
Can. J . Math., Vol. XXVI, No. 2, 1974, pp. 257-272 

A CHARACTERIZATION OF SOME GEOMETRIES 
OF CHAINS 

YI CHEN 

The geometries considered here are the Môbius plane M ( $ ) (W. Benz [1]), 
the Laguerre plane L ( $ ) (W. Benz and H. Màurer [7]) and the Minkowski 
plane A ( $ ) (W. Benz [5], G. Kaerlein [18]) over a field $ . All of them are 
geometries of an algebra with identity over a field. 

The characterization of the projective plane over a field by the proposition 
of Pappus first gave a close relation between algebraic and geometric structures. 
B. L. v. d. Waedern and L. J. Smid [28] presented a further example by char­
acterizing the Môbius and Laguerre plane with incidence axioms and the 
"complete" proposition of Miquel. Other different characterizations and 
representations of the above three geometries are studied among others by 
W. Benz [1-5], Y. Chen [8-11], G. Ewald [14; 15], A. J. Hoffman [16; 17], 
G. Kaerlein [18], H. Màurer [20], U. Melchior [21], B. Petkuntschin [23], 
L. J. Smid [25], W. Suss [26], A. Uhl [27] etc. 

The purpose of this paper is to define the Môbius, Laguerre, and Minkowski 
planes by a common basic system of axioms and to show that they are iso­
morphic to M ( $ ) , L ( $ ) , A ( $ ) , if a "simple" proposition of Miquel is satisfied. 
In [8] the complete proposition of Miquel is derived from the simple one in 
the Môbius plane. In this paper we often refer to [8], and derive for the 
Laguerre and Minkowski planes from the simple proposition of Miquel those 
properties (but not the complete proposition of Miquel) which are sufficient 
to algebrize the two geometries. We shall explain how the sufficient conditions 
for the algebrization of Laguerre and Minkowski planes are simpler than those 
for that of Môbius planes. An essential property, which we do not have in the 
Môbius plane is that two points can touch each other (i.e. there is no chain 
passing through them). We must check throughout every proof not only that a 
certain point is distinct from the others, but also whether it touches any other 
one or not. 

General notations. Let 3P be a set of elements called points and denoted 
by the numbers 0, 0', 1, 1/, 2, 2' . . . or small Latin letters a, b, a', ax . . . etc. A 
certain subset *$ of the power set of SP is called the set of chains which are 
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denoted by Greek letters a, /3, «i, a , . . . etc. Two points a, b of & "touch" each 
other denoted a— b, if a = & or if there is no chain of ^ passing through them. 
Thus this "touch" relation "—" is symmetric and reflexive. 1 + 2 is the nega­
tion of 1 — 2. (0, 1, 2, . . .)o means that 0, 1, 2, . . . are connectable, i.e. there 
is a chain passing through them. (0, 1, 2, ...)</> is its negation. We write 
a[ l , 2, . . .] for 1, 2, . . . € a and use also 1 — a (reading 1 touches a or a 
touches 1) for 1 £ a. a — fi means either a = /3ora and 0 have exactly one point 
in common. In the following let Xi, yu x2, y2, . . . be either points or chains and 
P , Q, R, . . . be relations = , 4= , — and + . We write (xx, x2, . . . , xn) R for xtRxj, 
1 <; i g wand 1 t^jSn. (xi ,x2 , . . . ,^»)^ (3^1,̂ 2, • •. , 3>m) means xtRyj, l Si S n 
and 1 ^ j ^ m. (x1} x2, . . . , xn)PQ.R . . (3>i, 3>2, . . .) ST..U . . (2, . . . ) . . . . 
means (xx, x2, . . . , x J P , (*i, x2, . . . , x J Q , . . . , (xi, x2, . . . , x J P ( ^ i , ;y2,. . .)t 
• • • , (yu 3/2, • . -)s, • • • (yi, 3;2, • • -)U(z, . . . ) , . . . etc. For example, we write 
(1, 2)* + a — (3, 0, 7 ) - for 1 4= 2, 1 + a, 2 + a, a — 3, a — (5, a — 7, 
3 — 0, 3 — 7 and 0 — 7. 

Definition 1. C = ( ^ , ^ , —) is called a touch-plane of chains if the following 
axioms (CO), (CI) and (C2) are satisfied 

(CO) (1) (The first axiom of abundance) There are at least three points 
0, 1, 2 satisfying (0, 1, 2)+; and (2) (The second axiom of abundance) 
There is no point touching all chains of &, if *$ is not empty. 

(CI) (The axiom of uniqueness) If (0, 1, 2)+ , then there is exactly one chain 
a with a— (0, 1, 2). 

(C2) (The touch-axiom) If 1 — a + 2 + 1, then there exists exactly one 
chain fi satisfying (3— (1, 2, a) . 

It is called a Môbius touch-plane CMÔD if it satisfies 
(Mob) (The axiom of Mobius geometry) Two distinct points never touch each 

other. 
It is called a Laguerre touch-plane denoted CLag if it satisfies 

(Lag) (The axiom of Laguerre geometry) If 1 + a, then there is exactly one 
point 2 with 2 — (1, at). 

It is called a Minkowski touch-plane denoted CMin if it satisfies 
(Min) (The axiom of Minkowski geometry) To two non-touching points or 

one chain and a point not on it there are exactly two points touching 
both ofthem and we require these two points do not touch each other. 

By a MLM touch-plane of chains we mean any one of the above 
three touch-planes. 

