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ON CERTAIN SEQUENCES OF PLUS AND MINUS ONES 

D. BORWEIN AND W. GAWRONSKI 

1. Suppose throughout that c is a fixed positive integer, that 

a = 1 - c+ v V + 1), 

and that 

en = (-l)[an\ Sn = à «*, i ; = i : Sk for n = 1, 2, . . . , 

where [x] is defined to be the largest integer not exceeding x. The following 
expansions of a and a/2 as simple continued fractions are easily verified: 

a = (1,2c, 2c, . . .) 

'<0, 1,2, 2, . . .) if c = 1 
a'2 \(0, 1, 1, c - 1, 1, 1, c - 1, . . .) if c > 1. 

In a recent issue of the American Mathematical Monthly [83, 1976, No. 7, 
p. 573] H. Ruderman posed the problem of proving the convergence of the 
series X^=i en/n in the special case a = \/2, and asked for an estimate of its 
sum. To prove convergence we note that, by Abel's partial summation for­
mula, 

n n o ci 

V1) 2^f h ^U h(h _1_ 1\ ' 
*= 1 * fcli(Hl) ' » + !' 

Furthermore wre have 5W = 2en — n, where en is the number of positive integers 
k ^ n for which [ak] is even or, equivalently, for which the fractional part of 
ak/2 is in the interval (0, 1/2). The familiar result that the sequence (an/2) is 
uniformly distributed modulo 1 when a is irrational, yields only that en/n —> 
1/2 as n —> oo , and hence that Sn = o(n); but this is insufficient to establish 
the convergence of 2Z?=i tn/n. A better estimate of Sn is obtained, however, 
from a known result on the discrepancy of the sequence (an/2) [3, Theorem 3.4, 
p. 125] which yields 

(2) \Sn\ = 2n 
w 2 

^ 6 + 2Mclogw, » è l , 
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where 

1 2 
+ r " if C = 1 A/f = / l o g ((1 + V5)/2) log 3 

+ -. if c > 1. 
Jog ((1 + V5)/2) loge 

This estimate together with (1) shows that the series in question is convergent. 
Our primary object in this paper is to establish the following estimates for the 
sequence (Sn) and the sequence of its mean values (Tn/n): 

(3) |5B| < ^ e + 5 e log (n + (l/2c)), » i l , 

where 

A _ > g 2 ( c - l+V(c2+l))V(c2 + 1) 
2log(c + V(c2+l)) 

1 

2 1og(c + V(c 2 +1) ) ' 

and 

(4) 0 ^ - ^ ^ i ( l +-1-) , w è 1 
n 2\ ni 

(See Theorems 1 and 2.) These estimates are best possible in a certain sense. 
(See (5) and the comments following the proof of Theorem 2.) Though (2) is 
derived from deep results concerning the uniform distribution of the sequence 
(an/2), 2MC, the coefficient of the term involving log n, tends to infinity as 
c —> oo , whereas Bc, the corresponding coefficient in (3), tends monotonically 
to zero as c —» co. Evidently (4) cannot be derived from either (2) or (3). 

In the final section we compare the effectiveness of the estimates (2) and (4) 
in determining the sum of the series X^Li en/n. We also show that certain 
standard summability methods which sum the series ^"= i ( — l)n fail to sum 
the series 2S=i *n-

2. In this section we investigate some remarkable patterns in the behaviour 
of the sequences (en), (Sn) and (Tn). 

We introduce some notation additional to that given in the previous section. 
Let 

d = c2 + 1, p = c - 1 + Vd, So = 0, To = 0. 

Let pk/Çk be the fe-th convergent to the continued fraction expansion of a. 
The convergents satisfy the well-known recurrence relations 

p-i = po = 1, pk = 2c pk-i + pk-2 for k ^ 1 

q-i = 0, g0 = 1, g> = 2c g*_i + g>_2 for fe ̂  1. 
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Let 

nk = ±(pk-l), i ^ O . 

It is easily verified that nk is an integer, that 

aj3 = 2c, - 1 / 2 < 1 - a < 0, en = ( - 1 ) ^ 

and that, for k ^ Q, 

2pky/d = a(l +/3)*+i + /3(l - a ) * + 1 , 

2g,V^ = (1 + /3)*+1 - (1 ~ a)*+1, 
pk - aqk = (1 — a)k+l, nk + qk = nk+u nk + pk+i = nk+2. 

