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APPROXIMATE POLYHEDRA, DENSITY AND DISCRETE MAPS

ANTONIO GIRALDO AND JOSE M.R. SANJURJO

Some extension properties of maps defined on dense subsets are studied for ap-
proximate polyhedra. The latter are characterised as approximate extensors for
finite maps with small oscillation.

The classes of Approximate Absolute Neighborhood Retracts introduced by Noguchi
[12] and Clapp [5] have been widely studied in the literature of theory of retracts. These
spaces enjoy important properties connected with Lefschetz's fixed point theorem [5]
and [8] and, as Dydak and Segal remark in [6], Clapp's AANR's form a natural class in
the sense that they agree with limits of polyhedra in Borsuk's metric of continuity [2].

Moreover, they play an intriguing role in shape theory, in particular in connection
with the properties of movability and regular movability [1, 6]. Clapp's AANR's were
recognised by Mardesic as approximate polyhedra [10, 11].

The aim of this note is to show that Clapp's AANR's have approximate extension
properties for maps defined on dense subsets. These properties are characteristic. In
fact for a compactum to be a Clapp's AANR (shortly AANRc) it is sufficient to be
an approximate extensor for finite maps with small oscillation. This result suggests
the possibility of developing shape theory and other global theories in Topology in
terms of simple internal notions based on dense parts of compacta, in contrast with
dual approaches based on neighbourhoods of compacta in suitable ambient spaces (like
the Hilbert cube) or more complex intrinsic characterisations, which require the use
of multivalued maps [4, 13, 14]. This possibility has actually beeen carried out by
the authors in [7]. We recommend the classical books [3] and [9] by Borsuk and Hu
respectively for basic information about the theory of retracts. For a more modern
approach see Van Mill [15] and for a collection of open problems see West [16].

Let X and Y be metric spaces and let D be a dense subset of X. Let / : D —> Y
be a (not necessarily continuous) function. Given x 6 X, the oscillation of / at x
(possibly infinite) is defined by

O(f,x) - inf{diam(/(lf D D)) \ U a neighbourhood of x in X}.
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By a map we always understand a continuous function. We say that a map / : D —> Y
is discrete if the set f(D) is finite. (Observe that if / is a discrete map then it is locally
constant).

APPROXIMATION LEMMA. Suppose Z is a normed vector space or, more gen-
erally, a convex subset of a normed vector space. Let X be a. metric space and Y a
subset of Z. Let

f-.X—t Be{Y) = {zeZ\ d(z,Y) < e}

be a map. Then there exists an open dense subset D of X and there exists a locally
constant map g : D —• Y such that O(g, x) ^ 2e for every x £ X and such that
d(f(x),g(x)) < e for every x £ D.

Conversely, given a dense subset D of X and given a function f : D —> Y
with O(f,x) < e for every x £ X, there exists a map g : X —> Be(Y) such that
d(f(x),g{z)) < e for every x £ D.

PROOF: Consider the set G of all the locally constant maps g : Gg —> Y defined
on open subsets Gg of X and such that d(f(x),g(x)) < e for every x £ Gg.

Then G is not empty. Given xo (=. X there exists yo EY such that d(f(xo),yo) < £
and by the continuity of / there exists an open neighbourhood U of XQ in X such that
for every x £ U we have d(f(x), f(x0)) < e — d(f(xo),yo) and hence d(f(x),y0) < e.
Thus the function h : U —> Y given by h(x) = t/o, for every x £ U, is an element of
G.

We now consider in G the following order relation:

g ^h&GgCGh and h\Gg - g.

(G, ^ ) is an ordered set and every totally ordered subset of G has an upper bound (if
A C G is a totally ordered subset of G, then Gh = IJ G9 is an open subset of X and

g€A

the function h : Gh —• Y given by h(x) = g(x) for any g £ A with x £ Gg is a well
defined locally constant map and is an upper bound for .4.). Then we can apply Zorn's
Lemma and deduce the existence of a maximal element.

Let g : D —> Y be one of these maximal elements and suppose that D is not
dense. Then there exists an open subset B of X such that B n f l = 0. Given xg £ B,
there exists yo £ Y such that d(/(xo),j/o) < £ and by the continuity of / there
exists an open neighbourhood U C B of XQ in X such that for every x £ U we have
d(f(x),f(xo)) < £ — d(f(xo),yo) and hence d(f(x),yo) < e. But then the function
h : D U U —> Y given by

j g(x) Xx£D
h(x) = <

1 2/o if * £ U
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is locally constant, is defined on an open subset of X and d(f(x),h(x)) < e for every
x £ D U U, and this is in contradiction with the maximality of g. Therefore, D has to
be dense.

Finally, since d(f(x),g(x)) < e for every x £ D and / is continuous in X, then
0(g, x) ^ 2e for every x £ X.