PROPOSITION 0. In CLag the touch relation on points is an equivalence relation. 
In CMin the touch relation induces two equivalence relations which will be called 
"up touching'1 (denoted — ) and "down touching" (denoted — ). 

Proof. It is clear that through any two non-touching points of a touch plane 
there is one chain. If in CLag 0 — 1 — 2 + 0 then there would be no a with 
a—(0, 1), but one a with (0, 2) — (1, a) , contradicts (Lag). In C 

Min an equi­
valence class (called touching class) will be determined by two touching 
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elements. Let 0 — 1. If 2 — (0, 1) and 3 — (0, 1), then by (Min) 2 — 3. If 
0 — 1 + 2 — 0, x— (0, 1) and y — (0, 2) then x = y = 0orx± y. T h u s two 
dist inct classes have a t most one common element. If 0 — 1 + 2 — 0, and x — 0, 
then x — 1 or x — 2, otherwise there would be a chain a and 0 — (1, 2, x) — a, 
contradicts (Min) . T h u s one element can belong to a t most (but also a t least) 
two touching classes. 

If there is only 1 — 2, then 1 — 2 or 1 — 2. We write 1 — 2 together with 
3 — 4 (or 1 — 2 and 3 — 4) to denote t ha t the touching class of 1, 2 and t h a t 
of 3, 4 are of the same touching relation and we write 1 — 2 together with 
3 — 4 (or 1 — 2 and 3 — 4 ) for the case t ha t the touching class of 1, 2 and 
t h a t of 3, 4 are of different touching relation. 

T h e following theorem is now quite obvious: 

T H E O R E M 0. A Mobius touch-plane is a Mobius plane in narrow sense (W. 
Benz [1]) and vice versa; A Laguerre touch-plane is a Laguerre plane in narrow 
sense (W. Benz and H. Mâure r [7]) and vice versa and a Minkowski touch-plane 
is a pseudo-Euclidean plane (in the sense of Kaerlein [18]) and vice versa. 

T H E O R E M 1. The above axioms of an ML M touch-plane are independent. 

Proof. We write [(X)MôbL [G?)Lag] or [(X)Mm] respectively for a model 
which satisfies all the axioms (except (X)) of C 

Mob? C*Lag or C]viin respectively 
and the negation of axiom (X). [(X)] gives a model satisfying the negation of 
(X) and all the other axioms. 

[(C0)(l)Mcb] • & has two points 1, 2 and ^ possesses three chains a, (3, y 
with a — 1 —13 —2 —y. 

[ (C0) ( l ) L a g ] : & has four points 1, 2, 3, 4 and ^f possesses four chains 
a, ff, 7, h with 1 — 3, 2 — 4 and 1 — a — 2 — 0 — 3 — y — 4 — Ô — 1. 

[(C0)(l)M in] • & has four points 1, 2, 3, 4 and ^ possesses two chains a, /3 
with (1, 2)+ — (3, 4 ) + , a — (1, 2) and 0 — (3, 4) . 

[(CO) (2)] : There exists in & three points 1, 2, 3 and in ^ one chain with 
a— ( 1 , 2 , 3 ) . 

[(CI)Mob]: The classical three dimensional Mobius geometry. 
[(CI)Lag] : T h e classical three dimensional Laguerre geometry, i.e. points 

are planes in E 3(9î) with an orientation, chains are spheres in E3(9Î) with an 
orientat ion, (where "sphere" means, of course, the set of planes tangent to a 
sphere with the same or ientat ion) . Any maximal set of parallel (with the same 
or ientat ion) planes is also a chain. 

[(Cl)Min] - & has points aijt i, j € {1, 2, 3} and ^ is empty with atj — akl 

for i — k or j = /. 
[(C2)M'ôb] : & contains points 1, 2, 3, 4 and *% the chains a, 0, y, d with 

a — (1, 2, 3) , 0 — (1, 2, 4) , y — (1, 3, 4) and h — (2, 3, 4 ) . 
[(C2)L a g] : There exist in 0* points 1, 2, . . . 8 and in ^ chains a, /3, . . . with 

1 — 5, 2 — 6, 3 — 7, 4 — 8, a — (1, 2, 3, 8) , P — (1, 2, 4, 7) , y — (1, 3, 4, 6 ) , 
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5 — (2, 3, 4, 5), e - (4, 5, 6, 7), a - (3, 5, 6, 8), { - (2, 5, 7, 8) and 

f — ( 1 , 6 , 7 , 8 ) . 
[(C2)Min]: There exist in 0* points 1, 2, . . . 8 and in *€ chains a, /3, 7, ô with 

1 — 6 — 3 — 8 — 1, 2 — 5 — 4 — 7 — 2, a — (1, 2, 3, 4), 0 — (5, 6, 7, 8), 
7 — (1,3, 5, 7), and «— (2 ,4 ,6 ,8 ) . 

The last axiom of any MLM touch-plane is independent! of the other since 
the other MLM touch-planes exist. We omit the simple proof of the following 
combinatoric facts (P. Dembowski [13]) G. Kaerlein [18]). 

THEOREM 2. The conditions of each column in the following table are equivalent 
to one another: (n is a positive integer > 1 and is called the order of the plane). 