The first lemma is concerned with some basic identities involving the sequences 

(«n)i (Sn) and (Tn). 

LEMMA 1. The following identities hold for k ^ 1. 
(a) ePk = ( - l )*+i . 
(b) e} = ( - 1 ) ' t / 1 g j ^ 2 c . 
(c) e , t t = ( -1) '+* if l Ûj£2c* + 1. 
(d) t, = it iff = pf + i,l Û i < Qk-
(e) u + ej = 0 ifi+j = pk,l èi< j . 
(f) €j = 6( if i + j = qk, 1 g i g j . 
(g) «, = ( - l ) r e ( */ i = r j t + » , l ^ < f o l ^ ^ 2c. 
(h) 5 , = St if i + j = />» - 1, 0 g t g j . 
( i ) 5 w = ( - l ) * + \ S » ^ = - * , S„M = *. 

, . . „ . . . _ . ^ . c _ JO if k is even 
(3) F , r . + J = qt - 1,0 g ^ j, S{ + S, = {_/ l / t i s a H i 

• 1 if fe is even, r is odd 
TQk [0 otherwise. 

(1) For j = rqk + i,0 ^ i < qk, 1 S r ^ 2c, 

St = Sj if r is even, 

c i c /O if k is odd . 
( — 1 if kis even 

(m) For j = rg* + i, 0 ^ i < &, 1 ^ r ^ 2c, 

7"; — T\ — TrQk if r is even, 

r . ^ r JO if kis odd , . 77 

1 j -\- I i — 1 TQ — \ A ,c, . awa r w caa. 
* I — 1 2/ & w ê ew 

(0 if r is ez>ew ) T . , 7 

? /o v • u I * is odd 
/ \ i? i ^ ^ o i 1 T^ )—qk2 if Y is odd ) 
(n) For 1 ^ r ^ 2c + 1, 7rff = \ / 0 . . . ) 

J ~r(lk/2 ij r is even I , . 
' - (r - l)g,/2 - 1 if r w odd j 6Vm' 
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Proof, (a) We have (3pk = 2cqk + 13(1 - a)k+1 and thus, since 0 < /3(a - 1)*+ 1 

< 1 and - | < 1 - a < 0, 

to* 1 = i2c^ if k is odd 
[PFkï {2cqk-l if k is even; 

and this implies tha t ePk = ( — 1)^*1 = ( —l)*+i. 

(b) For 1 _" j = 2c, we have [aj] = [ j / (c + V d ) l + j which implies tha t 

(c) Star t ing from the identi ty ajqk = jpk — j(l — a)k+l we get, since 0 < 
j(a - 1)*+1 £ (2c2 + l)/(c + Vd)2 < 1, tha t 

r • l )JPk ~~ 1 if fe is odd 
[ c y & ] = W * if £ is even. 

Fur ther pk is odd and hence ejPk = ( — l)j+k. 

(d) For j = ^ + i, 1 ^ i < <?A-, we have 

0j = a t e + 0(1 - a)**1 + ai + 2(c - l ) i 

- 2cqk + 2(c - l ) i + /3(1 - a)k+1 + ô + a, where a = [ai]. 

Since i < qk} it follows tha t <5 = a i — a _• la^—i — ^ — 1 | = (a — 1)* by 
s tandard theory. (See e.g. [4, p. 167, Theorem 7.13].) Fur ther 0 < /3(a — 1) < 
2c(\/d — c) < 1 and so ô > (3(a - 1)*+1. Likewise we obtain 1—6 = 1 + 
a — ai > 13(1 — a)k+1 and so 

[ # ] = 2cqk + 2(c - l ) i + [ai], 

from which it follows tha t ê  = e*. 

(e) Let i + j = £*, 1 g i < ^ / 2 . Since 1 < a < 3/2, we have 

£>i. a(7fc , a — 1 / . a\ , a 1 . , 3 

2 < 2 + ~ 2 ~ = 3* " MX " 2j + 2 ~ 2 = 3* + " ~ 2 < 3*' 
and by the same argument as in the proof of (d) it follows tha t [/3j] = 2cqk — 
2(c — \)i — 1 — [ai] and thus t h a t €; = — e*. 

(f) For j = ^ — 1, 1 ^ i < gA-, we have «^ = pk — (1 — a)* + 1 — a — ô, 
where a = [ai]\ and as above ô > (a — l)k+l and 1 — ô > (a — l)k+1. Hence 
[aj] — pk — 1 — [ai], and so, since pk — 1 is even, e?- = et. 

