-sustain as postulated by Townsend (The Structure of Turbulent Shear Flow,
2nd edition, 1976, ch. 7.19); the evidence we gather in this respect is however inconclusive.
Finally, the present data suggest that most of the energy of the momentum pathways is
produced by the circulatory motions transporting the mean (spanwise-averaged) velocity.
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1. Introduction
Starting from the seminal work of Nikuradse (1931), turbulent flows over rough surfaces
have been commonly studied in the presence of statistically homogeneous roughness. The
drag penalty induced by the imperfections of the surface is reflected in a vertical shift of the
universal logarithmic velocity profile, which can be readily calculated from the equivalent
sand-grain roughness (see, for instance, the review by Chung et al. 2021). The equivalent
roughness is in turn a hydraulic quantity whose a priori calculation from the roughness
topology is the subject of ongoing research (e.g. Flack & Schultz 2010; Yang et al. 2023).

However, naturally occurring rough surfaces (such as that generated by the deposition
of dirt, ice or organic matter over the surface of a vehicle) can rarely be regarded as
homogeneous, so that the effect they have on the flow is more complex than a vertical
shift of the velocity profile. For example, Mejia-Alvarez et al. (2013) have inspected the
roughness generated on a turbine blade by deposition of foreign materials, finding that it
contained randomly distributed elements of different scales. The flow over such a multi-
scale roughness has been experimentally investigated in a boundary layer wind tunnel
(Mejia-Alvarez & Christensen 2013; Barros & Christensen 2014). It has been found that the
ensemble-averaged velocity field is highly heterogeneous as it contains coherent regions of
low and high momentum (low and high momentum pathways); these occur in the absence
of obvious geometric features (e.g. ridges). As a note of caution, it is worth highlighting
that the rough surface used in the mentioned studies was manufactured by aligning several
identical rough plates; this creates a large-scale regularity in the surface that might favour
the formation and sustainment of the observed momentum pathways. The pathways have
an h-scaled extent in the streamwise and wall-normal direction, where h is the outer length
scale (the boundary layer thickness for the studies mentioned here). Nikora et al. (2019)
observed similar coherent motions over multi-scale roughness in open channel flows,
finding that the pathways provide a contribution to skin friction that adds up to the direct
effect of roughness. Comparable low- and high-momentum pathways were found both
experimentally (Womack et al. 2022) and numerically (Kaminaris et al. 2023) by studying
the turbulent flow over a random distribution of truncated conical roughness elements
resembling the barnacles that accumulate on ship hulls. These pathways extend for at least
18h (Womack et al. 2022) in the streamwise direction; the position at which they occur
is reproducible across different repetitions of the same experiment. Also, high- and low-
momentum pathways of an h-scaled spanwise period were observed by Reynolds et al.
(2007) in a boundary layer evolving over an array of staggered cubic roughness elements.
In this last case, however, the spanwise period of the momentum pattern increased with
streamwise fetch in an almost quantised manner.

There is no consensus over what triggers the formation of these momentum pathways.
Kaminaris et al. (2023) found that the spanwise topology of the pathways correlates
well with that of the leading edge of the roughness (that is, the first row of roughness
elements stretching over the spanwise direction). They went on to show that the pathways
are effectively triggered by the leading edge, and persist for a finite distance downstream
of it regardless of whether they evolve over a smooth or a rough surface. Conversely,
Barros & Christensen (2014) found a local correlation between the roughness topology and
the pathways, suggesting that the pathways originate from heterogeneity in the roughness
properties in a similar way to secondary motions over spanwise heterogeneous roughness.
It is unclear which of these two mechanisms is dominant; it cannot be excluded that both
contribute to the formation of the pathways. Nevertheless, there is a close resemblance
between the pathways and secondary motions observed over spanwise heterogeneous
roughness (as we will discuss below), to the point that the pathways themselves are also
referred to as secondary motions. Both the pathways and the secondary motions, in turn,
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have often been linked to the naturally occurring very-large-scale motions (VLSMs; see,
for instance, Kim & Adrian 1999; Hutchins & Marusic 2007a; Lee & Moser 2018) seen in
turbulent wall-bounded flows.

Spanwise heterogeneous roughness is usually studied in terms of spanwise-alternating
streamwise-elongated strips with different roughness properties (Hinze 1967; Nugroho
et al. 2013; Turk et al. 2014; Willingham et al. 2014; Anderson et al. 2015; Stroh et al.
2016; Vanderwel et al. 2019; Stroh et al. 2020; Frohnapfel et al. 2024). The strip width is
typically indicated by s; notice that this is half the period Λs of the spanwise roughness
pattern. The roughness pattern induces secondary motions; as long as the strips are narrow
(s � h), the secondary motions consist in high- and low- momentum pathways flanked by
cross-sectional circulatory motions (for instance, Chung et al. 2018). The same topology
has been observed for the pathways occurring over multi-scale roughness (Barros &
Christensen 2014; Nikora et al. 2019). Conditional views of VLSMs (Hutchins & Marusic
2007b; Hwang et al. 2016) also share the same geometry, the main difference being that
VLSMs occur at random spanwise positions whereas the position of secondary motions
is based on the roughness topology. It has been proposed that momentum pathways and
secondary motions originate as the geometric or roughness features at the wall provide
a preferential spawning position for VLSMs (Mejia-Alvarez & Christensen 2013; Chung
et al. 2018; Wangsawijaya & Hutchins 2022). This view is corroborated by the observation
that randomly occurring VLSMs do not coexist with fixed-position secondary motions
of comparable size (s/h ≈ 1, Barros & Christensen 2019; Zampiron et al. 2020; Schäfer
2023). Moreover, both VLSMs and secondary motions have been found to meander about
their spawning position, although the associated streamwise periods are slightly different
(Hutchins & Marusic 2007a; Kevin et al. 2017, 2019; Vanderwel et al. 2019; Wangsawijaya
& Hutchins 2022). Another difference is given by the fact that VLSMs are typically
observed in the log-layer, whereas secondary motions of comparable size extend to the
wake region (Wangsawijaya et al. 2020).

One additional common property of naturally occurring VLSMs and the pathways or
secondary motions is that they are often observed to have a characteristic spanwise length
scale of the order of 1h. The typical spanwise scale of VLSMs occurring over smooth
walls is indeed 1 − 4 h (Lee & Moser 2018), although their size is flow dependent. The
momentum pathways found over multi-scale and randomly distributed roughness are also
h-spaced in the spanwise direction (as can be seen from the data of Reynolds et al.
2007; Barros & Christensen 2014; Womack et al. 2022). Secondary motions induced by
a spanwise roughness pattern are most energetic when the strip spacing s is of the order
of h (Vanderwel & Ganapathisubramani 2015; Medjnoun et al. 2018; Wangsawijaya et al.
2020); as the strip spacing is increased to larger values (s � h), the secondary motions
stop growing in size and rather remain confined to an h-wide region around roughness
transitions.

There are at least two possible explanations for the frequent observation of dominant
h-scaled features in turbulent flows; they are not necessarily mutually exclusive. The
study of the linearised Navier–Stokes equations in wall-bounded flows has revealed that
the perturbations they amplify the most are either inner- or h-scaled in the spanwise
direction (Del Álamo & Jiménez 2006; Cossu et al. 2009; Alizard et al. 2015). Large-
scaled perturbations evolve into structures reminiscent of the conditional views of VLSMs,
of secondary motions and of the momentum pathways flanked by rolling motions, although
linear analysis tends to overestimate the spanwise wavelength of these features (Alizard
et al. 2015). Similar results have been found by searching the volume forcing mode
that is most amplified by the linearised Navier–Stokes equations (Hwang & Cossu
2010; Illingworth 2020). In light of these linear amplification mechanisms, then, the
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phenomenology described above can be explained as follows. A broadband disturbance
(as a velocity perturbation or a volume force) is provided either by nonlinear interactions
between small scales or by the roughness topology; the flow then acts to selectively amplify
disturbances of a particular h-scaled set of wavelengths to yield the observed VLSMs or
momentum pathways. The plausibility of this hypothesis is corroborated by evidence that
channel flows are particularly sensitive to spanwise disturbances at the wall (Jovanović &
Bamieh 2005). An alternative, yet similar, explanation is provided by Townsend (1976,
chap. 7.19) in an attempt to explain the persistence of some h-scaled perturbations often
seen in wind tunnels. Using suited approximations, Townsend estimated that spanwise
variations of the wall-shear stress whose characteristic wavelength falls in a limited
(� 4h) h-scaled range should be able to self-sustain and thus dominate the remaining
flow features. It is then conceivable (as pointed out by Wangsawijaya et al. 2020) that
a broadband perturbation could trigger a set of motions of different scales, of which
some h-scaled ones would outlive the others to yield VLSMs or the h-scaled momentum
pathways.

The aim of this article is to measure the persistence in time of secondary motions
of different sizes once the external factors that trigger their appearance and allow for
their sustainment are removed. In particular, we consider secondary motions induced
by spanwise roughness patterns of different periods. This is done both in an attempt
to assess the plausibility of Townsend’s estimates and to investigate the streamwise-
extended secondary motions observed over a smooth wall in the wake of roughness
features (Kaminaris et al. 2023). In § 2, we explain our numerical procedure: secondary
motions extracted from a steady-state flow over heterogeneous roughness are allowed to
evolve in time in a channel flow with smooth walls until they decay. The theoretical
framework underlying the analyses presented in this paper is then presented in § 3. An
overview of the fully developed steady-state secondary motions is given in § 4; their time
evolution is then tracked (§ 5) through an ensemble-average of multiple realisations of the
same simulation. For completeness, we also briefly show the time evolution of near-wall
streamwise fluctuations in § 6. A concluding discussion is given in § 7.

2. Problem statement and numerical method
We perform direct numerical simulation (DNS) of incompressible channel flows at
constant pressure gradient (CPG). The peculiarity of this dataset is that the simulations
capture the decay of secondary motions of different sizes; this process is clearly not at a
statistically steady state. Rather, our simulations describe the transition from a statistically
steady state (flow with secondary motions) to a second steady state (flow in a smooth
channel). To still be able to compute averages, each simulation is then run several times,
each time starting from a different realisation of a given statistically steady state. Ensemble
averages are then calculated.

The channel geometry is shown in figure 1. Let x , y, z be the streamwise, wall-
normal and spanwise directions; u, v, w are the corresponding components of the velocity
vector u. The flow is periodic in the streamwise and spanwise directions (periodic
boundary conditions); the corresponding periods are indicated as Lx and Lz , respectively.
The flow is statistically homogeneous in the streamwise direction, but not in the spanwise
one: indeed, as will be discussed below, a spanwise-heterogeneous (but streamwise-
homogeneous) roughness pattern at the wall induces spanwise-heterogeneities of the
average flow velocity.

Time is indicated by t . At t = 0, the flow is at a statistically steady state in the presence
of secondary motions. These are sustained by a spanwise roughness pattern consisting in
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Figure 1. Schematic problem description with a graphical representation of secondary motions. The initial
condition (t = 0) of our numerical set-up is shown in panel (a): steady-state secondary motions are observed
over strip-type roughness. A generic point t in time (with t > 0) is depicted in panel (b): the secondary motions
decay as they evolve over a smooth wall. Box size not to scale. Adapted from Neuhauser et al. (2022).

alternating streamwise-elongated strips of smooth and rough wall. We will refer to this
set-up as strip-type roughness. The spanwise width of each strip is s; the spanwise period
of the pattern is Λs = 2s. For t > 0, the spanwise roughness pattern is suddenly replaced
by a smooth wall, so that the decay of the secondary motions is observed. The pressure
gradient is kept constant in the process.

Notice, once again, that the flow is streamwise-homogeneous. As the strip-type
roughness is removed from the walls, the flow departs from its steady state, but retains
its streamwise homogeneity. In other words, the flow develops temporally, but not in
the streamwise direction. Our present approach is thus similar to that of Toh & Itano
(2005), in the sense that we investigate the time evolution of streamwise-invariant flow
structures. Notice, moreover, that an increase of the bulk velocity is observed as a result
of the removal of the strip-type roughness: as the pressure gradient is kept constant, the
reduction in skin friction at the wall leads to an increase of the flow rate. Mass is conserved
throughout the process: owing to the present geometry, conservation of mass only requires
the average flow velocity to be streamwise-invariant, so that time variations of the flow
rate are admissible.

Owing to the instationarity and spanwise heterogeneity of the problem, care must be
exerted when defining averaging operators and viscous units. The operator 〈·〉 indicates
the expected value and is computed as an average over multiple repetitions of the same
simulation, over the streamwise direction and over multiple spanwise periods of the
selected geometry (phase average, see Reynolds & Hussain 1972); known symmetries
in the wall-normal and spanwise directions are used to improve convergence wherever
possible. The resulting statistics depend on the conditioned spanwise variable ζ and time,
as well as on the wall-normal coordinate y. If an additional spanwise average is performed,
the symbol 〈·〉z is used. As for inner units, the expected value τw(t, ζ ) of the wall shear
stress is a function of time and of the spanwise coordinate. So are the friction velocity
uτ (t, ζ ) = √

τw/ρ and the viscous length scale δv(t, ζ ) = ν/uτ , where ρ is the density and
ν the kinematic viscosity. For the calculation of the worst-case inner-scaled grid spacing,
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the maximum value uτ,m of the friction velocity can be used:

uτ,m = max
t,ζ

uτ (t, ζ ); δv,m = ν

uτ,m
. (2.1)

Leveraging the fact that the pressure gradient −G, G > 0 is forcedly kept constant during
our simulations, a global friction velocity u p and length scale δp can also be defined:

u p =
√

hG

ρ
; δp = ν

u p
. (2.2)

Quantities scaled with these global viscous units will be indicated with a (·)+ superscript.
They are also used for the definition of the friction Reynolds number Reτ = hu p/ν. The
relation between global and local viscous units can be found by integrating the streamwise
momentum balance of the Navier–Stokes equations. By defining the bulk velocity as the
volume-average of the expected streamwise component,

Ub(t) = 1
2h

∫ 2h

0
〈u〉z dy, (2.3)

the following relation is obtained:

ρh
dUb

dt
= hG − 〈τw〉z . (2.4)

Under steady conditions (t = 0 and t → ∞ for the problem considered here), the global
u p is the friction velocity built by using the spanwise average 〈τw〉z instead of τw in its
definition:

u p =
√

〈τw〉z

ρ
only at a steady state. (2.5)

2.1. Numerical method and details
We perform DNS using the open-source solver Xcompact3d (Laizet & Lamballais 2009;
Laizet & Li 2011; Bartholomew et al. 2020), using sixth-order compact finite differences in
space combined with an explicit third-order Runge–Kutta scheme in time. We test different
configurations for varying Λs at two different friction Reynolds numbers (Reτ = 180 and
Reτ = 500). While the streamwise extent Lx of the simulation domain is set to values that
are greater or equal to those used by Neuhauser et al. (2022) for analogous simulations, the
spanwise box size Lz is set alternatively to 12h, 8h or 6h to accomodate an integer, even
number of strips for each of the tested values of Λs . The Lz = 6h box size is preferred at
high-Re wherever possible to minimise the computational load of a single simulation.

