SQUARE ROOTS OF HYPONORMAL OPERATORS

MEE-KYOUNG KIM

Department of Mathematics, Sung Kyun Kwan University, Sowon 440-706, Korea

EUNGIL KO

Department of Mathematics, Ewha Women's University, Seoul 120-750, Korea

(Received 18 February, 1998)

Abstract. An operator $T \in \mathcal{L}(H)$ is called a *square root* of a hyponormal operator if T^2 is hyponormal. In this paper, we prove the following results: Let S and T be square roots of hyponormal operators.

(1) If $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$, then T is isoloid (i.e., every isolated point of $\sigma(T)$ is an eigenvalue of T).

(2) If S and T commute, then ST is Weyl if and only if S and T are both Weyl.

(3) If $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$, then Weyl's theorem holds for *T*.

(4) If $\sigma(T) \cap [-\sigma(T)] = \phi$, then *T* is subscalar. As a corollary, we get that *T* has a nontrivial invariant subspace if $\sigma(T)$ has non-empty interior. (See [3].)

1991 Mathematics Subject Classification. 47B20

1. Introduction. Let *H* and *K* be separable complex Hilbert spaces, and let $\mathcal{L}(H, K)$ denote the space of all bounded linear operators from *H* to *K*. If H = K, we write $\mathcal{L}(H)$ in place of $\mathcal{L}(H, K)$.

An operator T is called *hyponormal* if $T^*T \ge TT^*$, or equivalently if $||Th|| \ge ||T^*h||$, for all $h \in H$. We say that an operator $T \in \mathcal{L}(H)$ is a square root of a hyponormal operator if T^2 is hyponormal. In general, T^2 can be hyponormal without T being hyponormal. For example, if T is any nilpotent operator of order 2 (i.e., $T^2 = 0$), then T is not necessary a hyponormal operator, but is a square root of a hyponormal operator.

A bounded linear operator S on H is called *scalar of order m* if it possesses a spectral distribution of order m; i.e., if there is a continuous unital morphism

$$\Phi: C_0^m(C) \to \mathcal{L}(H)$$

such that $\Phi(z) = S$, where z stands for the identity function on **C** and $C_0^m(\mathbf{C})$ for the space of compactly supported functions on **C**, continuously differentiable of order m, where $0 \le m \le \infty$. An operator is *subscalar* if it is similar to the restriction of a scalar operator to an invariant subspace.

2. Preliminaries. An operator $T \in \mathcal{L}(H)$ is said to be *Fredholm* if ran *T* is closed and both ker *T* and *H*/ran*T*(= ker*T*^{*}) are finite dimensional. The *index* of a Fredholm operator is defined as

[†]Supported by KOSEF, under grant No. 971-0102-007-2 (1997–99).

index $T = \dim \ker T - \dim (H/\operatorname{ran} T)$ = dim ker $T - \dim \ker T^*$.

The *spectrum* of *T* is defined by

 $\sigma(T) = \{\lambda \in \mathbf{C} : T - \lambda \text{ is not invertible}\}\$

and $\rho(T) = \mathbb{C} \setminus \sigma(T)$ is called the resolvent set of *T*.

The Weyl spectrum of T is defined by

 $\omega(T) = \{\lambda \in \mathbf{C} : T - \lambda \text{ is not Fredholm of index } 0\}.$

Clearly, $\omega(T) \subset \sigma(T)$. Furthermore, if T is Fredholm of index 0, we say that T is Weyl.

Let iso $\sigma(T)$ denote the set of isolated points of $\sigma(T)$, $\sigma_p(T)$ the set of eigenvalues of *T*, and $\pi_{00}(T)$ the isolated points of $\sigma(T)$ that are eigenvalues of finite multiplicity. If $\omega(T) = \sigma(T) - \pi_{00}(T)$, or equivalently, if $\sigma(T) - \omega(T) = \pi_{00}(T)$, we say that Weyl's theorem holds for *T*. It is known that Weyl's theorem holds for any hyponormal operator. (See [2].)

An operator $T \in \mathcal{L}(H)$ is said to satisfy the single valued extension property if for any open subset U in C, the function

$$z - T : \mathcal{O}(U, H) \to \mathcal{O}(U, H),$$

defined by the obvious pointwise multiplication, is one-to-one, where $\mathcal{O}(U, H)$ denotes the Fréchet space of *H*-valued analytic functions on *U* with respect to the uniform topology. If, in addition, the function z - T above has closed range on $\mathcal{O}(U, H)$, then *T* satisfies Bishop's condition (β).