CMÔb CLag G l i m 

Points in total n2 + 1 n(n + 1) (n + l ) 2 

Chains in total n(n2 + 1) n3 (n + l )n(n - 1) 
Points per chain n + 1 n + 1 n + 1 
Chains per point n(n + 1) n2 n(n — 1) 
Chains passing two distinct points n + 1 n n — 1 
Mutually touching chains through a n n n 
common point 
Touching chains per chain (the given n2 — 1 n2 — 1 n2 — 1 
one is excluded) 
Disjoint chains per chain (the given n(n — l)(n — 2) n(n — l ) 2 n2(n — 1) 
one is excluded) 2 2 2 
Touching classes n2 + 1 n + 1 n + 1 " — " n + l u — " 
Points per touching class 

The touch plane C = (0, *£, —) induces affine planes A = (0P' ,<£, c) as 
follows: Let 0 be any point of 0 and 0' = 0\{O\, A line of i f is either a 
chain of ^ passing through 0 or a touching class. A point is incident with a 
line, if the former is contained in the latter. If the touching classes are not 
considered as lines, then the induced structure is called an affine plane with 
neighbour elements (W. Benz [6], W. Klingenberg [19]). 

Definition 2. Four points a, 6, c, d of a touch plane are dependent denoted 
(a, by c, d)A, if a point or a chain touches any three of them, then it touches 
also the last one and if a + (c, d) or b + (c, d). 

fThe axiom (Min) contains two statements (1) To 0 + a there are exactly 1 and 2 with 
(0, a) — (1, 2). (2) To 0 + 1 there are precisely 2,3 with (a) (0, 1) — (2, 3) and furthermore (b) 
2 + 3. The author did not succeed in deriving (b) from the other conditions. I t seems also not 
very easy to find a model satisfying all axioms except (1). A model satisfying all axioms except 
(2) is as follows: 0 has points0 ,1 , 2, 3, 4 a n d ^ possesses a, 0 with (1, 2) — (3, 4), a— (0, 1, 2) 
and 0— (0, 3, 4). A model satisfying (CO), (Cl) , (C2), (2) (a) of (Min) and the negation of 
(1) of (Min): There are points 0, 1, 2, 3, 4 in SP and a i n ^ with a— (0, 1, 2) +— (3, 4) _. 
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LEMMA 0. (a, b, c, d)A if and only if 
(1) (a, 6, c, d)0for the Môbius case; 
(2) (a, b, c, d)0 or a — b implies c — d for the Laguerre case; 
(3) (a, b, c, d)0 or a — b implies c — d (similarly a — b implies c — d) for 

the Minkowski case (proof omitted). 

Definition 3. The proposition of Miquel (M): If 0, 1, 2, 3, 4, 5, 6, 7 are eight 
distinct points and (0, 2, 1, 3)A, (0, 4, 1, 7)A, (0, 6,3, 7)A, (1, 5, 2, 4)A, (2, 6,3, 5)A 

then (4, 6, 5, 7)A (Figures 1 (Four points on one face of dice are dependent. 
Two points of one edge do not touch each other if they are not identical.), 
2, 3, 4). 

0 

0 =.oo 

6 5 

FIGURE 1 

FIGURE 2 

0 = oo 4N 

FIGURE 3 FIGURE 4 
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One can easily show t h a t if 21 is a quadra t ic ring extension of a field $ 
where the uni ty of 31 is equal to t h a t of $ , then 21 is ei ther $ ( i ) , quadra t ic 
field extension of $ by adjoint with i, or M(j) with j 2 = 0 or ®(k) with k2 = k. 
Let / = \i,j, k} and write 21 = $ ( / ) . T h e elements of $ ( / ) will be denoted by 
Lat in let ters with subscript ax, a2, aiy aj} . . . W e know t h a t there is no non-
trivial ideal in $ ( i ) , bu t one non-trivial maximal ideal (j) in $t(j) and two 
distinct non-trivial maximal ideals (k ) and (1 — k ) in $(k). 

Definition 4. A touch plane C(3I) over 21 has as point set the set of points of 
the projective line over 2Ï. (i.e. every point a is an ordered pair 

[aua2] G { 2 I X %}\{ (h) X < / i>U (h) X </2)}. 

[ai, a2] = [6i, 62] if and only if a,\ = rb\ a2 = rb2 with r G 2l\{ (h) U (/2)} 

where h = h = 0 for 2Ï - « ( i ) , h = h = j for 21 = $ (7 ) a n d *i = ^^ ^ = 

1 — k for 21 = S(&)'; two points [ai, a 2] , [61, b2] touch each other if 

and as chain set the set of images of the points of the projective line p1($) 
over $ under a projective transformation of P G L (2, 21) (i.e. every chain is 
a set of points [au a2]

a, where [au a2] e {S X . $ \ [ 0 , 0]} and a G P G L (2, 21).) 

T h e following is known (W. Benz [2; 5; 7] ) : C(2 l ) is CMÔD, C L a g , CMin if 21 
is $ ( i ) , ^ ( j ) a^J $(&) respectively. 

We also know (W. Benz [2; 5 ; 7]) t h a t there is an automorphism group of 
C(2 l ) which is sharply t ransi t ive with respect to three mutua l ly non-touching 
points. Th is almost implies (details in [10]): 

P R O P O S I T I O N 1. (M) is valid in C ( 2 l ) . 

Definition 5. We call a ML M touch-plane C Miquelian if the following 
special proposition of Miguel with respect to point 0 denoted (SMO) holds: 
In C there is a point 0 such t h a t (4, 5, 6, 7)A follows from ( 0 , 1 , 2, 3, 4, 5, 6, 7 ) + , 
(0, 1, 2, 3)o, (0, 1, 4, 7) 0 , (0, 3, 6, 7)0 , (1 , 2, 4, 5) 0 and (2, 3, 5, 6)0 . 