Our data production pipeline consists of two stages. First, initial conditions are produced
by simulating a channel flow with a spanwise roughness pattern of period Λs (see
figure 1a). Rough wall sections are modelled by imposing a slip length � for the spanwise
velocity component at the wall as done by Neuhauser et al. (2022). This results in the
following Robin boundary condition:

ww = � n̂w · (∇w)w , (2.6)

where the (·)w subscript indicates a quantity evaluated at the wall, n̂w a unit vector that
is orthogonal to the wall and pointing into the fluid. The value of the slip length is set to
�+ = 9 following Neuhauser et al. (2022). After the simulation reaches a steady state, a
set of Ns snapshots is stored; the sample time is set to 1h/u p to ensure that snapshots are
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colour Reτ Λs/h N0 or Ns T f u p/h (Lx , Lz)/h (	x, 	z, 	yc, 	yw)/δv,m CFLmax Fomax

180 Smooth 170 N.A. (8, 12) (8.0, 3.75, 8.48, 0.85) 0.5350 0.1246
180 0.5 80 5 (8, 12) (8.54, 4.00, 9.05, 0.91) 0.7009 0.1246
180 1 200 5 (8, 12) (8.86, 4.15, 9.39, 0.94) 0.6781 0.1246
180 2 200 5 (8, 12) (8.69, 4.07, 9.21, 0.92) 0.6115 0.1246
180 4 250 8 (8, 12) (8.75, 4.10, 9.28, 0.93) 0.7020 0.1246
180 6 300 10 (8, 12) (8.73, 4.09, 9.25, 0.93) 0.6998 0.1246
500 Smooth 151 N.A. (12, 6) (10.00, 5.00, 9.76, 1.00) 0.7096 0.0700
500 0.5 108 3.1 (12, 6) (10.81, 5.41, 10.56, 1.08) 0.6696 0.0700
500 1 162 3.5 (12, 6) (10.85, 5.42, 10.59, 1.08) 0.6974 0.0700
500 2 162 5.1 (12, 6) (10.89, 5.45, 10.63, 1.09) 0.6764 0.0700
500 4 165 8.2 (12, 8) (10.96, 5.48, 10.70, 1.10) 0.7619 0.0700
500 6 180 8.2 (12, 6) (10.87, 5.44, 10.61, 1.09) 0.7646 0.0700

Table 1. Numerical details for all tested combinations of Λs/h (the spanwise period of the roughness pattern)
and Reτ for our smooth (steady) and time-evolving simulations. The number of fields used to calculate statistics
is indicated by N0 = Ns (where N0 refers to steady-state simulations, Ns to time-evolving ones). T f indicates
the time duration of the decaying simulation, Lx and Lz refer to the simulation box size in the streamwise and
spanwise directions; the grid spacing is uniform in these two directions and is indicated by 	x , 	z respectively.
The wall-normal grid spacings at the wall and centreline are instead indicated by 	yw and 	yc. The maximum
in time, over each grid point and over the three spatial directions (or velocity components) of the Courant–
Friedrichs–Lewy (CFL = V 	t/q , where 	t is the simulation time step, q is the grid spacing at some generic
point in a given direction and V is the velocity component at that point in the same direction) and Fourier
(Fo = ν	t/q2) numbers are also reported. The dot to the left of each row indicates the colour used in the
following figures to indicate a given value of Λs/h.

reasonably uncorrelated. As previously explained, u p is analogous to uτ ; then, if h is the
maximum height of an attached eddy, its lifetime can be expected to be of the order of the
eddy turnover time 1h/u p (see, e.g., Lozano-Durán & Jiménez 2014). One can then expect
that the turbulent features observed in a given snapshot differ from those of the successive
snapshot saved after 1h/u p.

Each of the Ns saved snapshots of the secondary motions is used as the initial condition
for a second simulation between smooth walls (see figure 1b). The duration of the
simulation T f is chosen to satisfactorily capture the decay of the secondary motions.
Streamwise-averaged flow fields are stored every 0.01h/u p, even though a laxer time
resolution could have been used in retrospect. Streamwise-averaged velocity fields are
preferred to three-dimensional snapshots as the present procedure is particularly data
intensive. Exploiting the several repetitions of the simulation, a total of Ns fields at the
same time t from the initial conditions are averaged together to produce an ensemble-
average of the decaying secondary motions. The whole procedure is repeated for different
values of Λs and Reτ .

Numerical details for the complete dataset used for this study are reported in table 1.
The grid spacing is normalised with the worst-case value δv,m of the viscous length scale;
such a value is usually observed at the initial conditions. Additionally to the decaying
simulations, two reference simulations between smooth walls (Reτ = 180, Reτ = 500)
have been produced using the same grid used for rough simulations. In this case, N0
indicates the number of samples used for the calculation of steady-state statistics. Notice
that we adjust the number of fields (Ns , N0) used for the computation of statistics as we
change Reτ and Λs ; as for the quantification of the degree of statistical convergence, see
§ 3.5. Generally, Reτ has a favourable effect on the convergence of statistics: as near-wall
turbulent structures become smaller with larger Reτ , a larger number of these features are
contained in a single flow snapshot. This yields a quicker falloff of the small-scale noise.
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It is thus expected that a lower number of snapshots (Ns , N0) is required for statistics to
converge at high-Reτ . The effect of the period Λs depends instead on the size Lz of the
simulation box. As previously explained, data from the several spanwise periods contained
in a single snapshot are averaged together (phase-averaging); the larger the number of
periods Lz/Λs in a single snapshot, the lower we expect the required Ns (or N0) to be.

3. Theoretical framework

3.1. Triple decomposition; momentum pathways and circulatory motions
Unlike homogeneous flows, which are best described using a Reynolds decomposition,
flows featuring secondary motions are commonly described in terms of a triple
decomposition. As would be done in a Reynolds decomposition, velocity fluctuations
u′ are separated from the expected value 〈u〉. Additionally, the expected value 〈u〉 is
further split into its spanwise average U = 〈u〉z and a dispersive field ud = (ũ, ṽ, w̃) to
yield the triple decomposition. This is done as the expected value 〈u〉 of the velocity
depends on the conditioned spanwise variable ζ (see § 2); using the triple decomposition,
the spanwise-uniform field U is separated from the spanwise-heterogeneous dispersive
field ud ,

〈u〉 = U + ud . (3.1)

Since only the streamwise component has a non-zero spanwise average for the present
geometry,

U = U (t, y) x̂, (3.2)

ũ = 〈u〉 − U (t, y), ṽ = 〈v〉 , w̃ = 〈w〉 , (3.3)

where x̂ is a unit vector pointing in the streamwise direction and U will be referred to as
the mean velocity profile. The full velocity field then reads

u(t, x, y, z) = U (t, y) x̂ + ud(t, y, ζ(z)) + u′(t, x, y, z). (3.4)

Note that the averaged fields U , ud are streamwise-invariant owing to the channel
geometry. This allows to further split the dispersive field ud into two separate parts.
Indeed, the continuity equation for ud reads

∂ṽ

∂y
+ ∂w̃

∂ζ
= 0. (3.5)

The above equation indicates that the two-dimensional vector field given by ṽ and w̃ is
divergence-less. The distribution of ṽ can be thus determined if w̃ is known (or vice versa),
and the two form a single circulatory pattern. Such a cross-sectional circulatory motion is
typical of secondary motions (see e.g. Neuhauser et al. 2022) and will be treated separately
from the remaining velocity component ũ, which contains the information regarding the
momentum pathways (e.g. Womack et al. 2022).

3.2. Velocity spectra of the dispersive field
In § 4, the dispersive field of the simulated flows will be inspected in real space to reveal the
presence of secondary motions and their features. An additional analysis will be performed
in spectral space by scrutinising the velocity spectra Φũũ , Φṽṽ , Φw̃w̃ of the dispersive field.
Velocity spectra are typically defined as the Fourier transform of the velocity correlation
function (see, e.g., Davidson 2015). Such a definition cannot be used in the present case
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owing to the periodicity of the dispersive field: a Fourier series is used instead. As an
example, the spectrum Φũũ of ũ is defined as

Φũũ = Fz{ũ}†Fz{ũ}
	κz

, (3.6)

where (·)† indicates the conjugate of a complex number, 	κz is the Fourier resolution
in the spanwise direction and Fz{ũ} indicates the coefficients of the Fourier series of ũ.
These are defined as

Fz{ũ}(t, y, κz) = 1
Λs

∫ Λs

0
ũ(t, y, ζ ) e−iκzζ dζ (3.7)

where i is the imaginary unit and κz the spanwise wavenumber. Owing to Parseval’s
theorem, the spectrum of ũ can be related to the spanwise average of its energy:

+∞∑
κz=−∞

	κzΦũũ(t, y, κz) = 1
Λs

∫ Λs

0
ũ2(t, y, ζ ) dζ = 〈

ũ2〉
z (3.8)

The above equation justifies the common interpretation of the spectrum as the contribution
of motions of wavelength λz = 2π/κz to the energy of the flow.

3.3. Triple-decomposed momentum and velocity budgets
Additionally to the spectra, the energy budget of the streamwise dispersive velocity
component ũ will be analysed at a steady state in § 4. For completeness, and to shed
light on the way energy is redistributed between the mean, dispersive and fluctuation
fields, each of the corresponding budget equations will be presented in the following
discussion (including equations that will not be further discussed in the paper). These
budget equations can be easily obtained starting from the Reynolds-averaged momentum
budget and from the budget equation of the Reynolds stress tensor (see, e.g., Davidson
2015):

∂ 〈ui 〉
∂t

+ 〈uk〉 ∂

∂xk
〈ui 〉 + 1

ρ

∂ 〈P〉
∂xi

= ν∇2 〈ui 〉 − ∂

∂xk

〈
u′

i u
′
k

〉
. (3.9)

∂
〈
u′

i u
′
j

〉
∂t

+ 〈uk〉 ∂

∂xk

〈
u′

i u
′
j

〉 = − 〈
u′

i u
′
k

〉 ∂〈u j 〉
∂xk

− 〈
u′

j u
′
k

〉∂ 〈ui 〉
∂xk

− ∂

∂xk

〈
u′

i u
′
j u

′
k

〉
− ∂

∂xi

〈
u′

j
P ′

ρ

〉
− ∂

∂x j

〈
u′

i
P ′

ρ

〉

+
〈

P ′

ρ

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉

+ ν∇2〈u′
i u

′
j

〉− 2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
. (3.10)

The above equations are usually derived by time-averaging, whereas the present work
resorts to averaging in the streamwise direction, over multiple repetitions of a simulation
and over multiple phases of a periodic domain. Nevertheless, it is trivially shown that
the above equations are valid regardless of how averaging is performed as long as the
averaging operator fulfils the following properties (as it does in this case):〈

f ′〉= 0; 〈〈 f 〉〉 = 〈 f 〉 ; 〈〈 f 〉 f ′〉= 〈 f 〉 〈 f ′〉 , (3.11)
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where f indicates a generic random function. Equation (3.9) is only valid for the expected
velocity field 〈u〉; leveraging the fact that the triple decomposition is a particular case of
the Reynolds one, a budget equation for the i th component Ui of the mean field can be
obtained by substituting (3.1) in (3.9) and taking a spanwise average:

∂Ui

∂t
+ Uk

∂Ui

∂xk
+ 1

ρ

∂ 〈P〉z

∂xi
= ν∇2Ui − ∂

∂xk
〈ũi ũk〉z − ∂

∂xk

〈
u′

i u
′
k

〉
z . (3.12)

The above equation resembles the Reynolds-averaged Navier–Stokes momentum equation
(3.9), except that an additional term appears. Not only does the mean field feel the presence
of turbulence through the Reynolds stress 〈u′

i u
′
k〉z , but it is also influenced by the dispersive

field through the dispersive stress 〈ũi ũk〉z . Notice, moreover, that (2.4), which describes
the time-evolution of the bulk velocity, can be obtained by integrating (3.12) over the flow
domain. By once again substituting (3.1) in (3.9) and by subtracting (3.12), one obtains a
balance equation for the dispersive momentum:

∂ ũi

∂t
+ (Uk + ũk)

∂ ũi

∂xk
+ 1

ρ

∂ p̃

∂xi
= ν∇2ũi −ũk

∂Ui

∂xk︸ ︷︷ ︸
V4

+ ∂

∂xk
〈ũi ũk〉z (3.13)

− ∂

∂xk

(〈
u′

i u
′
k

〉− 〈
u′

i u
′
k

〉
z

)
,

where ũi indicates the i th component of ud . Notice that (3.12) and (3.13) are of general
validity (symmetries and simplifications due to the geometry have not been considered
yet). Starting from the momentum budgets (3.12) and (3.13), energy budgets are trivially
obtained by multiplication with Ui and ũi , respectively, and by performing a subsequent
spanwise average. Additionally, an energy budget for the fluctuation field can be obtained
by substituting (3.1) in (3.10) and by spanwise-averaging. After rearranging some terms,
one obtains

∂

∂t

U 2
i

2
+ Uk

∂

∂xk

U 2
i

2
= ν∇2 U 2

i

2
− ν

(
∂Ui

∂xk

∂Ui

∂xk

)
− Ui

ρ

∂ 〈P〉z

∂xi
(3.14)

+ 〈ũi ũk〉z
∂Ui

∂xk︸ ︷︷ ︸
M5

+ 〈
u′

i u
′
k

〉
z

∂Ui

∂xk

− ∂

∂xk

[
Ui

(
〈ũi ũk〉z + 〈

u′
i u

′
k

〉
z

)]
,

∂

∂t

〈
ũ2

i

〉
z

2
+ ∂

∂xk

〈
(Uk + ũk)

ũ2
i

2

〉
z︸ ︷︷ ︸

D1

= ν∇2

〈
ũ2

i

〉
z

2︸ ︷︷ ︸
D2

− ν

〈
∂ ũi

∂xk

∂ ũi

∂xk

〉
z︸ ︷︷ ︸

D3

−
〈

ũi

ρ

∂ P̃

∂xi

〉
z︸ ︷︷ ︸

D4

(3.15)

− 〈ũi ũk〉z
∂Ui

∂xk︸ ︷︷ ︸
D5

+
〈〈

u′
i u

′
k

〉 ∂ ũi

∂xk

〉
z︸ ︷︷ ︸

D6

− ∂

∂xk

〈
ũi
〈
u′

i u
′
k

〉〉
z︸ ︷︷ ︸

D7

,
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∂

∂t

〈
u′

i u
′
i

〉
z

2
+ ∂

∂xk

〈
(Uk + ũk)

〈
u′

i u
′
i

〉
2

〉
z

= + ν∇2

〈
u′

i u
′
i

〉
z

2
− ν

〈
∂u′

i

∂xk

∂u′
i

∂xk

〉
z

− 〈
u′

i u
′
k

〉
z

∂Ui

∂xk
−
〈〈

u′
i u

′
k

〉 ∂ ũi

∂xk

〉
z︸ ︷︷ ︸

F6

− 1
2

∂

∂xk

〈
u′

i u
′
i u

′
k

〉
z − ∂

∂xi

〈
u′

i

ρ
P ′
〉

z
. (3.16)

The above equations were also found by Reynolds & Hussain (1972) using a slightly
different averaging technique. Consider the equation for the dispersive kinetic energy
(3.15). The dispersive kinetic energy gets transported by both the mean and the dispersive
fields (term D1); a pressure term appears in the equation (D4), as well as the usual viscous
diffusion (D2) and dissipation (D3) terms. The former indicates that viscosity tends to
smear the dispersive energy out over time, whereas the latter represents the power lost
to viscous forces. The two remaining equations ((3.14) and (3.16)) all share analogous
transport, pressure and viscous terms; the only difference is that the mean kinetic energy
U 2

i is only transported by the mean field Ui , and not by the dispersive one ũi .
Most importantly, the above equations shed a light on how the mean, dispersive and

fluctuation fields exchange energy. For instance, the dispersive stress term D5 appears
both in the balance of dispersive energy (3.15) and in the balance of mean energy (3.14)
(term M5) with opposite sign: it thus represents an exchange of power between the mean
and the dispersive fields. Similarly, term D6 represents an exchange of power between the
dispersive and fluctuation fields, as it appears both in the dispersive balance and in the
fluctuation one (3.16) (term F6) with opposite sign. To sum up, the dispersive stresses
enable the exchange of energy between the mean and the dispersive fields, whereas the
Reynolds stresses allow the exchange of energy between the dispersive and the fluctuation
field (and additionally between the mean and the fluctuation field, as is usual; see (3.14)
and (3.16)).

