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Abstract

In this paper, a proof-theoretic perspective on counterfactual inference is proposed.
On this perspective, proof-theoretic structure is fundamental. We start from a cer-
tain primacy of inferential practice and structural proof theory. Models are required
neither for the explanation of the meaning of counterfactuals, nor for that of coun-
terfactual inference. Taking a proof-theoretic perspective and an intuitionistic stance
on meaning (cf. BHK), we de�ne modal intuitionistic natural deduction systems for
drawing conclusions from counterfactual assumptions. These proof systems are modal
insofar as derivations in them make use of assumption modes which are sensitive to the
factuality status (e.g., factual, counterfactual) of the formula that is to be assumed.
This status is determined by a reference proof system on top of which a modal proof
system is de�ned. The rules of a modal system draw on this status.

The main results obtained are preservation, normalization, subexpression (incl.
subformula) property, and internal completeness. The systems are applied to the
analysis of reasoning with natural language constructions such as `If A were the case,
B would [might] be the case', `Since A is the case, B is [might be] the case'. A
proof-theoretic semantics is provided for them.
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1 Introduction

1.1 Counterfactual inference

We tend to make counterfactual assumptions and to draw conclusions from them. Among
the most fundamental constructions that we use to express our steps in counterfactual
reasoning are counterfactual conditionals of the form:

(1.1) If it were the case that A, then it would be the case that B.
(If A were the case, B would be the case.)

and their past subjunctive versions of the form `If it had been the case that A, then it
would have been the case that B' (`If A had been the case, B would have been the case').
A classic example (due to [28]):

(1.2) If Hoover had been born a Russian, then he would have been a Communist.
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What is characteristic of counterfactual inference is the fact that reasoning with coun-
terfactuals may give rise to so-called counterfactual fallacies. These suggest that their
logical behaviour di�ers considerably from that of the material conditional. Firstly, tran-
sitivity does not seem to hold in general. For example, it de�es our intuitions to conclude
(1.4) from (1.2) and (1.3).

(1.3) If he had been a Communist, then he would have been a traitor.

(1.4) If he had been born a Russian, then he would have been a traitor.

Secondly, the logic of counterfactuals seems to be non-monotonic, as the so-called fallacy
of strengthening of the antecedent suggests. For example, we are not willing to infer (1.5)
from (1.2).

(1.5) If Hoover had been born a Russian and had been a political activist, then he would
have been a Communist.

Thirdly, also contraposition seems to fail, as we are reluctant to pass from (1.2) to (1.6).

(1.6) If Hoover had not been a Communist, then he would not have been born a Russian.

The terminology is not uniform. On a narrow conception, counterfactuals are contrary-
to-fact conditionals (cf. [4]) and are classi�ed as subjunctive conditionals whose an-
tecedents are assumed to be false (e.g., [37]). On a wide conception, this assumption
is not made, and `counterfactual conditional' and `subjunctive conditional' are used inter-
changeably (e.g., [31], [38]). Accordingly, on the latter but not on the former conception,
(1.7) can be classi�ed as a couterfactual, even if it is used to support the thesis that its
antecedent is true (see [1]: 37).

(1.7) If Jones had taken arsenic, he would have shown just exactly those symptoms which
he does in fact show.

The latter usage seems to be more entrenched (cf. [31]). It seems, though, that (1.7)
can be classi�ed as counterfactual in a narrow sense, if we admit a narrow conception on
which counterfactuals are subjunctive conditionals whose antecedents are assumed to be
not settled. We may then quite naturally regard uses of the likes of (1.7) as supporting the
truth of their antecedents. In developing our proposal, we will take it that counterfactuals
presuppose that their antecedents are not true, i.e., that they do not express facts.

1.2 The model-theoretic perspective

Counterfactual inference is typically studied from a model-theoretic perspective. On this
perspective, model-theoretic structures are methodologically fundamental for the study of
the meaning and the logic of counterfactuals (see, e.g., [31] for overview). Their meaning
is de�ned, most prominently, either in terms of truth conditions by appeal to models which
involve sets of possible worlds and suitable relations on them, or dynamically by appeal
to their context change potential which is technically construed as a function from sets of
worlds to sets of worlds.

The most familiar kind of model-theoretic approach to the semantics of counterfactuals
is certainly the one which explains their meaning in terms of truth conditions which appeal
to the idea of the similarity of possible worlds (e.g., [17], [21], [28]). Roughly: (1.1) (in
symbols: A > B) is true in a possible world w (e.g., the actual world) just in case B is true
in all the possible worlds in which A is true that are most similar to w, where the crucial
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assumption is made that there is an ordering of all worlds according to their similarity
to w. One way to capture the notion of similarity formally is by means of a selection
function which takes an antecedent statement A and the actual world and determines the
possible worlds in which A is true that are closest to the actual world (see, in particular,
[21], [22]). Another way, due to D. Lewis [17], proceeds in terms of spheres. Intuitively,
each world is assigned a set of nested spheres of possible worlds which surround it. The
possible worlds contained in its inner spheres are more similar to it than those contained in
its outer surrounding spheres. Counterfactual fallacies can be nicely illustrated by means
of this semantics. For example, transitivity fails for the derivation of (1.4) from premisses
(1.2) and (1.3), since the closest worlds in which the antecedent of (1.2) is true (i.e., Hoover
is born a Russian) are less similar to the actual world, and thus in spheres more remote
to it, than the closest worlds in which the antecedent of (1.3) is true (i.e., Hoover is a
Communist). A generalization of sphere semantics is preference semantics. It has been
proposed by J. P. Burgess in [3]. This semantics does not assign a system of spheres to
every world. Rather it equips each world w with a ternary preference relation (symbol:
<w) which is transitive and irre�exive. Intuitively, x <w y says that world x is preferred to
world y with respect to w. According to this analysis, A > B is true at w in case B is true
at all the worlds in which A is true that are most preferred with respect to w. Like sphere
semantics this semantics can be construed as a special case of selection-function semantics.

The conception of counterfactual inference as re�ecting reasoning about possible worlds
and their set-theoretic relations to each other also pertains to the aforementioned dynamic
approaches. Here (e.g., [35], [36]), very roughly, an information state or context is formally
represented as a set of possible worlds, and the meaning of a formula is given by an inter-
pretation function which assigns a context change potential to it. Intuitively, in an update,
formulae delete all worlds from contexts in which they are false.

On the model-theoretic perspective, the logic of counterfactuals is explained on the
basis of model-theoretically de�ned consequence relations. Roughly, consequence is un-
derstood according to the general idea that all models of the premisses are models of the
conclusion. Correspondingly, validity is conceived of as truth in all models. On this per-
spective, proof systems are secondary. Typically, the task is to de�ne a Hilbert-style axiom
system for a given consequence relation. And this is to be done in such a way that a
completeness theorem can be established for the system. Completeness is here understood
as external completeness: the systems are to be complete with respect to the models. Usu-
ally, the axiom systems extend classical logic and the results obtained for them presuppose
classical reasoning also in the metatheory.

Structural proof theory is not even secondary, as structural proof systems (e.g., natural
deduction, sequent calculi) are usually de�ned for the axiomatic counterfactual logics that
have been de�ned for the model-theoretic consequence relations. Labelled (or external)
proof systems (e.g., [12], [19], [24]) exhibit this model-theoretic dependency in a particularly
transparent way, since they, in e�ect, incorporate the model-theoretic semantics into their
rules. The calculus G3V for Lewis's most basic logic V (cf. his chart in [17]: ch. 6)
proposed in [12] can serve as a good illustration of such an incorporation. The system
uses labels for possible worlds (e.g., x) and spheres (e.g., a). Its rules manipulate labelled
formulae such as x ∶ A, a ∈ S(x), and a ⊩∃ A. The �rst formula means that world x
forces the truth of A, the second that sphere a is contained in x's system of spheres, and
the last one that sphere a contains a world that forces the truth of A. Internal proof
systems for counterfactual logics (e.g., [16], [23]), by contrast, do not involve a syntax
of labels and labelled formulae that cannot be de�ned in terms of the object language
of these logics. Instead, they make use of structural operators and speci�c rules which
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directly imitate model-theoretic structures involved in the semantics. For example, in
[23] a sequent calculus for Lewis's V is proposed whose sequents contain so-called blocks�
essentially syntactic structures which represent �nite disjunctions of comparative possibility
formulae of the form A ≼ B (`it is at least as possible that A as it is that B')�and speci�c
rules for the handling of blocks such as Com which, roughly, re�ects the nesting of spheres
and Jump which re�ects moving from world to world in the model.1

Figuratively speaking, on the model-theoretic perspective we represent counterfactual
inference primarily, e.g., by drawing similarity circles around possible worlds (sphere se-
mantics; [17]) or, alternatively, by crossing possible worlds out (update semantics; e.g.,
[36]). Thus, we construe counterfactual inference, ultimately, as an operation on repre-
sentations of alternative scenarios. The deductive use of counterfactual assumptions and
counterfactuals in natural counterfactual reasoning is not basic on that perspective.

Indeed, one may argue that not even the use of counterfactuals needs to be consid-
ered essential on the model-theoretic perspective. As the reader may know, due to the
presence of a �long and obscure� ([17]: 133) axiom in his favourite logic of counterfactuals,
VC, Lewis preferred an axiomatization of that logic, and other counterfactual logics ([17]:
131), that uses the aforementioned notion of comparative possibility (≼) rather than the
counterfactual (Lewis's symbol: ◻→) as an unde�ned notion. On Lewis's account, these
operators are interde�nable. Speci�cally, the de�nition of ◻→ in terms of primitive ≼ is
as follows: A ◻→ B =def (� ≼ A) ∨ ¬((A&¬B) ≼ (A&B)). What is interesting about this
is that, on this approach, the study of counterfactual inference can, in principle, discard
the counterfactual conditional. What, at bottom, matters is classical reasoning about
comparative possibility in model-theoretic structures (cf. [17]: sect. 2.5).

1.3 The proof-theoretic perspective

The model-theoretic perspective on semantics and logic is not the only possible one, of
course. For example, W. H. Holliday and T. F. Icard III observe in [15]:

�In this paper, we have assumed that the models come �rst and the axioma-
tizations are then to be discovered. Yet in some cases it may seem that the
model-theoretic proposals are largely guided by the task of delivering the right
entailment predictions. Given this apparent primacy of entailment and infer-
ence patterns, one might wonder whether the semanticist ought simply to focus
attention on proof systems themselves and eschew model theory altogether. In
that case, axiomatic systems, together with a speci�c deductive apparatus in-
tended to capture natural inferential patterns, would be the main object of
study. This kind of project has of course been pursued within linguistic se-
mantics (...), and there is a distinguished tradition of proof theoretic semantics
within philosophy of logic and language.�2 ([15]: 93)

Though it is natural to construe counterfactual inference as reasoning from counterfactual
assumptions, counterfactual assumptions and the inferential practice of drawing conclu-
sions from them play only a subordinate role, if any, in contemporary research on counter-
factual inference.

1Translations of internal into labelled systems and back (see [11], [12]) shed light on their relation and
suggest that they complement each other methodologically helping to carry over insights (concerning, e.g.,
syntactic admissibility of cut, complexity bounds) already obtained for one kind of calculus to the other.

2Here, the authors refer to work by N. Francez, R. Dyckho�, A. Szabolcsi on linguistic semantics and to
work by, e.g., D. Prawitz and M. Dummett on proof-theoretic semantics. (However, it should be mentioned
that axiomatic systems are not necessarily presupposed by �[t]his kind of project�.)

4

https://doi.org/10.1017/bsl.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.20


On the proof-theoretic perspective on counterfactual inference which I would like to
suggest, proof-theoretic structure is fundamental for the semantics and logic of counterfac-
tuals. We start from a certain primacy of inferential practice and proof theory (e.g., [26],
[27], [32]). Proof-theoretic structure can be conceived of in terms of trees in which one
proceeds from counterfactual assumptions, the leaves of the tree, to conclusions, its root,
by means of rules of inference. The main formal methods of inquiry are those of structural
proof theory (e.g., [20], [25], [33]).

On this perspective, meaning is explained, following the tradition of proof-theoretic
semantics in terms of derivations in suitable structural proof systems (see [27] for overview).
Historically, the guiding idea behind the proof-theoretic approach to meaning has been �rst
formulated by G. Gentzen for the operators of �rst-order logic in [9]:

�The introductions represent, as it were, the `de�nitions' of the symbol con-
cerned, and the eliminations are no more, in the �nal analysis, than the con-
sequences of these de�nitions. This fact may be expressed as follows: In elimi-
nating a symbol, we may use the formula with whose terminal symbol we are
dealing only `in the sense a�orded it by the introduction of that symbol'.� ([9]:
80).

We take a structural proof system (more speci�cally, a natural deduction system) to be
suitable, in case it admits this kind of inversion (cf. [25]: 33) and seek to develop such a
system for counterfactual inference.

Importantly, we take an intuitionistic stance, one that rests on the BHK-perspective
on meaning (cf. [34]: 9). Speci�cally, we take meaning to be determined in terms of
canonical derivations, i.e., derivations which apply an introduction rule in the last inference
step (cf. [6], [26]). Endorsing a BHK-conception, the inference rules of the proof system
should capture the constructive meaning of its operators. In particular, the proof systems
should admit an explanation of what it takes to infer�constructively�a consequent of a
counterfactual conditional from its antecedent. Given this conception, we take truth to rest
on explicit constructive canonical proof. As a consequence of our intuitionistic stance, we
do not take validity to be truth in all models (not even in Heyting-algebra-valued models,
or in intuitionistic Kripke models), as the model-theoretic approach to intuitionistic logic
is alien to the BHK-conception. Rather, we take validity to be determined directly by the
principles of constructive proof without reference to external structures (e.g., [18]). This
intuitionistic perspective on validity has been adequately captured by J. D. Hamkins as
follows:

�[I]n classical logic, one has a semantic validity concept that is independent of,
and perhaps prior to, any proof system; one de�nes that an assertion is valid
classically when it is true in all models. The goal of classical logic, then, is to
capture this validity concept in a system of formal reasoning, and we judge a
proof system by whether or not it does so. Namely, a proof system implements
classical logic precisely if it is sound and complete with respect to semantic va-
lidity. Intuitionistic logic, in contrast, does not seem to begin with a clear prior
semantics or validity concept. Rather, intuitionism begins with general ideas
about the nature of constructive reasoning; one then designs a proof system as
Heyting did, so as to implement and formalize those guiding ideas. The result
is intuitionist logic, provided as a formal proof system. In e�ect, the proof
system itself helps us to clarify and express more fully what intuitionistic logic
is in the �rst place. In particular, one can use the intuitionistic proof system to
de�ne the corresponding validity concept: to be valid intuitionistically means
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ultimately to be provable in the intuitionistic system, to be provable according
to constructive principles of reasoning.� ([14]: 183).

Accordingly, we shall not construe completeness as an external notion, i.e., as completeness
with respect to structures (e.g., models) external to the proof system, but as internal
completeness, i.e., as an internal property of a suitable proof system, speci�cally, one that
admits of normalization (or cut-elimination) and possesses the subformula property. A
notion of internal completeness has been characterized by J.-Y. Girard as follows:

�If we consider cut-free proofs, then all possible proofs are already there, there
is no way to produce new ones. In other terms, the calculus is complete�
nothing is missing. Observe that this completeness does not refer to any sort
of model, it is an internal property of syntax. Such a property cannot be an
accident, it should be given its real place, the �rst: The subformula property is
the actual completeness.� ([10]: 139-40).3

On our proof-theoretic perspective, there is, thus, no semantics/proof system-dichotomy.
A proof system, given that it has certain desirable proof-theoretic properties, is itself a
semantical framework (cf. [39]). This perspective, thus, di�ers fundamentally from the
model-theoretic one taken in recent work on intuitionistic versions of counterfactual logics
(e.g., [5], [40]). In particular, models and their semantic ontology (e.g., possible worlds)
are required neither for the formal explanation of the meaning of counterfactuals, nor for
that of valid counterfactual inference.

1.4 The proposal

Starting from the conviction that the study of counterfactual inference, i.e., the study of
reasoning from counterfactual assumptions, is carried out more adequately as a study of
proof-theoretic rather than model-theoretic structure, we de�ne modal natural deduction
systems, building on previous work in [43], where only the implicational fragment has been
considered. Such proof systems are modal, since they make use of modes of assumptions
which are sensitive to the factuality status of the formula that is to be assumed. We shall
distinguish three kinds of status: factual, counterfactual, and independent. The rules of
a modal system draw on this status. The factuality status is determined by means of
a reference proof system on top of which a modal proof system is de�ned. Speci�cally,
the factuality status of atomic sentences is determined by a subatomic system which is
integrated into the reference proof system.

