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ON CUSTOMER FLOWS IN JACKSON
QUEUEING NETWORKS
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Abstract

Melamed’s theorem states that, for a Jackson queueing network, the equilibrium flow
along a link follows a Poisson distribution if and only if no customers can travel along
the link more than once. Barbour and Brown (1996) considered the Poisson approximate
version of Melamed’s theorem by allowing the customers a small probability p of
travelling along the link more than once. In this note, we prove that the customer flow
process is a Poisson cluster process and then establish a general approximate version of
Melamed’s theorem that accommodates all possible cases of 0 ≤ p < 1.
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1. Introduction and the main results

We consider a Jackson queueing network with J queues and the following specifications
(see Barbour and Brown (1996) for more details). First, we assume that customers can move
from one queue to another, and that they can enter and leave from any queue. We assume that
the exogenous arrival processes are independent Poisson processes with rates νj , 1 ≤ j ≤ J .
Service requirements are assumed to be exponential random variables with parameter 1, and
when there are m customers in queue j , the service effort for queue j is φj (m), where φj (0) = 0,
φj (1) > 0, and φj (m) is a nondecreasing function of m. Second, we define the switching
process as follows. Let λij be the probability that an individual moves from queue i to queue
j , and let µi be the exit probability from queue i. It is natural to assume that

J∑
j=1

λij + µi = 1, 1 ≤ i ≤ J.

Without loss of generality, we may assume that the network is irreducible in the sense that all
customers can access any queue with a positive probability. Set αj as the total rate of arriving
customers (including both exogenous and endogenous arrivals) to queue j . Then the rates {αj }
satisfy the equations

αj = νj +
J∑

i=1

αiλij , 1 ≤ j ≤ J,

and they are the unique solution of the equations with αj > 0 for all j .
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For convenience, we define state 0 as the outside of the network, that is, the point of arrival
and departure of an individual into and from the system. We define S := {(j, k) : 0 ≤ j, k ≤ J }
as the set of all possible direct links, and we use �̃jk to record the transitions of individuals
moving from queue j to queue k. Then �̃ = {�̃jk, 0 ≤ j, k ≤ J } gives a full account of
customer flows in the network, where departures are transitions to 0 and arrivals are transitions
from 0. If ρjk is the rate of equilibrium flow along the link (j, k) then ρjk = αjλjk and the
mean measure of �̃ is

λ̃(ds, (j, k)) = ρjk ds, s ∈ R, (j, k) ∈ S.

For the point process �̃ with locally finite mean measure λ̃(ds, (j, k)), we may consider it
as a random measure on the metric space R × S equipped with the metric

d((u1, (j1, j2)), (u2, (k1, k2))) = |u1 − u2| 1(j1,j2)�=(k1,k2)

for u1, u2 ∈ R and (j1, j2), (k1, k2) ∈ S, so that we can define the Palm distribution at α ∈
R × S as the distribution of �̃ conditional on the presence of a point at α, that is,

P α(·) = E[1[�̃∈·] �̃(dα)]
λ̃(dα)

, α ∈ R × S, λ̃-almost surely;

see Kallenberg (1983, p. 83) for more details. A process �̃α is called the Palm process of �̃ at
α if its distribution is P α . In applications, it is often more convenient to work with the reduced
Palm process, �̃α − δα (see Kallenberg (1983, p. 84)), where δα is the Dirac measure at α.

For two random elements η1 and η2 having the same distribution, we write for brevity
η1

d= η2.

Proposition 1.1. For each (j, k) ∈ S, there is a point process ξ̃ (0,(j,k)) on R × S independent
of �̃ such that

ξ̃ (0,(j,k)) + �̃
d= �̃(0,(j,k)).

Let θs, s ∈ R, denote the shift operator on R × S which translates each point in R × S
by s to the left, i.e. θs((u, (j, k))) = (u − s, (j, k)), and use ξ̃ (s,(j,k)) to stand for a copy of
ξ̃ (0,(j,k)) ◦ θs, s ∈ R.