In § 4, only the energy budget of the streamwise dispersive energy ũ2 will be analysed;
indeed, the quantities involved in the budgets of the two remaining components ṽ2 and
w̃2 are too small compared with the fluctuations to be captured with a satisfactory
signal-to-noise ratio. Such a ũ2-budget can be obtained in a similar way to (3.15), but
without averaging in the spanwise direction; after considering all the simplifications and
symmetries due to the present geometry, the budget reads

∂

∂t

ũ2

2
+
(

ṽ
∂

∂y
+ w̃

∂

∂ζ

)
ũ2

2︸ ︷︷ ︸
Ta

= ν∇2 ũ2

2
− ν

(
∂ ũ

∂y

∂ ũ

∂y
+ ∂ ũ

∂ζ

∂ ũ

∂ζ

)
︸ ︷︷ ︸

V

+ ũ
∂

∂y
〈ũṽ〉z︸ ︷︷ ︸
Tc

− ũṽ
∂U

∂y︸ ︷︷ ︸
P

− ũ
∂

∂y

(〈
u′v′〉− 〈

u′v′〉
z

)
︸ ︷︷ ︸

Tuv

−ũ
∂

∂ζ

〈
u′w′〉

︸ ︷︷ ︸
Tuw

. (3.17)

An additional term appears here with respect to (3.15) – that is, Tc. This term integrates
to zero when spanwise-averaged, both explaining its absence from (3.15) and indicating
that the term only spatially redistributes ũ-energy. The remaining terms all have a
correspondent in (3.15). Notice that here, both the viscous diffusion (D2 in (3.15)) and
the viscous dissipation (D3) are grouped in a single term V . The terms Tuv and Tuw

quantify the work done by the Reynolds stresses on the dispersive velocity ũ. Such work
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was rewritten in (3.15) as two separate terms (D6 and D7), of which one (D6) corresponds
to a power exchange with the fluctuation field, and the other (D7) can be easily shown to
turn zero for the ũ component when integrated over the flow domain (notice that the same
does not hold for the w component owing to the slip length boundary condition). That is,
term D7 only yields a spatial redistribution of ũ-energy.

Finally, the P term of (3.17) is of particular interest for the results of this paper. We refer
to such a term as dispersive production owing to its similarity to the canonical turbulence
production term in a channel flow (Davidson 2015). Such a term corresponds to the D5
term in (3.15), and it thus represents an energy exchange with the mean field. The term
accounts for the work done by the momentum flux V4 in (3.13) on the velocity ũ. The
momentum flux is better discussed by considering the balance of streamwise momentum
and by applying all simplifications due to the geometry:

− ṽ
∂U

∂y
. (3.18)

It is clear from (3.18) that the discussed momentum flux originates from ṽ transporting
the mean field U . In other words, the circulatory dispersive ṽ-w̃ motions do not directly
provide energy to the streamwise component ũ, but still passively enable the transfer
of energy from the mean flow to ũ by transporting U -momentum. A more intuitive
explanation of how the ũ field is indirectly produced by the circulatory motions (under
certain circumstances) will be provided in § 4 using flow visualisations as an example.

3.4. Time scale for the decay of secondary motions; volume and plane averages
In § 5, the time needed by secondary motions to decay will be measured as per the
objective of this study. Before doing so, such a time scale needs to be defined. Defining a
time scale for the decay of turbulent eddies is a largely subjective process. For instance,
Flores & Jiménez (2010) found that the log-layer of turbulent flows in a restricted
simulation box bursts quasiperiodically, and linked the estimated period to the life span
of log-layer eddies. LeHew et al. (2013) and Lozano-Durán & Jiménez (2014), instead,
resorted to identifying turbulent coherent structures and tracking them in time; their
lifespan is given by the distance in time between their first and last identification. In our
case, no sophisticated strategy is needed to track the secondary motions, as their spatial
position is fixed and their features are satisfactorily captured by the dispersive velocity
field ud (as will be discussed in § 4). We thus define some energy measure e(t)� 0 using
the dispersive velocity and track it in time; the energy will start from a value e(0) seen
at the steady state and then decline to zero for t → ∞ as the secondary motions decay.
The time scale T for the decay can then be defined as the time required for most of the
energy to vanish; more precisely, as the minimum value of t after which the energy e never
exceeds a threshold ε:

T | e(T ) = ε, e(T + 	t) < ε ∀ 	t > 0. (3.19)

A graphical representation of the above definition is provided in figure 2; in the figure,
the generic energy measure e is replaced by the volume-averaged quantity Iu (defined
in the next paragraph). The threshold ε is set to 15 % of the initial value e(0) for multiple
reasons. First, having a large threshold is beneficial for the signal-to-noise ratio: the smaller
the measured value of e, the greater its relative statistical uncertainty. It is moreover
desirable to let the value of the threshold depend on the initial condition: secondary
motions with different values of Λs/h hold different amounts of energy at a steady state
(Wangsawijaya & Hutchins 2022). It would not be sensible, then, to compare the time to
decay of secondary motions of different sizes as measured by a fixed ε: every secondary
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u (0)

0 1 2 3 4 5

2

4

6

8
×10−2

t up /h

T u up/h

I+ u 
(t)

Figure 2. Graphical representation of the definition of the time Tu needed for the pattern of streamwise
dispersive velocity to decay. Such a time scale is defined by applying (3.19) to the volume-averaged energy
Iu . The dark green line represents the time evolution of Iu ; the lighter green area its 95 % confidence interval
(as per § 3.5). Similarly, a marker with an error bar is used to indicate Tu and its 95 % confidence interval (see,
once again, § 3.5). The horizontal dotted line indicates the threshold value ε = 0.15 Iu(0) used to define Tu .
Data at Reτ = 500, Λs/h = 2.

motion starts from a different initial energy value. Instead, by letting ε = 15 % e(0), the
inverse 1/T of the time scale measures some sort of generalised decay rate (1/T would
exactly be a multiple of the decay rate in the case of an exponential decay).

It remains to be specified which energy measure is used to calculate the time scale. In
this respect, two different approaches will be pursued. To begin with, the energy of the
dispersive field will be volume-averaged to yield two values Iu and Ivw for the streamwise
and circulatory patterns, respectively:

Iu(t) = 1
2h

∫ 2h

0

1
2

〈
ũ2〉

z dy, (3.20)

Ivw(t) = 1
2h

∫ 2h

0

1
2

〈
ṽ2 + w̃2〉

z dy. (3.21)

By applying the (3.19) to the above quantities, the time scales Tu and Tvw for the
streamwise pattern and for the circulatory motions are obtained. The streamwise pattern
and the circulatory motions are indeed two separate features of the dispersive fields as
discussed in § 3.1; they will be thus treated separately.

The above approach defines two scalar quantities – Iu and Ivw – which can be easily
tracked in time; their interpretation is also straightforward, as they represent the cumulative
amount of energy held by secondary motions. However, such an approach is unable
to capture the spatial complexity of the secondary motions. To recover some of it, for
instance, one might resort to averaging the dispersive energy on wall-parallel planes. As
an example, the plane-average iu of the streamwise energy is defined as follows:

iu(t, y) = 1
2

〈
ũ2〉

z . (3.22)

Doing so, wall-normal energy variations can be investigated. Bear in mind (see (3.8)) that
the value of iu seen at some wall-normal position y is equal to the sum of all the energy
contributions (as measured by the spectrum Φũũ) of the Fourier modes Fz{ũ} at that same
position y. Leveraging this property, one can also apply (3.19) of the time scale to the
dispersive spectrum Φũũ . The resulting time scale describes the life time of motions of
given spanwise wavelength λz = 2π/κz at a given wall-normal height y.
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3.5. Estimation of the dispersive field and uncertainty quantification
As previously explained, expected values are indicated by 〈·〉 throughout the present
article. With the exception of this section, the same symbol is also used to indicate the
estimates of such expected values as computed using the present data. The estimates
deviate from the actual expected values as they are calculated on a sample of finite size;
in other words, the estimates are affected by statistical uncertainty. It is assumed that
statistical uncertainty dominates other sources of error (such as discretisation and round-
off error, or the error introduced by the limited domain size), so that the overall uncertainty
on the estimated statistics is given by the statistical uncertainty alone. This section deals
with the quantification of such statistical uncertainty.

In particular, the uncertainty on the dispersive velocity field is of interest – as its values
are referenced in the main results of this study. For the sake of clarity, the estimator of the
dispersive velocity will be indicated by ŭi , whereas its exact (theoretical) value will be ũi
as usual:

ũi ≈ ŭi . (3.23)

Here, the subscript i indicates the component, so that (ũ1, ũ2, ũ3) = (ũ, ṽ, w̃). The
dispersive field is estimated through a streamwise-, phase- and ensemble-average;
such operation can be reinterpreted as the arithmetic mean of a set of intermediate
averages ux	

i,k :

ŭi = 1
Ns

Ns∑
k=1

Λs

Lz

∫ Lz

0
	z(z + ζ )

(
1

Lx

∫ Lx

0
ui,k − 〈

ui,k
〉
z dx

)
dz︸ ︷︷ ︸

ux	
i,k

, (3.24)

where the index k refers to one of the Ns repetitions of a given simulation and 	z is a
Dirac comb function used for the computation of the phase-average; by indicating Dirac’s
delta distribution as δ,

	z =
Lz/Λs−1∑

j=1

δ (z + jΛs) . (3.25)

The Ns values of ux	
i,k computed from the many repetitions of each simulation should

be reasonably uncorrelated owing to the discussion of § 2.1. In light of the central
limit theorem (Billingsley 1995), then, the probability distribution function of ŭi can be
modelled by a normal distribution (indicated by N ) with mean ũi ; its standard deviation
σ̆i can be estimated from the standard deviation σ x	

i of the set of values of ux	
i,k (which, in

turn, is directly computed):

ŭi ∼N (ũi , σ̆i ) , (3.26)

σ̆i = σ x	
i√
Ns

. (3.27)

Note that, in the context of the present discussion, the cross-correlation between different
components of ŭi is neglected; this simplification does not affect the estimates of the
uncertainty on Iu . Owing to the above discussion, the 95 % confidence interval for the
estimate of ũi is given by

ũi = ŭi ± E{ũi } = ŭi ± 2σ̆i . (3.28)
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Hence, the uncertainty E{ũi } can be propagated, as an example, to the energy ũ2/2 of the
streamwise field:

E
{

ũ2

2

}
≈
√(

dũ2/2
dũ

)2

ŭ
(E{ũ})2 = |ŭ| E{ũ} . (3.29)

Next, the uncertainty is propagated to the estimate of Iu . In theory, this would require
modelling the correlation between the values of ũ2/2 at different spatial position. However,
a pessimistic estimate of the uncertainty on Iu can be found as follows. It is assumed that
extreme events (meaning events for which (ux	)2/2 falls outside of the 95 % confidence
interval for ũ2/2) happen simultaneously at all spatial positions. In other words, given that
an extreme event occurs at some spatial position, one is certain to observe an extreme event
at any other spatial position. This is a pessimistic assumption: likely, extreme events are
confined in space and do not involve the whole flow domain. However, such an assumption
might account for large eddies possibly triggering extended coherent regions of extreme
events. In light of the above assumption, the error on Iu is estimated as

E{Iu} ≈ 1
2h

∫ 2h

0

〈
E
{

ũ2

2

}〉
z

dy. (3.30)

Similar considerations can be leveraged to estimate the uncertainty affecting Ivw and Φũũ .
Finally, the uncertainty can be propagated to the time scale Tu defined by Iu . To do so,

the (estimated) value of the time derivative Iu,t of Iu at the time Tu is used:

E{Tu} ≈
√

1
I 2
u,t (Tu)

E{Iu} . (3.31)

Once again, a similar procedure can be used to quantify the uncertainty on the time scales
defined by Ivw and Φũũ .

4. Steady-state secondary motions
In this section, we analyse the dispersive velocity field (as defined in § 2) at the initial
steady state. We argue that the main consequence of the presence of strip-type roughness
is the existence of a non-zero dispersive velocity field. Later on, in light of this analysis,
the dispersive velocity field will be tracked in time as the secondary motions decay.