Let us prove the second part of the Lemma. Suppose given / : D —> Y such that
D is a dense subset of X and such that 0(f, x) < e for every x £ X. Then for every
x £ X there exists an open neighbourhood Ux of a; in X such that diam (/({/„ D D)) <
e. Since X is a metric space, it is paracompact and hence there exists a locally finite
open covering {{/,• | i £ 1} of X such that dia.m(f(Ui (~l £>)) < e for every i £ I.

We define, for every i £ I, Aj : X —* K such that

The sum in the denominator is finite since d(x,X — Uj) ^ 0 if and only if x £ Uj.
Moreover for every x £ X,

t 6 /

and hence, for every x £ X we have

We now choose, for every i £ I, a point Xi £ Ui C\ D and define g : X —> Z by
the expression

This is again a finite sum and, since X) ^«(x) = 1 anc* Z is convex, g is a well de-
fined continuous function. Moreover, if for every x £ D we consider the open sets
E/jj,..., Ujn to which x belongs, then we have

d(f(x),g(x)) =

Therefore
the norm

,^(z)) < e for every x £ D. (In the above expressions we have used
of the nonned vector space in which Y is contained).
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Finally, since g is continuous in X and g(D) C Be{Y) with D dense in X, then

g(x) c 'WAY). D

DEFINITION: A compact metric space X is an A A N R Q provided when X is em-
bedded in the Hilbert cube Q, then for every e > 0 there exists a neighbourhood U

of X in Q and there exists a map rc : U —> X such that d(rc(x),x) < e for every
x ex.

We introduce in the next definition the notion of approximate polyhedron. By
a result of Mardesic [10], approximate polyhedra agree with Clapp's AANR's in the
category of compact metric spaces.

DEFINITION: A metric space X is an approximate polyhedron if for each e > 0
there is a polyhedron P and maps / : X > P, g : P —• X such that the distance
d(gf(x),x) < e for all x £ X.

In the following theorem we denote by

O(f,X)= sup O(f,x),
xex

the oscillation of / in X.

THEOREM . Let Y be a compact metric space. Then the following statements are
equivalent:

(1) Y is an AANRC .
(2) For every e > 0 there exists 8 > 0 with the property that for every metric

space X, every dense subset D of X and every function f : D —• Y
with O(f,X) < S, there exists a continuous function f : X —> Y such
that d(f\D,f)<e.

(3) For every e > 0 there exists 6 > 0, with the following property (*) :
For every compact metric space X, every open dense subset D of X
and every discrete map f : D —> Y with O(f,X) < 6, there exists a
continuous function f : X —> Y such that d(f'\r>,f) < e.

PROOF: We prove first that (1) implies (2). Let Y be a compact metric space. We
can assume that Y lies in the Hilbert cube, Q. Suppose that Y is an AANRc. Then
for every e > 0, there exists a compact neighbourhood U of Y in Q and there exists
a map re : U —> Y, such that d(re(y),y) < e/3 for every y £ Y. Since U is compact
and re is continuous, there exists 8 > 0 such that

d(re(y)My')) < \

for every y,y' £ U with d(y,y') < 8. We can suppose that 8 also satisfies that

https://doi.org/10.1017/S0004972700014611 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014611


[5] Approximate polyhedra 205

Consider now a metric space X and let D be a dense subset of X. Let / : D —> Y
be a function with O(f, X) < 6. Then O(f, x) < S for every x 6 X and, by the Lemma,
there exists a continuous function / " : X —> B6{Y) C U such that d(f"(x), f(x)) < S,
for every x 6 D. Consider / ' = ref" : X —» Y. Then / ' is a continuous function and
for every x G D, since d(f"(x),f(x)) < S, we have that

d(f(x),f(x)) ^ d(rcf"(x),ref(x)) + d(rcf(x),f(x)) < y .

Therefore d(f'\D,f)<e.
Obviously (2) implies (3). To prove that (3) implies (1) we assume again that Y

lies in Q. Given e > 0 consider 0 < S < (2e)/3 satisfying (*) for e/3. Consider the
compact neighbourhood Bg^(Y) of Y in Q and consider the identity map

i : BS/A{Y) —> Bs/iz(Y).

Since Y is compact, there exists a finite subset F of Y such that Bg^(Y) C B$/z(F).
Then, by the Lemma, there exists an open dense subset D of Bg/±{Y) and there exists a
locally constant, and hence discrete, map / : D —> F C Y such that d(f(x),x) < 6/2
for every x £ D and such that O(f,x) < S for every x £ Bs/^Y). Moreover, since
/(£>) is a finite set, O(f,x) can only take a finite number of different values. This
implies that

0(f,Bs/i(Y)) = max O(f,x) < 6.

By property (*), there exists a continuous function

re : Bs/i(Y) -^ Y

such that d(re\o,f) < e/3. Therefore, for every x € D we have

Finally, since re is continuous in Bg/^Y) and D is dense in Bgfi(Y) we have that

y <e

for every x E
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