Our interest is in the customer flows along the links in C ⊂ S for the time interval [0, t],
so we set the carrier space as �C,t = [0, t] × C. With the metric d, �C,t is a Polish space and
B(�C,t ) denotes the Borel σ -algebra in �C,t . Let HC,t denote the class of all finite nonnegative
integer-valued measures on �C,t , and let HC,t be the σ -algebra in HC,t generated by the sets
{ξ ∈ HC,t : ξ(B) = i}, i ∈ Z+ := {0, 1, 2, . . . }, and B ∈ B(�C,t ) (see Kallenberg (1983,
p. 12)).

We use �̃C,t to denote the transitions along the links in C for the period [0, t]. Then the
mean measure of �̃C,t is

λ̃C,t (ds, (j, k)) = ρjk ds, 0 ≤ s ≤ t, (j, k) ∈ C.

Melamed’s theorem states that �̃C,t is a Poisson process if and only if no customers travel along
the links in C more than once. Barbour and Brown (1996) considered the Poisson approximate
version of Melamed’s theorem by allowing the customers a small probability (loop probability)
of travelling along the links more than once, and they concluded that the accuracy of the Poisson
approximation depends on how small the loop probability is.
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Theorem 1.1. The process �̃C,t is a Poisson cluster process. More precisely, let {ηi, i ≥ 0}
be independent and identically distributed random measures on �C,t having the distribution

P[η0(�C,t ) ≥ 1] = 1,

P(η0 ∈ A) = E
∑

(j,k)∈C

∫ t

0

1[ξ̃ (s,(j,k))|�C,t
∈A]

ξ̃ (s,(j,k))(�C,t )

ρjk

θC,t

ds, A ∈ HC,t ,
(1.1)

where ξ̃ (s,(j,k))|�C,t
is the restriction of ξ̃ (s,(j,k)) to �C,t (see Kallenberg (1983, p. 12)) and

θC,t = E
∑

(j,k)∈C

∫ t

0

1

ξ̃ (s,(j,k))(�C,t )
ρjk ds. (1.2)

Let M be a Poisson random variable with mean θC,t and independent of {ηi, i ≥ 0}. Then

�̃C,t
d=

M∑
i=1

ηi.

Despite the fact that θC,t is specified by (1.2), since the Palm process ξ̃ (s,(j,k)) is generally
intractable, it is virtually impossible to express θC,t explicitly in terms of the specifications of
the Jackson queueing network. We now consider a general approximate version of Melamed’s
theorem. Noting that (R × S, d) is a Polish space and that, for each bounded Borel subset B

of R × S,

E[�̃(B)]2 = E
∫

B

�̃(B)�̃(dα) = E
∫

B

�̃α(B)λ̃(dα) ≥ E
∫

B

(�̃(B) + 1)λ̃(dα),

we obtain var[�̃(B)] ≥ E �̃(B). Hence, suitable approximate models for the distribution of
�C,t := �̃C,t (�C,t ) should necessarily possess the same property. We consider the negative
binomial, NB(r, q), r > 0 and 0 < q < 1, with distribution function

πi = �(r + i)

�(r)i! qr(1 − q)i, i ∈ Z+,

as the approximate distribution. The advantage of using the negative binomial approximation
is that it suffices to estimate the mean and variance for the approximate distribution, as is often
done when applying the central limit theorem based on the normal approximation.

To state the error estimate of the approximate version of Melamed’s theorem, we define

εC(j, k) = E ξ̃ (0,(j,k))(R × C) − 1 and εC =
∑

(j,k)∈C

ρjk

ρC

εC(j, k).

In other words, εC(j, k) is the average number of visits in C by the extra customer crossing the
link (j, k) and εC is the weighted average number of visits by an extra customer crossing links
in C. We also need

σC(j, k) = E[ξ̃ (0,(j,k))(R × C)(ξ̃ (0,(j,k))(R × C) − 1)] and σC =
∑

(j,k)∈C

ρjk

ρC

σC(j, k).