LEMMA 2.1 [10, Introduction]. Every subscalar operator has property (β).

Let z be the coordinate in C and let $d\mu(z)$, or simply $d\mu$, denote planar Lebesgue measure. Fix a separable, complex Hilbert space H and a bounded (connected) open subset U of C. We shall denote by $L^2(u, H)$ the Hilbert space of measurable functions $f: U \to H$, such that

$$\|f\|_{2,U} = \left\{ \int_{U} \|f(z)\|^2 d\mu(z) \right\}^{\frac{1}{2}} < \infty.$$

The space of functions $f \in L^2(U, H)$ that are analytic in U (i.e., $\bar{\partial} f = 0$) is denoted by

$$A^{2}(U, H) = L^{2}(U, H) \cap \mathcal{O}(U, H).$$

 $A^{2}(U, H)$ is called the *Bergman space* for U.

Let us define now a special Sobolev type space. Let U again be a bounded open subset of C and m a fixed non-negative integer. The vector valued Sobolev space $W^m(U, H)$ with respect to $\bar{\partial}$ and of order m will be the space of those functions $f \in L^2(U, H)$ whose derivatives $\bar{\partial} f, \dots, \bar{\partial}^m f$ in the sense of distributions also belong to $L^2(U, H)$. Endowed with the norm

$$\|f\|_{W^m}^2 = \sum_{i=0}^m \|\bar{\partial}^i f\|_{2,U}^2$$

 $W^m(U, H)$ becomes a Hilbert space contained continuously in $L^2(U, H)$.

The linear operator M of multiplication by z on $W^m(U, H)$ is continuous and it has a spectral distribution of order m, defined by the relation

$$\Phi_M: C_0^m(\mathbb{C}) \to \mathcal{L}(W^m(U, H)), \Phi_M(f) = M_f.$$

Therefore, M is a scalar operator of order m.

3. Weyl's theorem. In this section, we show that if *T* is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$, then Weyl's theorem holds for *T*.

THEOREM 3.1. If T is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$, then T is isoloid (i.e., iso $\sigma(T) \subset \sigma_p(T)$).

Proof. If $\lambda \in iso \sigma(T)$, then $\lambda^2 \in iso \sigma(T)^2$. Since $iso \sigma(T)^2 = iso \sigma(T^2)$, by the spectral mapping theorem, $\lambda^2 \in iso \sigma(T^2)$. Since T^2 is hyponormal, it is isoloid by [11]. Therefore, $\lambda^2 \in \sigma_p(T^2)$. Hence $\lambda^2 \in \sigma_p(T)^2$ by [4, Problem 74].

If $\lambda = 0$, it is clear that $0 \in \sigma_p(T)$.

If $\lambda \neq 0$, then either $\lambda \in \sigma_p(T)$ or $-\lambda \in \sigma_p(T)$. Since $\lambda \in \text{iso } \sigma(T)$ and $\sigma(T) \cap [-\sigma(T)] = \phi$, we know that $-\lambda \notin \sigma(T)$. Therefore $\lambda \in \sigma_p(T)$. This completes the proof.

COROLLARY 3.2. If T is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$, then for any polynomial p we have

 $\sigma(p(T)) - \pi_{00}(p(T)) = p(\sigma(T) - \pi_{00}(T)).$

Proof. This is clear from Theorem 3.1 and [9, Proposition 1].

LEMMA 3.3. ([5], [12]). Let S and T be commuting operators.

(a) ST is Fredholm if and only if S and T are both Fredholm.

(b) If S and T are both Fredholm, then index ST = index S + index T.

THEOREM 3.4. If S and T are commuting square roots of hyponormal operators, then ST is Weyl if and only if S and T are both Weyl.

Proof. If ST is Weyl, then ST is Fredholm of index 0. By Lemma 3.3, we know that $(ST)^2$ is Fredholm and index $(ST)^2 = \text{index } ST + \text{index } ST = 0$. Since

 $(ST)^2 = S^2T^2$ is Fredholm, S^2 and T^2 are both Fredholm, by Lemma 3.3. Since S^2 and T^2 are hyponormal, index $S^2 \le 0$ and index $T^2 \le 0$. Since index $(ST)^2 = 0$, Lemma 3.3 implies that

$$0 = \text{index} (ST)^2$$
$$= \text{index} S^2 + \text{index} T^2.$$

Therefore, index $S^2 = 0 = \text{index } T^2$.