Due to the possibility of making assumptions in various modes, modal proof systems
can be used for the proof-theoretic modeling of reasoning from both counterfactual and
factual assumptions. Quite naturally, then, the availability of these assumption modes will
allow us to study not only the inferential behaviour of counterfactuals, but also that of
reason giving or causal since-subordinator sentences (factuals, for short) which, intuitively,
presuppose that their antecedents are true:

(1.8) Since A is the case, B is the case.

On the simplifying assumption that `because' behaves inferentially in a way su�ciently
similar to causal `since', we may use modal proof systems also for the analysis of reasoning
with sentences of the form:

3Conceptions of internal completeness have been around since Gentzen as has been argued by C. Franks
in [8].
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(1.9) B is the case, because A is the case.

The structure of this paper is as follows: Section 2 de�nes reference proof systems
and Section 3 modal proof systems. The rules of modal proof systems are considerably
more involved than those of natural deduction for intuitionistic logic. This is something
one naturally expects, when dealing with counterfactuals. Speci�cally, before proving
normalization, we have to make sure that the conversions for derivations in modal systems
do not lead us from derivations to non-derivations. This preservation of the legitimacy of
derivations is shown in Section 4 together with the normalization theorem. Presupposing
these insights, Section 5 proves the subexpression (incl. subformula) property for modal
systems which admits both the formulation of a decision procedure, the method of counter-
derivations, and a demonstration of the internal completeness of these systems. It uses the
method to discuss counterfactual fallacies and to assess familiar axioms of counterfactual
logics. Section 6 de�nes a proof-theoretic semantics for factuals and counterfactuals and
proposes a re�nement of modal proof systems which makes them suitable for reasoning
with conditional `might'-constructions of the following forms:

(1.10) If A were the case, B might be the case.

(1.11) Since A is the case, B might be the case.

2 Reference proof systems

The purpose of a reference proof system, an R-system, is to determine what counts as a
fact. R-systems are de�ned for the language L0.

De�nition 2.1. The language L0 comprises the following primitive symbols:

1. denumerably many individual (or nominal) constants (metavariables: α, αi);

2. denumerably many n-ary predicate constants (metavariables: φn, φn
i );

3. the two-place connectives ⊃, &, and ∨;

4. the logical constant � (absurdity);

5. brackets (, ).

C and P are the sets of nominal and predicate constants, respectively. Their union C ∪P
is the set of non-logical constants (metavariables: τ , τi). Notation: ⋆ ∈ {⊃,&,∨}.
De�nition 2.2. A prime formula of L0 is either an atomic sentence (φnα1...αn) or �. The
notion of a formula (of L0) is de�ned inductively by:

1. Any prime formula is a formula.

2. If A and B are formulae, then so are A ⊃ B (implication), A&B (conjunction), and
A ∨B (disjunction).

Atm is the set of atomic sentences. Atm(α) =def {A ∈ Atm ∶ A contains at least one
occurrence of α ∈ C} and Atm(φn) =def {A ∈ Atm ∶ A contains an occurrence of φn ∈ P}.
Fml0 is the set of formulae of L0.

De�nition 2.3. De�ned operators of L0:

1. ¬A =def A ⊃ � (negation);
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2. A↔ B =def (A ⊃ B)&(B ⊃ A) (bi-implication).

De�nition 2.4. 1. Any non-logical constant and any formula of L0 is an expression
(metavariables: ϵ, ϵ′).

2. Let ϵ be an expression (of L0). Subexpressions of ϵ are de�ned by:

(a) ϵ is a subexpression of ϵ.

(b) If φnα1...αn is a subexpression of A, then so are φn, α1, ..., αn.

(c) If B ⋆C is a subexpression of A, then so are B and C.

A special case of the above de�nition:

De�nition 2.5. Let A be a formula (of L0). Subformulae of A are de�ned by:

1. A is a subformula of A.

2. If B ⋆C is a subformula of A, then so are B and C.

A reference proof system R is a natural deduction system for intuitionistic logic that
incorporates a subatomic system. The purpose of a subatomic system is to de�ne the
meaning of atomic sentences (e.g., `Hoover is a Communist') and that of their components
in a proof-theoretic way. We, �rst, recapitulate what a subatomic system is.

De�nition 2.6. A subatomic system S is a pair ⟨I,R⟩, where I is a subatomic base and R
a set of rules for the introduction and elimination of atomic sentences. These components
are de�ned as follows:

1. A subatomic base I is a 3-tuple ⟨C,P, v⟩, where v is such that:

(a) for any α ∈ C, v ∶ C → ℘(Atm), where v(α) ⊆ Atm(α);
(b) for any φn ∈ P, v ∶ P → ℘(Atm), where v(φn) ⊆ Atm(φn).

For any τ ∈ C ∪P: τΓ =def v(τ). τΓ is the set of term assumptions for τ .

2. R is a set of I/E-rules:

D0

φn
0Γ

D1

α1Γ ...

Dn

αnΓ
(asI)

φn
0α1...αn

where φn
0α1...αn ∈ φn

0Γ ∩ α1Γ ∩ ... ∩ αnΓ

D1

φn
0α1...αn

(asEi)
τiΓ

where i ∈ {0, ..., n} and τi ∈ {φn
0 , α1, ..., αn}

De�nition 2.7. Derivations in S-systems.
Basic step. Any term assumption τΓ and any atomic sentence A (i.e., a derivation

from the open assumption of A) is an S-derivation.
Induction step. If Di, for i ∈ {0, ..., n}, are S-derivations, then an S-derivation can be

constructed by means of the asI/E-rules displayed above.

De�nition 2.8. 1. An atomic sentence which is the conclusion of (an application of)
asI and at the same time the premiss of asE is a maximum atomic sentence (or an
as-maximum).

2. A successive application of asI and asE is an as-detour.

3. Derivations in S-systems which do not contain as-maxima are S-derivations in normal
form (or normal S-derivations).
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De�nition 2.9. Detour conversion for as:

D0

φn
0Γ

D1

α1Γ ...

Dn

αnΓ
(asI)

φn
0α1...αn

(asEi)
τiΓ

conv
Di

τiΓ

Theorem 2.1. Any derivation D in an S-system can be transformed into a normal S-
derivation.

Proof. Immediate.

De�nition 2.10. Let D be a derivation in an S-system.

1. An S-unit in D is either an occurrence of (i) an atomic sentence or (ii) a term
assumption τΓ in D. We use US , U

′

S
(possibly with subscripts) for S-units.

2. In case US is a term assumption τΓ in D, τ is the expression in US .

Theorem 2.2. If D is a normal S-derivation of an S-unit US from a set of S-units Γ, then
each S-unit in D is a subexpression of an expression in Γ ∪ {US}.

Proof. Immediate.

These observations allow us to give an elementary proof-theoretic semantics for non-
logical constants and atomic sentences of L0.

De�nition 2.11. The meaning of

1. a non-logical constant τ is given by the term assumptions τΓ for it which are deter-
mined by the subatomic base I of the subatomic system S;

2. an atomic sentence φnα1...αn is given by the set of its canonical derivations in S,
such derivations apply asI in the last inference step.

Having recalled what a subatomic system is, we now de�ne the intended kind of
reference proof system. Such systems combine subatomic with superatomic inference.

De�nition 2.12. Derivations in R-systems.
Basic step. Any term assumption τΓ and any L0-formula A (i.e., a derivation from

the open assumption of A) is an R-derivation.
Induction step. IfD0, ..., Dn are R-derivations, then an R-derivation can be constructed

by means the asI/E-rules and the following familiar intuitionistic rules, where C is possibly
a term assumption:

[A](u)

D1

B (⊃I), u
A ⊃ B

D1

A ⊃ B
D2

A (⊃E)
B

D1

A

D2

B (&I)
A&B

D1

A&B (&E1)
A

D1

A&B (&E2)
B

D1

A (∨I1)
A ∨B

D1

B (∨I2)
A ∨B

D1

A ∨B

[A](u)

D2

C

[B](v)

D3

C (∨E), u, v
C

D1

�
(�i)

A

It can be shown that derivations in R-systems normalize (i.e., contain no detours) and
that normal derivations enjoy the subexpression and the subformula property.
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Theorem 2.3. Normalization (R-systems): Any derivation D in an R-system can be trans-
formed into a normal R-derivation.

Theorem 2.4. Subexpression property (R-systems): If D is a normal R-derivation of a unit
UR from a set of units Γ, then each unit in D is a subexpression of an expression in Γ∪{UR}.
Corollary 2.1. Subformula property (R-systems): If D is a normal R-derivation of formula
A from a set of formulae Γ, then each formula in D is a subformula of a formula in Γ∪{A}.

The proofs of these results are adaptations of the proofs in [43]. They are omitted,
since they are special cases of the corresponding proofs in Sections 4 and 5.

Remark 2.1. Traditional bene�ts of the subformula property include the consistency of
a proof system and a simpli�cation of proof search in it. Speci�cally, all theorems of
R-systems can be established by means of normal canonical proofs.

De�nition 2.13. 1. A derivation D of a formula A in an R-system is a canonical deriva-
tion i� it derives A by means of an I-rule in the last step of D.

2. A canonical derivation D of A in an R-system is a canonical proof of A in that system
i� there are no applications of as-rules and no undischarged (or open) assumptions
in D.

3. The conclusions of canonical R-derivations are R-theses and the conclusions of R-
proofs are also R-theorems.

We may now de�ne the notion of a fact.

De�nition 2.14. An established thesis (or fact) of R is an L0-formula for which a canonical
R-derivation has been constructed. ΘR is the set of so far established theses.

3 Modal proof systems

Modal proof systems are modal, because they make use of modes of making assumptions.
These modes are sensitive to the factuality status of the formula that is to be assumed.
This status is determined by means of a reference proof system. Modal proof systems are
de�ned for the language L1 which extends L0.

De�nition 3.1. The language L1 comprises:

1. the primitive symbols of L0; and

2. the two-place connectives for factual, counterfactual, and mode-sensitive implication,
conjunction, and disjunction: ⊃f , ⊃c, ⊃∗, &f , &c, &∗, and ∨f , ∨c, ∨∗.

Metalinguistic notation: ⋆i ∈ {⊃,⊃f ,⊃c,⊃∗}, ⋆c ∈ {&,&f ,&c,&∗}, and ⋆d ∈ {∨,∨f ,∨c,∨∗}.
De�nition 3.2. The notion of a formula of L1 is de�ned inductively by:

1. Any formula of L0 is a formula (of L1).

2. If A, B are formulae, then A ⊃f B, A ⊃c B, A ⊃∗ B, A&fB, A&cB, A&∗B, A ∨f B,
A ∨c B, A ∨∗ B are formulae.

Fml1 is the set of formulae of L1.
Notational convention: In case a compound L0-formula A is used as a formula of L1,

we write ⊃∗ [&∗, ∨∗] for occurrences of ⊃ [&, ∨] in A.

De�nition 3.3. De�ned operators of L1:
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1. ¬∗A =def A ⊃∗ � (mode-sensitive negation);

2. A↔∗ B =def (A ⊃∗ B)&∗(B ⊃∗ A) (mode-sensitive bi-implication).

Remark 3.1. We may also allow for factual and counterfactual versions of negation (¬f ,
¬c) and bi-implication (↔f , ↔c).

De�nition 3.4. Expression, subexpression, and subformula: The de�nitions of these notions
for L1 are analogous to those for L0.

Assumption modes are characteristic of modal proof systems.

De�nition 3.5. Assumption modes. There are three modes of making assumptions in a
modal proof system:

1. ∣A∣ indicates that A is assumed in the factual mode, given that A ∈ Fml0 and A ∈ ΘR.

2. ≀A≀ indicates that A is assumed in the counterfactual mode, given that A ∈ Fml0 and
A ∈ Θc

R
, where Θc

R
=def Fml0 ∖ΘR.

3. (A) indicates that A is assumed in the usual independent (or neutral) mode, where
A ∈ Fml1. Speci�cally, in case A is also an L0-formula, A is assumed independently
of whether it is contained in ΘR or Θc

R
.

/A/ indicates that A is assumed in one of the three modes. We call the symbols �anking
assumed formulae status markers.

Remark 3.2. 1. Let A be a formula of L0 and suppose we have established A as a fact.
We can, then, make the factual assumption ∣A∣. However, we are debarred from making
the counterfactual assumption ≀A≀. We may assume counterfactually only ≀¬A≀, provided
that we have no canonical derivation of ¬A so far.

2. The independent mode of assumption is the standard one. It has been used already
in reference proof systems. We use the status markers (), in case we make independent
assumptions in modal proof systems. In derivations, the context will help one to determine
whether the brackets are used as status markers or as auxiliary symbols in formulae: In
case a top formula occurrence is enclosed in (), these symbols are status markers.

3. As a consequence of De�nition 3.5, formulae which contain a factual or a coun-
terfactual operator can be assumed only in the independent mode. Given the notational
convention, formulae containing exclusively mode-sensitive operators can be assumed in
any mode.

De�nition 3.6. Negated status markers. /∣ A /∣ indicates either ≀A≀ or (A); /≀ A /≀ indicates
either ∣A∣ or (A); /( A /) indicates either ∣A∣ or ≀A≀.
De�nition 3.7. 1. A formula A in a derivation D in a modal proof system may have

three di�erent kinds of modal status.

(a) A has factual status in D, if it depends on no counterfactual assumption, and
either

i. A depends on at least one factual assumption (special case: ∣A∣), or
ii. A has been derived by means of term assumptions, or

iii. A is a conclusion of a canonical derivation in R.

(b) A has counterfactual status in D, if it depends on at least one counterfactual
assumption (special case: ≀A≀).

(c) A has independent status in D, if it has no factual or counterfactual status
(special case: (A)).
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2. Any term assumption τΓ in a derivation D in a modal proof system has factual
status.

De�nition 3.8. Status markers (Derivations). ∣D∣ [≀D≀, (D)] indicates that the conclusion
of D has factual [counterfactual, independent] status. /D/ indicates that the conclusion of
D has one of the three kinds of status. /∣ D /∣ indicates either ≀D≀ or (D); /≀ D /≀ indicates
either ∣D∣ or (D); /( D /) indicates either ∣D∣ or ≀D≀.
De�nition 3.9. Assumption classes. [/A/](u) denotes either (i) an assumption class, i.e. a
set of undischarged assumptions of occurrences of formula A, or (ii) a single undischarged
assumption of an occurrence of formula A in a derivation /D/ marked by u. The second
alternative is used, in case /D/ is fully explicit. If B is the conclusion and [/A/](u) an
assumption class of /D/, we write:

[/A/](u)

/D/
(�)

B

(1)

Remark 3.3. A derivation of the form (�) cannot take just any shape, since, by De�nition
3.7, combinations (b), (g), and (h) are precluded:

[∣A∣](u)

∣D∣
(a)

B

[≀A≀](u)

∣D∣
(b)

B

[(A)](u)

∣D∣
(c)

B

[∣A∣](u)

≀D≀
(d)

B

[≀A≀](u)

≀D≀
(e)

B

[(A)](u)

≀D≀
(f)

B

[∣A∣](u)

(D)
(g)

B

[≀A≀](u)

(D)
(h)

B

[(A)](u)

(D)
(i)

B

The construction of new derivations from old ones gives rise to a certain dendrochronol-
ogy.

De�nition 3.10. Status marker nesting. If /D/ is a derivation of the form (�), and r a dis-
charging rule for a dummy operator $ (considered here only for the purpose of illustration)
applied to the conclusion B of /D/, we use the following notation for the new derivation
//D// resulting from that application which discharges the members of [/A/](u):

[/A/](u)

//D//
B(�) r, u

A$B

(2)

In //D// the inner slashes indicate the status of B and the outer ones the status of A$B
after the discharge by r.

Remark 3.4. 1. A derivation of the form (�) can take any of the following shapes:

[∣A∣](u)

∣∣D∣∣
B(a) r, u

A$B

[≀A≀](u)

∣ ≀D ≀ ∣
B(b) r, u

A$B

[(A)](u)

∣∣D∣∣
B(c) r, u

A$B

[∣A∣](u)

≀ ≀D ≀ ≀
B(d) r, u

A$B

[≀A≀](u)

≀ ≀D ≀ ≀
B(e) r, u

A$B

[(A)](u)

≀ ≀D ≀ ≀
B(f) r, u

A$B
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[∣A∣](u)

(∣D∣)
B(g) r, u

A$B

[≀A≀](u)

(≀D≀)
B(h) r, u

A$B

[(A)](u)

((D))
B(i) r, u

A$B

Speci�cally, in combination (b) [(h)] the members of [≀A≀](u) are the only undischarged
counterfactual assumptions in ≀D≀ and A$B has factual [independent] status. In combi-
nation (g) the members of [∣A∣](u) are the only undischarged factual assumptions in ∣D∣
and A$B has independent status; in (a), there are either other open factual assumptions
besides those in [∣A∣](u) or term assumptions in ∣D∣ and A$B has factual status.