The dispersive velocity field is linked to an easily identifiable and isolable feature of the
velocity spectra of the investigated flows over heterogeneous roughness. As an example,
we compare the two-dimensional streamwise velocity spectra of two flows at Reτ = 500,
one of which runs between smooth walls (figure 3a) whereas the other (figure 3b) runs
over a roughness pattern (Λs/h = 1). This combination of parameters has been chosen to
best highlight the observed behaviour and is representative of the remaining cases. The
bar below each panel shows the κx = 0 mode (where κx is the Fourier wavenumber in the
streamwise direction; κz is that in the spanwise direction), which would otherwise not be
visible owing to the logarithmic scale. The κx = 0 mode is premultiplied with the Fourier
resolution 	κx = 2π/Lx of the spatial grid. The spectrum is evaluated in proximity of
the wall (y+ = 10), as, according to the attached eddy model of turbulence (Marusic &
Monty 2019), most scales of motion are observable at this wall-normal location. Further
away from the wall, only the largest scales would be visible. This heuristic is confirmed
by the spectra of the isolated dispersive motion, later shown in figure 6. Notice that no
decomposition is used (unless explicitly stated), so that the spectra include both features
linked to velocity fluctuations and to the dispersive velocity.
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Figure 3. Inner-scaled premultiplied two-dimensional velocity spectra at y+ = 10 for steady-state simulations.
The bar below each panel represents the mode κx = 0, which would otherwise not be visible due to the
logarithmic scale. (a) Premultiplied spectrum κ+

x κ+
z φ+

uu of the streamwise fluctuations; Reτ = 500, smooth
walls. (b) Premultiplied spectrum of the full streamwise velocity signal (including both the dispersive velocity
and fluctuations); Reτ = 500, Λs/h = 1. (c) Premultiplied spectrum κ+

x κ+
z φ+

uu of the streamwise fluctuations;
Reτ = 500, Λs/h = 1 (same as panel b, but the contribution of the dispersive velocity is removed).

All panels of figure 3 share the same qualitative spectral peak typical of turbulent
fluctuations; in agreement with the attached-eddy hypothesis, most of the energy is seen
on (κx , κz)-modes of roughly constant aspect ratio, meaning that motions that are large in
the x-direction also tend to be large in z. The dominant feature that differentiates the (a)
smooth and the (b) rough spectra is the occurrence of a banded energy pattern at κx = 0
in panel (b). This banded pattern is associated with the dispersive velocity: by removing
the latter in panel (c), the energy bands are also eliminated so that the remaning spectrum
can be hardly distinguished from that of the smooth case. In other words, the dispersive
average captures the main spectral feature differentiating a flow over a smooth wall from
that over strip-type roughness.

Nevertheless, further and yet less apparent differences arise between smooth and rough
spectra; a separate analysis (not shown for brevity) shows for instance that the spectral peak
associated with turbulent fluctuations gets closer to the wall in the presence of a roughness
pattern. This is expected: consistently with the protrusion height theory of Luchini et al.
(1991), using a sliplength to model roughness (as we do) aims at pulling turbulence
fluctuations towards the wall to locally increase the wall shear stress (Gatti et al. 2018;
Neuhauser et al. 2022). As for the meandering of secondary motions (Wangsawijaya et al.
2020), we do not observe any spectral feature that can be clearly linked to it. Meandering
would manifest itself as energy content for κx = 0 at the same κz values of the banded
energy pattern associated with the dispersive velocity. The lack of such features is perhaps
a consequence of the relatively low Reynolds number; most importantly, meandering is
best observed at larger values of y+ than that used in figure 3 (Wangsawijaya et al. 2020).

Having found that the dispersive velocity isolates a distinct feature of the turbulent
spectra, we proceed to inspect it both in real and Fourier space. Figure 4 shows the
dispersive velocity field for all available values of Λs/h at Reτ = 500. The averaged
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Figure 4. Dispersive velocity field at the initial steady state (t = 0) divided in its streamwise ũ+ (colour) and
circulatory ṽ+-w̃+ (arrows) patterns; all data at Reτ = 500: (a) Λs/h = 0.5; (b) Λs/h = 1; (c) Λs/h = 2;
(d) Λs/h = 4; (e) Λs/h = 6. The arrow length is proportional to the magnitude of the represented vector;
the scale is graphically represented above panel (e) and is consistent across all panels. Below each panel, we
indicate whether the wall at that spanwise position is rough (black) or smooth (white). A green dot marks the
position of the vortex centre as defined later in § 5.1.

flow fields at Reτ = 180 (not shown for brevity) return a similar picture. Similarly to
other studies concerning secondary motions (Chung et al. 2018) and flow over multi-scale
roughness (Barros & Christensen 2014; Womack et al. 2022), these visualisations reveal
the presence of high- and low-momentum pathways flanked by circulatory motions. A
similar flow topology is also seen in the conditional views of the fluctuation field linked to
VLSMs (Hutchins & Marusic 2007b). For low strip widths (Λs/h � 2 roughly), regions of
downwash (ṽ < 0, or sweep events) coincide with regions of high streamwise momentum,
and vice versa for ejection events (ṽ > 0). Secondary motions are confined to a region
close to the wall for Λs/h = 0.5; they grow taller as the strip width is increased (up to
Λs/h ≈ 2). For Λs/h = 2, the secondary motions fill the entire channel half-height; under
such conditions, high absolute values of streamwise dispersive momentum (regions of
darker colour in figure 4) are seen at two separate wall-normal positions. One is located in
the immediate proximity of the wall; here, the spanwise distribution of ũ is well described
by a square wave. The velocity distribution in this region is a good approximant of the
distribution of wall shear stress, which is in turn affected by the square-wave spanwise
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roughness pattern we impose. Further away from the wall, the ũ-distribution becomes
sinuisoidal in the spanwise direction; a second region of intense momentum appears
around y/h ≈ 0.4 (y+ ≈ 200).

As the strip width is further increased (roughly Λs/h > 2), the circulatory cross-
plane motions shown by the v-w vector field are progressively confined to the roughness
transitions – that is, the interfaces between adjacent rough and smooth strips. As previously
observed for lower strip widths, ũ and ṽ are anti-correlated where these intense circulatory
motions are present. At the centre of each strip, instead, the ũ-velocity approaches local
equilibrium with the wall (Chung et al. 2018; Neuhauser et al. 2022). The expected square-
wave pattern of ũ is seen at the wall; moving away from it, ũ changes in sign at the centre
of each strip. For Λs/h = 4 (figure 4d), this region of reversed sign is bounded in the
wall-normal direction; for Λs/h = 6 (figure 4e), instead, it reaches the channel centreline.

We explain the observed reversal of the sign of ũ as follows. Consider figure 4(e);
the circulatory motions are confined to roughness transitions, whereas the flow above
the centre of each strip is distant enough from the roughness transitions (and from
the secondary motions) to not feel their effects. Although the wall-normal profile of
the U+ + ũ+ velocity in the middle of each strip does not match that observed over
homogeneous roughness or a homogeneous smooth wall, re-scaling U + ũ with the local
friction velocity makes it collapse on the homogeneous data (we were able to replicate this
result on the present data; see Neuhauser et al. 2022). We say that the U + ũ profile at the
centre of the strips is at equilibrium with the local surface condition. Similar observations
were also put forward by Chung et al. (2018); notice that the authors show visualisations of
the U + ũ field, whereas figure 4 shows the distribution of ũ alone. Under homogeneous
conditions, roughness is typically associated with a drag increase (if the flow rate is kept
constant) or a reduction of the flow rate (if the pressure gradient is kept constant) with
respect to a flow over an homogeneous smooth wall. If a slip length is used to model the
roughness (as is done here), the drag increase at constant flow rate is seen as an increased
wall shear stress (in physical terms), which can be exactly calculated as the position of
the wall is clearly defined (the same does not hold true for real-life roughness, see e.g.
Frohnapfel et al. 2024). Unlike the homogeneous case, the present heterogeneous set-up
allows to contemporarily observe both the increase in wall shear stress (in spite of the
constant pressure gradient) and the decrease in flow rate. Indeed, the pressure gradient
only determines the spanwise-averaged value of the wall shear stress (see (2.4)); locally
higher and lower (with respect to the spanwise average) values of the wall shear stress
are permitted. Thus, the positive sign of the ũ-velocity in the thin near-wall region above
rough strips reflects a slip-length-induced increase of the wall shear stress; its negative
sign further away from the wall (and sufficiently far from the circulatory motions), instead,
reflects the reduction of flow rate. By contrast, circulatory motions tend to induce a positive
sign of ũ over rough strips. The same line of reasoning can explain the features observed
over smooth strips; bear in mind that ũ represents a deviation of the averaged velocity from
its spanwise average U , and not a deviation from some reference homogeneous profile.
Notice, finally, that a similar reversal of the sign of the momentum pathways was observed
by Medjnoun et al. (2020) when studying secondary motions induced by a variation of
the wall geometry; in such a case though, the sign reversal is caused by the appearence of
dominant tertiary motions and not by the segregation of secondary ones as in this case.

The sign of ũ in regions where the circulatory motions are strong can be explained by a
different mechanism. Both the ũ-ṽ anti-correlation and the fact that large absolute values
of the streamwise momentum are seen at a certain distance from the wall in figure 4(c)
suggest that the streamwise pattern ũ is mainly generated by transport of the mean velocity
field U by wall-normal motions ṽ through the dispersive production mechanism described
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Figure 5. Inner-scaled premultiplied terms of the budget equation for the dispersive ũ2/2 energy (3.17). All
data at Reτ = 500, steady state. Panels (a–d) show data for Λs/h = 2; (a) premultiplied dispersive production
y+P+, (b) viscous term y+V+, (c) contribution y+T +

uv of the 〈u′v′〉 Reynolds stress and (d) contribution
y+T +

uw of the 〈u′w′〉 stress. Panels (e–h): same as panels (a–d) but for Λs/h = 6. The vertical, dotted lines in
panels (e–h) roughly mark the boundary between the equilibrium and the anti-correlation regions. Please note
the different scale of the horizontal axis.

at the end of § 3.3 (see (3.18)). High-speed fluid from the core of the channel (where the
largest values of U are found) is transported towards the wall by a coherent downwash
(ṽ < 0) to create coherent high-momentum regions (ũ > 0), and vice versa low-speed fluid
from the near-wall region is transported upwards to yield low-momentum regions. The
wall-normal component ṽ is expected to be small in proximity of the wall, both due to the
impermeability condition and to the topology of the ṽ-w̃ circulatory motion. Consequently,
we expect ṽ to be most effective at leveraging ũ-production at a given distance from the
wall, as we observe.

To corroborate the above idea, we compute the terms of the ũ2-energy budget (3.17).
Such terms are shown in figure 5 at the initial steady state for two selected flow cases
(Reτ = 500, Λs/h = 2 and Λs/h = 6). The advection terms Ta and Tc are not shown:
although their absolute values are not exactly negligible, they are small enough to be
dominated by the remaining source (or sink) terms. Positive values of each term indicate
that the term is providing energy to the ũ pattern, or, in other words, that the term
acts to sustain the dispersive velocity. Negative values, instead, indicate that energy is
being subtracted. As previously stated, while ũ and ṽ are everywhere anti-correlated for
Λs/h = 2, the anti-correlation region is restricted to 2h-wide neighbourhoods of each
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roughness transition for Λs/h = 6. We mark the borders of this region with dotted lines in
panels (e–h); we refer to the remaining portion of the channel as the equilibrium region.
There, the wall-normal profile of U + ũ is indeed roughly at equilibrium with the local
wall shear stress (see the discussion above).

The main outer-layer (y+ > 10) energy donor in the anti-correlation regions of both
considered flow cases is the dispersive production term (figure 5a,e); all remaining terms
are negative, except for a minor positive contribution from 〈u′v′〉 in panel (c) towards the
centreline. The dispersive production term is maximum around y+ ≈ 200; in this same
region, intense values of ũ were found in figure 4(c). This is further evidence in favour
of our hypothesis that ṽ-transport of U drives the formation of the ũ pattern. It is also
reminiscent of linear-transient growth analysis: the energy growth of optimally amplified
modes found by studying the evolution of perturbations in linearised channel flows is
driven by the same mechanism (Del Álamo & Jiménez 2006).

Both for the narrower and wider strips, the energy budget is dominated by the viscous
(figure 5b,f ) and 〈u′v′〉 (figure 5c,g) terms in the near-wall region (y+ < 10). The former
extracts energy from the intense near-wall ũ pattern; most of this energy is dissipated,
while part of it is returned to the flow just above y+ = 10, where the term has a weak
positive value (this is better observable in panel f ). The 〈u′v′〉 stress, instead, is the main
provider of energy in this region. This suggests that the formation of the near-wall ũ pattern
might be driven by turbulence through the Reynolds shear stress; such an interpretation
is coherent with our previous findings (Andreolli et al. 2023), that blocking the energy
exchange between small turbulent fluctuations and large ones prevents the formation of
large-scaled patterns of wall shear stress. Interestingly, the 〈u′v′〉 term is also the main
source of energy in the equilibrium region for the higher strip width (panel g), indicating
that it might be responsible for driving the flow towards equilibrium. This is reasonable,
as under homogeneous conditions, the mean velocity profile results from the equilibrium
of viscous and 〈u′v′〉 stresses only. However, in the present context, the 〈u′w′〉 term also
provides a non-negligible (negative) contribution in the equilibrium region.

Next, we inspect the dispersive velocity field in spectral space. Its spanwise spectra
(defined in § 3.2) at the initial steady state are shown in figure 6 for Λs/h = 2, 6 and
Reτ = 500. Notice that, much like the dispersive velocity, these steady-state spectra only
depend on the wall-normal coordinate y and the spanwise wavenumber κz . The spectra
better show the striped structure that was observed in figure 3; a similar pattern has
also been found experimentally by Wangsawijaya & Hutchins (2022). We suggest that
the striped appearance is caused by the square-wave shape of the roughness pattern we
apply at the wall, whose power spectral density (shown below each panel) is also striped.
It is indeed observed that most of the energy of the dispersive velocity field is found on
the same Fourier modes that are excited by the roughness pattern. For both the roughness
pattern and the velocity field, the first harmonic of the Fourier transform usually holds
the most energy. The first harmonic is the Fourier mode whose spanwise wavelength λz
matches the period Λs of the original signal; higher harmonics have a wavelength that is a
fraction of such a period. For convenience, we define a harmonic number Λs/λz , such that
the first harmonic has Λs/λz = 1, the second Λs/λz = 2 and so on. The harmonic number
is shown at the top of each panel in figure 6.

In proximity of the wall, energy is seen on a wide range of wavelengths, reinforcing
the idea that the velocity distribution there roughly takes the shape of a square wave.
As a rule of thumb, energy is restricted to progressively larger Fourier modes as one
moves away from the wall, this being reminiscent of the attached eddy hypothesis (see,
for instance, Baars et al. 2017), until the velocity field is dominated by a single sinusoidal
wave at the centreline. There is however a notable exception to this trend of larger Fourier
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Figure 6. Premultiplied one-dimensional energy spectra of the streamwise (a,d; κ+
z Φ+

ũũ), wall-normal (b,e;
κ+

z Φ+
ṽṽ

) and spanwise (c,f; κ+
z Φ+

w̃w̃
) dispersive velocity components. All data at Reτ = 500. (a,b,c) Λs/h = 2;

(d,e,f ) Λs/h = 6. Below each panel, we show the spanwise power spectral density of the square-wave signal
indicating whether the wall is rough (signal = 1) or smooth (signal = 0); such a power spectral density is zero
almost everywhere. The harmonic number Λs/λz associated with each Fourier mode is shown at the top of
each panel. Selected local extrema of each spectrum are marked as × (white, maxima) and + (black, minima).

modes being taller in the wall-normal direction. This is seen for Λs/h = 6 (panel d):
the amount of energy on the first harmonic at the centreline is unexpectedly negligible,
whereas most of the energy is found on the third harmonic. Similarly, the third harmonic
of the ṽ distribution (panel e) has the largest energy values throughout the channel height.
This behaviour can also be observed without premultiplication of the spectrum; it is not as
pronounced at the lower Reynolds number (Reτ = 180).

