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Abstract

In this paper, we characterise all maximal elements in the semigroup S(X, Y) = { f ∈ T(X) : f (Y) ⊆ Y}
with respect to the natural partial order. Our results correct an error in the work of Sun and Wang [‘Natural
partial order in semigroups of transformations with invariant set’, Bull. Aust. Math. Soc. 87(1) (2013),
94–107].
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1. Introduction

Let X be a nonempty set. The semigroup T(X) consists of all mappings from X into
itself, with composition as the semigroup operation. For a nonempty subset Y of X, the
semigroup

S(X, Y) = { f ∈ T(X) : f (Y) ⊆ Y}
consists of all transformations that leave Y invariant and forms a subsemigroup of
T(X). It contains the identity map idX on X. If Y = X, then S(X, Y) = T(X), making
S(X, Y) a generalisation of T(X). This semigroup was introduced by Magill [1] in
1966. Since then, its algebraic properties have been studied extensively. We discuss
the natural partial order on S(X, Y), which is defined for f , g ∈ S(X, Y) by

f ≤ g if and only if f = kg = gh and f = k f for some k, h ∈ S(X, Y).

Recall that a partition π1 refines a partition π2 if every block of π1 is contained in a
block of π2. Moreover, for any f ∈ S(X, Y),

π( f ) = { f −1(x) : x ∈ f (X)} and πY ( f ) = { f −1(y) : y ∈ Y ∩ f (X)}.
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FIGURE 1. Hasse diagram of (S(X, Y),≤).

In 2013, Sun and Wang [3] characterised the natural partial order on S(X, Y) in terms
of images and kernel classes. Their results are as follows.

THEOREM 1.1 [3, Theorem 2.1]. Let f ∈ S(X, Y). Then, f ≤ g if and only if the
following statements hold:

(1) π(g) refines π( f ) and πY (g) refines πY ( f );
(2) if g(x) ∈ f (X) for some x ∈ X, then f (x) = g(x);
(3) f (X) ⊆ g(X) and f (Y) ⊆ g(Y).

THEOREM 1.2 [3, Corollary 2.2]. Let f , g ∈ S(X, Y) and f ≤ g. If g(X) = f (X), then
g = f .

Moreover, they described the elements of S(X, Y) that are left compatible, right
compatible, maximal and minimal, and they investigated the greatest lower bound
of two elements with respect to this order. However, it was discovered two years
later that their results contained errors in the section concerning the determination
of left-compatible elements. This error was subsequently corrected by Sun and Sun
[2]. Unfortunately, errors still remain in the result identifying the maximal elements of
S(X, Y), which is stated as follows.

THEOREM 1.3 [3, Theorem 3.1]. Let f ∈ S(X, Y). Then, f is maximal if and only if
either of the following statements holds:

(1) f is either surjective or injective;
(2) f |X−Y is injective, f (X − Y) ∩ Y = ∅ and f (Y) = Y.

To clarify this issue, consider X = {1, 2, 3} and Y = {1, 2}. We obtain the Hasse
diagram in Figure 1 for (S(X, Y),≤), where f = (abc) represents the mapping f ∈
S(X, Y) such that f (1) = a, f (2) = b and f (3) = c.

From the Hasse diagram, we can see that (112) and (221) are maximal, but they are
neither surjective nor injective and their images of Y are not equal to Y. In other words,
they do not satisfy Theorem 1.3. We aim to correct Theorem 1.3.
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2. Main results

This section provides a characterisation of the maximal elements of S(X, Y) with
respect to the natural partial order.

THEOREM 2.1. Let f ∈ S(X, Y). Then, f is maximal if and only if it satisfies one of the
following conditions:

(1) f is surjective or injective;
(2) π( f ) refines {Y , X − Y} and either of the following holds:

(i) Y ⊆ f (X) and f |X−Y is injective;
(ii) X − Y ⊆ f (X) and f | f −1(Y) is injective.

PROOF. Let f be maximal and assume that it does not satisfy condition (1). Then,
f is neither surjective nor injective, which implies that there exists a ∈ X − f (X). To
show that f satisfies condition (2), let A ∈ π( f ) and assume that A � Y and A � X − Y .
Then, there exist w, z ∈ A such that w ∈ Y and z ∈ X − Y . Hence, A ∈ πY ( f ). Define
g : X → X by

g(x) =

⎧
⎪⎪⎨
⎪⎪⎩

a if x = z,
f (x) otherwise.