2. Combinations (a), (d), (g) fall under (j), combinations (b), (e), (h) fall under (k),
combinations (c), (f), (i) fall under (l), and (j), (k), (l) under (�):

[∣A∣](u)

/ /( D /) /
B(j) r, u

A$B

[≀A≀](u)

/ ≀D ≀ /
B(k) r, u

A$B

[(A)](u)

//D//
B(l) r, u

A$B

3. The number of rings of a derivation tree may grow. When considering the structure
of derivations, it will often be convenient to indicate only the outermost status markers.
For example, we may write (D) instead of (∣ ≀D ≀ ∣). Note that, e.g. ≀∣(D)∣≀, is precluded
by De�nition 3.7.

4. By De�nition 3.7, the conclusion of a derivation without term assumptions in which
all assumptions have been discharged that is not an R-theorem has independent status.

Modal proof systems, M-systems, are de�ned on top of reference proof systems and
do justice to the speci�c needs of counterfactual inference mentioned in the Introduction
by means of speci�c side conditions.

De�nition 3.11. Derivations (M-systems). The notion of an M-derivation is de�ned by:
Basic step. Any derivation in the R-system of anM-system, any L0-formula A assumed

in the factual (resp. counterfactual) mode ∣A∣ (≀A≀), i.e., a derivation from the open factual
(counterfactual) assumption of A, and any L1-formula A assumed in the independent mode
(A), i.e., a derivation from the open independent assumption of A, is a derivation in that
M-system.

Induction step. If D0, ..., Dn are M-derivations and C possibly a term assumption,
then an M-derivation can be constructed by means of the following rules:

Rules for atomic sentences:

/D0/
φn
0Γ

/D1/
α1Γ ...

/Dn/
αnΓ

(as∗I)
φn
0α1...αn

where φn
0α1...αn ∈ φn

0Γ ∩ α1Γ ∩ ... ∩ αnΓ

/D1/
φn
0α1...αn

(as∗Ei)
τiΓ

where i ∈ {0, ..., n} and τi ∈ {φn
0 , α1, ..., αn}

Rules for implications:

[∣A∣](u)

/ /( D1 /) /
B (⊃f I), u

A ⊃f B

/D1/
A ⊃f B

∣D2∣
A

(⊃fE)
B

[≀A≀](u)

/ ≀D1 ≀ /
B (⊃cI), u

A ⊃c B

/D1/
A ⊃c B

≀D2≀
A

(⊃cE)
B

[/A/](u)

/D1/
B (⊃∗I), u

A ⊃∗ B

/D1/
A ⊃∗ B

/D2/
A

(⊃∗E)
B
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Rules for conjunctions:

∣D1∣
A

∣D2∣
B (&f I)

A&fB

/D1/
A&fB

(&fE1)
A

/D1/
A&fB

(&fE2)
B

≀D1≀
A

≀D2≀
B (&cI)

A&cB

/D1/
A&cB (&cE1)
A

/D1/
A&cB (&cE2)
B

/D1/
A

/D2/
B (&∗I)

A&∗B

/D1/
A&∗B (&∗E1)

A

/D1/
A&∗B (&∗E2)

B

Rules for disjunctions:

∣D1∣
A (∨f I1)

A ∨f B

∣D1∣
B (∨f I2)

A ∨f B

/D1/
A ∨f B

[/A/](u)

/D2/
C

[/B/](v)

/D3/
C

(∨fE), u, v
C

≀D1≀
A (∨cI1)

A ∨c B

≀D1≀
B (∨cI2)

A ∨c B

/D1/
A ∨c B

[/A/](u)

/D2/
C

[/B/](v)

/D3/
C

(∨cE), u, v
C

/D1/
A (∨∗I1)

A ∨∗ B

/D1/
B (∨∗I2)

A ∨∗ B

/D1/
A ∨∗ B

[/A/](u)

/D2/
C

[/B/](v)

/D3/
C

(∨∗E), u, v
C

Rule for absurdity :

/D1/
�
(�∗i)

A

Terminology : Call the conjunct A [B] derived by an application of ⋆cE1 [⋆cE2] to
A ⋆c B selected and the conjunct B [A] unselected. Similarly, call the disjunct A [B] in
A ⋆d B derived by an application of ⋆dI1 [⋆dI2] to A [B] introducing and the disjunct B
[A] in A ⋆d B introduced.

Side conditions:

sc1. ⊃f I:

(a) No empty discharge; and no empty discharge in D1.

(b) B does not depend on a ⋆c-formula, other than itself, that contains an unselected
conjunct in D1.

(c) A must not be an antecedent of an introduced disjunct in D1.

sc2. ⊃cI: Like sc1.

sc3. ⊃cE: In case A and B are distinct formulae, the conclusion of ⊃cE must not be
the minor premiss of an application of another application of ⊃cE or of ⊃∗E (break
formula).
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sc4. &∗I: Both premisses have the same status.

sc5. ∨fE: At least one of the premisses discharged by this rule is assumed in the factual
mode.

sc6. ∨cE: At least one of the premisses discharged by this rule is assumed in the counter-
factual mode.

Assumption principles: The following principles are respected by any derivation D in
M-systems:

ap1. No formula is assumed in more than one mode in D.

ap2. The mode in which an antecedent A is assumed in ⋆iI-applications in D determines
the modal status of all antecedent A-nodes (i.e., minor premisses of ⋆iE) in D.

ap3. The mode in which a disjunct A is assumed in ⋆dE-applications in D determines the
modal status of all introducing disjunct A-nodes (i.e., premisses of ⋆dI) in D.

4 Preservation and normalization

The proof of normalization for M-systems proceeds largely along entirely familiar lines (cf.
[25], [33]). However, as will be explained shortly, it is complicated by the requirements
imposed on the rules of these systems.

De�nition 4.1. A formula (of L1) which is the conclusion of an I-rule and at the same time
the premiss of an E-rule is a maximum formula (or a maximum).

De�nition 4.2. A segment σM of length n in a derivation /D/ in an M-system is a sequence
A1, ...,An of successive occurrences of a formula A in /D/ such that:

1. for 1 < n, i < n, Ai is a minor premiss of ⋆dE in /D/ with conclusion Ai+1;

2. An is not a minor premiss of ⋆dE;

3. A1 is not the conclusion of ⋆dE.

De�nition 4.3. A segment σM is maximal in case An is the major premiss of an E-rule and
either n > 1, or n = 1 and A1 ≡ An is the conclusion of an I-rule; ≡ indicates literal identity
(cf. [33]: 2). (A maximum, possibly an atomic sentence, is a special case of a maximal
segment. A term assumption cannot be a maximum.)

De�nition 4.4. Rank and cut rank (M-systems):

1. The rank of a term assumption τΓ is de�ned by: r(τΓ) = 0.

2. The rank of an atomic sentence φnα1...αn is de�ned by: r(φnα1...αn) = 1.

3. Let A,B be formulae and let ⋆ ∈ {⋆i,⋆c,⋆d}. The rank of � [A ⋆ B] is de�ned by:
r(�) = 0 [r(A ⋆B) =max(r(A), r(B)) + 1].

4. The cut rank of an M-derivation /D/ is de�ned by: cr(/D/) = ⟨d,n⟩, where:

(a) d =max{cr(σM): σM is a maximal segment in /D/}, where cr(σM) = ∣ A ∣ is the
cut rank of a maximal segment σM with formula A. In case there is no maximal
segment, max∅ = 0.
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(b) n = the sum of lengths of all critical cuts in /D/, where a critical cut of an
M-derivation /D/ is a maximal segment of maximal cut rank from all maximal
segments in /D/.

De�nition 4.5. Derivations in M-systems which do not contain critical cuts are said to be
normal or in normal form.

De�nition 4.6. Conversions (M-systems). Critical cuts are removed by means of the fol-
lowing conversions:

1. Detour conversions (M-systems).

(a) as∗-Conversion: i ∈ {0, ..., n}
/D0/
φn
0Γ

/D1/
α1Γ ...

/Dn/
αnΓ

(as∗I)
φn
0α1...αn

(as∗Ei)
τiΓ

conv
/Di/
τiΓ

(b) ⋆i-Conversions:

[∣A∣](u)

/ /( D1 /) /
B (⊃f I), u

A ⊃f B

∣D2∣
A

(⊃fE)
B

conv

∣D2∣
[A]
/( D1 /)
B

[≀A≀](u)

/ ≀D1 ≀ /
B (⊃cI), u

A ⊃c B
≀D2≀
A

(⊃cE)
B

conv

≀D2≀
[A]
≀D1≀
B

[/A/](u)

/D1/
B (⊃∗I), u

A ⊃∗ B
/D2/
A

(⊃∗E)
B

conv

/D2/
[A]
/D1/
B

(c) ⋆c-Conversions: i ∈ {1,2}
∣D1∣
A1

∣D2∣
A2 (&f I)

A1&fA2
(&fEi)

Ai

conv
∣Di∣
Ai

≀D1≀
A1

≀D2≀
A2 (&cI)

A1&cA2 (&cEi)
Ai

conv
≀Di≀
Ai

/D1/
A1

/D2/
A2 (&∗I)

A1&∗A2 (&∗Ei)
Ai

conv
/Di/
Ai

(d) ⋆d-Conversions: i ∈ {1,2}

∣D∣
Ai (∨f I)

A1 ∨f A2

[/A1/](u)

/D1/
C

[/A2/](v)

/D2/
C

(∨fE), u, v
C

conv

∣D∣
[Ai]
/( Di /)
C

≀D≀
Ai (∨cI)

A1 ∨c A2

[/A1/](u)

/D1/
C

[/A2/](v)

/D2/
C

(∨cE), u, v
C

conv

≀D≀
[Ai]
≀Di≀
C
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/D/
Ai (∨∗I)

A1 ∨∗ A2

[/A1/](u)

/D1/
C

[/A2/](v)

/D2/
C

(∨∗E), u, v
C

conv

/D/
[Ai]
/Di/
C

2. Permutation conversions (M-systems). Cuts of length > 1 are removed after an
upwards permutation of E-rules over minor premisses of ⋆dE-applications (in case
the E-rule is asE, C is an atomic sentence and D a term assumption).

/D/
A ⋆d B

/D1/
C

/D2/
C

(⋆dE)
C /D′/

(E-rule)
D

perm

/D/
A ⋆d B

/D1/
C /D′/

(E-rule)
D

/D2/
C /D′/

(E-rule)
D

(⋆dE)
D

3. Simpli�cation conversions (M-systems). An application of ⋆dE to major premiss
A1 ⋆d A2 in which at least one of [A1], [A2] is empty in the derivations of its minor
premisses C (possibly term assumptions) is redundant. Redundant ⋆dE-applications
are removed by simpli�cation conversions for ⋆d, where no assumptions are discharged
by ⋆dE in Di (i ∈ {1,2}).

/D/
A1 ⋆d A2

/D1/
C

/D2/
C

(⋆dE)
C

simp
/Di/
C

Due to the presence of various modes of assumption, very speci�c side conditions, and
assumption principles, M-systems are considerably more complex than R-systems. For this
reason, the question may arise whether the conversions of derivations in M-systems never
transform derivations into non-derivations. An answer to this question is important, as a
proper functioning of the conversions is vital to normalization. The answer is positive.

4.1 Preservation for detour conversions

We distinguish legitimate from illegitimate derivations.

De�nition 4.7. A derivation is legitimate in case it is constructed according to De�nition
3.11; otherwise it is illegitimate. (We also call the former `derivations' and the latter
`non-derivations'.)

Theorem 4.1. The detour conversions of M-systems do not transform legitimate into ille-
gitimate derivations.

Proof. A long proof by exhaustion.

� Part A: preservation for ⋆i-conversions

� Part B: preservation for ⋆c-conversions

� Part C: preservation for ⋆d-conversions
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(Since no side conditions are imposed on the as∗-rules, preservation for as∗-conversions
is guaranteed.) The formula for calculating the minimal number f of cases is f = g2 × h,
where g is the number of I/E-rules for speci�c operators (only one for ⋆cE, ⋆dI) and h the
number of detour conversions for speci�c operators. If the number of cases is larger than
f , this is due to the fact that discharged assumptions may occur above both major and
minor premisses of minor premiss rules.

Part A: Preservation for ⋆i-detour conversions. Let /D
a/

B
,
/Db/
A

be legitimate deriva-

tions. We show: If these derivations can be combined into a legitimate derivation D∗, then
the ⋆i-conversions transform it into a legitimate derivation D∗∗; otherwise, the combination
D∗ is illegitimate and an ⋆i-conversion is precluded:

[/A/](u)

/Da/
B

(⋆iI), u
A ⋆i B

/Db/
AD∗ = (⋆iE)

B

/Db/
[A]
/Da/

D∗∗ =
B

(3)

Top-down procedure. In order to establish the result we consider, for all speci�c in-

stances of last rules applied in
/Da/
B

and
/Db/
A

, the combination of these derivations into D∗.

In each case we attempt to derive the instance of the maximum formula A⋆iB proceeding

top-down starting from the assumptions in
/Da/
B

according to the rules of M-systems until

we arrive at the I-rule application which introduces A ⋆i B. The procedure is top-down,
since, in general, the modal status of assumptions determines the modal status of the for-
mulae that appear below them in a derivation. Next, we attempt to derive the instance
of the minor premiss A of the elimination of A⋆iB proceeding in the aforementioned top-

down manner with
/Db/
A

. This procedure determines whether D∗ is legitimate and whether

its conversion is successful or precluded.

Kinds of violation. Figure 1 lists for all violations which preclude conversion a violation
code (V-code) and indicates the kind of operator a�ected by the violation (using the letter
I for ⋆i-, C for ⋆c-, and D for ⋆d-operators).

Preservation tables. Part A of the preservation proof is summarized in a condensed
form in Tables A.1-9 below (pp. 20-22). Anticipating the observations on coincidence
(Remark 4.2), Tables A.3, A.6, A.9 are not displayed for reasons of space. These tables
list all the possible cases and the result of the top-down procedure for each case of an
⋆i-conversion. For ease of orientation, each A-table is associated with a sequence of three
letters (enclosed in brackets) which indicate the general kind of operator involved in the
conversion:

A.1. (III)
A.2. (IIC)
A.3. (IID)

A.4. (ICI)
A.5. (ICC)
A.6. (ICD)

A.7. (IDI)
A.8. (IDC)
A.9. (IDD)

The �rst letter indicates the kind of main operator of the maximum formula, the second
indicates the kind of operator of the last rule used in Da, and the third the kind of operator
of the last rule used in Db. In each A-table, the entries below ⊃f -c [⊃c-c, ⊃∗-c] indicate
the results for ⊃f [⊃c, ⊃∗]-conversion, where ● [○] indicates that the combination D∗ is
legitimate [illegitimate] and its the ⋆i-conversion into D∗∗ successful [precluded]. In case
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Code: Violation: Operator:

V 1: non-independent assumption of a non-L0-formula I, D
(respecting the convention in De�nition 3.2)

V 2a: clash of assumption with ap2 I

V 2b: clash of assumption with ap3 D

V 3: minor premiss of ⊃fE has no factual status I

V 4: minor premiss of ⊃cE has no counterfactual status I

V 5a: presence of empty discharge (cf. sc1/2.a) I

V 5b: presence of unselected conjunct (cf. sc1/2.b) I, C
V 5c: presence of antecedent of introduced disjunct (cf. sc1/2.c) I, D
V 6: break formula present (cf. sc3) I

V 7: a premiss of &f I has no factual status C

V 8: a premiss of &cI has no counterfactual status C

V 9: premisses of &∗I di�er in status C

V 10: premiss of ∨f I has no factual status D

V 11: premiss of ∨cI has no counterfactual status D

Figure 1 : Violations

of illegitimacy, the kind of violation is indicated. And for each kind of conversion, the
number of illegitimate derivations (I-number) is listed. Likewise for B- and C-tables.

Tables A.1-3 : In case Da ends with ⋆iE, there are two entries: The �rst [second] entry
in the (c)- and (d)-cases indicates the result for the construction in which the ⋆i-maximum
is introduced discharging an assumption which is used to derive the major [minor] premiss
of that ⋆iE-application.