Although the roughness pattern significantly excites the first harmonic, it fails to
leverage a secondary motion of matching size if its period is too large (Λs/h = 6); rather,
the response of the flow contains a substantial amount of energy on a narrower – but still
h-scaled – wavelength. The wavelength of the dominant harmonic (λz = 2h) of panels
(d,e) suggests this might be linked to the observed confinement of secondary motions to
a 2h-wide region about the spanwise surface transitions (see figure 4e). As confirmed
by a separate analysis of artificial signals, this is likely true for the pattern of ṽ. The
ũ-spectrum must be interpreted with care instead: the dominance of the λz = 2h mode
might be an artefact caused by the specific value (Λs = 6h) of the period of the roughness

1007 A19-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.33


A. Andreolli, N. Hutchins, B. Frohnapfel and D. Gatti

pattern. Roughness transitions are flanked by a high- and a low-momentum pathway, each
of which has a 1h width. The remaining space between adjacent roughness transitions
is then occupied by a local-equilibrium region where ũ has opposite sign with respect
to the secondary-motion-induced momentum pathways that surround it. This equilibrium
region has a width of 3h − 2h = 1h, so that effectively the spanwise ũ distribution at the
centreline is well described by a sinusoid of period 2h. This is captured by the Fourier
transform, whose dominant mode is not the first harmonic, but rather that with a 2h
wavelength. If the strip width were larger, the width of the anti-correlation region would
likely remain constant, whereas the equilibrium region would get larger. In this case, the
first harmonic might be dominant even at the centreline (depending on the relative intensity
between the values of ũ in the equilibrium and anti-correlation regions).

Several wall-normal gaps, or minima, can be observed in the vertical stripes of the
spectra. Most w-modes contain one such gap: as an example, in figure 6(f ), at
y/h = 0.4103 (first harmonic, see the mark in figure) and y/h = 0.3181 (third harmonic).
Analogous minima of the spectrum can be observed for the remaining energy-containing
modes (as well as in panel c) by adjusting the colour scale. We interpret these minima
to be the centres of rotation of the circulatory motions associated with each of these
Fourier modes. Indeed, w-energy is expected at the bottom and top of these wall-attached
circulatory motions as previously shown. Also, coherently with our previous observations,
ṽ energy is not seen at the wall; rather, its global maximum is seen between y/h ≈ 0.3 and
y/h ≈ 0.4 (y+ ≈ 150−200) both for Λs/h = 2 and Λs/h = 6 (first harmonic in panel b
and third one in panel e, respectively; see the marks in the figure). A local maximum of
ũ-energy is seen on matching harmonics at matching wall-normal positions, consistently
with the idea that the ũ pattern is generated by ṽ transporting the mean velocity profile
U . Finally, we suggest that the short energy gap seen at the wall on the first ũ-harmonic
for the Λs/h = 6 case is linked to the change in sign seen in physical space at a matching
wall-normal distance at the centre of each strip.

5. Decaying secondary motions
We now turn our attention to the time evolution of the secondary motions. As explained
in § 2, their decay is triggered by suddenly removing the roughness strips from the walls.
The process happens at a constant pressure gradient; the sudden removal of the roughness
allows the flow rate to increase, as shown in figure 7(a) for two combinations of Λs and
Reτ chosen as an example. Coherently with (2.4), the increase in bulk velocity is driven
by a temporary drop of the wall shear stress. As the flow approaches a new steady state for
t → ∞, the inner-scaled wall shear stress recovers its typical unitary value; however, this
final equilibrium is reached at a point in time that exceeds the duration of our simulations,
which only capture the decay of the dispersive velocity field. In other words, the spanwise-
averaged field U evolves at a different rate from that of secondary motions.

Videos of the decaying dispersive velocity field are available (see Supplementary data
at the end of § 7); as an example, snapshots at two different instants of time are shown
in figure 7 for Reτ = 500, (b,c) Λs/h = 2 and (d,e) Λs/h = 6. The typical qualitative
picture of the decay for low values of Λs/h, which is well represented by panels (b,c),
is rather straightforward. The secondary motions slowly fade away, while the intense ũ
pattern at the wall quickly diffuses. A different behaviour is seen for higher strip widths
(Λs/h = 6, panels d,e) at both the investigated Reynolds numbers: at t = 0 (steady state),
the equilibrium region at the centre of each strip shows opposite values of ũ with respect
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Figure 7. Time evolution (a) of the bulk velocity (solid, Ub/Ub(0)) normalised by its initial, steady-state value
and of the inner-scaled spanwise-averaged wall shear stress (dashed, 〈τw〉+z ); Reτ = 500, Λs/h = 2 (green, as
of table 1) and Λs/h = 6 (red). Decaying dispersive velocity field: Reτ = 500, Λs/h = 2, (b) t = 1h/u p and
(c) t = 3.2h/u p . Panels (d,e): same as panels (b,c), but for Λs/h = 6. Colour and arrow lengths as in figure 4.
Below each panel, a grey fill indicates portions of the wall that were rough at the initial condition.

to the flanking regions where the secondary motions appear (see figure 4e). This still holds
true at tu p/h = 1 (figure 7d), although the regions of ũ that are anti-correlated to ṽ lose
their triangular shape (as evident in figure 4e at t = 0) and become rather invariant in the
wall-normal direction. Advancing in time, the equilibrium region is progressively filled
with momentum of the opposite sign; eventually (tu p/h = 3.2, figure 7e), the sign of the
dispersive velocity is roughly uniform across each strip. It is unlikely that this switch of
the sign of ũ in time is caused by ṽ-transport of the U field, as ṽ is not particularly intense
in this region.
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5.1. Volume-averaged dispersive energy
As discussed in section § 3.4, the time needed for the dispersive field (or, to be more
precise, by some of its features) to decay can be quantified by defining some energy
measure and by tracking it in time. When the rough strips are removed from the walls of the
channel, the dispersive velocity field starts losing energy with respect to the steady-state
condition over strip-type roughness. A time scale for the decay can be then defined as the
time needed by a generic energy measure to lose 85 % of its initial value. In particular, the
volume-averaged energy of the momentum pathways (Iu , see (3.20)) and of the circulatory
motions (Ivw, see. (3.21)) will be used in this section to calculate two corresponding time
scales (Tu and Tvw, see § 3.4 and (3.19)). Using volume-averaged quantities yields easy-
to-interpret results at the cost of neglecting the spatial complexity of the flow; an attempt
to recover some of this spatial complexity will be later done in § 5.2 and in Appendix B.

The initial steady-state values of Iu and Ivw are shown in figure 8(a–d) for each available
flow configuration; panels (e–h) show their time evolution. At the lower Reynolds number
(figure 8a,b), motions with 1 �Λs/h � 4 hold a similar amount of energy independently
of their size. This contradicts the observation (Wangsawijaya & Hutchins 2022) that
structures of period Λs ≈ 2h (s ≈ h) are more energetic than those of any other size; we
suggest this discrepancy to be a consequence of the low Reynolds number. Indeed, low-Re
data suffers from two issues. It is known, for instance, that linear transient growth analysis
predicts large structures to show significant values of transient growth only for sufficiently
high Reynolds numbers (Cossu et al. 2009); moreover, large-scaled outer-layer eddies only
become significantly energetic in channel flows if the Reynolds number is high enough
(Lee & Moser 2015). It can be thus expected that if the flow acts to favour structures of a
specific outer-scaled size, this would only be seen at a sufficiently high Reynolds number.
Our data at Reτ = 500 (panels c,d) confirm this line of reasoning: the energy held by
secondary motions is maximum for Λs = 2h as expected. A second issue with low-Re data
is given by the lack of scale separation: at the considered Reynolds number (Reτ = 180),
the outer-layer length scale h is equivalent to 180 δv . Such a value is not too far from the
dominant spanwise scale of near-wall structures (100 δv , see Kline et al. 1967). In other
words, we cannot easily tell whether the secondary motions that we impose are inner- or
outer-scaled. Care must be then exerted in interpreting low-Re data.

As for the time evolution of the volume averages (figure 8e–h), they typically show a
monotonically decreasing trend both for the streamwise and circulatory patterns. There
are, however, notable exceptions. At low Reynolds number (panel e), the energy of the
streamwise pattern temporarily exceeds its initial value for Λs/h = 4, to then decay
as expected; similarly, it temporarily increases after an initial decay for Λs/h = 6.
Most importantly, at the higher Reynolds number (panel g) the volume-averaged energy
monotonically decays in all cases, except for the energy of the streamwise pattern for
Λs/h = 2 and Λs/h = 4. An excess of streamwise energy with respect to the initial
condition is seen for these cases. To better illustrate our findings, we define a transient
growth coefficient Gu :

Gu = maxt
Iu(t)

Iu(0)
(5.1)

and plot it against the size of the secondary motions in figure 9(a,b). At Reτ = 180
(panel a), transient growth is only observed for Λs/h = 4 and is not particularly
pronounced (3 %). At Reτ = 500 (Panel b), a modest (6 %) transient growth of the
dispersive ũ-energy is seen for Λs/h = 2; a larger growth (13 %) is seen for Λs/h = 4.
The confidence level on the occurrence of transient growth given the statistical uncertainty
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Figure 8. Volume-averaged dispersive energy. Initial (steady-state) values of the volume-averaged energy for
varying spanwise period Λs of the roughness pattern: (a) I +

u , Reτ = 180; (b) I +
vw , Reτ = 180; (c,d) same as

panels (a,b), but at Reτ = 500. The error bars indicate the 95 % confidence interval, estimated as per § 3.5.
Time evolution of the volume-averaged energy normalised by its initial value: (e) Iu(t)/Iu(0), Reτ = 180; (f )
Ivw(t)/Ivw(0), Reτ = 180; (g–h) same as panels (e–f ), but at Reτ = 500. The horizontal dotted line indicates
the threshold value used for the calculation of the time scale (see (3.19)). Colour legend as in table 1:
Λs/h = 0.5; Λs/h = 1; Λs/h = 2; Λs/h = 4; Λs/h = 6.

is estimated in Appendix A to be 78.9 % and 85.2 % for Λs/h = 2 and Λs/h = 4,
respectively, at Reτ = 500. No excess energy is seen for other values of Λs at the higher
Reynolds number, except for a negligible transient growth for Λs/h = 1. It appears that,
for 2 �Λs � 4, the generation of the high- and low-momentum pathways continues for a
short time even after removing the rough strips that enable their sustainment. This might
be evidence in favour of the hypothesis of Townsend (1976), who predicted that structures
of this size (Λs � 4) would be able to self-sustain: not only do the momentum pathways
maintain their energy for a short time, but they even show excess energy with respect to the
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Figure 9. Transient growth Gu of the streamwise volume-averaged dispersive energy Iu(t); (a) Reτ = 180, (b)
Reτ = 500. The confidence level on the occurrence of transient growth is estimated in Appendix A. Time to
decay (as defined per (3.19) applied to Iu and Iuv) for the streamwise (Tu , black) and circulatory (Tvw , grey)
dispersive energy; (c) Reτ = 180, (d) Reτ = 500. The dotted line represents a linear fit for Tu performed (c)
by rejecting data at Λs/h = 1 and (d) by only considering data for Λs/h � 2. Error bars indicate the 95 %
confidence interval estimated as per § 3.5.

initial conditions. The excess energy is also reminiscent of linear transient growth analysis
and its results (Del Álamo & Jiménez 2006), in the sense that we observe transient growth
of Iu before its decay. Moreover, the spanwise periods at which we observe transient
growth (Λs/h ≈ 2−4) are in good agreement with the spanwise wavelength of maximum
linear transient growth (λz/h = 3) found by the aforementioned study. There is, however,
a crucial difference between our simulations and linear transient growth analysis, apart
from the obvious nonlinearity of our system. Linear transient growth analysis studies the
evolution of a perturbation of a given size, whereas we study the evolution of a fully
developed structure.

In linear transient growth analysis, the transient growth of u-energy is found to be
driven by the v component through transport of the mean field (Del Álamo & Jiménez
2006). Similarly, in §§ 3.3 and 4, we have proposed that the formation of the ũ momentum
pathways might be driven by ṽ transport of the U -field (dispersive production). It could
be expected, then, that this same mechanism would drive the initial overshoot of Iu energy
that we observe. If this were the case, we would expect Ivw to be able to maintain its initial
energy for a longer time in cases for which excess Iu is seen, or perhaps to decay slower
than in other cases. A preliminary scrutiny of figure 8(f,h) suggests this is not the case:
no initial plateau of Ivw is seen for values of Λs at which transient growth is observed.
Moreover, we could not find any link between the rate of change of Ivw at t = 0 and the
occurrence of transient growth. We further investigate the matter by calculating a time
scale for the decay of Iu and Ivw based on the definition in (3.19). The resulting time
scales are Tu and Tvw, respectively. Results are shown in figure 9(c,d) and are scaled with
h/u p, as this time scale remains constant in physical terms across different simulations
at the same Reτ . Notice that one data point (the value of Tu at Reτ = 500, Λs/h = 6,
panel d) is affected by a significant amount of statistical uncertainty; the reasons for this
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can be multiple. On the one hand, this flow case might exhibit unexpectedly large velocity
fluctuations, leading to a large statistical uncertainty on the dispersive velocity field (the
uncertainty then propagates to Iu and Tu). On the other hand, the dispersive velocity field
is computed by performing, among others, a phase average over multiple spanwise periods
(see § 2). For such a value of Λs/h = 6, the simulation box (Lz/h = 6) only contains
one period Λs , so that no phase average is effectively performed. This might explain the
increased statistical uncertainty of the flow case under consideration; in all other flow
cases at the same Reynolds number, the simulation box contains at least two spanwise
periods Λs (see table 1) which can be exploited by the phase average. Finally, notice that
the low-Re simulation with matching Λs (namely, Reτ = 180, Λs/h = 6, panel a) also has
a relatively large statistical uncertainty; in this last case, nevertheless, it was possible to
produce a larger number of repetitions of the simulation (as low-Re simulations are cheap)
so as to mitigate the statistical variability.