For Môbius plane (SMO) is simply the usual proposition of Miquel (i.e. 
( ISM M0) in [8]). For Laguerre plane it is a little stronger than the usual 
proposition of Miquel (W. Benz [7]). W e have already remarked in [8], t h a t 
the derivation of axiom V i l a from VI I in V. d. Waerden and Smid [28] is 
incomplete. For Minkowski plane it is stronger than (M) of G. Kaerlein [18]. 
B u t Kaerlein needs (M) and (M) for the characterizat ion, where (M) is 
equivalent to the s t a tement t h a t (2) and (3) imply (1) in lemma 7 of this 
paper. Besides, he does not specify any point 0 as we do here. I t may be 
interesting and worthwhile to mention the following. In summer 1968 I 
succeeded in deriving the complete proposition of Miquel from the simple one 
for the Môbius plane. Natura l ly one would t ry to get a similar result for the 
Laguerre and Minkowski plane. I did t h a t no t only for the problem itself bu t 
also because of my belief t h a t there is an axiom system with one language for 
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the plane geometry of Môbius, Laguerre, Minkowski and perhaps some more 
geometries and they can be algebrized by a proposition of Miquel or by means 
of l'cross ratio'' or by a certain properties of the automorphism group or by 
means of a polarity (in case of the characteristic of field unequal to two). 
This study may lead us to find out a direct equivalence between the different 
properties being used for algebrization as in the projective plane one shows 
the equivalence between the proposition of Pappus and the projective group 
being transitive with respect to four points in general position without apply­
ing the coordinates. By solving the first indicated problem I found that it is 
easy to prove the proposition of Pappus in the induced affine plane if the 
following proposition of Miquel in C holds. There is a point 0 such that 
(4, 5, 6, 7)0 follows from (0, 1, 2, 3, 4, 5, 6, 7)*, (0, 1, 2, 3)0, (0, 1, 4, 7)0, 
(0, 3, 6, 7)0, (1, 2, 4, 5)0, (2, 3, 5, 6)0 and (4, 5, 6, 7)+. But this does not seem 
to be sufficient for showing that every chain is a conic. For the latter one can 
make different requirements. Insisting that there should be eight direct points 
in the assumption I finally found that (SMO) is at least sufficient. The proof 
I got in 1969 is more complicated than that given here. Independent of my 
try and almost at the same time G. Kaerlein looked for characterizations 
different from that of W. Benz [5]. He has also derived the proposition of 
Pappus from a simple proposition of Miquel. By means of (M) where only 
six distinct points appear in the assumption it follows immediately that the 
nonlinear chains are conies. While in this paper we derive (M) and emphasize 
how (1, 2, 3, 4)A takes the place of (1, 2, 3, 4)0, when C is not necessarily a 
Mobius plane. 

Our general assumption in the following is a Miquelian MLM touch-plane. 
0 should be used exclusively for the distinguish point 0 of (SMO). We remark 
thata[0, 1, . . .], j#[2, 3, . . . ] . . . are often used without mentioning of (0, 1, . . .)+, 
(2, 3, . . . ) + , . . . and the existence of a, fi . . . at first. For example the state­
ment if a[0, 1, . . .] — /3[2, 3, . . .], then 7[4, 5, . . .] + 5[6, 7, . . .] should mean: 
If (0, 1, . . .)+, (2, 3, . . .)+ and there are a, 0 with (0, 1, . . . ) — « — P — 
(2, 3, . . .) then (4, 5, . . .)+, (6, 7, . . .)+ and there are 7, b with (4, 0, . . .) — 
7 + 5 — (6, 7, . . .)+. An immediate consequence of (SMO) is 

LEMMA 1. (a) / / (0, 1, 2, 3, 4, 5, 6)+, (0, 1, 2, 3)0, (0, 4, 5, 6)0, (1, 2, 3, 5)0, 

(2, 3, 5, 6)0, then a[0, 1,4]— 0[O, 3, 6] (Figure 5 (If two elements of an edge 
are identical, then the two chains containing the points of the two dice faces 
having this edge in common must touch each other)). 

(b) If (0, 1, 2, 3, 4, 5, 6)*, (0, 1, 2, 3)0, (0, 3, 5, 6)0, (1, 4, 5, 6)0, (2, 3, 4, 5)0, 
then a[0, 1, 6] — j8[l, 2, 4] (Figure 6). 

(c) If (0, 1, 2, 3, 4, 5, 6)*, (0, 1, 2, 3)0, (0, 1, 4, 6)0, (0, 3, 5, 6)0, (2, 4, 5, 6)0, 
then a[ l , 2, 4] — 0[2, 3, 5] (Figure 7). 

LEMMA 2. If (0, 1, 2, 3, 4, 5, 6)*, (0, 1, 2, 3)0, (0, 3, 5, 6)0, (1, 4, 5, 6)0, 

a[l , 2, 4] — /3[0, 1,6], then (2, 3, 4, 5)0 or 2 — 5 and 3 — 4 (Figure 6). 