Tables A.4-6 : All cases are single entry.
Tables A.7-9 : In case Da ends with ⋆dE, there are two entries: The �rst [second]

entry in the (c)- and (d)-cases indicates the result for the construction in which the ⋆i-
maximum is introduced discharging an assumption which is used to derive the major [a
minor] premiss of that ⋆dE-application.
Example 4.1. The examples given for the A-tables, as well as for the B- and C-tables
further below, visualize some of the cases. They have been selected, since they belong to
those in which implications, conjunctions, and disjunctions interact. In case there is no
such interaction, the example has been chosen in order to illustrate a kind of violation that
is not present in the interacting examples. Where applicable and convenient, a cumulative
notation for applications of minor-premiss rules has been used:

∣D1

A ⋆i B
D2∣
A(a) (⋆iE)

B

≀D1

A ⋆i B
D2≀
A(b) (⋆iE)

B

(D1

A ⋆i B
D2)
A(c) (⋆iE)

B

∣D1

A ⋆d B

[/A/](u)

D2

C

[/B/](v)

D3∣
C(d) (⋆dE), u, v

C

≀D1

A ⋆d B

[/A/](u)

D2

C

[/B/](v)

D3≀
C(e) (⋆dE), u, v

C

(D1

A ⋆d B

[/A/](u)

D2

C

[/B/](v)

D3)
C(f) (⋆dE), u, v

C

19

https://doi.org/10.1017/bsl.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.20


A
.1

(I
II
)
D

a
:
D

b
:

α
:
⊃
f
-c

β
:
⊃
c
-c

γ
:
⊃
∗
-c

A
.1
.1
.a

⊃
f
I

⊃
f
I

○
1

○
1

●

A
.1
.1
.b

⊃
f
I

⊃
f
E

●
●

●

A
.1
.1
.c

⊃
f
E

⊃
f
I

○
1
∣
○
1

○
1
∣
○
1
,3

●
∣
●

A
.1
.1
.d

⊃
f
E

⊃
f
E

●
∣
●

●
∣
○
3

●
∣
●

A
.1
.2
.a

⊃
f
I

⊃
c
I

○
1

○
1

●

A
.1
.2
.b

⊃
f
I

⊃
c
E

○
2
a
,3

○
6

○
6

A
.1
.2
.c

⊃
f
E

⊃
c
I

○
1
∣
○
1

○
1
∣
○
1
,3

●
∣
●

A
.1
.2
.d

⊃
f
E

⊃
c
E

○
2
a
,3
∣
○
2
a
,3

○
6
∣
○
3
,6

○
6
∣
○
2
a
,6

A
.1
.3
.a

⊃
f
I

⊃
∗
I

●
●

●

A
.1
.3
.b

⊃
f
I

⊃
∗
E

●
●

●

A
.1
.3
.c

⊃
f
E

⊃
∗
I

●
∣
●

●
∣
○
3

●
∣
●

A
.1
.3
.d

⊃
f
E

⊃
∗
E

●
∣
●

●
∣
○
3

●
∣
●

A
.1
.4
.a

⊃
c
I

⊃
f
I

○
1

○
1

●

A
.1
.4
.b

⊃
c
I

⊃
f
E

●
●

●

A
.1
.4
.c

⊃
c
E

⊃
f
I

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

A
.1
.4
.d

⊃
c
E

⊃
f
E

●
∣
●

●
∣
●

●
∣
●

A
.1
.5
.a

⊃
c
I

⊃
c
I

○
1

○
1

●

A
.1
.5
.b

⊃
c
I

⊃
c
E

○
2
a
,3

○
6

○
6

A
.1
.5
.c

⊃
c
E

⊃
c
I

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

A
.1
.5
.d

⊃
c
E

⊃
c
E

○
2
a
,3
∣
○
2
a
,3

○
6
∣
○
6

○
6
∣
○
6

A
.1
.6
.a

⊃
c
I

⊃
∗
I

●
●

●

A
.1
.6
.b

⊃
c
I

⊃
∗
E

●
●

●

A
.1
.6
.c

⊃
c
E

⊃
∗
I

●
∣
●

●
∣
●

●
∣
●

A
.1
.6
.d

⊃
c
E

⊃
∗
E

●
∣
●

●
∣
●

●
∣
●

A
.1
.7
.a

⊃
∗
I

⊃
f
I

○
1

○
1

●

A
.1
.7
.b

⊃
∗
I

⊃
f
E

●
●

●

A
.1
.7
.c

⊃
∗
E

⊃
f
I

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

A
.1
.7
.d

⊃
∗
E

⊃
f
E

●
∣
●

●
∣
●

●
∣
●

A
.1
.8
.a

⊃
∗
I

⊃
c
I

○
1

○
1

●

A
.1
.8
.b

⊃
∗
I

⊃
c
E

○
2
a
,3

○
6

○
6

A
.1
.8
.c

⊃
∗
E

⊃
c
I

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

A
.1
.8
.d

⊃
∗
E

⊃
c
E

○
2
a
,3
∣
○
2
a
,3

○
6
∣
○
6

○
6
∣
○
6

A
.1
.9
.a

⊃
∗
I

⊃
∗
I

●
●

●

A
.1
.9
.b

⊃
∗
I

⊃
∗
E

●
●

●

A
.1
.9
.c

⊃
∗
E

⊃
∗
I

●
∣
●

●
∣
●

●
∣
●

A
.1
.9
.d

⊃
∗
E

⊃
∗
E

●
∣
●

●
∣
●

●
∣
●

I
2
7

I
3
0

I
9

A
.2

(I
IC
)
D

a
:
D

b
:

α
:
⊃
f
-c

β
:
⊃
c
-c

γ
:
⊃
∗
-c

A
.2
.1
.a

⊃
f
I

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.2
.1
.b

⊃
f
I

&
f
E

●
●

●

A
.2
.1
.c

⊃
f
E

&
f
I

○
1
∣
○
1

○
1
,2
a
,4
∣
○
1
,2
a
,3
,4

○
2
a
∣
○
2
a

A
.2
.1
.d

⊃
f
E

&
f
E

●
∣
●

●
∣
○
3

●
∣
●

A
.2
.2
.a

⊃
f
I

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.2
.2
.b

⊃
f
I

&
c
E

●
●

●

A
.2
.2
.c

⊃
f
E

&
c
I

○
1
,2
a
,3
∣
○
1
,2
a
,3

○
1
∣
○
1
,3

○
2
a
∣
○
2
a

A
.2
.2
.d

⊃
f
E

&
c
E

●
∣
●

●
∣
○
3

●
∣
●

A
.2
.3
.a

⊃
f
I

&
∗
I

●
●

●

A
.2
.3
.b

⊃
f
I

&
∗
E

●
●

●

A
.2
.3
.c

⊃
f
E

&
∗
I

●
∣
●

●
∣
○
3

●
∣
●

A
.2
.3
.d

⊃
f
E

&
∗
E

●
∣
●

●
∣
○
3

●
∣
●

A
.2
.4
.a

⊃
c
I

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.2
.4
.b

⊃
c
I

&
f
E

●
●

●

A
.2
.4
.c

⊃
c
E

&
f
I

○
1
∣
○
1

○
1
,2
a
,4
∣
○
1
,2
a
,4

○
2
a
∣
○
2
a

A
.2
.4
.d

⊃
c
E

&
f
E

●
∣
●

●
∣
●

●
∣
●

A
.2
.5
.a

⊃
c
I

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.2
.5
.b

⊃
c
I

&
c
E

●
●

●

A
.2
.5
.c

⊃
c
E

&
c
I

○
1
,2
a
,3
∣
○
1
,2
a
,3

○
1
∣
○
1

○
2
a
∣
○
2
a

A
.2
.5
.d

⊃
c
E

&
c
E

●
∣
●

●
∣
●

●
∣
●

A
.2
.6
.a

⊃
c
I

&
∗
I

●
●

●

A
.2
.6
.b

⊃
c
I

&
∗
E

●
●

●

A
.2
.6
.c

⊃
c
E

&
∗
I

●
∣
●

●
∣
●

●
∣
●

A
.2
.6
.d

⊃
c
E

&
∗
E

●
∣
●

●
∣
●

●
∣
●

A
.2
.7
.a

⊃
∗
I

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.2
.7
.b

⊃
∗
I

&
f
E

●
●

●

A
.2
.7
.c

⊃
∗
E

&
f
I

○
1
∣
○
1

○
1
,2
a
,4
∣
○
1
,2
a
,4

○
2
a
∣
○
2
a

A
.2
.7
.d

⊃
∗
E

&
f
E

●
∣
●

●
∣
●

●
∣
●

A
.2
.8
.a

⊃
∗
I

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.2
.8
.b

⊃
∗
I

&
c
E

●
●

●

A
.2
.8
.c

⊃
∗
E

&
c
I

○
1
,2
a
,3
∣
○
1
,2
a
,3

○
1
∣
○
1

○
2
a
∣
○
2
a

A
.2
.8
.d

⊃
∗
E

&
c
E

●
∣
●

●
∣
●

●
∣
●

A
.2
.9
.a

⊃
∗
I

&
∗
I

●
●

●

A
.2
.9
.b

⊃
∗
I

&
∗
E

●
●

●

A
.2
.9
.c

⊃
∗
E

&
∗
I

●
∣
●

●
∣
●

●
∣
●

A
.2
.9
.d

⊃
∗
E

&
∗
E

●
∣
●

●
∣
●

●
∣
●

I
1
8

I
2
2

I
1
8

20

https://doi.org/10.1017/bsl.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.20


A
.4

(I
C
I)

D
a
:

D
b
:

α
:
⊃
f
-c

β
:
⊃
c
-c

γ
:
⊃
∗
-c

A
.4
.1
.a

&
f
I

⊃
f
I

○
1

○
1
,7

●

A
.4
.1
.b

&
f
I

⊃
f
E

●
○
7

●

A
.4
.1
.c

&
f
E

⊃
f
I

○
1

○
1

●

A
.4
.1
.d

&
f
E

⊃
f
E

●
●

●

A
.4
.2
.a

&
f
I

⊃
c
I

○
1

○
1
,7

●

A
.4
.2
.b

&
f
I

⊃
c
E

○
2
a
,3

○
6
,7

○
2
a
,6

A
.4
.2
.c

&
f
E

⊃
c
I

○
1

○
1

●

A
.4
.2
.d

&
f
E

⊃
c
E

○
2
a
,3

○
6

○
6

A
.4
.3
.a

&
f
I

⊃
∗
I

●
○
7

●

A
.4
.3
.b

&
f
I

⊃
∗
E

●
○
7

●

A
.4
.3
.c

&
f
E

⊃
∗
I

●
●

●

A
.4
.3
.d

&
f
E

⊃
∗
E

●
●

●

A
.4
.4
.a

&
c
I

⊃
f
I

○
1

○
1

●

A
.4
.4
.b

&
c
I

⊃
f
E

●
●

●

A
.4
.4
.c

&
c
E

⊃
f
I

○
1

○
1

●

A
.4
.4
.d

&
c
E

⊃
f
E

●
●

●

A
.4
.5
.a

&
c
I

⊃
c
I

○
1

○
1

●

A
.4
.5
.b

&
c
I

⊃
c
E

○
2
a
,3

○
6

○
6

A
.4
.5
.c

&
c
E

⊃
c
I

○
1

○
1

●

A
.4
.5
.d

&
c
E

⊃
c
E

○
2
a
,3

○
6

○
6

A
.4
.6
.a

&
c
I

⊃
∗
I

●
●

●

A
.4
.6
.b

&
c
I

⊃
∗
E

●
●

●

A
.4
.6
.c

&
c
E

⊃
∗
I

●
●

●

A
.4
.6
.d

&
c
E

⊃
∗
E

●
●

●

A
.4
.7
.a

&
∗
I

⊃
f
I

○
1

○
1

●

A
.4
.7
.b

&
∗
I

⊃
f
E

●
●

●

A
.4
.7
.c

&
∗
E

⊃
f
I

○
1

○
1

●

A
.4
.7
.d

&
∗
E

⊃
f
E

●
●

●

A
.4
.8
.a

&
∗
I

⊃
c
I

○
1

○
1

●

A
.4
.8
.b

&
∗
I

⊃
c
E

○
2
a
,3

○
6

○
6

A
.4
.8
.c

&
∗
E

⊃
c
I

○
1

○
1

●

A
.4
.8
.d

&
∗
E

⊃
c
E

○
2
a
,3

○
6

○
6

A
.4
.9
.a

&
∗
I

⊃
∗
I

●
●

●

A
.4
.9
.b

&
∗
I

⊃
∗
E

●
●

●

A
.4
.9
.c

&
∗
E

⊃
∗
I

●
●

●

A
.4
.9
.d

&
∗
E

⊃
∗
E

●
●

●

I
1
8

I
2
1

I
6

A
.5

(I
C
C
)
D

a
:

D
b
:

α
:
⊃
f
-c

β
:
⊃
c
-c

γ
:
⊃
∗
-c

A
.5
.1
.a

&
f
I

&
f
I

○
1

○
1
,2
a
,4
,7

○
2
a

A
.5
.1
.b

&
f
I

&
f
E

●
○
7

●

A
.5
.1
.c

&
f
E

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.5
.1
.d

&
f
E

&
f
E

●
●

●

A
.5
.2
.a

&
f
I

&
c
I

○
1
,2
a
,3

○
1
,7

○
2
a

A
.5
.2
.b

&
f
I

&
c
E

●
○
7

●

A
.5
.2
.c

&
f
E

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.5
.2
.d

&
f
E

&
c
E

●
●

●

A
.5
.3
.a

&
f
I

&
∗
I

●
○
7

●

A
.5
.3
.b

&
f
I

&
∗
E

●
○
7

●

A
.5
.3
.c

&
f
E

&
∗
I

●
●

●

A
.5
.3
.d

&
f
E

&
∗
E

●
●

●

A
.5
.4
.a

&
c
I

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.5
.4
.b

&
c
I

&
f
E

●
●

●

A
.5
.4
.c

&
c
E

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.5
.4
.d

&
c
E

&
f
E

●
●

●

A
.5
.5
.a

&
c
I

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.5
.5
.b

&
c
I

&
c
E

●
●

●

A
.5
.5
.c

&
c
E

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.5
.5
.d

&
c
E

&
c
E

●
●

●

A
.5
.6
.a

&
c
I

&
∗
I

●
●

●

A
.5
.6
.b

&
c
I

&
∗
E

●
●

●

A
.5
.6
.c

&
c
E

&
∗
I

●
●

●

A
.5
.6
.d

&
c
E

&
∗
E

●
●

●

A
.5
.7
.a

&
∗
I

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.5
.7
.b

&
∗
I

&
f
E

●
●

●

A
.5
.7
.c

&
∗
E

&
f
I

○
1

○
1
,2
a
,4

○
2
a

A
.5
.7
.d

&
∗
E

&
f
E

●
●

●

A
.5
.8
.a

&
∗
I

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.5
.8
.b

&
∗
I

&
c
E

●
●

●

A
.5
.8
.c

&
∗
E

&
c
I

○
1
,2
a
,3

○
1

○
2
a

A
.5
.8
.d

&
∗
E

&
c
E

●
●

●

A
.5
.9
.a

&
∗
I

&
∗
I

●
●

●

A
.5
.9
.b

&
∗
I

&
∗
E

●
●

●

A
.5
.9
.c

&
∗
E

&
∗
I

●
●

●

A
.5
.9
.d

&
∗
E

&
∗
E

●
●

●

I
1
2

I
1
6

I
1
2

21

https://doi.org/10.1017/bsl.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.20
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For example, ∣D1,D2∣ in (a) means that the premisses taken together have factual
status; as a consequence, one of them may have independent status. Similarly in the
remaining cases. Likewise with negated status markers. The cumulative notation can be
combined with the discharge of assumptions.

1. Case A.4.2.b.β: Da ends with &f I, Db ends with ⊃cE: ○6,7

[≀A≀](u)

/ ≀D1 ≀ /
B

∣D2∣
C (&f I)

B&fC
(⊃cI), u

A ⊃c (B&fC)

/D3/
D ⊃c A

≀D4≀
D

(⊃cE)
A

(⊃cE)
B&fC

(4)

2. Case A.6.6.a.α: Da ends with &cI, Db ends with ∨∗I: ●
[∣A ∨∗ B∣](u)

≀D1≀
C

≀D2≀
D (&cI)

C&cD (⊃f I), u(A ∨∗ B) ⊃f (C&cD)

∣D3∣
A (∨∗I1)

A ∨∗ B
(⊃fE)

C&cD

conv

∣D3∣
A (∨∗I1)

A ∨∗ B
≀D1≀
C

≀D2≀
D (&cI)

C&cD

(5)

3. Case A.6.6.d.α: Da ends with &cE, Db ends with ∨∗E: ●

[∣A∣](u)

/ /( D1 /) /
B&cC (&cE1)
B (⊃f I), u

A ⊃f B

∣D2

D ∨∗ E

[/D/](v)

D3

A

[/E/](w)

D4∣
A

(∨∗E), v, w
A

(⊃fE)
B

conv

∣D2

D ∨∗ E

[/D/](v)

D3

A

[/E/](w)

D4∣
A

(∨∗E), v, w
A

/( D1 /)
B&cC (&cE1)
B

(6)

4. Case A.8.7.c.β: Da ends with ∨∗E, Db ends with &f I: (c1): ○1,2a,4

[≀A&fB≀](u)

/ ≀D1 ≀ /
C ∨∗D

[/C/](v)

/D2/
E

[/D/](w)

/D3/
E

(∨∗E), v, w
E (⊃cI), u(A&fB) ⊃c E

∣D4∣
A

∣D5∣
B (&f I)

A&fB
(⊃cE)

E

(7)

(c2): ○1,2a,4

/D1/
A ∨∗ B

[/A/](v) [≀C&fD≀](u)

/ ≀D2 ≀ /
E

[/B/](w)

/D3/
E

(∨∗E), v, w
E (⊃cI), u(C&fD) ⊃c E

∣D4∣
C

∣D5∣
D (&f I)

C&fD
(⊃cE)

E

(8)
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Special cases (Part A). Let
/Da/
B

be /B/. Then:

/B/
(⋆iI)

A ⋆i B
/Db/
AD∗ = (⋆iE)

B

D∗∗ = /B/ (9)

This works only for ⋆i = ⊃∗. For ⋆i = ⊃f and ⋆i = ⊃c, we get V 5a; thus, unlike in the cases
covered by the A-tables, we cannot presuppose that the ⋆iI-rule is applied legitimately
in these two special cases of D∗. This presupposition can be made, since we deal with
derivation schemes in the tables. In case the derivations are fully explicit, like in such
special cases, this presupposition cannot be made.