At the lower Reynolds number, Tvw generally increases with Λs , though the circulatory
motions remain in the flow for an unexpectedly long time for Λs/h = 1. At the higher
Reynolds number, Tvw increases with Λs until it reaches a local maximum value for
Λs/h = 2. For larger values of Λs , the circulatory motions remain confined in a 2h-wide
region around roughness transitions (see figure 4), so that effectively they stop growing
in size. Similarly, their time to decay remains bounded to Tvw � 2 (roughly). The local
maximum of Tvw for Λs/h = 2 might suggest that the longer-living circulatory motion is
able to leverage production of Iu for a longer time, causing the observed overshoot of Iu .
However, data at Λs/h = 4 contradict this idea: for this value of Λs , Iu undergoes an even
stronger transient growth – and yet the circulatory motion decays in an unexpectedly short
time. More generally, momentum pathways tend to live longer than the circulatory motions
(as Tu > Tvw in most cases). In §§ 3.3 and 4, we have argued that the momentum pathways
are mostly produced by the circulatory motions through the dispersive production term:
the observed delay in the decay of Iu with respect to Ivw supports this idea. Indeed,
the streamwise dispersive field ũ has its own dynamics, as indicated by (3.17); it is
reasonable that it would be able to survive for a limited time after the circulatory motions
have decayed. The absence of circulatory motions simply means that the ũ field is not
being fed energy by the dispersive production term anymore; the viscous dissipation will
then gradually erode the remaining ũ-energy until the decay is complete. In spite of the
relevance of the dispersive production term, the variability of Tvw fails to predict the
variability of Tu , indicating that production through ṽ-transport of U alone cannot explain
the dynamics of Iu . Indeed, as once again highlighted in (3.17), the dynamics of ũ is
affected by several other terms.

The time to decay of Iu generally linearly increases with the spanwise periodicity Λs at
the lower Reynolds number; at the higher Re, it also generally increases, although the slope
of the trend diminishes for Λs/h > 2. There might be an exception to this monotonically
increasing trend: the estimated value of Tu for Λs/h = 6, Reτ = 500 (figure 9d) is
essentially equal to that seen for Λs/h = 4 at the same Reynolds number. However, data
at Λs/h = 6 are affected by a significant statistical uncertainty, making it impossible to
assess whether the trend of Tu effectively saturates, starts decreasing or keeps increasing
(albeit with a smaller slope) for high Λs . Interestingly, the observed transient growth of
Iu has no strong influence on Tu : at Reτ = 500 (panel d), the value of Tu for Λs/h = 2
is either lower or comparable (accounting for the statistical uncertainty) than that for
Λs/h = 6. Notice that transient growth is observed for Λs/h = 2, but not for Λs/h = 6.
An additional noteworthy feature can be found in the low-Re data of panel (c): momentum
pathways of period Λs = h subsist in the flow longer than what could be expected by
extrapolating the observed trend. Although this could be a sign of the flow favouring these
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specific h-scaled structures, it should be kept in mind that the structures might as well be
inner-scaled owing to the lack of scale separation. As previously explained, a 1h period is
indeed equivalent to 180δv in wall units at Reτ = 180; such an inner-scaled value of the
period is not far from the typical spanwise spacing of buffer-layer small scales (100δv , see
Kline et al. 1967).

Starting from the temporal information we gather, we now estimate the streamwise
distance needed for the ũ pattern (that is, for the high- and low-momentum pathways)
to decay. This enables the comparison of our results with other studies measuring the
streamwise coherence of momentum pathways (e.g. Womack et al. 2022). First, we find a
linear fit to the trend of Tu against Λs ; at Reτ = 180, we exclude the datapoint at Λs/h = 1,
whereas at Reτ = 500, only the values Λs/h � 2 are considered. Although this is a rough
approximation, the fit (shown by a dotted line in figure 9c,d) correctly captures the order
of magnitude of Tu over the considered values of Λs . Then, we estimate the streamwise
distance 	xd needed for the decay of momentum pathways as 	xd = Ub,s Tu , where Ub,s
is the bulk velocity seen at a matching value of Reτ between smooth walls. The underlying
idea is that structures are advected downstream as they evolve and that the bulk velocity is
the mean velocity at which this happens. Using the value of the bulk velocity seen between
smooth walls is an arbitrary choice; again, it is only meant to roughly capture the order of
magnitude of 	xd . The following crude estimates are obtained:

	xd ≈ 15.8 Λs at Reτ = 180,

	xd ≈ 34.9 Λs − 12.7h at Reτ = 500 for Λs/h � 2. (5.2)

The order of magnitude of our estimates for a spanwise wavelength Λs = h is 	xd ≈
15 − 20; this is in line with the experiments of Womack et al. (2022), who reported the
streamwise extent of momentum pathways to be 18h at least.

As already discussed, the value of the time scale Tvw associated with the circulatory
motions saturates for high values of Λs . One way of explaining the observed saturation
could be given by the findings of Lozano-Durán & Jiménez (2014). The authors identified
and tracked naturally occurring structures that are both wall-attached and associated
with u′v′-anticorrelation events; they found the lifetime Tae of these structures to be
proportional to their half-height hy ,

T +
ae ≈ 2h+

y . (5.3)

In the case of the present study, the time scale Tu cannot be considered to be analogous to
Tae, as it measures the lifespan of a velocity pattern that is not necessarily wall-attached
and that includes regions in which ũ and ṽ are positively correlated. The circulatory
motions, instead, satisfy these two requirements: they extend upwards from the near-wall
region and they are responsible for the ũ-ṽ anticorrelation (see § 4). Thus, although the
secondary motions are not features of the fluctuation field (differently from the structures
observed by Lozano-Durán & Jiménez 2014), we will try to draw an analogy between Tvw

and Tae. By making (5.3) dimensional, we expect:

Tvw ≈ 2
hy

u p
(expected). (5.4)

To enable a comparison between our results and those of Lozano-Durán & Jiménez (2014),
we now need to estimate the half-height hy of the circulatory motions. We define a vortex
centre as the point at which, simultaneously, ṽ changes in sign in z and w̃ changes in
sign in y. The so-defined vortex centres are marked in figure 4 and satisfactorily represent
the centre of the cross-sectional circulatory motions. The structure half-height hy is then
simply given by the wall-normal position of the vortex centre.
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Figure 10. (a) Wall-normal position hy of the vortex centre of the circulatory motions against the spanwise
period Λs . (b) Time to decay Tvw of the circulatory motions against the wall-normal position hy of the vortex
centre. Light grey crosses indicate data at Reτ = 180; dark grey asterisks indicate data at Reτ = 500. In panel
(b), a linear fit to all available data is shown as a dashed line; error bars indicate the 95 % confidence interval,
estimated as per § 3.5.

Figure 10(a) shows how the half-height hy changes with the spanwise period Λs of the
roughness pattern. A good collapse of low- and high-Re data is observed. The circulatory
motions get taller for increasing Λs ; as Λs approaches large values (say, Λs/h � 2), the
growth of hy slows down. This saturation effect is expected: as can be seen from figure 4,
the circulatory motions fill the entire channel half-height for Λs/h ≈ 2, so that their wall-
normal growth is phyisically limited for larger values of Λs . As the structures stop getting
taller, they also become confined to a region surrounding roughness transitions (see § 4):
it appears that the circulatory motions roughly maintain their y-z aspect ratio – in a way
that is reminiscent of the attached eddy hypothesis (Marusic & Monty 2019). Finally, we
compare our data to those of Lozano-Durán & Jiménez (2014) by plotting the time scale
Tvw of the circulatory motions against their half-height hy in figure 10(b): owing to (5.4),
a linear trend is expected. Although the data do not appear to collapse on a single line,
their dispersion appears to be directional, so that a linear fit is reasonable. By considering
both low- and high-Re data, we obtain

Tvw, f i t

h/u p
= 4.48

hy

h
+ 0.011. (5.5)

Although the intercept of our fit is small (and thus in agreement with (5.3)), the slope
we obtain is roughly two times larger than expected. This quantitative difference can
be explained by the fact that we track different structures with respect to Lozano-Durán
& Jiménez (2014); moreover, we use different definitions of the time scale and of the
structure half-height – all of which are arbitrary. To conclude, the ansatz of (5.3) does not
fully explain the variability of Tvw, but it correctly captures the general trend of larger
values of hy being typically associated with larger values of Tvw. Then, the fact that
the circulatory motions stop growing in size for large values of Λs can help explain the
observed saturation of Tvw.

5.2. Plane-averaged dispersive energy: the decay of the wall shear stress pattern
Albeit easily interpretable, volume-averaged quantities hide the spatial complexity of the
observed phenomena. To recover information in the wall-normal direction, we inspect the
average iu (defined in (3.22)) of the streamwise dispersive energy on wall-parallel planes.
Bear in mind that, as discussed in § 3.2, the value of iu seen at a given wall-normal position
is equal to the sum of the contributions of each Fourier mode of the spectrum Φũũ at the
same distance from the wall.
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Figure 11. Time evolution of the plane-averaged dispersive energy i+u of the streamwise dispersive velocity.
Please notice that, in spite of the logarithmic scale on the vertical axis, no premultiplication is used;
consequently, the visual representation given by this figure is not well representative of the total (integral)
amount of energy contained in different regions of the channel. All data at Reτ = 500; (a) Λs/h = 1, (b)
Λs/h = 2 and (c) Λs/h = 6.

The plane-averaged energy iu is shown in figure 11 for a selection of flow cases at
Reτ = 500 for a short time interval after the spanwise heterogeneity has been removed.
Notice that no premultiplication is performed for this figure despite the log-scaled vertical
axis: this is done to better highlight its near-wall features. As a consequence, though, the
total amount of energy contained in the outer layer is misrepresented by the visualisation of
figure 11. Similarly to what has been observed in figures 4 and 6, two separate energy peaks
can be identified in figure 11 at the initial condition (t = 0, steady state) for large enough
values of Λs/h: one in the viscous sublayer (y+ � 10), one further away from the wall.
This second peak is particularly pronounced for Λs/h = 2 (y+ ≈ 200, panel b), and not
particularly so for Λs/h = 6 (y+ ≈ 50, panel c); it is not observed at the lower Reynolds
number or, at least, it is not as pronounced. In general, the streamwise pattern for Λs/h = 6
is much less energetic than that for Λs/h = 2, as previously observed by analysing volume
averages (figure 8c). The common feature of all data in figure 11 (which is also observed
for values of Λs and Reτ that are not shown) is that the near-wall peak diffuses towards
the core of the channel. Our steady-state analysis of the streamwise momentum budget
(§ 4) suggests that viscous diffusion is responsible for this process. The near-wall peak is
associated with the near-wall square-wave distribution of ũ seen in figure 4, and hence to
the spanwise distribution of wall shear stress.

While the near-wall pattern of ũ is particularly intense, it resides in a restricted region of
the channel that shrinks in size as Reτ increases. As a consequence, its contribution to the
volume-averaged energy is marginal, so that the time scales measured in figure 9 are not
representative of the decay of the dispersive wall shear stress distribution. A suitable time
scale for this purpose could be defined, for instance, by applying the definition in (3.19) to
the plane-averaged energy iu at the wall. Instead, we go one step further and analyse the
individual contributions to iu of each Fourier mode (as per (3.8)) and measure their time
to decay. In other words, we apply the definition in (3.19) of the time scale to the spectrum
Φũũ – evaluated at the first wall-normal grid point (y+ ≈ 1, please refer to table 1) to be
representative of the wall shear stress. In this way, we obtain a different time scale Tw(λz)

for each Fourier mode (of wavelength λz = 2π/κz) that constitues the pattern of wall shear
stress.
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Figure 12. Time to decay Tw(λz) of the Fourier harmonics (represented by their wavelength λz) that compose
the dispersive wall shear stress distribution, calculated by applying the definition in (3.19) to the spectrum Φũũ
(shown in figure 6) at y+ ≈ 1. Only the first three odd energy-containing harmonics are shown. (a) Reτ = 180;
(b) Reτ = 500. The error bars indicate the 95 % confidence interval, estimated as per § 3.5. Colour legend as
in table 1: Λs/h = 0.5; Λs/h = 1; Λs/h = 2; Λs/h = 4; Λs/h = 6.

Results are shown in figure 12, which collates data for all available values of Λs/h. Only
the first three energy-containing harmonics are shown; higher harmonics hold little energy
so that the signal-to-noise ratio is excessively low. Patterns of wall shear stress of different
period Λs may contain Fourier modes with the same (or similar) spanwise wavelength λz .
The time needed for Fourier modes of comparable wavelengths from different simulations
(different Λs/h) to decay is similar: data from different simulations at the same Reτ

appear to collapse on the same curve. In other words, it appears that the time evolution
of the Fourier modes is influenced by their own wavelength λz (and, of course, by the
Reynolds number), but not much by the geometry of the problem (that is, by Λs/h) or by
the amount of energy they hold at the initial steady state. As an example, the first harmonic
of figure 6(a) and the third one in figure 6(d) hold a different amount of energy at the wall
at the initial steady state; yet, they share the same spanwise wavelength λz/h = 2 and take
a comparable amount of time to decay as measured by Tw (see figure 12).

Figure 12(a) shows data at Reτ = 180: the time to decay increases with the wavelength
until λz/h = 1 to then saturate for larger values of λz/h. At the higher Reynolds number
(figure 12b), instead, the time to decay increases up until its peak value at λz/h = 2 to
then decrease for higher values of the wavelength. That is, Fourier modes of the wall shear
stress with λz/h = 2 are the longest-lived ones. This value of the wavelength matches the
period Λs/h = 2 for which secondary motions are the most energetic.

We interpret the above observations as follows. The longer time to decay might be a sign
that near-wall Fourier modes of a specific wavelength (λz/h = 2 at Reτ = 500) are less
damped (e.g. by viscous dissipation) than the remaining modes during their evolution. This
does not help to explain the generally increasing trend of Tu against Λs seen in figure 9(d):
Tu measures indeed the time to decay of a quantity that is integrated in the wall-
normal direction over the entire channel half-height. Nevertheless, the near-wall behaviour
discussed here might play a crucial role in the formation of secondary motions. Consider,
for instance, a fully developed flow suddenly hitting a patch of spanwise heterogeneous
roughness. The roughness can be idealised as a disturbance applied to the near-wall region;
in light of the above discussion, we would expect disturbances of a specific size to be less
damped than others in this region, so that they grow more energetic. This mechanism
might help to explain why secondary motions with a spanwise period of Λs/h = 2 are
the most energetic at Reτ = 500 (see figure 8c); bear in mind that a spanwise roughness
pattern of period Λs significantly excites the Fourier mode with wavelength λz = Λs (as
can be seen from the spectra of the roughness patterns in figure 6).
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Figure 13. Distribution of the Reynolds stress 〈u′u′〉 over strip-type roughness at a steady state. The bar
below each panel indicates regions of rough (black) or smooth (white) wall. Please notice that, in spite
of the logarithmic scale on the vertical axis, no premultiplication is used. (a) Λs/h = 0.5; (b) Λs/h = 1;
(c) Λs/h = 2; (d) Λs/h = 6. All data at Reτ = 500.