(g) For j = rg^ + i, 1 =" i < qk, 1 S r ^ 2c, we have 

«J = rpk + r ( l - a ) ^ 1 + a + Ô, 

where a = [ai]; and as before 5 = (a - l)k > 2c(a - l)k+l
 = r (a - 1)*+1 

and 1 — 5 > r (a — 1)*+1. Thus [aj] = r£A- + [ai] and so e;- = ( — l)ret, since 
r ^ has the same pari ty as r. 
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(h) By (e) we have, for i + 1 + j = Pk, 0 S i < j , that 

3 

Sj = Si + 2^t ev — Sf, 
v=i+l 

since 7 — 1 is even. 

(i) By (h), Sp 1 = 0 and so, by (a), SPk = eVk = ( —1)*+1. Next, since 
tii + pi+i = ni+2 and w7- < qt < Çt+i, we have, by (d), that 

v=Pi + l+l 

and so Sni+2 — Sni = SPi+1 = ( — l)i for i ^ 0. Hence 

A; 

and 

^„ t _ 1 = E (Snu+1 ~ Sn,Hi) + 5», = - ( * - 1) - 1 = - * , 
2 = 1 

since n\ — 1 and 51 = 61= — 1. 

(j) By (f) we have, for i + 1 + j = gA-, 0 S i ^ 7, that S* = SffA.-i — .5^; 
and hence that St + Sj = 5ffjfc — effjfc = SQk + ( — 1)*, by (c). Next, since 
Kk + Qk = nk+i and nk < qk, it follows, by (g) with r = 1, that Snjt+1 — S^ = 
— «Ŝ  and so, by (i), 

<? — 9 _u ç — < ^ when k is odd 
9k Ufc Hk+1 {— 1 when k is even. 

Hence 

( 0 when fe is even 
Qh ( —1 when k is odd, 

and this completes the proof. 

(k) Let j = rqk + i, 0 ^ i < qkj 1 ^ r ^ 2c. Applying (g) we get Sj — 
STÇk = ( — l)rSi. Taking i .= qk — 1 we get j = (r + l)qk — 1 and hence 

Srqk = 5 ( r + l ) ^ - l — ( — 1 ) ^ ^ . - 1 = 5 ( r + i ) ^ — ( — 1 ) TSQk ~ e(r+l)qk + (—\)T6Qk 

= S(r+i)qk ~ (-l)rSQk, by (c). 
Consequently 

r r 

S(r+l)gk = 2_/ (S(i+»Qk — SiQk) + S<lk = Sçk X ( - ! ) ' + $Qk 
i=l 

0 when r is odd 
•SV*. when r is even. 
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In the proof of (j) it was shown tha t 

10 wrhen k is odd 
So = 

\ — l when k is even. 
I t follows that , for 1 ^ r ^ 2c + 1, 

— 1 when k is even and r is odd 
5 = rQk (0 otherwise. 

(1) Applying (k) to the formulaSj — ( — l)rSt = SrQk, which was established 
in the preceding proof, we get the desired identities. 

(m) This is an immediate consequence of (1). 

(n) Since qk — 1 has the same pari ty as k, an application of (j) yields 

10 when k is even 
T = Qfc~ [—qk/2 when k is odd; 

and hence, by (k), 

— 1 when k is even 
T = 

Q]c \ —Qk/2 when k is odd. 
Next, we consider two cases. 

Case 1: k is odd. By (m) we have, for j = rqk + i, 0 rg i < qk, 1 ^ r ^ 2c, 
t ha t r , = 7 \ - ( - l ) r + TrQk. Taking i = qk - 1 we get j = (r + 1 ) ^ - 1 
and hence r ( r+i ) ? A_i = r , ^ - l ) r + T r ^ ; a n d s o T(r+1)Qk - TrQk = TQk^(-l)T, 
since S ^ + D ^ = 0 by (k). Thus 

T _ j 2\. = -~Q_k/2 when r is even 
(r+l)ok - ^ _ r ^ _ i = Q w h e n r i g o d d < 

Case 2: k is even. Again by (m) we have, for j = rqk + i, 0 ^ i < qk, 
1 ^ r ^ 2c, t ha t 

T _ i — 7^ — ̂  + 7 ^ when r is odd 
; \Ti + 7VffA when r is even. 