Proof (Part B): Preservation for ⋆c-detour conversions. Let
/Da1/
A1

,
/Da2/
A2

be le-

gitimate derivations. We show: If these derivations can be combined into a legitimate
derivation D∗, then the ⋆c-conversions transform it into a legitimate derivation D∗∗, where
i ∈ {1,2}; otherwise, the combination D∗ is illegitimate and a ⋆c-conversion precluded:

/Da1/
A1

/Da2/
A2 (⋆cI)

A1 ⋆c A2 (⋆cEi)
AiD∗ = (I/E-rule)
B

/Dai/
AiD∗∗ = (I/E-rule)
B

(10)

We consider for all speci�c instances of last rules applied in
/Da1/
A1

,
/Da2/
A2

their combination

into D∗. In each case we attempt to derive the instance of the maximum A1 ⋆c A2 in the
aforementioned top-down manner. For reasons of economy, we shall use ⋆cE1 in eliminating
the ⋆c-maximum whenever possible. (A preference for ⋆cE2 is possible and leads to the
same results.) The results of the top-down procedure for the ⋆c-conversions are collected in
Tables B.1-9 which summarize Part B of the preservation proof (pp. 26-29). Anticipating
Remark 4.2, B.8 and B.9 are omitted to save space.

Table B.1 : In case both Dai and D∗ end with ⋆iI, there are two entries: The �rst
entry in the (a)-cases indicates the result for the construction in which a conjunct of the
⋆c-maximum is introduced by ⋆iI and depends on an assumption which is discharged by
the ⋆iI-application which concludes D∗. The second entry indicates the result for the
construction in which a conjunct of the ⋆c-maximum depends on an assumption which is
discharged by the ⋆iI-application which concludes D∗. (Following the ⋆cE1-convention,
in the (a1)-cases, the ⋆c-maximum is eliminated by means of ⋆cE1 and by ⋆cE2 in the
(a2)-cases.) In case D∗ ends with ⋆iE, there are also two entries: The �rst [second] entry
in the (b)- and (d)-cases indicates the result for the construction in which the ⋆c-maximum
is eliminated deriving the major [minor] premiss of that ⋆iE-application. (Following the
convention, in the (b1)-cases, the ⋆c-maximum is eliminated by means of either ⋆cE1 or
⋆cE2, we therefore distinguish between (b1.1)-cases which apply ⋆cE1 to the maximum and
(b1.2)-cases which apply ⋆cE2 to it. In the (b2)- and (d)-cases the maximum is eliminated
by ⋆cE1.) In case Dai ends with ⋆iE and D∗ with ⋆iI, there are three entries: The �rst [sec-
ond] entry in the (c)-cases indicates the result for the construction in which ⋆iI discharges
an assumption used to derive the major [minor] premiss of that ⋆iE-application. The third
entry indicates the result for the construction in which ⋆iI discharges an assumption used
to derive the second premiss of the ⋆cI-application which introduces the ⋆c-maximum. (In
(c1) and (c2) ⋆cE1 is used, in (c3) ⋆cE2.)

24

https://doi.org/10.1017/bsl.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.20


Tables B.2-3, B.5-6, B.8-9 : All cases are single entry. B.2-3: In the (b)-cases, the
⋆c-maximum is eliminated by means of ⋆cE2; otherwise, we consider only its eliminations
by ⋆cE1. B.5: For the (b)-cases we have to distinguish (b.1)-cases which apply ⋆cE1 to
the ⋆c-maximum from (b.2)-cases which apply ⋆cE2 to it; otherwise, we consider only its
eliminations by ⋆cE1. The results of successful conversions in (b.1)-cases can be reduced
further by ⋆c-conversions. B.6 and B.8: Like B.2-3. B.9: Like B.5; however, the results of
successful conversions in (b.1)-cases can be reduced further by ⋆d-conversions.

Table B.4 : In case both Dai and D∗ end with ⋆iI, there are two entries: The �rst
entry in the (a)-cases indicates the result for the construction in which a conjunct of the
⋆c-maximum is introduced by ⋆cI and depends on an assumption which is discharged by
the ⋆iI-application which concludes D∗. The second entry indicates the result for the
construction in which a conjunct of the ⋆c-maximum depends on an assumption which is
discharged by the ⋆iI-application which concludes D∗. (Following the ⋆cE1-convention,
in the (a1)-cases, the ⋆c-maximum is eliminated by means of ⋆cE1 and by ⋆cE2 in the
(a2)-cases.) Thus, the situation is similar to the (a)-cases in B.1. In case D∗ ends with
⋆iE, there are also two entries: The �rst [second] entry in the (b)- and (d)-cases indicates
the result for the construction in which the ⋆c-maximum is eliminated deriving the major
[minor] premiss of that ⋆iE-application. (In the (b1)-cases, the maximum is eliminated by
means of ⋆cE2, in the (b2)- and (d)-cases by ⋆cE1.) In case Dai ends with ⋆iE and D∗
with ⋆iI, the situation is similar to the (a)-cases.

Table B.7 : The situation here is largely analogous to B.4. In case both Dai and D∗
end with ⋆iI, there are two entries: The �rst entry in the (a)-cases indicates the result
for the construction in which a conjunct of the ⋆c-maximum is introduced by ⋆dI and
depends on an assumption which is discharged by the ⋆iI-application which concludes
D∗. The second entry indicates the result for the construction in which a conjunct of the
⋆c-maximum depends on an assumption which is discharged by the ⋆iI-application which
concludes D∗. (In the (a1)-cases, the maximum is eliminated by means of ⋆cE1 and by
⋆cE2 in the (a2)-cases.) Thus, the situation here is similar to that of the (a)-cases in B.1
and B.4. In case D∗ ends with ⋆iE, there are also two entries: The �rst [second] entry in
the (b)- and (d)-cases indicates the result for the construction in which the ⋆c-maximum
is eliminated deriving the major [minor] premiss of that ⋆iE-application. (In the (b1)-
cases, the maximum is eliminated by means of ⋆cE2, in the (b2)- and (d)-cases by ⋆cE1.)
Unlike in B.4, there are three entries in (c)-cases. In case Dai ends with ⋆dE and D∗ with
⋆iI, there are three entries, like in B.1: The �rst [second] entry in the (c)-cases indicates
the result for the construction in which ⋆iI discharges an assumption used to derive the
major [minor] premiss of that ⋆dE-application. The third entry indicates the result for the
construction in which ⋆iI discharges an assumption used to derive the second premiss of
the ⋆cI-application which introduces the maximum. (In (c1) and (c2) ⋆cE1 is used, in (c3)
⋆cE2.)
Example 4.2. 1. Case B.3.4.a.γ: Dai ends with ⊃cI, D∗ ends with ∨f I: ●

[≀A≀](u)

∣ ≀D1 ≀ ∣
B (⊃cI), u

A ⊃c B
∣D2∣
C

(&∗I)(A ⊃c B)&∗C
(&∗E1)

A ⊃c B (∨f I1)(A ⊃c B) ∨f D

conv

[≀A≀](u)

∣ ≀D1 ≀ ∣
B (⊃cI), u

A ⊃c B (∨f I1)(A ⊃c B) ∨f D

(11)
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∗
E

●
∣
●

●
∣
●

●
∣
●

B
.4
.9
.c

&
∗
E

⊃
∗
I

●
∣
●

●
∣
●

●
∣
●

B
.4
.9
.d

&
∗
E

⊃
∗
E

●
∣
●

●
∣
●

●
∣
●

I
2
7

I
1
7

I
4
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B
.5

(C
C
C
)
D

a
i
:
D
∗
:

α
:
&

f
-c

β
:
&

c
-c

γ
:
&
∗
-c

B
.5
.1
.a

&
f
I

&
f
I

●
○
7
,8

●

B
.5
.1
.b

&
f
I

&
f
E

●
○
8

●

B
.5
.1
.c

&
f
E

&
f
I

●
○
7

●

B
.5
.1
.d

&
f
E

&
f
E

●
●

●

B
.5
.2
.a

&
f
I

&
c
I

○
8

○
8

○
8

B
.5
.2
.b

&
f
I

&
c
E

●
○
8

●

B
.5
.2
.c

&
f
E

&
c
I

○
8

●
●

B
.5
.2
.d

&
f
E

&
c
E

●
●

●

B
.5
.3
.a

&
f
I

&
∗
I

●
○
8

●

B
.5
.3
.b

&
f
I

&
∗
E

●
○
8

●

B
.5
.3
.c

&
f
E

&
∗
I

●
●

●

B
.5
.3
.d

&
f
E

&
∗
E

●
●

●

B
.5
.4
.a

&
c
I

&
f
I

○
7

○
7

○
7

B
.5
.4
.b

&
c
I

&
f
E

○
7

●
●

B
.5
.4
.c

&
c
E

&
f
I

●
○
7

●

B
.5
.4
.d

&
c
E

&
f
E

●
●

●

B
.5
.5
.a

&
c
I

&
c
I

○
7

●
●

B
.5
.5
.b

&
c
I

&
c
E

○
7

●
●

B
.5
.5
.c

&
c
E

&
c
I

○
8

●
●

B
.5
.5
.d

&
c
E

&
c
E

●
●

●

B
.5
.6
.a

&
c
I

&
∗
I

○
7

●
●

B
.5
.6
.b

&
c
I

&
∗
E

○
7

●
●

B
.5
.6
.c

&
c
E

&
∗
I

●
●

●

B
.5
.6
.d

&
c
E

&
∗
E

●
●

●

B
.5
.7
.a

&
∗
I

&
f
I

●
○
7

●

B
.5
.7
.b

&
∗
I

&
f
E

●
●

●

B
.5
.7
.c

&
∗
E

&
f
I

●
○
7

●

B
.5
.7
.d

&
∗
E

&
f
E

●
●

●

B
.5
.8
.a

&
∗
I

&
c
I

○
8

●
●

B
.5
.8
.b

&
∗
I

&
c
E

●
●

●

B
.5
.8
.c

&
∗
E

&
c
I

○
8

●
●

B
.5
.8
.d

&
∗
E

&
c
E

●
●

●

B
.5
.9
.a

&
∗
I

&
∗
I

●
●

●

B
.5
.9
.b

&
∗
I

&
∗
E

●
●

●

B
.5
.9
.c

&
∗
E

&
∗
I

●
●

●

B
.5
.9
.d

&
∗
E

&
∗
E

●
●

●

I
1
1

I
1
1

I
2

B
.6

(C
C
D
)
D

a
i
:
D
∗
:

α
:
&

f
-c

β
:
&

c
-c

γ
:
&
∗
-c

B
.6
.1
.a

&
f
I

∨
f
I

●
○
8
,1
0

●

B
.6
.1
.b

&
f
I

∨
f
E

●
○
8

●

B
.6
.1
.c

&
f
E

∨
f
I

●
○
1
0

●

B
.6
.1
.d

&
f
E

∨
f
E

●
●

●

B
.6
.2
.a

&
f
I

∨
c
I

○
1
1

○
8

○
1
1

B
.6
.2
.b

&
f
I

∨
c
E

●
○
8

●

B
.6
.2
.c

&
f
E

∨
c
I

○
1
1

●
●

B
.6
.2
.d

&
f
E

∨
c
E

●
●

●

B
.6
.3
.a

&
f
I

∨
∗
I

●
○
8

●

B
.6
.3
.b

&
f
I

∨
∗
E

●
○
8

●

B
.6
.3
.c

&
f
E

∨
∗
I

●
●

●

B
.6
.3
.d

&
f
E

∨
∗
E

●
●

●

B
.6
.4
.a

&
c
I

∨
f
I

○
7
,1
0

○
1
0

○
1
0

B
.6
.4
.b

&
c
I

∨
f
E

○
7

●
●

B
.6
.4
.c

&
c
E

∨
f
I

●
○
1
0

●

B
.6
.4
.d

&
c
E

∨
f
E

●
●

●

B
.6
.5
.a

&
c
I

∨
c
I

○
7

●
●

B
.6
.5
.b

&
c
I

∨
c
E

○
7

●
●

B
.6
.5
.c

&
c
E

∨
c
I

○
1
1

●
●

B
.6
.5
.d

&
c
E

∨
c
E

●
●

●

B
.6
.6
.a

&
c
I

∨
∗
I

○
7

●
●

B
.6
.6
.b

&
c
I

∨
∗
E

○
7

●
●

B
.6
.6
.c

&
c
E

∨
∗
I

●
●

●

B
.6
.6
.d

&
c
E

∨
∗
E

●
●

●

B
.6
.7
.a

&
∗
I

∨
f
I

●
○
1
0

●

B
.6
.7
.b

&
∗
I

∨
f
E

●
●

●

B
.6
.7
.c

&
∗
E

∨
f
I

●
○
1
0

●

B
.6
.7
.d

&
∗
E

∨
f
E

●
●

●

B
.6
.8
.a

&
∗
I

∨
c
I

○
1
1

●
●

B
.6
.8
.b

&
∗
I

∨
c
E

●
●

●

B
.6
.8
.c

&
∗
E

∨
c
I

○
1
1

●
●

B
.6
.8
.d

&
∗
E

∨
c
E

●
●

●

B
.6
.9
.a

&
∗
I

∨
∗
I

●
●

●

B
.6
.9
.b

&
∗
I

∨
∗
E

●
●

●

B
.6
.9
.c

&
∗
E

∨
∗
I

●
●

●

B
.6
.9
.d

&
∗
E

∨
∗
E

●
●

●

I
1
1

I
1
1

I
2
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B.7 (CDI) D
ai : D

∗: α: &f -c β: &c-c γ: &∗-c

B.7.1.a ∨f I ⊃f I ● ∣ ● ○
8
∣ ○

8
● ∣ ●

B.7.1.b ∨f I ⊃fE ● ∣ ● ○
8
∣ ○

3,8
● ∣ ●

B.7.1.c ∨fE ⊃f I ● ∣ ● ∣ ● ● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.1.d ∨fE ⊃fE ● ∣ ● ● ∣ ○
3

● ∣ ●

B.7.2.a ∨f I ⊃cI ○
7,10

∣ ○
7

○
10
∣ ○

8
○
10
∣ ○

9

B.7.2.b ∨f I ⊃cE ● ∣ ○
4

○
8
∣ ○

8
● ∣ ○

4

B.7.2.c ∨fE ⊃cI ○
7
∣ ○

7
∣ ○

7
● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.2.d ∨fE ⊃cE ● ∣ ○
4

● ∣ ● ● ∣ ●

B.7.3.a ∨f I ⊃∗I ● ∣ ● ○
8
∣ ○

8
● ∣ ●

B.7.3.b ∨f I ⊃∗E ● ∣ ● ○
8
∣ ○

8
● ∣ ●

B.7.3.c ∨fE ⊃∗I ● ∣ ● ∣ ● ● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.3.d ∨fE ⊃∗E ● ∣ ● ● ∣ ● ● ∣ ●

B.7.4.a ∨cI ⊃f I ○
7
∣ ○

7
● ∣ ● ● ∣ ●

B.7.4.b ∨cI ⊃fE ○
7
∣ ○

3,7
● ∣ ○

3
● ∣ ○

3

B.7.4.c ∨cE ⊃f I ● ∣ ● ∣ ● ● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.4.d ∨cE ⊃fE ● ∣ ● ● ∣ ○
3

● ∣ ●

B.7.5.a ∨cI ⊃cI ○
7
∣ ○

7
● ∣ ● ● ∣ ●

B.7.5.b ∨cI ⊃cE ○
7
∣ ○

7
● ∣ ● ● ∣ ●

B.7.5.c ∨cE ⊃cI ○
7
∣ ○

7
∣ ○

7
● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.5.d ∨cE ⊃cE ● ∣ ○
4

● ∣ ● ● ∣ ●

B.7.6.a ∨cI ⊃∗I ○
7
∣ ○

7
● ∣ ● ● ∣ ●

B.7.6.b ∨cI ⊃∗E ○
7
∣ ○

7
● ∣ ● ● ∣ ●

B.7.6.c ∨cE ⊃∗I ● ∣ ● ∣ ● ● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.6.d ∨cE ⊃∗E ● ∣ ● ● ∣ ● ● ∣ ●