Proof, (a) Assume 3 + 4. There are /x[l, 3, 4] and <5[3, 4, 5]. If /x — 0 then 
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/ 2 7\ 
fij 

11 
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/I 
) 1 ( 

/I 2 /] 3* 

6 4J 

5 

6 

2 [/ 
FIGURE 5 FIGURE 6 FIGURE 7 

H = a i.e. (0, 1, 2, 3, 4)0, thus (0, 1, 2, 3, 4, 5, 6)0. In case of /x + 0 there is 
7 with (1, 7)+ — (/i, 0). Let the trivial case (0, 1, 2, 3, 4, 5, 6)0 be excluded. 
7 4= (2, 3, 4, 5) due to 0 + (2, 3, 4, 5). From 7 = 0 or 7 = 6 it follows 
(0, 1, 2, 3, 4)0 or (1, 3, 4, 6)0 respectively and thus finally (0, 1, 2, 3, 4, 5, 6)0. 
Thus 7 4= (0, 2, 3, 4, 5, 6). If <5 + £[0, 3, 7] were true, then there would be a 
8 with (3, 8) + — (<5, (•), 8 4= 1 otherwise \x = 5, 8 4= 6 otherwise 3 - / 3 . From 
8 = 4 or 8 = 5 it follows (0,1, 3, 4, 7)0 or (0, 3, 5, 6, 7)0 respectively. 8 4= (0, 7) 
due to Ô + (0, 7). Thus 8 4= (0, 1, 3, 4, 5, 6, 7). Owing to (SM0) and 4 + 7 
we get (1, 4, 7, 8)c (Figure 8) and further (0, 1, 2, 3, 4, 5, 6, 7, 8)0. If 5 — £, 
then <5 + T[0, 1, 2, 3], i.e. there is (3 ,9)*— (7,5). 9 4= (0.1) for Ô + (0, 1). 
9 4= (4, 5, 6) for 7 + (4, 5, 6). Thus by Lemma 1 (b) /3[0, 1, 6] — p[l, 4, 9] 
(Figure 9) and furthermore due to a — fia = p, i.e. (1, 2, 4, 9)0 and finally 
(0, 1, 2, 3, 4, 9)0 if not 2 = 9 — Ô. 

(b) If 2 + 5, we exchange 0, 2, 3 with 6, 4, 5 respectively and construct 
7, 8, 9 as in (a) to get (2, 3, 4, 5)0. 

0 

FIGURE 8 FIGURE 9 

LEMMA 3. / / (0, 1, 2, 3, 4, 5, 6)*, (0, 1, 2, 3)0, (0, 4, 5, 6)0, (2, 3, 5, 6)c 

a[0, 1, 4] — j8[0, 3, 6], /Ae» (1, 2, 4, 5)D or 1 — 5 and 2 — 4 (Figure 5). 

Proof. Because of symmetry we need only to prove (1, 2, 4, 5)0 under the 
assumption 2 + 4. Due to 4 — a — 0 and (C2) there is 7 with (0, 7)* — 
(0, M[0, 2, 4]), 7 4= (2, 4, 5) for 0 + (2, 4, 5). From 7 = 3, 7 = 5 or 7 = 6 
it follows (0, 1, 2, 3, 4, 5, 6)0. Thus 7 4= (0, 2, 3, 4, 5, 6). If 7[0, 1, 2, 3] — 
5[2, 4, 5], then according to Lemma 2 (4, 5, 6, 7)0 (Figure 10) and furthermore 
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(0, 1, 2, 3, 4, 5, 6, 7)0, therefore y + ô. i.e. there is 8 with (2, 8)+ — (y, Ô). 
8 4= (0, 2, 3, 4, 5, 6). By Lemma 1(a) «'[0, 4, 8] — 0[O, 3, 6] (Figure 11). 
From this it follows by (C2) a' = a and furthermore by (CI) 8 = 1. 

0 2 0 8 

/ 2 71 
0, 4 

^ â / 
FIGURE 10 FIGURE 11 

In [12] we prove that every Laguerre and Minkowski plane is categoric, if 
it exists and if it is of order less than eight. In the following we shall assume 
the order of C sufficient large, but not necessarily greater than seven. 

LEMMA 4. If (0, 1, 2, 3, 4, 5)+f (0, 1, 2, 3)G, (0, 3, 4, 5)0, 7[0, 2, 4] — <5[1, 4, 5], 

then 4 1 , 2, 4] — 4 1 , 3, 5] (Figure 12). 

Proof, (a) We prove that /3[0, 1, 4] + 4 1 , 3, 5]. If 0 — cr then we would 
construct 77 with (0, 1) — 77 — 7. 7 + 40, 3, 4, 5]. It follows (0, 6)+ — (77, e). 
(0, 1, 2, 3, 4, 5, 6)0 or 6 4= (1, 2, 3, 4). If 6 4= 5 we construct J with (0, 1) — 
? — 4 1 , 5, 6] there is (0, 7)* — (£, ô). Obviously 7 4= (1, 4, 5, 6). Let M pass 
through 0, 4, 7. Due to 4 — 7 — 77 we get (0, 8)+ — (77, M)- 8 #= (1, 4, 5, 6, 7). 
On account of 4 + 6 and Lemma 2 it follows (4, 5, 6, 8)0 (Figure 13) a contra­
diction, namely (0, 6, 8)4= — (77, e)^. If 6 = 5 we find by means of sufficient 
large order of C a 5' — Ô with 0 + 5' and a[0, 1, 2, 3] + e'[0, 4, 5']. There is 
3' with 3' — (a, e'). Then there must be a 6' with 6' 4= (0 ,1 , 2, 3, 4, 5) and 
6' — (e', 77). As for the case 6 4= 5, we take instead of 3, 5, 6, 3', 5', 6' respective­
ly and reach similarly a contradiction under the assumption fi — a. 