Since S^2 and T^2 are Fredholm, it follows from Lemma 3.3 that S and T are Fredholm and

$$0 = \text{index } S^2 = \text{index } S + \text{index } S.$$

Therefore, index S = 0. Similarly, index T = 0. We conclude that S and T are both Weyl.

Conversely, if S and T are both Weyl, then S and T are both Fredholm of index 0. By Lemma 3.3, ST is Fredholm and

index
$$ST = index S + index T = 0$$
.

Therefore, ST is Weyl.

LEMMA 3.5. Let T be a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$. If $\lambda \in \pi_{00}(T)$, then $\lambda^2 \in \pi_{00}(T^2)$.

Proof. By Corollary 3.2 with $p(t) = t^2$, we have

$$\sigma(T^2) - \pi_{00}(T^2) = (\sigma(T) - \pi_{00}(T))^2.$$

Let $\lambda \in \pi_{00}(T)$. If $\lambda^2 \notin \pi_{00}(T^2)$, then $\lambda^2 \in \sigma(T^2) - \pi_{00}(T^2)$. It follows that $\lambda^2 \in (\sigma(T) - \pi_{00}(T))^2$.

If $\lambda = 0$, it is clear that $0 \in \sigma(T) - \pi_{00}(T)$ and so we have a contradiction.

If $\lambda \neq 0$, then either $\lambda \in \sigma(T) - \pi_{00}(T)$ or $-\lambda \in \sigma(T) - \pi_{00}(T)$. Since $\lambda \in \pi_{00}(T)$ and $\sigma(T) \cap [-\sigma(T)] = \phi$, $-\lambda \notin \sigma(T)$. Therefore, $\lambda \in \sigma(T) - \pi_{00}(T)$ and we have a contradiction. Thus $\lambda^2 \in \pi_{00}(T^2)$.

THEOREM 3.6. If T is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$, then Weyl's theorem holds for T.

Proof. It suffices to show that $\lambda \in \sigma(T) - \pi_{00}(T)$ if and only if $\lambda \in \omega(T)$. If $\lambda \in \sigma(T) - \pi_{00}(T)$, then $\lambda^2 \in (\sigma(T) - \pi_{00}(T))^2$. By Corollary 3.2, we have

$$\lambda^2 \in \sigma(T^2) - \pi_{00}(T^2).$$

Since T^2 is hyponormal, a theorem of Coburn [2] implies that

$$\lambda^2 \in \sigma(T^2) - \pi_{00}(T^2) = \omega(T^2).$$

466

Since $\omega(T^2) \subset \omega(T)^2$ by [1], $\lambda^2 \in (T)^2$.

If $\lambda = 0$, it is clear that $0 \in \omega(T)$.

If $\lambda \neq 0$, then either $\lambda \in \omega(T)$ or $-\lambda \in \omega(T)$. Since $\lambda \in \sigma(T), \omega(T) \subset \sigma(T)$, and $\sigma(T) \cap [-\sigma(T)] = \phi, -\lambda \notin \omega(T)$. Therefore, $\lambda \in \omega(T)$.

Conversely, let $\lambda \in \omega(T)$.

Claim. If
$$\lambda \notin \sigma(T) - \pi_{00}(T)$$
, then $\lambda^2 \notin (\sigma(T) - \pi_{00}(T))^2$.

We verify the claim above. If $\lambda = 0$, it is clear. Let $\lambda \neq 0$. If $\lambda^2 \in (\sigma(T) - \pi_{00}(T))^2$, then either $\lambda \in \sigma(T) - \pi_{00}(T)$ or $-\lambda \in \sigma(T) - \pi_{00}(T)$. Since $\lambda \notin \sigma(T) - \pi_{00}(T)$, $-\lambda \in \sigma(T) - \pi_{00}(T)$. But $-\lambda \notin \sigma(T)$, since $\lambda \in \omega(T) \subset \sigma(T)$ and $\sigma(T) \cap [-\sigma(T)] = \phi$. Hence we have a contradiction.