B.7.7.a ∨∗I ⊃f I ● ∣ ● ● ∣ ● ● ∣ ●

B.7.7.b ∨∗I ⊃fE ● ∣ ● ● ∣ ○
3

● ∣ ●

B.7.7.c ∨∗E ⊃f I ● ∣ ● ∣ ● ● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.7.d ∨∗E ⊃fE ● ∣ ● ● ∣ ○
3

● ∣ ●

B.7.8.a ∨∗I ⊃cI ○
7
∣ ○

7
● ∣ ● ● ∣ ●

B.7.8.b ∨∗I ⊃cE ● ∣ ○
4

● ∣ ● ● ∣ ●

B.7.8.c ∨∗E ⊃cI ○
7
∣ ○

7
∣ ○

7
● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.8.d ∨∗E ⊃cE ● ∣ ○
4

● ∣ ● ● ∣ ●

B.7.9.a ∨∗I ⊃∗I ● ∣ ● ● ∣ ● ● ∣ ●

B.7.9.b ∨∗I ⊃∗E ● ∣ ● ● ∣ ● ● ∣ ●

B.7.9.c ∨∗E ⊃∗I ● ∣ ● ∣ ● ● ∣ ● ∣ ● ● ∣ ● ∣ ●

B.7.9.d ∨∗E ⊃∗E ● ∣ ● ● ∣ ● ● ∣ ●

I30 I17 I4

2. Case B.3.4.c.γ: Dai ends with ⊃cE, D∗ ends with ∨f I: ○10

/D1/
A ⊃c B

≀D2≀
A

(⊃cE)
B

≀D3≀
C (&∗I)

B&∗C (&∗E1)
B (∨f I1)

B ∨f D

(12)

3. Case B.4.2.a2.γ: Dai ends with &f I, D∗ ends with ⊃cI: ○9

∣D1∣
A

∣D2∣
B (&f I)

A&fB

[≀C≀](u)

/ ≀D3 ≀ /
D

(&∗I)(A&fB)&∗D
(&∗E2)

D (⊃cI), u
C ⊃c D

(13)
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4. Case B.7.3.a.β: Dai ends with ∨f I, D∗ ends with ⊃∗I: (a1), (a2): ○8

[/≀ A /≀ ](u)

/≀ ∣D1∣ /≀
B (∨f I1)

B ∨f C

≀D2≀
D

(&cI)(B ∨f C)&cD
(&cE1)

B ∨f C
(⊃∗I), u

A ⊃∗ (B ∨f C)

∣D1∣
A (∨f I1)

A ∨f B

[/C/](u)

/ ≀D2 ≀ /
D

(&cI)(A ∨f B)&cD
(&cE2)

D (⊃∗I), u
C ⊃∗ D

(14)

Special cases (Part B). Let
/Da1/
A1

be /A1/ and let
/Da2/
A2

be /A2/ in D∗. Then:

/A1/ /A2/
(⋆cI)

A1 ⋆c A2D∗ = (⋆cEi)
Ai (I/E-rule)
B

(15)

If the I/E-rule in D∗ is ⊃∗I, D∗ is legitimate and eligible for ⋆c-conversion. If the I/E-rule
in D∗ is ⊃f I [⊃cI], D∗ is illegitimate, due to a violation of sc1.b [sc2.b] (V 5b), and not
eligible for ⋆c-conversion. Again, we cannot presuppose, as we did in the cases covered by
the B-tables, that the ⋆iI-rule is applied legitimately in these two special cases.

Proof (Part C): Preservation for ⋆d-detour conversions. Let /D
a/

Ai

,
/Dc1/
C

,
/Dc2/
C

be

legitimate derivations. We show: If these derivations can be combined into a legitimate
derivation D∗, then the ⋆d-conversions transform it into a legitimate derivation D∗∗, where
i ∈ {1,2}; otherwise, the combination is illegitimate and a ⋆d-conversion precluded:

/Da/
Ai

(⋆dI)
A1 ⋆d A2

[/A1/](u)

/Dc1/
C

[/A2/](v)

/Dc2/
C

D∗ = (⋆dE), u, v
C

/Da/
[Ai]
/Dci/

D∗∗ =
C

, (16)

We consider for all speci�c instances of last rules applied in
/Da/
Ai

,
/Dc1/
C

,
/Dc2/
C

the

combination of these derivations into D∗. We attempt to derive the instance of the max-
imum A1 ⋆d A2 and the minor premisses of ⋆dE proceeding in the top-down manner. For
reasons of simplicity, we assume that it is the �rst disjunct of the maximum which has the
status required by the side condition of the ⋆dE-rule in question. Moreover, we may con�ne
attention to the derivation of one of the minor premisses, the �rst one, as the situation
for the other one is exactly analogous. The results of the top-down procedure for the ⋆d-
conversions are collected in Tables C.1-9 which summarize Part C of the preservation proof
(pp. 31-33). Anticipating the observations in Remark 4.2, Tables C.7-9 are not displayed
for reasons of space.

Tables C.1, C.4, C.7 : In case Dci ends with ⋆iE, there are two entries: The �rst
[second] entry in the (b)- and (d)-cases indicates the result for the construction in which
the ⋆d-maximum is eliminated by discharging an assumption (appealing to the �rst-disjunct
convention) which is used to derive the major [minor] premiss of that ⋆iE-application.

Tables C.2, C.5, C.8 : All cases are single entry.
Tables C.3, C.6, C.9 : The description is like that for tables C.1, C.4, C.7, except that

`⋆iE' is replaced by `⋆dE'.
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C
.1

(D
II
)
D

a
:
D

c
i
:

α
:
∨
f
-c

β
:
∨
c
-c

γ
:
∨
∗
-c

C
.1
.1
.a

⊃
f
I

⊃
f
I

○
1

○
1

●

C
.1
.1
.b

⊃
f
I

⊃
f
E

○
1
∣
○
1

○
1
∣
○
1
,3

●
∣
●

C
.1
.1
.c

⊃
f
E

⊃
f
I

●
●

●

C
.1
.1
.d

⊃
f
E

⊃
f
E

●
∣
●

●
∣
○
3

●
∣
●

C
.1
.2
.a

⊃
f
I

⊃
c
I

○
1

○
1

●

C
.1
.2
.b

⊃
f
I

⊃
c
E

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

C
.1
.2
.c

⊃
f
E

⊃
c
I

●
●

●

C
.1
.2
.d

⊃
f
E

⊃
c
E

●
∣
●

●
∣
●

●
∣
●

C
.1
.3
.a

⊃
f
I

⊃
∗
I

○
1

○
1

●

C
.1
.3
.b

⊃
f
I

⊃
∗
E

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

C
.1
.3
.c

⊃
f
E

⊃
∗
I

●
●

●

C
.1
.3
.d

⊃
f
E

⊃
∗
E

●
∣
●

●
∣
●

●
∣
●

C
.1
.4
.a

⊃
c
I

⊃
f
I

○
1

○
1

●

C
.1
.4
.b

⊃
c
I

⊃
f
E

○
1
∣
○
1

○
1
∣
○
1
,3

●
∣
●

C
.1
.4
.c

⊃
c
E

⊃
f
I

○
2
b
,1
0

●
●

C
.1
.4
.d

⊃
c
E

⊃
f
E

○
2
b
,1
0
∣
○
2
b
,1
0

●
∣
○
3

●
∣
○
3

C
.1
.5
.a

⊃
c
I

⊃
c
I

○
1

○
1

●

C
.1
.5
.b

⊃
c
I

⊃
c
E

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

C
.1
.5
.c

⊃
c
E

⊃
c
I

○
2
b
,1
0

●
●

C
.1
.5
.d

⊃
c
E

⊃
c
E

○
2
b
,1
0
∣
○
2
b
,1
0

●
∣
●

●
∣
●

C
.1
.6
.a

⊃
c
I

⊃
∗
I

○
1

○
1

●

C
.1
.6
.b

⊃
c
I

⊃
∗
E

○
1
∣
○
1

○
1
∣
○
1

●
∣
●

C
.1
.6
.c

⊃
c
E

⊃
∗
I

○
2
b
,1
0

●
●

C
.1
.6
.d

⊃
c
E

⊃
∗
E

○
2
b
,1
0
∣
○
2
b
,1
0

●
∣
●

●
∣
●

C
.1
.7
.a

⊃
∗
I

⊃
f
I

●
●

●

C
.1
.7
.b

⊃
∗
I

⊃
f
E

●
∣
●

●
∣
○
3

●
∣
●

C
.1
.7
.c

⊃
∗
E

⊃
f
I

●
●

●

C
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Example 4.3. 1. Case C.4.1.a.β: Da ends with &f I, Dci ends with ⊃f I: ○1,2b,11

∣D1∣
A

∣D2∣
B (&f I)

A&fB
(∨cI1)(A&fB) ∨c C

[≀A&fB≀](u) [∣D∣](v)

/ ≀D3 ≀ /
E (⊃f I), v

D ⊃f E

[/C/](w)

/D4/
D ⊃f E

(∨cE), u, w
D ⊃f E

(17)

3. Case C.4.1.d.β: Da ends with &fE, Dci ends with ⊃fE. (d1): ●

≀D1≀
A&fB

(&fE1)
A (∨cI1)

A ∨c C

[≀A≀](u)

/ ≀D2 ≀ /
D ⊃f E

∣D3∣
D

(⊃fE)
E

[/C/](v)

/D4/
E

(∨cE), u, v
E

conv

≀D1≀
A&fB

(&fE1)
A
≀D2≀

D ⊃f E

∣D3∣
D

(⊃fE)
E

(18)

(d2): ○3

≀D1≀
A&fB

(&fE1)
A (∨cI1)

A ∨c C

/D2/
D ⊃f E

[≀A≀](u)

/ ≀D3 ≀ /
D

(⊃fE)
E

[/C/](v)

/D4/
E

(∨cE), u, v
E

(19)

Special cases (Part C). Consider the following special case of D∗:

/A/
(⋆dI)

A ⋆d (B ⋆i A) [/A/](u)
[/B ⋆i A/](v) /B/

(⋆iE)
A
(⋆dE), u, v

A

(20)

In case ⋆i = ⊃∗, D∗ can be continued by ⊃∗I discharging /B/. The resulting derivation
is eligible for ⋆d-conversion. In case ⋆i = ⊃f [⋆i = ⊃c], a continuation of D∗ by ⊃f I [⊃cI]
discharging /B/ will give us V 5c; for these two special cases a remark analogous to those
at the end of Part A and B applies.

Remark 4.1. The preservation tables do not only present the preservation proof in a con-
densed form, they also facilitate the comparison of the preservation behaviour for each kind
of conversion. (For example, there are no violations V 8, V 11 in Part A, no V 1, V 2a/b in
Part B, and no V 4, V 6, V 8 in Part C; the ⊃∗/∨∗-rules are never violated; and V 5a/b/c
never show up in the preservation tables.) Moreover, the tables allow us to study the
e�ects of dropping side conditions, or to locate changes to which additional restrictions on
the rules for the operators might give rise. In this way, these tables may serve as a useful
tool for the introduction of various kinds of modal natural deduction system.
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Type: Coincidences:
Ty.1: A.1 =n A.7
Ty.2: A.2 =s A.3, A.8 =s A.9, C.4 =s C.7, C.6 =s C.9
Ty.3: A.4
Ty.4: A.5 =s A.6, C.5 =s C.8
Ty.5: B.1
Ty.6: B.2 =w B.3
Ty.7: B.4
Ty.8: B.5 =s B.8, B.6 =s B.9
Ty.9: B.7
Ty.10: C.1 =n C.3
Ty.11: C.2

Figure 2 : Types of preservation table

Remark 4.2. There are exactly eleven types of preservation table: see Figure 2. We say
(i) that two tables coincide numerically (=n), in case they display the same sequence
of I-numbers, (ii) that they coincide weakly (=w), in case they coincide numerically and
display the same ●-pattern, (iii) that they coincide strongly (=s), in case they coincide
weakly and display the same V -codes, and (iv) that they coincide exactly (=e), in case
they coincide strongly and display the same rule entries in the D-columns and the same
αβγ-entries. Since there is no exact coincidence, the number of cases cannot be, strictly
speaking, reduced. However, on the basis of the other kinds of coincidence the number
can be �reduced by analogy�. If we drop the (c2)-cases from B.7, we get B.4 =w B.7 and
analogy-reduce the number of types to ten. In general, we may reduce the number of
cases further in this way by considering only one entry for each multiple-entry case, if the
multiple entries do not di�er in any respect.

4.2 Preservation for permutation and simpli�cation conversions

Theorem 4.2. Permutation and simpli�cation conversions of M-systems do not transform
legitimate into illegitimate derivations.

Proof. The proof is by exhaustion. Permutation: Consider

/D/
A ⋆d B

/D1/
C

/D2/
C

(⋆dE)
C /D′/

D∗ = (E-rule)
D

perm

/D/
A ⋆d B

/D1/
C /D′/

(E-rule)
D

/D2/
C /D′/

(E-rule)
DD∗∗ = (⋆dE)

D

(21)

We assume that D∗ is legitimate and inspect, in each possible case, whether D∗∗ remains
legitimate after permutation. The P-table below lists the results for all the possible cases.
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∨f -perm E-rule ∨c-perm E-rule ∨∗-perm E-rule

P.α.1 as∗E ● P.β.1 as∗E ● P.γ.1 as∗E ●

P.α.2 ⊃fE ● P.β.2 ⊃fE ● P.γ.2 ⊃fE ●

P.α.3 ⊃cE ● P.β.3 ⊃cE ● P.γ.3 ⊃cE ●

P.α.4 ⊃∗E ● P.β.4 ⊃∗E ● P.γ.4 ⊃∗E ●

P.α.5 &fE ● P.β.5 &fE ● P.γ.5 &fE ●

P.α.6 &cE ● P.β.6 &cE ● P.γ.6 &cE ●

P.α.7 &∗E ● P.β.7 &∗E ● P.γ.7 &∗E ●

P.α.8 ∨fE ● P.β.8 ∨fE ● P.γ.8 ∨fE ●

P.α.9 ∨cE ● P.β.9 ∨cE ● P.γ.9 ∨cE ●

P.α.10 ∨∗E ● P.β.10 ∨∗E ● P.γ.10 ∨∗E ●

We pick two cases. Case P.α.1 : Let φ0(αi) =def φ0α1...αn, where i ∈ {1, ..., n}, and let
j ∈ {0, ..., n}:

/D/
A ∨f B

/D1/
φ0(αi)

/D2/
φ0(αi)

(∨fE)
φ0(αi)

(as∗Ej)
τjΓ

perm
/D/

A ∨f B

/D1/
φ0(αi)

(as∗Ej)
τjΓ

/D2/
φ0(αi)

(as∗Ej)
τjΓ

(∨fE)
τjΓ

(22)

Case P.β.8 :

/D/
A ∨c B

/D1/
C ∨f D

/D2/
C ∨f D

(∨cE)
C ∨f D

/D3/
E

/D4/
E

(∨fE)
E

perm

/D/
A ∨c B

/D1/
C ∨f D

/D3/
E

/D4/
E

(∨fE)
E

/D2/
C ∨f D

/D3/
E

/D4/
E

(∨fE)
E

(∨cE)
E

(23)

Simpli�cation: We consider

/D/
A ∨f B

/D1/
C

/D2/
C

D∗ = (∨fE)
C

simp
/Di/

D∗∗ =
C

(24)

and proceed in an analogous way obtaining the results recorded in the S-table below.

simp E-rule

S.α ∨fE ●

S.β ∨cE ●

S.γ ∨∗E ●

4.3 Normalization

Due to the preservation theorems we know that the conversions of M-systems never lead
us from legitimate derivations to illegitimate ones.