That is, σC(j, k) is the second factorial moment of the number of visits in C by the extra customer
crossing the link (j, k) and σC is the weighted average of the second factorial moments of the
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number of visits by an extra customer crossing links in C. Let wC(j, k) be the probability that
a link (j, k) crossing customer has never crossed links in C before and will not pay more visits
in C in the future. Define

wC =
∑

(j,k)∈C

wC(j, k)ρjk

ρC

,

the weighted probability of customers crossing links in C only once.

Theorem 1.2. Let

r = (ρCt)2

var(�C,t ) − ρCt
, q = ρCt

var(�C,t )
.

Then
dTV(�C,t , NB(r, q)) := sup

A⊂Z+
|P(�C,t ∈ A) − NB(r, q)(A)|

≤ 1√
2ewCρCt

(2ε2
C + σC). (1.3)

Remark 1.1. If the loop probability in C is 0 then the negative binomial is reduced to a Poisson
distribution and the upper bound in Theorem 1.2 becomes 0. This implies half of Melamed’s
(1979) theorem.

Remark 1.2. If the loop probability is between 0 and 1, then both εC and σC are finite, so the
negative binomial approximation error bound is of order O(1/

√
t). Furthermore, if the loop

probability is small then both εC and σC are small, so the negative binomial approximation to
the distribution of �C,t is even faster.

Example 1.1. To see how the loop probability appears in the upper bound, let us consider
the tandem M/M/1/∞ queues with feedback investigated in Barbour and Brown (1996). Let
J = 2, φ1(n) = φ2(n) = 1 for all n ≥ 1, λ12 = 1, λ22 = 1 − µ2 = p, ν1 < 1 − p,
ν2 = 0, and C = {(1, 2), (2, 2)}. Direct computation gives ρ12 = ν1, ρ22 = ν1p/(1 − p),
εC(1, 2) = p/(1 −p), εC(2, 2) = (1 +p2)/(1 −p), σC(1, 2) = 2p/(1 −p)2, and σC(2, 2) =
2(1 + p + p3)/(1 − p)2, so εC ≤ 2p/(1 − p) and σC = (4p + 2p4)/(1 − p)2. Moreover,
wC(1, 2) = 1 − p, wC(2, 2) = 0, and wC = (1 − p)2. Therefore, the upper bound of (1.3)
becomes (4p + 8p2 + 2p4)(1 − p)−2.5(2eν1t)

−1/2.

2. The proofs

Proof of Proposition 1.1. The proof is adapted from Barbour and Brown (1996, p. 480).
By Lemma 1 of Barbour and Brown (1996), the reduced Palm process �̃(0,(j,k)) − δ(0,(j,k))

has the same distribution as that of �̃, except that the network on (0, ∞) behaves as if there
were an extra individual at queue k at time 0 and the network on (−∞, 0) behaves as if there
were an extra individual in queue j at time 0. Whenever the extra customer is at queue i with
the other m customers, we use independently sampled exponential service requirements with
instantaneous service rate φi(m + 1) − φi(m). Noting that this construction ensures that the
extra customer uses the ‘spare’ service effort and never ‘interferes’ with the flow of the main
traffic, we can see that its transitions are independent of �̃. The same procedure applies to the
construction of the backward route. Let ξ̃ (0,(j,k)) be the transitions taken by the extra customer
on (−∞, 0) ∪ (0, ∞) plus the Dirac measure δ(0,(j,k)). Then ξ̃ (0,(j,k)) is independent of �̃ and
the conclusion of the lemma follows from the construction.
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Proof of Theorem 1.1. By Theorem 11.2 of Kallenberg (1983) and Proposition 1.1, we can
conclude that �̃C,t is infinitely divisible; hence, we obtain from Lemma 6.6 and Theorem 6.1
of Kallenberg (1983) that �̃C,t is a Poisson cluster process, that is,

�̃C,t
d=

M∑
i=1

ηi,

where the ηi, i ≥ 0, are independent and identically distributed random measures on �C,t such
that P[η0(�C,t ) ≥ 1] = 1, and M is a Poisson random variable with mean θC,t , independent
of {ηi, i ≥ 1}. The direct verification ensures that the Palm process of

∑M
i=1 ηi at α ∈ �C,t is∑M

i=1 ηi + ηα
0 , where ηα

0 is the Palm process of η0 at α, independent of {M, ηi, i ≥ 1}. This
in turn implies that ξ̃ (s,(j,k))|�C,t

d= η
(s,(j,k))
0 .