Hence, since TQk-\ = 0, we conclude as in the preceding case, t ha t 

' S(r+i)<7A — qk + 1 = — qk + 1 when r is odd 
r+ Qfc TQk (5(74-1)^. = — 1 when r is even. 

I t follows tha t 

r + 1 f qk when r is odd 
2 

1 when r is even. 

This completes the proof of (n) 
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Our next lemma shows that n2k-i is the first value of n for which Sn attains 
the value — k. 

LEMMA 2. If k ^ 1 and n < n2k-i, then \Sn\ < k. 

Proof. We proceed by induction with respect to k. The proposition that 
\St\ < k — 1 for i < n2k-2 holds for k = 2. Assume it to be true for a given 
k ^ 2. Supposing first that k ^ 3 we proceed from the induction hypothesis as 
follows. Since g2^-4 ^ w2A;_3, we have, for j = rc/2A;_4 + 2, 0 ^ i < q2k-\, 
1 ^ r ^ 2c, by (l),that 

c _ < St when r is even 
7 I — St — 1 when r is odd. 

Also, by (k), S{ = —1 for i = (2c + 1 ) ^ - 4 . Thus 

-fe < 5 , < fe - 1 for i S (2c + 1 ) ^ - 4 . 

Further g2/L—3 < (2c + 1 ) ^ - 4 and w2A-3 + <ln-z = ^ - -2 and so, by (1), we 
have, for j = q_U-% + h 0 è i < nn—i, that 

\S,\ = \St\ < k - 1, 

since w2/c-3 < ^2^-3- Therefore 

— k < Sf < k — 1 for i < n2A—2. 

But, by (b), the final inequalities also hold for k = 2, since n2 = 2c + 1. 
In what follows we suppose k ^ 2. By (1) again, we have, for 7 = rç2A._3 + i, 
0 ^ i < g2fc-3, 1 ^ f ^ 2c, that |5j| = \St\ and so, since q2k-z < n2k-2, 

-k < Si < k for i < (2c + 1 ) ^ - 3 . 

Finally, the relations g2A-_2 < (2c + l)qu-z and n2k-2 + q2k-2 = ^ - 1 imply, 
by (1), that — Sj = 5 ^ + 1 for j = q2k-2 + i, 0 ^ i < n2k-2. Hence 

— k < Sj < k - 1 for q2k-2 < j < n2k-L 

Since q2k~2 < (2c + l)g2/._3, we have established that 

\St\ < k for all i < n2k-\. 

This completes the proof. 

Similar considerations show that n2k is the first value of n for which Sn 

attains the value k. 

THEOREM 1. If n ^ I, then 

l og - (2cn + l)\/d 
l e i a 

i^1 2 log (1 + / ? r • 

https://doi.org/10.4153/CJM-1978-016-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-016-3


SEQUENCES 177 

Proof. Suppose there exists an integer n 2: 1 such tha t 

log - {2cn + \Wd 

W = 2 l o g ( l + /3) • 

Then , put t ing k = \Sn\, we get 2k log (1 + /3) è log (2(2cn + l ) V ^ / « ) and so 

w ̂  è fe ̂  + «tt - ') < h <*~ -x) -w— 
which contradicts Lemma 2. 

Using Lemma 1 (i) and Theorem 1, we can easily verify tha t 

r 2 S n l o g ( l + £) 2 5 , log (1 + fl) 
,̂ v hm sup — = 1, lim mi — - = — 1, 
{ô) n~>œ log - (2cn + l)\/d "** log - (2cn + \)y/d 

a a 
thereby showing tha t Theorem 1 is best possible in the sense indicated. 

Note tha t a —> 1 as c —> 00 , and thus the sequence (( —l) n ) is in a sense the 
limiting case of the sequence ( ( — l ) [ a n ] ) . Moreover, for fixed n, the bound in 
(3) for \Sn\ tends to 1 as c —> 00 , and this is the least upper bound for \Sn'\, 
where Sn' = XX=i ( — l)fc. Put t ing Tn' = ]C/Ui Sk we observe tha t n/2 ^ 
— Tn' ^ (n + l ) / 2 . The following theorem shows tha t a surprisingly similar 
est imate holds for Tn. 

T H E O R E M 2. If n ^ 1, then 0 ^ - r n ^ | ( w + l ) . 

Proof. We prove by induction with respect to k tha t 

0 g - 7 \ g * ( * + 1) f o r i < &, £ ^ 1. 