(b) If /3 + cr, then let p[l, 4, 6] — a and 6 — a. We prove that 6 = 2. If 
6 4= 2 there would exist y[0, 4, 6] and (4, 7)* — (7', 5). 7 4= (0, 1, 3, 5, 6). 
By Lemma 1 (c) K'[1, 6, 7] — a follows (Figure 14), a contradiction. 

0 0 0 

/ 

• 

7) 
4, 4 

V 1 / 
FIGURE 12 FIGURE 13 FIGURE 14 
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LEMMA 5. If (0, 1, 2, 3, 4, 5, 6)*, (0, 1, 2, 3)0, (0, 1, 4, 6)0, (2, 4, 5, 6)0, 

a[l , 2, 4] — /3[2, 3, 5], then (0, 3, 5, 6)0 or 0 — 5 and 3 — 6 (Figure 7). 

Proof. Assume 3 + 6. There is e[0, 3, 6]. If e + 7[2, 4, 5, 6] then (CI), 
(C2) and Lemma 1 (c) assure 5 — e. On the other hand e — 7 is impossible, 
otherwise by Lemma 4 <5[2, 3, 6] — a . Assume 0 + 5. There is c[0, 5, 6]. If 
a + £[0, 1, 2, 3]. Then by Lemma 1(c) (0, 3, 5, 6)G. If cr — g, there would be 
a 7 with (0, 2, 5, 7)0 and (1, 2, 4, 7)0. From this it follows by Lemma 2 
(4, 5, 6, 7)0 (Figure 15), thus (0, 1, 2, 3, 4, 5, 6, 7)0. 

LEMMA 6. If (0, 1, 2, 3, 4, 5, 6)*, (0, 1, 2, 3)0, (0, 4, 5, 6)0, (2, 3, 5, 6)0 

a[0, 1, 4] — 0[O, 3, 6], /Aew (1, 5, 2, 4)A (Figure 5). 

Proof. For Môbius and Laguerre plane everything is proved in Lemma 3. 
For the Minkowski case 1—5 implies 2 — 4, but we still have to show that 
1—5 implies 2 — 4. If 1 — 5 and 2 — 4 , then there would exist 7 with 
7 4= (0, 1, 2, 3, 4, 5, 6), 2 T 7 and 7 — ô[0, 4, 5, 6]. We construct e with 
(0, 7) — € — (a, 0). There is 8 4= (0, 1, 2, 3, 4, 5, 6, 7) and 8 — (e, y[0, 1, 2, 3]). 
Because of Lemma 3 and (Min) 5 — 8, 1 + 7 and 4 + 8. There are 
m 1, 7], 40 , 4, 8] with (0, 9)* — (£, 0) and (0, 9 % — fo, 0). If (2', 3)* — 
(41, 3, 9], K[2, 3, 5, 6]), then due to (M) we would get 7 — 2' (Figure 16). 
But 2 4= 2'. Therefore v — K. Similarly 7 — /x[3, 8, 9'] (Figure 17). If 3 + 7, 

0 1 0 7 0 4 

/ 4 7\ 
2 y 

7\ 
2 y 1 / 

/ 5 pi 
l] y 

pi 
l] y 2' / 

/ 5 7̂  
sJ y 

7̂  
sJ y 2^ / 

FIGURE 15 FIGURE 16 FIGURE 17 

then there is r[3, 5, 7] with r + i>, i.e. (l r , 3)* — (r, v). V 4= (0, 5, 6, 7). If 
1' = 9, then by Lemma 5 (Figure 18) (0, 1, 3, 6)D and thus (0,1, 2, 3, 4, 5, 6, 9)G, 
contradicts 1—5. Hence (0, l r, 3, 5, 6, 7, 9)*. Due to Lemma 5 it follows 
(0, T, 7, 9)0 (Figure 19), thus 1 = V. But this contradicts 1-^-5. Therefore 
3 — 7 and furthermore 3 — 7 . Similarly we can get 4 — 3 , 1 — 6 and 8 — 6. 
If the order of C is sufficient large, there are 3', & with 3' 4= (0, 1, 2, 3, 8), 
6' 4= (0,4, 5, 6, 7). 3' — 7, 6; — Ô and 0 — ^[0 , 3', 6']. By Lemma 3 (2, 3', 5, 6')G 

follows. As above we can show under the assumption 1—5 and 2 — 4 the 
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relation 3' — 7 contradicts 3 — 7 . Hence 1—5 and 2 — 4 can never happen 
simultaneously. 

PROPOSITION 2. If (0, 1, 2, 3, 4, 5, 6)+ , (0, 1, 2, 3)0, (0, 4, 5, 6)0I a[0, 1, 4] — 

j8[0, 3, 6], then (1, 5, 2, 4)A and (2, 6, 3, 5)A a ^ equivalent (Figure 5). 

Proof. Because of symmetry we need only to derive (1, 5, 2, 4)A from 
(2, 6, 3, 5)A. If the order of C is sufficient large there are 3', 6' such that 
(0 ,1 ,2 ,3) =N y — TtO, 1,2,3], (0,4,5,6) 4= 6' — <5[0, 4, 5,6] and (2, 3', 5, 6')0. 
Applying Lemma 6 it is easy to show j8[0, 3, 6] — /3'[0, 3', 6'] and then (1, 5, 2,4)A. 

