Peering towards Cosmic Dawn
Proceedings IAU Symposium No. 333, 2018 © International Astronomical Union 2018
V. Jeli¢ & T. van der Hulst, eds. doi:10.1017/S174392131701081X

Analysing 21cm signal with artificial neural
network

Hayato Shimabukuro and Benoit Semelin

Sorbonne Universités, UPMC, LERMA, Observatoire de Paris, PSL research university,
CNRS, F-75014, Paris, France

email: hayato.shimabukuro@obspm.fr

Abstract. The 21cm signal at epoch of reionization (EoR) should be observed within next
decade. We expect that cosmic 21cm signal at the EoR provides us both cosmological and
astrophysical information. In order to extract fruitful information from observation data, we
need to develop inversion method. For such a method, we introduce artificial neural network
(ANN) which is one of the machine learning techniques. We apply the ANN to inversion problem
to constrain astrophysical parameters from 21cm power spectrum. We train the architecture of
the neural network with 70 training datasets and apply it to 54 test datasets with different
value of parameters. We find that the quality of the parameter reconstruction depends on the
sensitivity of the power spectrum to the different parameter sets at a given redshift and also
find that the accuracy of reconstruction is improved by increasing the number of given redshifts.
We conclude that the ANN is viable inversion method whose main strength is that they require
a sparse extrapolation of the parameter space and thus should be usable with full simulation.
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1. Introduction

Epoch of Reionization (EoR) is one of the milestones in cosmic history. However, the
detailed physics of the EoR is currently poor understood because no observation has yet
probed entire of the EoR yet. Recently, some first-generation radio interferometers have
been attempting to detect statistically the 21cm signal from the EoR, such as the Murchi-
son Wide field Array (MWA), the LOw Frequency ARray (LOFAR) and the Precision
Array for Probing the Epoch of Reionization (PAPER). Furthermore, future instruments
such as the Square Kilometre Array (SKA) and Hydrogen Epoch of Reionization Array
(HERA) are designed to detect the 21em signal power spectrum with higher signal to
noise ratio and at higher redshift, during the Cosmic Dawn. To maximize the scientific
return of the upcoming observations it is important to establish systematic procedures
to derive constraints on the EoR modeling parameters from the observed 21-cm data.
Recently, several works have studied how such constraints can be obtained by exploring
the EoR parameter space with semi-numerical simulations. For example, Fisher analy-
sis (e.g. Kubota et al. 2016; Shimabukuro et al. 2017) and Bayesian parameter inference
such as the Markov Chain Monte Carlo (MCMC) approach (e.g. Greig & Mesinger 2015)
have been applied.

In this work, we suggest a new approach for parameter reconstruction based on a
machine learning method. The main purpose of machine learning is to find approximate
functions that, given the input produce the desired outputs. This is achieved by “learning”
from training datasets with known inputs and outputs (e.g. Ball & Brunner 2010; Bloom
& Richards 2012). In our work, using a simple astrophysical parameterization of the EoR,
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we apply artificial neural network (ANN), which is one of the machine learning methods,
to reconstruct the parameter values from the 21cm power spectrum data.

2. Cosmic 21cm signal
2.1. Introduction of 21cm power spectrum

The brightness temperature for the 21 cm signal is given by
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Here, Ty and T, represent the local spin temperature of the IGM and the CMB tem-
perature, respectively. 7, is the local optical depth in the 2lcm rest frame frequency
vy = 1420.4 MHz, xy is the local neutral fraction of the hydrogen gas, d,, (x,2) = p/p—1
is the evolved matter overdensity, dv, /dr is the local gradient of the gas velocity along the
line of sight and H(z) is the Hubble parameter. All quantities are evaluated at redshift
z=vy/v—1.

We usually use the 21cm power spectrum in order to evaluate statistical property of
21cm fluctuations. We define the 21cm power spectrum as

(6Th(K)OT} (K )) = (2m)*3(k + K ) Pay (k). (2.1)

In our context, we use the dimensional 2lcm power spectrum, k3P(k)/272. We use
the 21cmFAST to generate the 21cm PS for a given set of astrophysical parameters
(Mesinger et al. (2011)). We performed simulations in a 200 Mpc® comoving box with
300° grid cells for a wide range of EoR parameters described in the next section. In our
calculation, we use the 21cm power spectrum in the range 0.06 Mpc™! < k < 1.4 Mpc~!
divided into 14 bins.

2.2. FEoR model parameters

It is common to characterize EoR models with parameters and then examine the effect
of changing the parameters on the 21cm signal. We employ three key parameters (¢ : the
ionizing efficiency, Ty, : the minimum virial temperature of haloes producing ionizing
photons, Ry p,: the mean free path of ionizing photons) which are often used in the
semi-numerical approach (please read Mesinger et al. (2011) in detail).