6. The fluctuation field
So far, we have inspected the time evolution of the dispersive velocity field, as it is contains
the information regarding the high- and low-momentum pathways which are of interest
for this study. Nevertheless, the fluctuation field also contains valuable information: the
secondary flows investigated here are commonly understood to be of Prandtl’s second
kind (Wang & Cheng 2006; Anderson et al. 2015; Hwang & Lee 2018), meaning that
they are driven by turbulence and arise owing to lateral dishomogeneities of the Reynolds
stresses. For completeness then, and as an example, we analyse the normal Reynolds stress
〈u′u′〉 to recover some information about the fluctuation field, as this stress is usually
the dominant term of the turbulent kinetic energy. Figure 13 shows its distribution at the
initial steady state in the presence of strip-type roughnes for a selection of flow cases at
Reτ = 500. Fluctuation intensites are roughly uniform over each smooth or rough strip;
strong lateral changes of 〈u′u′〉 are only seen at roughness transitions. Typically, 〈u′u′〉 is
maximum in the buffer layer (y+ ≈ 10); as would be expected from the viscous scaling
of near-wall turbulence, this maximum is more energetic and closer to the wall over
rough strips than over smooth ones for all tested values of Λs . Interestingly, then, the
energy of u′ fluctuations correlates well with the distribution of dispersive wall shear
stress, although the fluctuations themselves are deprived of any coherent information
owing to their definition. We interpret this as the random u′-fluctuations being modulated
in amplitude (Mathis et al. 2009) by a coherent envelope, so that their amplitude (and
thus, energy) is larger over rough strips. Notice that the position at which large spanwise
gradients of the turbulent kinetic energy are found is indicative of the position of the
circulatory motions.
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We track the time evolution of this heterogeneity in the kinetic energy as follows. We
average the value of 〈u′u′〉 in the buffer layer (5 � y+ � 30) over rough or smooth strips
alternatively; this defines the two quantities 〈u′u′〉R (averaged over portions of the wall
that are, or were, rough) and 〈u′u′〉S (averaged over portions of the wall that are smooth
from the initial condition). Similarly, we average the wall shear stress over rough or smooth
strips to yield τw,R and τw,S . Then, we define a quantitiy 	uu as the difference between
the two averaged values of the kinetic energy, 	uu = 〈u′u′〉R − 〈u′u′〉S . Positive values
indicate that turbulence is more energetic over portions of the wall that were rough at
the initial condition, whereas the opposite holds for negative values. A zero value of the
difference indicates instead that the distribution of kinetic energy in the buffer layer has
become homogeneous. Figure 14(a,b) shows, as an example, the evolution of 〈u′u′〉R ,
〈u′u′〉S , τw,R and τw,S for a selected flow case (Reτ = 500, Λs/h = 2). As the rough
strips are removed from the walls, the flow accelerates (as seen from figure 7a). This
acceleration damps u′-fluctuations at all spanwise positions. Most of the loss in kinetic
energy is seen for 〈u′u′〉R ; this loss is then quickly partially recovered before the system
slowly approaches homogeneity. After an initial not so pronounced decrease, 〈u′u′〉S also
increases to reach roughly the same value as 〈u′u′〉R . Notice that less kinetic energy is
found over a smooth strip at a steady state in the context of strip-type roughness than
over a smooth homogeneous wall in a steady-state setting. As for the wall shear stress, a
substantial decrease of τw,R is seen starting from the initial condition; τw,R then reaches
a minimum – although such a minimum is not as prononuced as the minimum of 〈u′u′〉R .
Moreover, the minimum of 〈u′u′〉R is seen at an earlier time (t = 0.196 h/u p) than that
of τw,R (at t = 0.65 h/u p), suggesting that fluctuations evolve at a faster pace than the
wall shear stress. After the minimum, the wall shear stress τw,R roughly remains constant,
whereas the value of τw,S slowly increases from its initial value to reach that of τw,R .

The remaining panels of figure 14 show instead the initial value and the evolution of 	uu
for all considered flow cases at the low (panels c,d) and high (panels e,f ) Reynolds number.
Notice that only a limited number of repetitions is available for Λs/h = 0.5, Reτ = 180;
this is sufficient to achieve a satisfactory accuracy of first-order velocity momenta (e.g.
the dispersive velocity), but not of the second-order ones needed in this case (e.g. 〈u′u′〉).
Data for this specific combination of parameters are thus not shown. At the steady state,
the difference in kinetic energy between rough and smooth strips increases with Λs at the
lower Reynolds number, until it saturates for Λs/h � 4. At the higher Reynolds number,
instead, it is maximum for Λs/h = 4. For all considered flow cases, the initial condition
(consisting in higher energy over portions of the wall that are, or were, rough) is quickly
reversed as the values of 	uu turn negative. For Λs/h = 2 and Λs/h = 4 at Reτ = 500,
interestingly, the initial sign of 	uu is recovered at roughly t = 0.3h/u p; advancing in
time, sections of the wall that were rough maintain a slightly higher fluctuation intensity
〈u′u′〉 than the remaining ones for an extended period of time. These are the only two cases
for which this behaviour is observed; interestingly, these are also the only two cases for
which a significant overshoot of Iu is seen at the higher Reynolds number.

7. Summary and conclusion
We study the secondary motions found in turbulent channel flows in the presence of
a spanwise-heterogeneous roughness pattern (strip-type roughness) of varying spanwise
period Λs . The investigation is carried out both at a steady state and as the secondary
motions decay towards a spanwise-homogeneous configuration. The decay is obtained by
suddenly removing the strip-type roughness, so that the flow evolves between smooth
walls. We are able to capture the temporal evolution of the secondary motions by
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Figure 14. (a) Time evolution of 〈u′u′〉+R (solid) and 〈u′u′〉S (dashed); Reτ = 500, Λs/h = 2. (b) Time
evolution of τw,R (solid) and τw,S (dashed) for the same flow case as panel (a). (c) Initial values of 	+

uu as
a function of Λs at Reτ = 180. (d) Time evolution of 	uu at Reτ = 180. (e,f ) Same as panels (c,d), but at
Reτ = 500. Colour legend as in table 1: Λs/h = 0.5; Λs/h = 1; Λs/h = 2; Λs/h = 4; Λs/h = 6.

ensemble-averaging multiple realisations (simulations) of each considered flow case. To
our best knowledge, it is the first time that time-evolving ensemble averages of secondary
flows are produced from direct numerical simulation (DNS).

Steady-state data over strip-type roughness are used to highlight the features of
the secondary motions, which we investigate both in physical and Fourier space. By
comparing the spectra of smooth-wall simulations with those observed over strip-type
roughness, we find that a dispersive average correctly isolates the main differences between
the two set-ups. The dispersive velocity field captures both the cross-sectional circulatory
motions typically associated with secondary motions and the streamwise-momentum
pathways observed, for instance, by Barros & Christensen (2014) and Womack et al.
(2022). We divide the dispersive velocity field into three different regions: a near-wall
velocity pattern (closely linked to the wall shear stress), an anti-correlation region and
an equilibrium one. The anti-correlation region is the one where the streamwise and
wall-normal components of the dispersive velocity (ũ and ṽ, respectively) are indeed
anti-correlated; this is also where strong cross-sectional circulatory motions are observed.
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In the equilibrium region, instead, the wall-normal profile of the streamwise velocity
U + ũ scaled in local viscous units roughly collapses on the profile observed in spanwise-
homogeneous conditions (either over a smooth or a rough wall). The three regions are
only clearly distinguishable for large values of Λs . Indeed, the secondary motions grow
taller in the wall-normal direction for increasing value of Λs , so that the anti-correlation
region and the near-wall pattern become separated in the wall-normal direction. Moreover,
while the anti-correlation region is dominant for small values of Λs , it remains confined
at roughness transitions (regions of large spanwise gradient of roughness properties) for
large values of Λs , so that an equilibrium region arises in the middle of each strip. By
analysing the budget equation for ũ, we speculate that the 〈u′v′〉 Reynolds stress is mainly
responsible for the formation of the equilibrium region and of the wall shear stress pattern.
The formation of the anti-correlation region, instead, appears to be driven by ṽ-transport
of the mean field U .

We then investigate the time-coherence of the dispersive field once the strip-type
roughness is suddenly replaced by smooth walls. A previous study (Kaminaris et al.
2023) had indeed highlighted that momentum pathways (here captured by ũ) can sustain
for a long streamwise distance in the wake of the rough patch that triggers them. We
observe that the time scale Tu describing the decay of the volume-averaged ũ-energy
(that is, the overall energy held by the momentum pathways) generally increases with Λs .
The present data indicate however that the value of Tu might saturate for large Λs
at the higher tested Reynolds number (Reτ = 500); further investigation is needed. By
converting our temporal information to a spatial one, we provide crude estimates of the
streamwise coherence of the momentum pathways (	xd ≈ 15−20 h for Λs = 1, in good
agreement with the results of Womack et al. 2022). The time scale Tvw associated with
the circulatory motions also generally increases for increasing Λs . Saturation is however
observed for Λs � 2, so that the values of Tvw have an upper bound of roughly 2 h/u p; this
might be linked to the observed spatial confinement of the circulatory motions (meaning
that circulatory motions remain confined to a roughly 2h-wide region around roughness
transitions as Λs becomes large). We argue the circulatory motions to be wall-attached;
by estimating their half-height, we compare our results with those of Lozano-Durán &
Jiménez (2014), who found the lifetime of attached eddies to be proportional to their wall-
normal extent. In most considered cases, the momentum pathways take a significantly
longer time to decay than the cross-sectional circulatory motions; similarly to the findings
of Del Álamo & Jiménez (2006), this suggests that the momentum pathways are mainly,
but not exclusively, produced by ṽ-transport of U .

The time-coherence of the spanwise wall shear stress pattern is not well captured by the
time scale defined with the volume-averaged energy. Such a pattern can be decomposed
into the sum of many Fourier modes of spanwise period λz . The time to decay of each
Fourier mode appears to strongly depend on the wavelength λz of the Fourier mode itself
and on the Reynolds number, but not much on the global geometry of the flow as captured
by the spanwise period Λs . Finally, we show that the energy of the fluctuation field found
over strip-type roughness is spanwise-heterogeneous; though the fluctuations are random
and deprived of any coherent information by definition, their amplitude is coherent with
the roughness pattern at the wall. We track these heterogeneities in time.

The aim of this study is to verify the plausibility of the estimates put forward by
Townsend (1976) to explain the recurrence of h-scaled flow features in turbulent flows,
where h is some outer-layer length scale (here, the channel half-height). Townsend
predicted that wall shear stress patterns of a specific characteristic spanwise wavelength
(λz ≈ h, λz � 4h) would be able to self-sustain through some induced secondary motion
and hence dominate other flow features. We would then expect secondary motions of
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a matching period to take the longest time to decay; alternatively, the time to decay
could increase as Λs grows larger until a threshold value of Λs in the range proposed
by Townsend is reached. For larger values of Λs , the time scale would saturate.

The evidence we gather in reviewing Townsend’s estimates is summarised in the
following. The analysis of volume-averaged quantities reveals that the time to decay
of the cross-sectional circulatory motions saturates for Λs/h > 2, which might be
evidence in favour of a weak interpretation of Townsend’s hypothesis. The temporal
coherence (measured by Tu) of the streamwise-momentum pathways generally increases
for increasing Λs ; however, the present data indicate that saturation might be observed
also for the trend of Tu at high Reynolds number. Owing to a relatively high statistical
uncertainty, further investigation is needed in this case. Interestingly, the volume-averaged
energy Iu of the momentum pathways undergoes a transient growth with respect to its
initial value for values of Λs in the range 2 �Λs/h � 4. This transient growth might be
evidence that motions of this specific size can self-sustain as proposed by Townsend. An
analogy with linear transient growth theory suggests that the growth might be driven by
ṽ-transport of U ; this does not appear to be the case in the present context, though. We are
not able to link the time evolution of the circulatory motions (which account for ṽ) to the
occurence of transient growth. Other mechanisms are likely at play.

Although the gathered evidence is inconclusive, we maintain that Townsend’s
speculations are plausible. Indeed, the present study considers the temporal decay of fully
developed secondary motions which, for large values of Λs , become spatially confined
to a 2h-wide region. In these cases, then, we do not effectively study the evolution of
a Λs-sized structure as intended, but rather of a 2h-sized one regardless of the value
of Λs . The confinement itself is evidence in favour of Townsend’s idea: the Λs-sized
perturbation provided by the roughness pattern fails to leverage a secondary motion of
comparable size. Instead, some 2h-sized motions become dominant. The topic could
be further investigated, for instance, by studying the evolution of artificial perturbations
whose size can be exactly controlled. The perturbations could be then tracked using
the methodology proposed in the present paper. If a constant perturbation is applied to
different snapshots of the same steady-state flow between smooth walls and the snapshots
are allowed to evolve independently, an ensemble average should be able to isolate
the evolution of the coherent perturbation. We recommend using a near-wall periodic
perturbation applied to the spanwise velocity component: linear analysis suggests that
wall-bounded flows are particularly sensitive to such a disturbance (Jovanović & Bamieh
2005). Spanwise positions at which this disturbance is maximum would be equivalent
to roughness transitions. Such a set-up could shed light on the mechanisms driving the
formation of secondary motions; moreover, it could help to explain why they remain
confined at roughness transitions for large values of Λs .

Supplementary data. Videos of the decaying secondary motions are provided as supplementary data at
https://doi.org/10.35097/farApPGYflANpeIi.
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Appendix A. Confidence on the occurrence of transient growth
In § 5.1, it was shown that the volume-averaged energy Iu of the streamwise momentum
pathways undergoes a temporary increase (transient growth) before decaying to zero as
the strip-type roughness is removed from the walls of the channel. The estimates of
such volume-averaged energy Iu are affected by statistical uncertainty; the aim of this
section is to assess whether the observed transient growth is significant given the statistical
uncertainty.