LEMMA 7. If (0, 1, 2, 3, 4, 5)4= and (0, 1, 2, 3)0, then each of the following 
conditions is necessary for the other two: 

(1) (2, 5, 3, 4)A, 
(2) «[1, 2, 4] — e[0, 4, 5] and 
(3) a(0, 1, 4) — 0[O, 3, 5] (Figure 20). 

/ 3 71 
51 y 

71 
51 y 3 / 

/ 3 7\ 

y 
7\ 

y 3 / 

/ 2 71 
41 y 

71 
41 y i / 

FIGURE 18 FIGURE 19 FIGURE 20 

Proof. Applying Proposition 2 it is easy to see that (3) is implied by the 
other two conditions. Now assume (2) and (3). If 3 + 4, then by (C2) there is 
6 with (4, 6)* — (e, k(2, 3, 4]) and 6 4= (0, 1, 2, 3). Using the fact that (1) 
and (2) imply (3) we geta[0,1, 4] — /3[0, 3, 6]. It follows 5 = 6, i.e. (2, 3, 4, 5)0. 
If 3 -*- 4, then we choose a 3' with 3 ; + 4 and (1, 2) 4= 3r — y[0, 1, 2, 3]. 
There exist ^[0 , 3 r, 5'] — a with 5' — e and 6 with (4, 6)* — (e, ife[2, 3', 4]). 
By applying what has just been proved we get (2, 3', 4, 5')o- From this by 
proposition 2 (2, 5, 3, 4)A follows. We skip the easy proof that (1) and (3) 
are sufficient for (2). 

By Proposition 2 and Lemma 7 one gets 

LEMMA 8. / / (0, 1, 2, 3, 4, 5, 6)4=, (0, 1, 2, 3)0, (0, 4, 5, 6)0 then any three of 
the following conditions imply the last: 
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(1) (1, 5, 2, 4)A, 
(2) (2, 6, 3, 5)A, 
(3)£[0, 1, 5]—itfO, 2, 6], 
(4) f[0, 2, 4] — 0[O, 3, 5] (cf. L5 in [8]). 

Definition 6. The special proposition of Pappus with respect to 0 in a touch 
plan C denoted (SPO). There is a point 0 in C such that under the assumptions 
(0, 1, 2, 3, 4, 5, 6)*, 7[0, 1, 2, 3] =N e[0, 4, 5, 6], 

(1) if £[0, 1,5] — T?[0, 2, 6] and f [0, 2, 4] — 0[O, 3, 5], then either 1 -- 4 and 
3 -- 6 or 1 ^ 4 and 3 -r- 6 or <*[0, 1, 4] — 0[Of 3, 6]; 

(2) if 1 -^ 5, 2 -^ 6 and f [0, 2, 4] — 0[O, 3, 5] then either 1 -T- 4 and 3 -^ 6 
ora[0, 1,4]— £[0,3,6] ; 

(3) if 1 -^ 5, 2 -*- 6, 2 - 4, 3 -r 5 then a[0, 1, 4] — 0[O, 3, 6]. 

PROPOSITION 3. (SPO) holds. 

Proof. Consider (1) at first. If 1 + 4, then there is p[l, 2, 4]. We have four 
cases to study i.e. (a) p — e[0, 4, 5, 6] ; (b) p — (4, 5) ; (c) p — (4, 6) ; (d) there 
is 7 with (4, 5, 6) 4= 7 — (p, e). By the method given in [8] S2 and applying 
Proposition 2 Lemma 7, 8 instead of L2, L4, L5 of [8] respectively we get 
<*[0, 1, 4] — £[0, 3, 6]. If 1 ---4, then there is 5' on e with (1, 4, 2, 5')A if 5' = 5 
then we have (1) by means of Lemma 8. If 5' 4= 5 we get by Proposition 2 
(1, 5, 3, 5')A and further more (2, 5', 3, 6)A. Hence 3 — 6 . Similarly 1—4 and 
3 — 6 are equivalent. Therefore (1) is proved. Now we consider (2). If 1 + 4, 
then we construct 0' with (0, 3, 6') —p' —a. Due to (1) we get 2 - ^ 6 ' and 
thus 6' = 6. Similarly we get a — 0[O, 3, 6] for 3 + 6, 1 -^ 5 and 2 - 6 . 
Hence if 1 — 5, 2 — 6 and 1—4, then 3 — 6 i.e. (2) is true. Finally if 1 — 5, 
2 -- 6, 2 -r- 4 and 3 -^ 5, then 1 + 4. Let a — /3'[0, 3, 6'] and 6' — e. By (2) 
2 — 6 ' , which implies 6' = 6. This completes the proof of (3). 

In order to prove that a Miquelian touch plane is a C(9Ï) over an algebra 21 
one has to show (1) the induced affine plane is Pappian; (2) every chain is 
either a straight line or a conic; (3) the conies corresponding to the chains are 
quadradic forms ax2 + bxy + cy2 + . . . with fixed ratio a : b : c. Since an 
affine plane is Pappian if it is Pappian with respect to a certain two lines 
(G. Pickert [24]), Proposition 3 assures the statement (1). (In (SPO) the two 
lines 7, e are arbitrary except any line of a touching class.) For (2) we use the 
Steiner's definition of conic, namely, a conic is the set of points of intersection 
of corresponding lines of two projectively related coplanar pencils of lines. It is 
necessary to separate the study of the Môbius case from that of the other two. 
Referring to Figures 21, 22 in order to show £[1, 2, 3, 4, 5, . . .] is a conic we 
have to prove thata[0, 1,3], /5[0, 1,4], Y[0, 1 , 5 ) . . . are projective to o/[0, 2, 3], 
£'[0, 2, 4], 7'[0, 2, 5] . . . denoted a0Y . . . - <*'P'y' To show this projec-
tivity let us take any 6 4= (1, 2, 3, 4, 5) with 6 — £ (if there is no such 6, then 
£ is certainly a conic) and take ô[0, 4, 6] and ô'[0, 5, 7] with ô — 8'. 7 may 

https://doi.org/10.4153/CJM-1974-027-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-027-5