Example 4.4. The following derivation is illegitimate, because of V 5a. It cannot be reduced:

[≀A≀](u)
(⊃∗I)

B ⊃∗ A [≀B≀](v)
(⊃∗E)

A (⊃cI), v V 5a
B ⊃c A (⊃cI), u V 5a

A ⊃c (B ⊃c A)

(25)
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Example 4.5. Consider the following derivation which contains the segments (a),(b) and
(a′),(b) which are both of length 2:

/D1/
Fa ∨f Gba

/D2/
HΓ

[∣Fa∣](1)
(as∗E1)

aΓ (as∗I)(a)Ha

/D3/
HΓ

[/Gba/](2)
(as∗E2)

aΓ (as∗I)(a′)Ha
(∨fE), 1, 2(b)Ha

(as∗E0)
HΓ

(26)

By permutation:

/D1/
Fa ∨f Gba

/D2/
HΓ

[∣Fa∣](1)
(as∗E1)

aΓ (as∗I)
Ha (as∗E0)
HΓ

/D3/
HΓ

[/Gba/](2)
(as∗E2)

aΓ (as∗I)
Ha (as∗E0)
HΓ

(∨fE), 1, 2
HΓ

(27)

By detour conversion for as:

/D1/
Fa ∨f Gba

/D2/
HΓ

/D3/
HΓ

(∨fE)
HΓ

(28)

By simpli�cation conversion (i ∈ {2,3}):

/Di/
HΓ

(29)

Example 4.6. Consider:

(A ∨c A)
[≀A≀](1)

(∨cI1)
A ∨c B

[≀A≀](2)
(∨cI1)

A ∨c B
(∨cE), 1, 2

A ∨c B

(A ⊃c C) [≀A≀](3)
(⊃cE)(a) C

(B ⊃f C) [∣B∣](4)
(⊃fE)(b) C

(∨cE), 3, 4(c) C
(30)

By permutation:

(A ∨c A)

[≀A≀](1)
(∨cI1)

A ∨c B

(A ⊃c C) [≀A≀](3)
(⊃cE)(a) C

(B ⊃f C) [∣B∣](4)
(⊃fE)(b) C

(∨cE), 3, 4(d) C /D/
(∨cE), 1, 2(c) C
(31)

where

[≀A≀](2)
(∨cI1)

A ∨c B

(A ⊃c C) [≀A≀](3)
(⊃cE)(a′) C

(B ⊃f C) [∣B∣](4)
(⊃fE)(b′) C

/D/ = (∨cE), 3, 4(d′) C

By conversion:

(A ∨c A)
(A ⊃c C) [≀A≀](1)

(⊃cE)(a) C

(A ⊃c C) [≀A≀](2)
(⊃cE)(a′) C

(∨cE), 1, 2(c) C

(32)
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Note that distinct single occurrences of the same formula in a derivation may di�er with
respect to modal status. Here, e.g., the C-nodes: (a), (a′) counterfactual, (b), (b′) factual,
(c) independent, (d), (d′) counterfactual.

Theorem 4.3. Normalization (M-systems). Any derivation /D/ in an M-system can be
transformed into a normal M-derivation.

Proof. In view of Theorems 4.1-2, the conversions of M-systems are safe. Proceeding top-
down in /D/, we combine, in the familiar way (cf. [33]: 182), a main induction on d with
a subinduction on n to obtain cr(/D/) = ⟨0,0⟩ by applying the conversions.

Remark 4.3. Due to the normalization theorem for M-systems, we may conclude that,
ultimately, only normal derivations matter. Obviously, in such derivations assumption
principles ap2 and ap3 can be ignored.

5 The structure of modal derivations

5.1 The subexpression property

Normal derivations in M-systems enjoy the subexpression property (and the subformula
property as a special case of it). We now repeat the relevant de�nitions for M-systems and
establish these results.

De�nition 5.1. Let /D/ be a derivation in an M-system.

1. A unit in /D/ is either an occurrence of (i) a term assumption τΓ, or (ii) a segment
σM in /D/. (Any L1-formula is a special case of a segment). We use U,U ′ (possibly
subscripted) for units of M-systems.

2. In case U is a term assumption τΓ in /D/, τ is the expression in U .

De�nition 5.2. A track of a derivation /D/ in an M-system is a sequence of occurrences of
units U0, ..., Un such that:

1. U0 is either

(a) a top formula occurrence /A0/ in /D/ not discharged by an application a of ⋆dE,
or

(b) a top occurrence of a term assumption τΓ0;

2. Ui for i < n is either

(a) a formula occurrence Ai which is not the minor premiss of an instance of ⋆iE,
and either

i. Ai is not the major premiss of an instance a of ⋆dE and Ai+1 is directly
below Ai, or

ii. Ai is the major premiss of an instance a of ⋆dE and /Ai+1/ is an assumption
discharged by a; or

(b) Ui is an occurrence of a term assumption τΓi;

3. Un is either

(a) a formula occurrence An which is either

i. the minor premiss of an instance of ⋆iE, or
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ii. the conclusion of /D/, or
iii. the major premiss of an instance a of ⋆dE, in case there is no assumption

discharged by a; or

(b) Un is an occurrence of a term assumption τΓn.

Example 5.1. Consider:

[∣Fa ∨∗ Gbc∣](2)

[(¬fFa&∗¬cGbc)](1)

¬fFa

[∣Fa∣](3)

FΓ aΓ
Fa

�

[(¬fFa&∗¬cGbc)](1)

¬cGbc [≀Gbc≀](4)
�
3, 4�

2¬f(Fa ∨∗ Gbc)
1(¬fFa&∗¬cGbc) ⊃∗ ¬f(Fa ∨∗ Gbc)

(33)
Structure tree:

11 (⊃∗I),1

10 (⊃f I),2

9 (∨∗E)

15 (⊃cE)

12 ≀a≀414 (&∗E2)

13 (a)1

8 (⊃fE)

5 (as∗I)

4 ta3 (as∗E0)

2 ∣a∣3

7 (&∗E1)

6 (a)1

1 ∣a∣2

(34)

Tracks: 1-3, 5 (Track 1); 1, 12 (Track 2); 4-5 (Track 3); 6-11 (Track 4); 13-15, 9-11 (Track
5).

Theorem 5.1. Let /D/ be a normal derivation in anM-system, and let π be a track U0, ..., Un

in /D/. There is a single unit Ui in π, the minimum part of π, which separates the possibly
empty parts of π, called the elimination (or E-)part and the introduction (or I-)part of π,
such that:

1. for each Uj in the E-part we have j < i, Uj is a major premiss of an E-rule, and Uj+1

is a subexpression of Uj , and so each Uj is a subexpression of U0;

2. for each Uj in the I-part we have i < j, and if j < n, then Uj is a premiss of an I-rule
and a subexpression of Uj+1, thus, each Uj is a subexpression of Un;

3. in case i /= n, Ui is a premiss of an I-rule or of �∗i (so Ui = �) and a subexpression of
U0.

Proof. We use the fact that /D/ is normal and inspect the rules of M-systems to verify
that clauses 1-3 are satis�ed.
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In case Ui is the �rst occurrence of a unit in π which is a premiss of an E-rule, all
unit occurrences in π which are major premisses of E-rules precede all unit occurrences in
π which are premisses of I-rules or �i. Otherwise, /D/ would not be a normal derivation.

Next, let Ui be the �rst occurrence of a unit in π which is a premiss of an I-rule or of
�i. Put Ui = Un, in case there is no such unit. In these cases, Ui belongs to the minimum
part of π.

Since, given these observations, Ui satis�es clauses 1 and 3, every unit occurrence Uj

(i < j < n) is a premiss of an I-rule or of �i. However, the case of �i is excluded, as the
premiss of this rule is �, a formula that can only be derived by an E-rule. Hence, clause 2
is satis�ed as well.

Hence, all expressions in π are subexpressions of U0 or Un. An order can be imposed
on tracks.

De�nition 5.3. Let /D/ be a normal derivation in an M-system.

1. A track of order 0 (main track) in /D/ is a track ending in a conclusion of /D/.

2. A track of order n+ 1 in /D/ is a track ending in the minor premiss of ⋆iE, with the
major premiss belonging to a track of order n.

A main branch of a derivation in an M-system is a branch π which passes only through
premisses of I-rules and major premisses of E-rules beginning at a top-unit and ending in
the conclusion of the derivation.

Remark 5.1. Applications of as∗I and ⋆cI undermine the uniqueness of main branches.

Example 5.2. Tracks 4 and 5 in Example 5.1 are main tracks and main branches, Tracks
1, 2 and 3 are tracks of order 1.

Theorem 5.2. In a normal derivation in an M-system each occurrence of a unit belongs to
a track.

Proof. Proof omitted.

Theorem 5.3. Subexpression property (M-systems): If /D/ is a normal M-derivation of a
unit U from a set of units Γ, then each unit in /D/ is a subexpression of an expression in
Γ ∪ {U}.

Proof. Let /D/ be a normal derivation of U from Γ. The proof relies on Theorem 5.2 and
proceeds by induction on the order of tracks n using Theorem 5.1.

Assume that the result holds for unit occurrences in tracks of order < n, let π =
U0, ..., Un, and let Ui belong to the minimum part in π. There are two cases to consider.

Case 1. For Un either Un = U or Un is a minor premiss of ⋆iE with the major premiss
of the form Un ⋆i B which appears in a track of order n − 1. Hence, the result follows for
all Uj (i < j < n) by Theorem 5.1.

Case 2. For U0 either U0 ∈ Γ, or U0 is discharged by an application a of ⋆iI such that
the conclusion of a has the form U0 ⋆i B, is contained in the I-part of π, or in some track
of order < n, and U0 is a subformula of the conditional. Hence, the result follows for all Uj

(j ≤ i) by Theorem 5.1.

Corollary 5.1. Subformula property (M-systems): If /D/ is a normalM-derivation of formula
A from a set of formulae Γ, then each formula in /D/ is a subformula of a formula in Γ∪{A}.
Remark 5.2. In view of this result, we know that M-systems are consistent and that all
theorems of M-systems can be established by means of normal canonical proofs.

40

https://doi.org/10.1017/bsl.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.20


De�nition 5.4. Canonical derivation, canonical proof, thesis, and theorem (M-systems):
The de�nitions of these notions for M-systems are analogous to those for R-systems (De�-
nition 2.13).

5.2 The method of counter-derivations

Due to the subformula property, we may formulate a simple decision procedure for theo-
remhood.

De�nition 5.5. Method of counter-derivations (cf. [41], [43]). Construct a candidate for
a normal canonical M-proof of formula A by proceeding bottom-up using the rules for
the operators ignoring the side conditions on them. In case (i) the construction has been
successful, check whether the candidate violates a side condition. If this is the case, (ia) we
obtain a counter-derivation for A, otherwise (ib) we obtain a normal M-proof of A. In case
(ii) the construction of a candidate has not been successful, we may conclude that A cannot
be derived as a theorem. Consequently, we get a decision concerning the M-derivability of
A as a theorem. It is derivable as a theorem in case (ib), and underivable in cases (ia) and
(ii).

Remark 5.3. The method can be used for the analysis of counterfactual fallacies. It essen-
tially carves out counter-derivations from intuitionistic natural deduction proofs. Transi-
tivity fails: V 6.

[((A ⊃c B)&∗(B ⊃c C))](1)
(&∗E2)

B ⊃c C

[((A ⊃c B)&∗(B ⊃c C))](1)
(&∗E1)

A ⊃c B [≀A≀](2)
(⊃cE) V 6

B
(⊃cE)

C (⊃cI), 2
A ⊃c C (⊃∗I), 1((A ⊃c B)&∗(B ⊃c C)) ⊃∗ (A ⊃c C)

(35)
Contraposition fails: V 6.

[≀¬∗B≀](2)
[(A ⊃c B)](1) [≀A≀](3)

(⊃cE) V 6
B

(⊃∗E)�
(⊃∗I), 3¬∗A (⊃cI), 2(¬∗B) ⊃c (¬∗A)

(⊃∗I), 1(A ⊃c B) ⊃∗ (¬∗B ⊃c ¬∗A)

(36)

Also the modus tolens version of contraposition ((A ⊃c B)&∗¬∗B) ⊃∗ ¬∗A is not a theorem
due to V 6. The converse of contraposition fails for M-systems, since case (ii) of the method
applies. Also the following does not work for M-systems, given the fact that they are
intuitionistic:

[(¬∗B ⊃c ¬∗A)](1) [≀¬∗B≀](3)
(⊃cE)¬∗A [≀A≀](2)

(⊃∗E)�
(�∗c), 3 illeg.

B (⊃∗I), 2
A ⊃c B (⊃∗I), 1(¬∗B ⊃c ¬∗A) ⊃∗ (A ⊃c B)

(37)

Strengthening of the antecedent fails: V 5b.

[(A ⊃c B)](1)
[≀A&∗C≀](2)

(&∗E1)
A

(⊃cE)
B (⊃cI), 2 V 5b

(A&∗C) ⊃c B
(⊃∗I), 1(A ⊃c B) ⊃∗ ((A&∗C) ⊃c B)

(38)
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Monotonicity fails for ⊃c: V 5a.

[≀A≀](1)
(⊃cI) V 5a

B ⊃c A (⊃cI), 1 V 5a
A ⊃c (B ⊃c A)

(39)

Monotonicity would be blocked also for derivations with detours, as Example 4.4 and what
follows suggest:

[≀A≀](1) [≀B≀](2)
(&cI)

A&cB (&cE1)
A (⊃cI), 2 V 5b

B ⊃c A (⊃cI), 1 V 5b
A ⊃c (B ⊃c A)

(40)

[≀A≀](1)
(∨cI1)

A ∨c (B ⊃c A) [≀A≀](2)
[(B ⊃c A)](3) [≀B≀](4)

(⊃cE)
A

(∨cE), 2, 3
A (⊃cI), 4 V 5c

B ⊃c A (⊃cI), 1 V 5c
A ⊃c (B ⊃c A)

(41)

Remark 5.4. M-systems do justice to the fallacy of transitivity for ⊃c by imposing sc3 on
⊃cE. This way of blocking transitivity is strong. It blocks the derivation of the transitivity
formula ((A ⊃c B)&∗(B ⊃c C)) ⊃∗ (A ⊃c C) as a theorem by blocking the transitive
reasoning which gives rise to V 6. A weaker way of blocking the derivation of the transitivity
formula would be to impose a side condition on ⊃cI which requires that the premiss to which
⊃cI is applied must not have been derived by means of a break formula. We also mention
that M-systems allow for subatomic transitive reasoning from counterfactual assumptions.
This possibility may be interesting for a �ne-grained assessment of speci�c cases.

HΓ

GΓ
≀Fa≀ (as∗E1)
aΓ (as∗I)

Ga (as∗E1)
aΓ(a) (as∗I)

Ha

HΓ

[(Fa ⊃c Ga)](1) [≀Fa≀](2)
(⊃cE)

Ga (as∗E1)
aΓ (as∗I)

Ha (⊃cI), 2
Fa ⊃c Ha

(b) (⊃cI), 1(Fa ⊃c Ga) ⊃∗ (Fa ⊃c Ha)

(42)

These derivations derive theses which are not theorems. In neither of them Ga is a break
formula; note that it is a maximum formula in the �rst derivation.

Remark 5.5. Another application of the method is to the assessment of some axioms of
model-theoretically de�ned conditional logics (e.g., Lewisian similarity-based conditional
logics) from our proof-centered perspective on counterfactual inference (Figure 3; M-Th
abbreviates `M-theorem'). We consider CEM and CDA. CEM: Let X = ¬∗((A ⊃c B) ∨∗
(A ⊃c ¬∗B)).

[(X)](1)

[(¬∗(A ⊃c B))](2)

[(X)](1)

[/¬∗B/](3)
(⊃cI) V 5a

A ⊃c ¬∗B (∨∗I2)(A ⊃c B) ∨∗ (A ⊃c ¬∗B)
(⊃∗E)�

(�∗c), 3 illeg.
B (⊃cI) V 5a

A ⊃c B
(⊃∗E)�

(�∗c), 2 illeg.
A ⊃c B (∨∗I1)(A ⊃c B) ∨∗ (A ⊃c ¬∗B)

(⊃∗E)�
(�∗c), 1(A ⊃c B) ∨∗ (A ⊃c ¬∗B)

(43)
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Name Axiom Fragm. M-Th Violation

1. MOD (¬∗A ⊃c A) ⊃∗ (B ⊃c A) I no V 5a, V 6, [�∗c]

2. MP (A ⊃c B) ⊃∗ (A ⊃∗ B) I yes none

3. Imp ((A&∗B) ⊃c C)) ⊃∗ (A ⊃c (B ⊃c C)) I, C no V 5b

4. Exp (A ⊃c (B ⊃c C)) ⊃∗ ((A&∗B) ⊃c C) I, C yes none

5. CC ((A ⊃c B)&∗(A ⊃c C)) ⊃∗ (A ⊃c (B&cC)) I, C yes none

6. CM ((A ⊃c (B&∗C)) ⊃∗ ((A ⊃c B)&∗(A ⊃c C)) I, C no V 5b

7. CS (A&∗B) ⊃∗ (A ⊃c B) I, C no V 5a, V 5b

8. CSO ((A ⊃c B)&∗(B ⊃c A)) ⊃∗ ((A ⊃c C)↔∗ (B ⊃c C)) I, C no V 6

9. CV ((A ⊃c B)&∗¬(A ⊃c ¬C)) ⊃∗ ((A&∗C) ⊃c B) I, C no V 5b

10. RT ((A&∗B) ⊃c C) ⊃∗ ((A ⊃c B) ⊃∗ (A ⊃c C)) I, C no V 5b

11. SNCA (¬∗(A&∗B) ⊃c C) ⊃∗ ((¬∗A ⊃c C)&∗(¬∗B ⊃c C)) I, C no V 5b

12. CEM (A ⊃c B) ∨∗ (A ⊃c ¬B) I, D no V 5a, [�∗c]

13. CDA (A ⊃c (B ∨∗ C)) ⊃∗ (A ⊃c (¬∗B ⊃c C)) I, D yes none

14. CA ((A ⊃c C)&∗(B ⊃c C)) ⊃∗ ((A ∨∗ B) ⊃c C) I, C, D yes none

15. SDA ((A ∨∗ B) ⊃c C) ⊃∗ ((A ⊃c C)&∗(B ⊃c C)) I, C, D yes none

Figure 3 : Assessment of some axioms

CDA (cf. [13]: 196):

[(A ⊃c (B ∨∗ C))](1) [≀A≀](2)
(⊃cE)

B ∨∗ C

[≀¬∗B≀](3) [/≀ B /≀ ](4)
(⊃∗E)�

(�∗i)
C [/C/](5)

(∨∗E), 4, 5
C (⊃cI), 3¬∗B ⊃c C (⊃cI), 2

A ⊃c (¬∗B ⊃c C)
(⊃∗I), 1(A ⊃c (B ∨∗ C)) ⊃∗ (A ⊃c (¬∗B ⊃c C))

(44)
This derivation is not available for minimal M-systems, since it makes crucial use of the
intuitionistic absurdity rule.