Then, g ∈ S(X, Y) and f < g, which contradicts the maximality of f. Thus, A ⊆ Y or
A ⊆ X − Y , and therefore, π( f ) refines {Y , X − Y}. As a result, since f is not injective,
either f |Y or f |X−Y must not be injective.

Case 1: f |Y is not injective. We will show that f satisfies condition (i). To prove
Y ⊆ f (X), assume that there exists w ∈ Y − f (X). Since f |Y is not injective, there exist
distinct elements y1, y2 ∈ Y such that f (y1) = f (y2). Define g : X → X by

g(x) =

⎧
⎪⎪⎨
⎪⎪⎩

w if x = y1,
f (x) otherwise.

Then, g ∈ S(X, Y) and f < g, which leads to a contradiction. Therefore, Y ⊆ f (X). This
implies that a ∈ X − Y . To show that f |X−Y is injective, assume that there exist distinct
elements x1, x2 ∈ X − Y such that f (x1) = f (x2). Define g : X → X by

g(x) =

⎧
⎪⎪⎨
⎪⎪⎩

a if x = x1,
f (x) otherwise.

Then, g ∈ S(X, Y) and f < g, which is a contradiction. Hence, f |X−Y is injective.
Therefore, f satisfies condition (i).

Case 2: f |X−Y is not injective. Then, there exist distinct elements x1, x2 ∈ X − Y such
that f (x1) = f (x2). We will show that f satisfies condition (ii). To prove X − Y ⊆ f (X),

https://doi.org/10.1017/S0004972725000243 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972725000243


4 A. Baka and Y. Chaiya [4]

assume that there exists z ∈ (X − Y) − f (X). Define g : X → X by

g(x) =

⎧
⎪⎪⎨
⎪⎪⎩

z if x = x1,
f (x) otherwise.

Then, g ∈ S(X, Y) and f < g, which is a contradiction. Therefore, X − Y ⊆ f (X). This
implies that a ∈ Y . To show that f | f −1(Y) is injective, assume that there exist distinct
elements z1, z2 ∈ f −1(Y) such that f (z1) = f (z2). Thus, {z1, z2} ⊆ A for some A ∈ πY ( f ).
Define g : X → X by

g(x) =

⎧
⎪⎪⎨
⎪⎪⎩

a if x = z1,
f (x) otherwise.

Then, g ∈ S(X, Y) and f < g, which is a contradiction. Hence, f | f −1(Y) is injective.
Therefore, f satisfies condition (ii).

Conversely, assume that f satisfies condition (1) or (2) and f ≤ g for some
g ∈ S(X, Y). Then, by Theorem 1.1(3), f (X) ⊆ g(X). Thus, by Theorem 1.2, we can
show that f = g by showing that g(X) ⊆ f (X). To do so, let a ∈ g(X); we must show
that a ∈ f (X). Since a ∈ g(X), there exists z ∈ X such that g(z) = a. Let f (z) = a′. It
follows that a′ ∈ f (X) ⊆ g(X), so there exists z′ ∈ X such that g(z′) = a′. By Theorem
1.1(2), we have f (z′) = g(z′) = a′ = f (z).

Case 1: f satisfies condition (1). It is clear that f (X) = g(X) when f is surjective. In the
case where f is injective, we obtain z = z′. Hence, a = g(z) = g(z′) = f (z′) ∈ f (X).

Case 2: f satisfies condition (2).

Subcase 2.1: f satisfies condition (i). If a ∈ Y , then, since Y ⊆ f (X), we conclude that
a ∈ f (X). If a ∈ X − Y , then z ∈ X − Y . Since f (z) = f (z′), we have {z, z′} ⊆ A for some
A ∈ π( f ), implying that z′ ∈ X − Y . Since f |X−Y is injective, it follows that z = z′. As in
Case 1, we conclude that a ∈ f (X).

Subcase 2.2: f satisfies condition (ii). If a ∈ X − Y , then, since X − Y ⊆ f (X), we
conclude that a ∈ f (X). If a ∈ Y , then, since g(z) = a, we have z ∈ A for some
A ∈ πY (g). Since πY (g) refines πY ( f ), we obtain f (z′) = f (z) ∈ Y and, hence, z,
z′ ∈ f −1(Y). Since f | f −1(Y) is injective, it follows that z = z′. As before, a ∈ f (X).

Therefore, f is maximal. �

Note that if Y is a finite subset of X, then the injectivity of f | f −1(Y) implies that f
is surjective on Y, that is, Y ⊆ f (X). Thus, in Theorem 2.1, the functions satisfying
condition (2), type (ii), are already included in condition (1).
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