As previously mentioned, the values of Iu reported in this article are estimates of the
exact (true) expected value of the volume-averaged streamwise energy; in the following,
the value of such a true expected value at a generic point in time tk will be indicated as
Ik . Notice that Ik is not a random valuable and yet it is not known exactly; the chances
of it falling around the value of the estimate Iu(tk) is described by a probability density
function pk . In light of section § 3.5, pk is assumed to be a normal distribution with mean
mk = Iu(tk) and standard deviation σk = E{Iu}/2:

pk(Ik) = 1√
2πσ 2

k

exp

(
−(Ik − mk)

2

2σ 2
k

)
. (A1)

Let now t1 = 0 indicate the initial instant of time at which the flow is at a steady state
over strip-type roughness. For t > t1, the strip-type roughness is removed from the walls
and the transient growth is observed; let t2 indicate the instant of time at which Iu has
its maximum value, so that Iu(t2) > Iu(t1). The statistical significance of the observed
transient growth is estimated by calculating the probabilty P(I2 > I1) that the true value
I2 exceeds the true intial value I1. The errors on I1 and I2 are assumed to be statistically
independent, so that the joint probabilty distribution function of I1 and I2 is p1 p2. As an
example, the two probability distributions p1(I1) and p2(I2) are reported in figure 15(a)
for the simulation at Reτ = 500, Λs/h = 4; the corresponding joint probability density
function is shown in panel (b). Bear in mind (see the above definition of pk) that the normal
distributions p1 and p2 are defined using the estimated value of Iu and its uncertainty
(quantified as per § 3.5) at specific instants of time. The probability P(I2 > I1) can
be calculated by integrating the probability density p1 p2 on the domain highlighted in
figure 15(b):

P(I2 > I1) =
∫ +∞

I1=−∞

∫ +∞

I2=I1

p1(I1) p2(I2) dI2 dI1 (A2)

=
∫ +∞

−∞
p1(I1)

1
2

erfc
(I1 − m2√

2 σ2

)
dI1, (A3)

where erfc(·) indicates the complementary error function,

erfc(x) = 1 − erf(x) = 2√
π

∫ +∞

x
exp

(
−t2

)
dt. (A4)
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Figure 15. (a) Probability density functions p1(I1) (green) and p2(I2) (blue) for the simulation at Reτ = 500,
Λs/h = 4. (b) Contours (1 %, 10 %, 50 % and 90 % of the maximum value) of the joint probability density
function p1 p2; the hatched area indicates the integration domain I2 > I1 used in (A2) to calculate P(I2 > I1).

The above procedure is used to estimate the confidence on the occurrence of transient
growth for the two high-Re simulations (Reτ = 500) with Λs/h = 2 and Λs/h = 4. The
confidence reads 78.9 % and 85.2 %, respectively.

Appendix B. Localising excess energy in space
The analysis of § 5.1, which is based on volume-averaged quantities, indicates that a net
increase of the overall (volume-averaged) kinetic energy associated with the momentum
pathways is observed under given circumstances. In this section, an attempt to better
localise this excess energy will be done. This is done by scrutinising the change 	ũ2/2 in
the dispersive streamwise kinetic energy ũ2/2 at a given time t with respect to its initial
steady-state value (t = 0):

	
ũ2

2
(t, y, ζ ) = ũ2

2
(t, y, ζ ) − ũ2

2
(0, y, ζ ). (B1)

Positive values of 	ũ2/2 at a given (y, ζ )-position indicate that an excess of energy is
seen there with respect to the initital conditions. Notice that localised regions of excess
energy can simply ensue as a result of transport processes (e.g. energy is transported from
a region to another, so that the former is depleted of its energy, whereas the energy of the
latter grows). Transport processes cannot yield a net energy increase, i.e. an increase of
the volume-averaged energy.

Figure 16 shows the (y, ζ )-distribution of 	ũ2/2 at some selected instants of time for
selected values of Λs and Reτ = 500. For Λs/h = 0.5, no global energy transient growth
was observed in § 5.1; however, some localised excess energy is seen right above y+ ≈ 10
(panels a, b) during the decay of the secondary motions, whereas the region below y+ ≈ 10
shows an energy deficit. Two explanations are possible. Perhaps, some transport process
(e.g. viscous diffusion, see § 5.2) transports energy upwards from the near-wall region;
alternatively, separate processess might be providing energy to the region above y+ ≈ 10
and extracting a larger amount of energy from the y+ < 10 region. Overall, the net effect is
a decrease of the global ũ2/2 energy, coherently with the volume-averaged energy trends
of figure 8(g).

Data for Λs/h = 2 are shown in figure 16(d–f ). Notice that a transient growth of the
volume-averaged energy Iu is seen for this case (see § 5.1). At the beginning of the decay,
some excess energy is seen right above y+ = 10 similarly to panels (a,b); at the time of
the maximum transient growth of Iu (panel e), much more excess energy is found around
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Figure 16. Premultiplied energy difference y+(	ũ2/2)+ at a given instant of time t (reported above each
panel); data at Reτ = 500. (a–c) Λs/h = 0.5. (d–f ) Λs/h = 2; Panel (e) shows data at the instant of time for
which maximum transient growth is observed for this value of Λs . (g) Λs/h = 6. Below each panel, a grey
fill indicates portions of the wall that were rough at the initial condition; the vertical dotted lines mark the
boundaries of the anti-correlation and equilibrium regions.

40 < y+ < 100. As time progresses, the excess energy is still seen in that region; however,
a significant amount of energy is lost further away from the wall.

Interestingly, an excess of energy around y+ ≈ 100 − 200 is also seen for Λs/h =
6 (figure 16g), although it is localised to the anti-correlation region (that is, around
roughness transitions; see § 3.3). By contrast, the remaining part of the channel (that
is, the equilibrium region) quickly loses its energy. As a rough approximation, for the
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Figure 17. Reτ = 500, Λs/h = 6. Time-evolution of the volume-averaged energy of the momentum pathways:
overall (Iu , solid), conditionally averaged in the anti-correlation region (Iu,ac, dashed) and in the equilibrium
region (Iu,eq , dotted).

present context, we consider the anti-correlation region to be found in a 1.5h-wide region
around roughness transitions (notice that we used a slightly different definition in § 4);
two vertical lines in panel (g) mark such an approximated border. In an attempt to shed
light on whether the excess energy seen in the anti-correlation region might be linked to
a net energy increase in the same region, we define the volume-averaged energy Iu,ac of
the anticorrelation region and that Iu,eq of the equilibrium region. The two are defined
so that Iu,ac + Iu,eq = Iu ; all of these three time signals are reported in figure 17. The
energy Iu,eq of the equilibrium region quickly decays, so that for t u p/h � 1, the overall
volume-averaged energy is dominated by the energy Iu,ac of the anti-correlation region.
Interestingly, Iu,ac appears to undergo a mild transient growth; surely, it mantains a roughly
constant energy level for t u p/h � 1.

In a sense, then, we observe transient growth of the (conditionally averaged) energy
of the momentum pathways for the large strip width Λs/h = 6. This might appear to be
evidence against Townsend’s hypothesis, as self-sustainment of the secondary motions
would be expected for narrower strip widths (e.g. 2 �Λs/h � 4). In fact, it is not. The
circulatory motions that ensue for Λs/h = 6 are spatially confined (see § 4); their size
(twice the width of a confined circulatory motion, for consistency) is smaller than the
period Λs/h = 6 of the roughness pattern, and falls in the range proposed by Townsend.
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JOVANOVIĆ, M.R. & BAMIEH, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech.

534, 145–183.
KAMINARIS, I.K., BALARAS, E., SCHULTZ, M.P. & VOLINO, R.J. 2023 Secondary flows in turbulent

boundary layers developing over truncated cone surfaces. J. Fluid Mech. 961, A23.
KEVIN, K., MONTY, J. & HUTCHINS, N. 2019 The meandering behaviour of large-scale structures in turbulent

boundary layers. J. Fluid Mech. 865, R1.
KEVIN, K., MONTY, J.P., BAI, H.L., PATHIKONDA, G., NUGROHO, B., BARROS, J.M., CHRISTENSEN,

K.T. & HUTCHINS, N. 2017 Cross-stream stereoscopic particle image velocimetry of a modified turbulent
boundary layer over directional surface pattern. J. Fluid Mech. 813, 412–435.

KIM, K.C. & ADRIAN, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417–422.
KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNSTADLER, P.W. 1967 The structure of turbulent

boundary layers. J. Fluid Mech. 30 (4), 741–773.
LAIZET, S. & LAMBALLAIS, E. 2009 High-order compact schemes for incompressible flows: a simple and

efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 5989–6015.
LAIZET, S. & LI, N. 2011 Incompact3d: a powerful tool to tackle turbulence problems with up to O (105)

computational cores. Intl J. Numer. Meth. Flow 67 (11), 1735–1757.
LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to. J. Fluid Mech.

774, 395–415.
LEE, M. & MOSER, R.D. 2018 Extreme-scale motions in turbulent plane Couette flows. J. Fluid Mech. 842,

128–145.
LEHEW, J.A., GUALA, M. & MCKEON, B.J. 2013 Time-resolved measurements of coherent structures in the

turbulent boundary layer. Exp. Fluids 54 (4), 1508.
LOZANO-DURÁN, A. & JIMÉNEZ, J. 2014 Time-resolved evolution of coherent structures in turbulent

channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.

1007 A19-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.33


A. Andreolli, N. Hutchins, B. Frohnapfel and D. Gatti

LUCHINI, P., MANZO, F. & POZZI, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow.
J. Fluid Mech. Digital Arch. 228, 87.

MARUSIC, I. & MONTY, J.P. 2019 Attached Eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1),
49–74.

MATHIS, R., HUTCHINS, N. & MARUSIC, I. 2009 Large-scale amplitude modulation of the small-scale
structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337.

MEDJNOUN, T., VANDERWEL, C. & GANAPATHISUBRAMANI, B. 2018 Characteristics of turbulent boundary
layers over smooth surfaces with spanwise heterogeneities. J. Fluid Mech. 838, 516–543.

MEDJNOUN, T., VANDERWEL, C. & GANAPATHISUBRAMANI, B. 2020 Effects of heterogeneous surface
geometry on secondary flows in turbulent boundary layers. J. Fluid Mech. 886, A31.

MEJIA-ALVAREZ, R., BARROS, J.M. & CHRISTENSEN, K.T. 2013 Structural attributes of turbulent flow over
a complex topography. In Coherent Flow Structures at Earth’s Surface. 1st edn (ed. J.G., VENDETTI, J.L.,
BEST, CHURCH, M. & HARDY, R.J.), pp. 25–41. Wiley.

MEJIA-ALVAREZ, R. & CHRISTENSEN, K.T. 2013 Wall-parallel stereo particle-image velocimetry
measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids
25 (11), 115109.

NEUHAUSER, J., SCHÄFER, K., GATTI, D. & FROHNAPFEL, B. 2022 Simulation of turbulent flow over
roughness strips. J. Fluid Mech. 945, A14.

NIKORA, V.I., STOESSER, T., CAMERON, S.M., STEWART, M., PAPADOPOULOS, K., OURO, P.,
MCSHERRY, R., ZAMPIRON, A., MARUSIC, I. & FALCONER, R.A. 2019 Friction factor decomposition
for rough-wall flows: theoretical background and application to open-channel flows. J. Fluid Mech. 872,
626–664.

NIKURADSE, J. 1931 Strömungswiderstand in rauhen Rohren. Z. Angew. Math. Mech. 11 (6), 409–411.
NUGROHO, B., HUTCHINS, N. & MONTY, J. 2013 Large-scale spanwise periodicity in a turbulent boundary

layer induced by highly ordered and directional surface roughness. Intl J. Heat Fluid Flow 41, 90–102.
REYNOLDS, R.T., HAYDEN, P., CASTRO, I.P. & ROBINS, A.G. 2007 Spanwise variations in nominally two-

dimensional rough-wall boundary layers. Exp. Fluids 42 (2), 311–320.
REYNOLDS, W.C. & HUSSAIN, A.K.M.F. 1972 The mechanics of an organized wave in turbulent shear flow.

Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263–288.
SCHÄFER, K. 2023 Turbulent large-scale structures over heterogeneous surfaces. PhD thesis, Karlsruhe

Institute for Technology (KIT), Kalsruhe, Germany.
STROH, A., HASEGAWA, Y., KRIEGSEIS, J. & FROHNAPFEL, B. 2016 Secondary vortices over surfaces with

spanwise varying drag. J. Turbul. 17 (12), 1142–1158.
STROH, A., SCHÄFER, K., FROHNAPFEL, B. & FOROOGHI, P. 2020 Rearrangement of secondary flow over

spanwise heterogeneous roughness. J. Fluid Mech. 885, R5.
TOH, S. & ITANO, T. 2005 Interaction between a large-scale structure and near-wall structures in channel flow.

J. Fluid Mech. 524, 249–262.
TOWNSEND, A.A. 1976 The structure of turbulent shear flow, 2nd edn.
TÜRK, S., DASCHIEL, G., STROH, A., HASEGAWA, Y. & FROHNAPFEL, B. 2014 Turbulent flow over

superhydrophobic surfaces with streamwise grooves. J. Fluid Mech. 747, 186–217.
VANDERWEL, C. & GANAPATHISUBRAMANI, B. 2015 Effects of spanwise spacing on large-scale secondary

flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.
VANDERWEL, C., STROH, A., KRIEGSEIS, J., FROHNAPFEL, B. & GANAPATHISUBRAMANI, B. 2019 The

instantaneous structure of secondary flows in turbulent boundary layers. J. Fluid Mech. 862, 845–870.
WANG, Z.-Q. & CHENG, N.-S. 2006 Time-mean structure of secondary flows in open channel with

longitudinal bedforms. Adv. Water Resour. 29 (11), 1634–1649.
WANGSAWIJAYA, D. & HUTCHINS, N. 2022 Investigation of unsteady secondary flows and large-scale

turbulence in heterogeneous turbulent boundary layers. J. Fluid Mech. 934, A40.
WANGSAWIJAYA, D.D., BAIDYA, R., CHUNG, D., MARUSIC, I. & HUTCHINS, N. 2020 The effect of

spanwise wavelength of surface heterogeneity on turbulent secondary flows. J. Fluid Mech. 894, A7.
WILLINGHAM, D., ANDERSON, W., CHRISTENSEN, K.T. & BARROS, J.M. 2014 Turbulent boundary layer

flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys.
Fluids 26 (2), 025111.

WOMACK, K.M., VOLINO, R.J., MENEVEAU, C. & SCHULTZ, M.P. 2022 Turbulent boundary layer flow over
regularly and irregularly arranged truncated cone surfaces. J. Fluid Mech. 933, A38.

YANG, J., STROH, A., LEE, S., BAGHERI, S., FROHNAPFEL, B. & FOROOGHI, P. 2023 Prediction of
equivalent sand-grain size and identification of drag-relevant scales of roughness – a data-driven approach.
J. Fluid Mech. 975, A34.

ZAMPIRON, A., CAMERON, S. & NIKORA, V. 2020 Secondary currents and very-large-scale motions in open-
channel flow over streamwise ridges. J. Fluid Mech. 887, A17.

1007 A19-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.33

	1. Introduction
	2. Problem statement and numerical method
	2.1. Numerical method and details

	3. Theoretical framework
	3.1. Triple decomposition; momentum pathways and circulatory motions
	3.2. Velocity spectra of the dispersive field
	3.3. Triple-decomposed momentum and velocity budgets
	3.4. Time scale for the decay of secondary motions; volume and plane averages
	3.5. Estimation of the dispersive field and uncertainty quantification

	4. Steady-state secondary motions
	5. Decaying secondary motions
	5.1. Volume-averaged dispersive energy
	5.2. Plane-averaged dispersive energy: the decay of the wall shear stress pattern

	6. The fluctuation field
	7. Summary and conclusion
	References