5.3 Internal completeness

M-systems can be classi�ed as internally complete in the sense of Girard ([10]: 139-40),
mentioned in the Introduction, where internal completeness is equated with the subformula
property. We shall express this as follows:

De�nition 5.6. A proof system is internally complete in case it enjoys the subformula
property.

In order to adapt Girard's remarks that precede his equation to the present setting,
we sharpen them as follows: we take �cut-free proof� to mean �normal canonical proof�
and �calculus� to mean �M-system�, thereby insisting on proofs in intuitionistic systems.
Using the above de�nition, we obtain, by way of rephrasing Corollary 5.1:

Corollary 5.2. M-systems are internally complete.

Remark 5.6. 1. We may thus regard completeness as an internal property of M-systems.
Their completeness does not need to be relativized to external structures�it is absolute
in this sense.

2. Internal completeness in the sense of De�nition 5.6 cannot be taken for granted, of
course. In the present context, it is worth noting that labelled proof systems for counter-
factual logics (e.g., [19], [24]) are not internally complete in this sense, since they do not
possess the subformula property. For such systems a weaker form of internal completeness
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seems available, one that equates it with normalization (resp. cut-elimination) without
insisting on the subformula property.

3. We mention that M-systems are also internally complete in the sense of [42],
Theorem 3.47.

6 Proof-theoretic semantics

6.1 Meaning and truth

The semantics of L1 is de�ned proof-theoretically.

De�nition 6.1. Let S be an M-system. The meaning of

1. a non-logical constant τ is given by the term assumptions τΓ determined by the
subatomic base of S for τ ;

2. an L1-formula A is given by the set of canonical derivations of A in S (De�nition
5.4).

Remark 6.1. 1. Unlike for ⊃f and ⊃c, there seems to be no obvious natural language
counterpart for &f , &c, ∨f , and ∨c. The rules for the latter can be seen as devices for
sharpening our perception of the structure of inferences from factual and counterfactual
assumptions. For the proof-theoretic modeling of most aspects of the meaning of natural
language conjunction and disjunction the rules for &∗ and ∨∗ are, presumably, su�cient.

2. It can be conjectured that an addition of factual, counterfactual, and independent
existential [universal] quanti�ers to M-systems will exploit the general analogy between the
existential [universal] quanti�er with disjunction [conjunction].

De�nition 6.2. A formula A of L1 is a truth [logical truth], in case A is the conclusion of
a canonical derivation [proof] in an M-system (cf. [43]: 417).

Remark 6.2. The explanations of meaning and truth given above are distinctively intuition-
istic, since they rest on the notion of a canonical derivation. They would not be available
for M-systems, if we were to replace �∗i by the classical absurdity rule �∗c. If we were to do
this and to drop the violated side conditions, we would consider, e.g., MOD and CEM the-
orems. Note, however, that, by De�nition 5.4, their derivations (e.g., that of CEM above)
would not be canonical; and this lack of canonicity would preclude an intuitionistically
acceptable proof-theoretic semantics. Obviously, also the subformula property, as given by
Corollary 5.1, would be lost�and with it internal completeness as based on that corollary.

6.2 Expansions

Our de�nition of a proof-theoretic semantics for L1 in terms of canonical derivations is
based entirely on the normalization result for intuitionistic M-systems. It does not insist
on the availability of expansions (e.g., [7]) which, roughly, transform a derivation of A into
one which �rst decomposes A by an E-rule in order to recompose it by the corresponding
I-rule in the next step. Below, we formulate expansions and discuss their preservation
behaviour.

De�nition 6.3. Let A be a formula of L1. An expansion of a derivation
/D/
A

in an M-

system is a derivation
/D′/
A

in that system in which A �rst occurs as major premiss of an

application of an E-rule and immediately afterwards as a conclusion of an application an
I-rule. The expansions of derivations in M-systems are:
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1. as∗-Expansion: Let A be φnα1...αn.

/D/
φnα1...αn

expn

/D/
φnα1...αn

(as∗E0)
φnΓ

/D/
φnα1...αn

(as∗E1) ...
α1Γ

/D/
φnα1...αn

(as∗En)
αnΓ

(as∗I)
φnα1...αn

2. Expansions for ⋆i [⋆c, ⋆d] : We present only the expansions for the factual operators;
those for the counterfactual [mode-sensitive] operators are similar.

/D/
A ⊃f B

expn

/D/
A ⊃f B [∣A∣](u)

(⊃fE)
B (⊃f I), u

A ⊃f B

∣D∣
A&fB

expn

∣D∣
A&fB

(&fE1)
A

∣D∣
A&fB

(&fE2)
B (&f I)

A&fB

/D/
A ∨f B

expn

/D/
A ∨f B

[∣A∣](u)
(∨f I1)

A ∨f B

[∣B∣](v)
(∨f I2)

A ∨f B
(∨fE), u, v

A ∨f B

Call the expansions for &f [&c] restricted, as /D/, /D′/ are restricted to ∣D∣, ∣D′∣ [≀D≀,
≀D′≀].

Theorem 6.1. The expansions do not transform legitimate into illegitimate derivations.

Proof. Assume, in each case, that the derivation to be expanded is legitimate. The result
follows immediately. Note, however, that it fails for unrestricted expansions for&f [&c].

Remark 6.3. The failure of preservation for the unrestricted expansions for &f [&c] suggests
that we may claim only a weak form of �local completeness� (cf. [7]: 93) for the rules for
&f [&c], since we cannot claim that every derivation of A&fB [A&cB] can be expanded.
It may be interesting to consider modi�ed rules for these operators for which this claim
can be made; e.g., ones which require factual [counterfactual] status for the premisses of
&fE [&cE]. The preservation tables should be helpful here.

6.3 Re�nements

In the literature, might-counterfactuals (A >m B; cf. [2]: 189) are usually de�ned in terms
of would -counterfactuals (A > B) on the basis of a model-theoretic semantics. Prominent
de�nitions of this kind (◇[e] means [epistemic] possibility) are:

(L) A >m B =def ¬(A > ¬B) (cf. Lewis [17]: 21)

(S) A >m B =def ◇e(A > B) (cf. Stalnaker [29]: 101, [30])

(B) A >m B =def A >◇B (cf. Bennett [2]: 191)

According to (L), >m is a dual of >; and in (S) and (B) ◇ is a dual of ◻ (necessity).
(Digression: Lewis has shown ([17]: 80) that an endorsement of (L) leads to a loss of the
di�erence between >m and >, in case the logic governing the latter contains CEM which is
validated in Stalnaker's preferred system (whose similarity truth conditions allow only for
exactly one A-world closest to w). Due to this con�ict with CEM, (L) is not an option for
Stalnaker. It is essentially for this reason that he prefers (S), with an epistemic reading
of ◇.) In each case, the duality rests on the interde�nability of the existential and the

45

https://doi.org/10.1017/bsl.2025.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.20


universal quanti�ers (over worlds) in the context of classical logic. Since in an intuitionistic
setting there is no such interde�nability (e.g., [40]: 468), we have to look for an alternative
account of the might-counterfactual.

In a speci�c sense, such an account is implicit in our intuitionistic modal proof systems
for counterfactual inference. It is, perhaps, noteworthy that this account does not require
an introduction of possibility operators which draw on modes of assumption. Similarly,
concerning the would -counterfactual, no use needs to be made of a necessity operator or
the idea of the (variable) strictness of implication. Recall, the meaning of implications (cf.
De�nition 6.1(2)) has been explained in terms of canonical derivations. Their general form
is:

[/A/](u)

/D1/
B

(⋆iI), u
A ⋆i B

(45)

These rules �listen�, so to speak, only to the status of the assumed formula A, they do not
listen to the status of the premiss B (i.e., the consequent-node) to which ⋆iI is applied; in
this sense, these rules are �mono�. What matters on the mono conception of ⋆iI-rules, is
the mere fact that B has been derived�irrespective of its status�from A that has been
assumed in a given mode. For example, if the status of A is counterfactual, the formula
introduced by ⋆iI is a counterfactual, a would -counterfactual, irrespective of the status of
B, provided that the side conditions have been respected.

In what follows, we shall de�ne ⋆iI-rules which may listen not only to the status of
A, but also to that of B; these rules are �stereo�. This re�nement enlarges the range of
application of M-systems, as they may be used for the analysis of constructions other than
(1.1) and (1.8). Consider the following constructions (with proposed readings):

Factuals:

(f1) Since A is the case, B is the case. (1.8)
(read: Since A is the case, B is factually the case)

(f2) Since A is the case, B might be the case. (1.11)
(read: Since A is the case, B is counterfactually the case)

(f3) Since A is the case, B.

Counterfactuals:

(c1) If A were the case, B would be the case. (1.1)
(read: If A were the case, B is factually the case)

(c2) If A were the case, B might be the case. (1.10)
(read: If A were the case, B is counterfactually the case)

(c3) If A were the case, B.

Mode-sensitives:

(m1) If A, B is factually the case.

(m2) If A, B is counterfactually the case.

(m3) If A, B.

The proposed readings indicate that we use `would' in a factual sense, presupposing that
B has factual status, and `might' in a counterfactual sense, presupposing that B has
counterfactual status.
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We re�ne L1 and the rules of M-systems so as to explain the meaning of (f1)-(m3)
from a stereo perspective. To this end, we extend L1 with implication operators (with two
subscripts) which indicate the status of the antecedent (�rst subscript) and the status of
the consequent (second subscript).

De�nition 6.4. Stereo implications:

f1: A ⊃f,f B f2: A ⊃f,c B f3: A ⊃f,∗ B
c1: A ⊃c,f B c2: A ⊃c,c B c3: A ⊃c,∗ B
m1: A ⊃∗,f B m2: A ⊃∗,c B m3: A ⊃∗,∗ B

The rules for these implications are special cases of the rules for the �mono� ⋆i-
operators of De�nition 3.11.

De�nition 6.5. Rules for stereo implications. I-rules:

[∣A∣](u)

∣D1∣
B(f1.) (⊃f,f I), u

A ⊃f,f B

[∣A∣](u)

≀D1≀
B(f2.) (⊃f,cI), u

A ⊃f,c B

[∣A∣](u)

/ /( D1 /) /
B(f3.) (⊃f,∗I), u

A ⊃f,∗ B

[≀A≀](u)

∣ ≀D1 ≀ ∣
B(c1.) (⊃c,f I), u

A ⊃c,f B

[≀A≀](u)

≀D1≀
B(c2.) (⊃c,cI), u

A ⊃c,c B

[≀A≀](u)

/ ≀D1 ≀ /
B(c3.) (⊃c,∗I), u

A ⊃c,∗ B

[/A/](u)

∣/D1/∣
B(m1.) (⊃∗,f I), u

A ⊃∗,f B

[/A/](u)

≀D1≀
B(m2.) (⊃∗,cI), u

A ⊃∗,c B

[/A/](u)

/D1/
B(m3.) (⊃∗,∗I), u

A ⊃∗,∗ B

E-rules: Mutatis mutandis, like those for mono implications. Side conditions: Like for
mono implications.

Remark 6.4. 1. The I/E-rules for ⊃f,∗ [⊃c,∗, ⊃∗,∗] are equivalent to those for ⊃f [⊃c, ⊃∗].
The rules ⊃f,f I and ⊃f,cI are special cases of ⊃f,∗I. Similarly, ⊃c,f I and ⊃c,cI are special cases
of ⊃c,∗I. And ⊃∗,f I and ⊃∗,cI are special cases of ⊃∗,∗I.

2. In the I-rules for stereo implications the status of B after the discharge matters.
As a consequence, there can be only canonical derivations, but no canonical proofs (and
so no proofs at all) of formulae of the forms A ⊃f,c B and A ⊃c,f B (including the case in
which B = A).

3. Let the subscript `i' stand for `independent'. In ⊃f,∗I: If / /( D1 /) / = (∣D1∣), then
⊃f,∗ is ⊃f,i. In ⊃c,∗: If / ≀D1 ≀ / = (≀D1≀), then ⊃c,∗ is ⊃c,i. In ⊃∗,∗: If /D1/ = (D1), then ⊃∗,∗
is ⊃∗,i. If [/A/](u) = [(A)](u), then ⊃∗,f is ⊃i,f in ⊃∗,f I, ⊃∗,c is ⊃i,c in ⊃∗,cI, and ⊃∗,∗ is ⊃i,∗ in
⊃∗,∗I. The shape of canonical derivations of formulae of the form A ⊃i,i B is, thus, obvious,
as is the fact that the ⊃-operator used in R-systems is a special case of the ⊃i,i-operator
used in M-systems.

4. The shape of the I-rules for the ⋆c- and the ⋆d-operators precludes stereo-versions
of them. It also seems less obvious than in the case of ⋆i that there might be a natural
language rationale for considering such versions.

De�nition 6.6. Conversions for stereo implications. The conversions for ⊃f,f [⊃f,c, ⊃f,∗],
⊃c,f [⊃c,c, ⊃c,∗], and ⊃∗,f [⊃∗,c, ⊃∗,∗] take the expected shapes.
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Remark 6.5. The results of conversions (i.e., the conversa; [33]: 12) for stereo factuals
di�er in shape, while there is only one form of conversum for stereo counterfactuals, and
two for stereo mode-sensitives. Preservation for stereo implications is a special case of
preservation for mono implications.

Remark 6.6. As the rules for stereo implications are set up, (f1) [(c1), (m1)] does not imply
(f2) [(c2), (m2)], and vice versa. This is due to the factual understanding of the consequents
of (f/c/m1) and to the counterfactual understanding of the consequents of (f/c/m2). The
rules can be altered. For example, we may want (f1) [(c1), (m1)] to imply (f2) [(c2), (m2)],
but not vice versa. To achieve this, we may espouse the following relaxed readings of
(f/c/m2), on which the consequents can have either counterfactual or independent status:

(f2′) Since A is the case, B might be the case.
(read: Since A is the case, B is counterfactually/independently the case)

(c2′) If A were the case, B might be the case.
(read: If A were the case, B is counterfactually/independently the case)

(m2′) If A, B is counterfactually/independently the case.

The I-rules for these relaxedmight-implications take the forms displayed below, whereas
the E-rules are, mutatis mutandis, like those for the unrelaxed stereo implications:

[∣A∣](u)

/∣ /( D1 /)/∣
B(f2′.) (⊃f,c/iI), u

A ⊃f,c/i B

[≀A≀](u)

/∣ ≀D1≀ /∣
B(c2′.) (⊃c,c/iI), u

A ⊃c,c/i B

[/A/](u)

/∣ /D1/ /∣
B(m2′.) (⊃∗,c/iI), u

A ⊃∗,c/i B

The conversions for ⊃f,c/i, ⊃c,c/i, ⊃∗,c/i should be obvious. On the relaxed reading, e.g., (f1)
[(c1), (m1)] implies (f2′) [(c2′), (m2′)], but not conversely. We note that relaxed operators
of the forms ⊃f,f/i, ⊃c,f/i, and ⊃∗,f/i can be introduced in a similar way.

Remark 6.7. In general, the exact shape of a modal proof system will depend upon decisions
concerning, e.g., the choice of the reference proof system, the conception of an established
fact, the modes in which formulae of a given form can be legitimately assumed, the shape
of the rules, or the side conditions imposed on them (cf. [43]: 415).
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