Let µ̃(ds, (j, k)) denote the mean measure of the point process η0. Then some elementary
computation ensures that the mean measure of

∑M
i=1 ηi is θC,t µ̃(ds, (j, k)) for (j, k) ∈ C and

0 ≤ s ≤ t . On the other hand, the mean measure of �̃C,t is λ̃C,t (ds, (j, k)) = ρjk ds for
(j, k) ∈ C and s ∈ [0, t], so we obtain

µ̃(ds, (j, k)) = ρjk

θC,t

ds, (j, k) ∈ C, s ∈ [0, t].

Representation (1.1) follows from the fact that P[η0(�C,t ) ≥ 1] = 1 and

P[η0 ∈ A] = E
∫

�C,t

1[η0∈A]
η0(�C,t )

η0(dα) = E
∑

(j,k)∈C

∫ t

0

1[ξ̃ (s,(j,k))|�C,t
∈A]

ξ̃ (s,(j,k))(�C,t )

ρjk

θC,t

ds.

In particular, if we take A = HC,t then the left-hand side becomes 1, so (1.2) follows.

The proof of Theorem 1.2 is based on the following lemma.

Lemma 2.1. We have dTV(�C,t , �C,t + 1) ≤ 1/
√

2ewCρCt.

Proof. We prove the claim by a coupling based on the ‘priority principle’ (cf. the proof of
Proposition 1.1). We refer to a customer as a single crossing (SC) customer if the customer
crosses links in C only once, otherwise, the customer is referred to as a multiple crossing
(MC) customer. We ‘manage’ the network by regrouping the customers at each queue into
SC customers and MC customers. Whenever there are m2 MC customers together with m1
SC customers at queue j , we use independently sampled exponential service requirements
with instantaneous service rate φj (m1 + m2) − φj (m1) for all of the MC customers, while the
service for the SC customers is carried out with instantaneous service rate φj (m1), that is, as
if there are no MC customers present in the queue. Since the SC customers take priority over
the MC customers and the MC customers use the ‘spare’ service effort and never interrupt the
traffic flow of the SC customers, we can see that the transitions made by the MC customers are
independent of the transitions of the SC customers. Let Z

jk
1 and Z

jk
2 respectively denote the

transitions of SC and MC customers moving from queue j to queue k in the period [0, t]. Then
Z̃1 := {Zjk

1 , (j, k) ∈ C} and Z̃2 := {Zjk
2 , (j, k) ∈ C} are independent, and

�̃C,t
d= Z̃1 + Z̃2.

By Melamed’s theorem, the point process Z̃1 is a Poisson process with mean measure

λ̃
Z̃1

(ds, (j, k)) = wC(j, k)ρjk ds, (j, k) ∈ C, 0 ≤ s ≤ t,
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so Z̃1(�C,t ) follows a Poisson distribution with mean wCρCt and Proposition A.2.7 of Barbour
et al. (1992, p. 262) ensures that

dTV(�C,t , �C,t + 1) ≤ dTV(Z̃1(�C,t ), Z̃1(�C,t ) + 1) ≤ 1√
2ewCρCt

.

This completes the proof.