3. Artificial neural networks (ANNsSs)

ANNSs are one of the machine learning methods and are a mathematical model inspired
by the natural neuron network in our brain. The main purpose of ANNs is to construct
approximate functions which associate input data with output data. In order to construct
such a function, the ANN has to learn from “ training data’. The architecture of a simple
class of ANN consists of three layers: the input layer, the hidden layer and the output
layer. Each of them has a number of neurons as shown in Fig.1. In a more general case,
we could choose the number of hidden layers and the number of neurons at each layer
arbitrarily. In our study, we use 1 hidden layer and the number of neuron at input layers
have 42 neurons corresponding to the bins of 2lcm PS in the case of multiple redshift
(14 x 3 = 42). We prepare 70 training datasets and 54 test datasets which consist of the
21cm PS as input and EoR parameters as output. We use back propagation algorithm
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Figure 1. Typical architecture of an artificial neural network. The architecture of the ANN
consists of an input layer, a hidden and an output layer of neurons. Each neuron connects the
neurons in the next layer.

to train architecture of neural networks (please read Shimabukuro & Semelin (2017) if
readers are interested in our design for ANNSs).

4. Result

We show our main result. In Fig.2, we show the EoR parameters obtained by the
ANN as function of true values used in the simulations, using the 21lcm PS at z = 9,
10, 11, including both thermal noise and sample variance. As you can see, the recovered
parameters are good agreement with expected values. In order to evaluate this agreement
qualitatively, we use the normalised root mean square error (RMSE) defined by

RMSE = (4.1)

Here, X = (0ann — Odata)/0data ( with 6 one of Ry, Tvir OF, €). Oann and qaca are the
EoR parameters evaluated by the ANN and from the training data, respectively. Smaller
values of RMSE means that the difference between recovered and expected values is
small. In table.1, we show RMSE for obtained parameters computed by the 2lcm PS
at single redshift (z = 9) without any noise (1st column) or with both thermal noise
and cosmic variance (2nd column), multiple redshift case (z = 9,10,11) with both noises
(3rd column). We also show RMSE in the case that the number of training datasets
are reduced from Nipain = 70 t0 Nipain = 20 (4th column). As the number of redshifts
of the 21cm PS increase, the RMSE becomes smaller for each parameter (compare 2nd
column and 3rd column). We also see that the RMSE is smaller if we reduce the number
of training datasets. From these facts, we find that the parameter reconstruction by the
ANN is improved if we use the 21cm PS at different multiple redshifts and increase the
number of training datasets.

5. Summary

In this work, we applied artificial neural network (ANN) to estimate EoR parameters
from the 21cm power spectrum (PS). We used 21cmFAST to produce 21cm PS for dif-
ferent values of the following parameters: Ry, ¢ and Tyi,. We ran 70 simulations, that
provided us with 70 training datasets made of the 21lcm PS and the corresponding EoR
parameter values. With these datasets, we trained the ANN, which consists of an input
layer, one hidden layer and an output layer. We found that the accuracy of parameters
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Figure 2. Comparing the EoR model parameter values computed by the ANN against the
values used in the simulation using the PS at z = 9,10, and 11 as input data and including both
thermal noise and sample variance.

2 2 2 2
Xwo/noise Xw/noise Xw/noise,zevolutiou Xw/noise,reduced

Rup 0.228 0.258 0.172 0.262
¢ 0.271 0.288 0.168 0.290
log(Tvir) 0.027 0.038 0.019 0.029

Table 1. The mean chi-square values for the EoR model parameter values computed by the ANN
from the PS as functions of the values used in the simulations. We show mean chi-square values
for four types of data. The first column of this table is the chi-square values when we do not
include any noise, in second column we take thermal noise and sample variance into account.
We use the 2lcm PS at z = 9 for both cases. The third column is when we take redshift
evolution(z = 9,10, 11) into account and the fourth column is when we take both thermal noise
and sample variance into account and we reduce the number of training data samples.

computed by the ANN was improved compared with those obtained based on the PS at
a single redshift if we used multiple redshift. This is simply that the neural network takes
advantage in its learning process of the fact that the input hold more information and
that the 21cm PS is sensitive to different parameters at different redshifts. The accuracy
of parameters was also improved if we increased the number of training datasets.

One of the remarkable points of our study is that we can recover the EoR parameters
from the power spectrum using the ANN with good accuracy although we only use 70
training datasets. This number is quite small compared with that required for MCMC
(e.g. 10° realizations of the PS are used in 21CMMC Greig & Mesinger (2015)).
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