Let us come back now to the proof of Theorem 3.6. If $\lambda \notin \sigma(T) - \pi_{00}(T)$, then $\lambda^2 \notin (\sigma(T) - \pi_{00}(T))^2$ by the Claim. Now Corollary 3.2 implies that

$$\lambda^2 \not\in \sigma(T^2) - \pi_{00}(T^2).$$

Since T^2 is hyponormal, a theorem of Coburn [2] implies that $\lambda^2 \notin \sigma(T^2) - \pi_{00}(T^2) = \omega(T^2)$. Therefore, $\lambda^2 \in \sigma(T^2) - \omega(T^2)$. Thus $T^2 - \lambda^2$ is Weyl.

If $\lambda = 0$, then T^2 is Weyl. Hence T is Weyl by Theorem 3.4. Thus $0 \notin \omega(T)$, and so we have a contradiction.

Let $\lambda \neq 0$. By Lemma 3.3, $T + \lambda$ and $T - \lambda$ are both Fredholm. Since $\lambda \in \omega(T) \subset \sigma(T)$ and $\sigma(T) \cap [-\sigma(T)] = \phi$, $-\lambda \notin \sigma(T)$. Therefore, $T + \lambda$ is invertible and so $T + \lambda$ is Weyl. By Lemma 3.3, we have

$$0 = \text{index} (T^2 - \lambda^2) = \text{index} (T + \lambda) + \text{index} (T - \lambda).$$

Therefore, index $(T - \lambda) = 0$. Hence $T - \lambda$ is Weyl. Thus $\lambda \notin \omega(T)$, and so we have a contradiction. Thus $\lambda \in \sigma(T) - \pi_{00}(T)$.

COROLLARY 3.7. If T is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ or $\{0\}$ and N is a nilpotent operator commuting with T, then Weyl's theorem holds for T + N.

Proof. It follows from Theorem 3.6 and [9, Theorem 3].

4. Subscalarity. In this section, we show that if *T* is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ then *T* is subscalar.

LEMMA 4.1. ([10], Proposition 2.1). For every bounded disk D in C there is a constant C_D , such that for an arbitrary operator $T \in \mathcal{L}(H)$ and $f \in W^2(D, H)$ we have

$$\|(I-P)f\|_{2,D} \le C_D(\|(T-z)^*\bar{\partial}f\|_{2,D} + \|(T-z)^*\bar{\partial}^2f\|_{2,D}),$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto the Bergman space $A^2(D, H)$.

LEMMA 4.2. Let T be a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$ and let D be a bounded disk which contains $\sigma(T)$. Then the operator $V : H \to H(D)$, defined by

$$Vh = 1 \otimes h + \overline{(z - T)W^2(D, H)} \qquad (= 1\tilde{\otimes}h),$$

is one-to-one and has closed range, where $H(D) = W^2(D, H)/(\overline{(z-T)}W^2(D, H))$ and $1 \otimes h$ denotes the constant function sending any $z \in D$ to h.

Proof. Let $h_i \in H$ and $f_i \in W^2(D, H)$ be sequences such that

$$\lim_{i \to \infty} \|(z - T)f_i + 1 \otimes h_i\|_{w^2} = 0.$$
(1)

Then, by the definition of the norm of a Sobolev space, (1) implies that

$$\lim_{i \to \infty} \|(z - T)\bar{\partial}^j f_i\|_{2,D} = 0 \tag{2}$$

for j = 1, 2. From (2), we get

$$\lim_{i \to \infty} \|(z^2 - T^2)\bar{\partial}^j f_i\|_{2,D} = 0$$

for j = 1, 2. Since T^2 is hyponormal,

$$\lim_{i \to \infty} \|(\bar{z}^2 - T^{*2})\bar{\partial}^j f_i\|_{2,D} = 0.$$
(3)

Since z - T is invertible for $z \in D \setminus \sigma(T)$, the equation (2) implies that

$$\lim_{i\to\infty} \|\bar{\partial}^j f_i\|_{2,D\setminus\sigma(T)} = 0.$$

Therefore,

$$\lim_{i \to \infty} \|(\overline{z} - T^*)\overline{\partial} f_i\|_{2, D \setminus \sigma(T)} = 0.$$
(4)

Since $\sigma(T) \cap [-\sigma(T)] = \phi$ and $\sigma(T)^* = \sigma(T^*)$, it is clear that $T^* + \overline{z}$ is invertible for $z \in \sigma(T)$. Therefore, from the equation (3) we have

$$\lim_{i \to \infty} \|(\overline{z} - T^*) \bar{\partial}^j f_i\|_{2,\sigma(T)} = 0.$$
⁽⁵⁾