GEOMETRIES OF CHAINS 269 

be one of 1, 2, 3, 4, 5, 6. If {a, <5}, {0, 0"}, {7, 7"} are three pairs of an involu­
tion i.e. abpp'yy" A" WW y (Figure 21) and similarly {«', 5}, {£', 0"}, 
{T'J 7"} (Figure 21) are three pairs of an involution, then the product of the 
involutions is the projectivity we desire. We now prove abfifi"yy" — bafi,ffiy"y. 
Let 8 — (0[O, 1, 4], 0[O, 3, 5]), 9 — (£"[0, 8], j8"[0, 3, 6]) where b" — b. It is 
worth emphasizing that we need S3 in [8] to get (0, 1, 7, 9)0 after applying 
Proposition 2 to obtain (1, 3, 8, 9)0 (Figure 22). We make o{0, 1, 7, 9]. Since 
ab"ffl"e<r - b"a$"M and ab'yyn6a x ô ' ay 'V* (noting 5 = 5' = b" in the 

FIGURE 21 FIGURE 22 

FIGURE 23 FIGURE 24 
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sense of projectivity) have two common pairs, they represent the same 
involution ; that is, aô(3fi"yyf/ ~ ôa/3"l3y//y. For the Laguerre and Minkowski 
plane we refer to Figures 23, 24. The projectivity 0^7 . . . x a'fi'y'. . . 
is obviously the product of perspectivities a/37 . . . — a"t3"yn . . . and 
a"$"y" . . . x afi'y' . . . . The first perspectivity with the improper line as 
axis and centre 0 mapping 1 to b is due to a — a", /3 — /3", 7 — y" . . . which 
are obtained by Lemma 7. The second perspectivity with axis ^[0, 1, a] and 
centre 0 maps b to 2 etc. Now we consider (3). If 1, 2, 3, 4 are four points of a 
chain not passing through 0, where 1 4= 3, 2 4= 3, then the four lines a[0, 1,2], 
/S[0, 2, 3], 7[0, 3, 4], <5[0, 4, 1] form a secant quadrilateral. On the one hand 
since three points determine one chain and this by (2) the conic, a quadrilateral 
determines a chain. On the other hand by Lemma 1 (a) two chains with two 
common points possess the same quadrilaterals and thus their quadratic forms 
have the same ratio a : b : c. For any pair of chains a, ft we can find chains 
7, <5 such that each intersection a C\ fi, $ C\ y, 7 P\ <5, b C\ a has two elements. 
Hence (3) is true. Therefore we have 

THEOREM 3. Every Miquelian MLM touch-plane C is a C(21). 

Combining the above theorem with results of W. Benz etc. we state 

THEOREM 4. For an MLM touch plane C the following conditions are equivalent 
(1) C is isomorphic to a C(Sl); 
(2) (SMO) is valid; 
(3) There is an automorphism group of G which is sharply transitive with 

respect to all triples of non-touching points and if r is an element of this group and 
\r = 2, 2 r = 1, 3 r = 4 then 4 r = 3 and if V — 1, 2T — 2, 3T — 3 then xT — x 
for all points x [2; 5; 21]. 

(4) There is a group G. For four points 1, 2, 3, 4 such that either (1, 2, 3)G and 
(1,2, 4)o or (3, 4, l)o and (3, 4, 2)0 there exists an automorphism mapping 3 to 4 
and keeping 1, 2 invariant. This automorphism corresponds to exactly one element 
of G, denoted by [1, 2; 3, 4]. We require [1, 2; 3, 4] = [3, 4; 1, 2] [11]. 

W. Benz [1] characterized the Môbius planes by a "cross ratio" function. 
This can be generalized for all three geometries of chains considered here [10]. 
Another essentially different characterization is given by means of a polarity 
or a quasipolarity, as done by G. Ewald [12] for Môbius plane, A. Uhl (26] for 
Laguerre plane and the present author [9] for Minkowski plane. The field in 
the former two cases is Euclidean and in the last case is of characteristic un­
equal to two. 

As in [8] one can consider Proposition 2 as a degenerated proposition of 
Miquel and find all other possible degenerations and prove after defining a 
Miquelian dice etc. the generalized complete proposition of Miquel ((VMM) 
in [8]). Since we are dealing with (1, 2, 3, 4)A instead of (1, 2, 3, 4)0 the condi-
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tions here are somewhat more complicated than those in [8]. It seems not 
worth publishing them. 

Remark at revision. In regard to a problem given in the paragraph behind 
Definition 5 we remark that we have in the meantime succeeded in proving 
the following equivalent properties in an MLM-touch plane C without using 
coordinate: (1) (SMO), (2) Angle axioms (W. Benz [3], G. Kaerlein [18], 
L. J. Smid [25]), (3) The existences of an automorphism group stated in 
Theorem 4 (3). This result will be published in the forthcoming article: 
Involutions in the geometries of chains. 
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