Proof of Theorem 1.2. Let a = r(1 − q) and b = 1 − q. Brown and Xia (2001) defined a
generator for NB(r, q) as

Bg(i) = (a + bi)g(i + 1) − ig(i) for i ∈ Z+ and a function g on Z+,

and established the Stein identity

Bg(i) = f (i) − π(f ) (2.1)

for f ∈ F := {f : Z+ → [0, 1]}, where π(f ) = ∑∞
i=0 f (i)πi . It was shown in Brown and

Xia (2001) that, for each f ∈ F , the solution gf to the Stein equation (2.1) satisfies

‖�gf ‖ ≤ 1

a
, (2.2)

where �gf (·) = gf (· + 1) − gf (·). The Stein identity (2.1) ensures that

sup
f ∈F

|Ef (�C,t ) − π(f )| = sup
f ∈F

|EBgf (�C,t )|;

hence, it suffices to estimate E Bgf (�C,t ) for all f ∈ F . For convenience, we drop the
subscript f from gf . By Proposition 1.1 we can take a point process ξ̃

(s,(j,k))
C,t on �C,t

independent of �̃C,t such that

�̃
(s,(j,k))
C,t = �̃C,t + ξ̃

(s,(j,k))
C,t .

Therefore, if we write ξ̃
(s,(j,k))
C,t (�C,t ) = 1 + ξ (s,(j,k)) then

E Bg(�C,t ) = a E g(�C,t + 1) + b
∑

(j,k)∈C

∫ t

0
g(�C,t + 2 + ξ (s,(j,k)))ρjk ds

−
∑

(j,k)∈C

∫ t

0
g(�C,t + 1 + ξ (s,(j,k)))ρjk ds. (2.3)

Let a + (b − 1)ρCt = 0 and �̃C,t = �C,t + 1. Then it follows from (2.3) that

E Bg(�C,t ) = E
∑

(j,k)∈C

∫ t

0
[b(g(�̃C,t + 1 + ξ (s,(j,k))) − g(�̃C,t ))

− (g(�̃C,t + ξ (s,(j,k))) − g(�̃C,t ))]ρjk ds

= E
∑

(j,k)∈C

∫ t

0

{ξ (s,(j,k))−1∑
r=0

[b�g(�̃C,t + r + 1) − �g(�̃C,t + r)]

+ b�g(�̃C,t )

}
ρjk ds. (2.4)
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Now, set

b =
∑

(j,k)∈C

∫ t

0 E ξ (s,(j,k))ρjk ds∑
(j,k)∈C

∫ t

0 E ξ (s,(j,k))ρjk ds + ρCt
= var(�C,t ) − ρCt

var(�C,t )
,

where the last equality is due to

E �2
C,t = E

∫
�C,t

�C,t �̃C,t (dα)

=
∑

(j,k)∈C

E
∫ t

0
(�C,t + 1 + ξ (s,(j,k)))ρjk ds

= (E �C,t )
2 + ρCt + E

∑
(j,k)∈C

∫ t

0
ξ (s,(j,k))ρjk ds,

and so

E
∑

(j,k)∈C

∫ t

0
ξ (s,(j,k))ρjk ds = var(�C,t ) − ρCt.

Using the fact that ξ (s,(j,k)) is independent of �̃C,t , we obtain, from (2.4),

E Bg(�C,t ) = E
∑

(j,k)∈C

∫ t

0

{ξ (s,(j,k))−1∑
r=0

[
b E �2g(�̃C,t + r)

− (1 − b)

r−1∑
l=0

E �2g(�̃C,t + l)

]}
ρjk ds.

On the other hand, we apply (2.2) and Lemma 2.1 to obtain

|E�2g(�̃C,t + l)| ≤ 2‖�g‖dTV(�C,t , �C,t + 1) ≤ 2

a
√

2ewCρCt
,

which in turn implies that

|EBg(�C,t )| ≤ (a
√

2ewCρCt)−1

×
∑

(j,k)∈C

∫ t

0
[2b E ξ (s,(j,k)) + (1 − b) E ξ (s,(j,k))(ξ (s,(j,k)) − 1)]ρjk ds.

Finally, (1.3) follows from the definitions of εC and σC since

E
∑

(j,k)∈C

∫ t

0
ξ (s,(j,k))ρjk ds ≤ εCρCt

and ∑
(j,k)∈C

∫ t

0
E ξ (s,(j,k))(ξ (s,(j,k)) − 1)ρjk ds ≤ σCρCt.

This completes the proof.
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