Hence, from (4) and (5) we obtain

$$\lim_{i \to \infty} \|(\overline{z} - T^*)\bar{\partial}^j f_i\|_{2,D} = 0.$$
(6)

Then, by Lemma 4.1, we have

$$\lim_{i \to \infty} \| (I - P) f_i \|_{2,D} = 0, \tag{7}$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto $A^2(D, H)$. By (1) and (7), we have

$$\lim_{i \to \infty} \|(z - T)Pf_i + 1 \otimes h_i\|_{2,D} = 0.$$

Let Γ be a circle in *D* such that $\sigma(T)$ lies inside Γ . Assume that Γ is described once counterclockwise. Then

$$\lim_{i \to \infty} \|Pf_i(z) + (z - T)^{-1} (1 \otimes h_i)\| = 0$$

uniformly for z in Γ . Hence, by the Riesz functional calculus,

$$\lim_{i \to \infty} \left\| \frac{1}{2\pi i} \int_{\Gamma} Pf_i(z) dz + h_i \right\| = 0.$$

But $\int_{\Gamma} Pf_i(z)dz = 0$. Hence, $\lim_{i \to \infty} h_i = 0$.

THEOREM 4.3. If T is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$, then T is subscalar of order 2.

Proof. Consider an arbitrary bounded open disk D in C that contains $\sigma(T)$ and the quotient space

$$H(D) = W^2(D, H)/(\overline{z - T})W^2(D, H)$$

endowed with the Hilbert space norm. Let $M(=M_z)$ be the multiplication operator by z on $W^2(D, H)$. Then M is a scalar operator of order 2 and its spectral distribution is

$$\Phi: C_0^2(\mathbf{C}) \to \mathcal{L}\big(W^2(D, H)\big), \ \Phi(f) = M_f,$$

where M_f is the operator of multiplication by f. Since M commutes with z - T, \tilde{M} on H(D) is still a scalar operator of order 2, with $\tilde{\Phi}$ as a spectral distribution.

Let V be the operator

$$Vh = 1 \otimes h (= 1 \otimes h + (z - T)W^2(D, H)),$$

from *H* into *H*(*D*), denoting by $1 \otimes h$ the constant function *h*. Then $VT = \tilde{M}V$. Since *V* is one-to-one and has closed range by Lemma 4.2, *T* is subscalar of order 2.

COROLLARY 4.4. Let T be a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$. If $\sigma(T)$ has interior in the plane, then T has a nontrivial invariant subspace.

Proof. It follows from Theorem 4.3 and [3].

COROLLARY 4.5. If T is a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$, then T has the property (β).

Proof. It follows from Theorem 4.3 and Lemma 2.1.

COROLLARY 4.6. Let T be a square root of a hyponormal operator with the property that $\sigma(T) \cap [-\sigma(T)] = \phi$. If A is any quasiaffine transform of T (i.e., there exists a one-to-one X with dense range such that XA = TX), then $\sigma(T) \subset \sigma(A)$.

Proof. It is clear from Corollary 4.5 and [8].

REFERENCES

1. S. K. Berberian, The Weyl spectrum of an operator, *Indiana Univ. Math. J.* **20** (1970), 529–544.

2. L. A. Coburn, Weyl's theorem for nonnormal operators, *Michigan Math. J.* 13 (1966), 285–288.

3. J. Eschmeier and B. Prunaru, Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Funct. Anal. **94** (1990), 196–222.

4. P. R. Halmos, A Hilbert space problem book (Springer-Verlag, 1982).

5. R. Harte, *Invertibility and singularity for bounded linear operators* (Marcel Dekker, New York, 1988).

6. E. Ko, Algebraic and triangular n-hyponormal operators, *Proc. Amer. Math. Soc.* 123 (1995), 3473–3481.

7. E. Ko, k-Quasihyponormal operators are subscalar, Integral Equations Operator Theory 28 (1997), 492–499.

8. E. Ko, On a Clary theorem, Bull Korean Math. Soc. 33 (1996), 29–33.

9. K. Oberai, On the Weyl spectrum II, Illinois J. Math. 21 (1977), 84-90.

10. M. Putinar, Hyponormal operators are subscalar, *J. Operator Theory* **12** (1984), 385–395.

11. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.

12. A. E. Taylor and D. C. Lay, *Introduction to functional analysis* (John Wiley and Sons, New York, 1980).

 \square

 \square