Since gx = 2c, we have, by Lemma 1 (b), tha t S„ = S j = i (—1) ; for *> rg 2c, 
which implies tha t 0 ^ — Tt S (i + l ) / 2 for i < qi. Now suppose tha t 
^ 1 and tha t 0 ^ - Tt ^ (t + l ) / 2 for i < qk. Let j = rg, + i, 0 g i < 
<Z*> 1 = P = 2c. We consider three cases, applying Lemma 1 (m) and (n) in 
each case. 

Case 1: r is even. Then Tj — Tt = TTQk ^ —rqk/2 = (i — j)/2 and so 

Tj +j/2 è Tt + i /2 ^ - 1 / 2 and T7- rg 7 \ ^ 0. 

Case 2: r is odd and k is even. Then 

T -x.i - T _ Ï j-•?' ~ *' _ r ^ r _ 2* _i_ XS* 
*j-r 2~~ ra* 2^ 2 l rq* 2 ^ 2 

and so, since Tj is an integer, 

Tj+j/2^ - 1 / 2 . 
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Also, 

T T T A < (y ~ JQgfe i i i + X ; < I 
T, = rr,fc - r< - ^ - — 2 — " x + ~2 ' - " 2 ' 

Case 3: r and & are odd. Then 

T, + j / 2 = TrQk - Tt + j/2 > -qk/2 + rqk/2 ^ 0 

and 

Tj = TrQk -Tt£ -qk/2 + {i + l ) / 2 g - ç , / 2 + qk/2 = 0. 

Hence we have in every case that 0 S —Tj S (j + l ) / 2 for j < (2c + l)qk. 
Since qk+i < (2c + l)qk, the proof is complete. 

It follows from Lemma 1 (k), (m), and (n) that if n = 2q2k + 1, then 
Tn = T2Q2k + Ti = -q2k - 1 = - ( « + l ) /2 , whereas if w = 2q2k-i - 1, 
then Tn = 7\ — !Tff _i = «Ŝ  = 0. This shows that the inequalities in 
Theorem 2 are sharp. 

3. In this section we show how the preceding estimates can be used to 
determine the sum a of the series X^=i €w/w. In addition we contrast the 
behaviour of the series ^2n=i tn with that of J2n=i ( — 1)" with regard to sum-
mability by certain standard methods. 

The problem of estimating the sum of the series Yln*=i tn/n reduces to knowing 
how close its n-th partial sum an is to a. Applications of Abel's partial summa­
tion formula yield 

• àn rr-y Sk 

n + 1 k=n+i k[k + I) 

say, and 
o n^ co fj^ 

say. It follows from (2) that 

, , . 6 + 2Me(l + l o g n ) 
I A. I < n , 

and from (4) that 

o < -rn< è(-4rT + —r̂ l • 
2\w + 1 w + 2/ 

Consider now the special case a = y/2 (c = 1). We find that M\ < 3.9. For 
n = qi9 = 15994428, we have, by Lemma 1 (k) and (n), that Sn = 0 and 
Tn = —n/2; and a computer yielded an = —0.5154184551. Using the above 
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estimate for pn we get 

-0.515428 < a < -0.515409, 

and using the estimate for rn we get 

-0.5154186 < a < -0.5154184. 

It is familiar that the series ^2^=1 ( — l ) n is summable to —1/2 by the 
Cesàro method C\ and consequently by the Abel method A. It is also summable 
to —1/2 by the Borel method B. We shall show, on the other hand, that the 
series X^=i en is not summable by any of the above standard methods. Let 
Un = 1J£=I Tk. Then, by Lemma 1 (m), we have Tj = T2q + I\- for j = 
2qh + i, 1 g i < qk, and so 

UZQk-i - U2Qk - UQk-i = (qk - 1 ) ? V 

It follows, by Lemma 1 (n), that 

lO when n = q2v-\ 
Uzn-l — L'2n ~ Un-\ — i f 1X , 

— n{n — 1) when n = q2v. 
If we now suppose that Un/n

2 tends to a finite limit / as n —> co , we get the 
contradictory conclusions that 9/ — 4/ — / = 0 and 9/ — 4/ — / = —1. Hence 
the sequence (Un/n

2) is not convergent and, equivalently, the sequence (TJn) 
is not limitable C\. Now it is known (see e.g. [1, p. 214]) that if X^=i en is 
summable A, then (TJn) is limitable A and hence, by a familiar tauberian 
theorem, that (Tn/n) is limitable Ci, since Tn/n ^ 0 [2, p. 154, Theorem 93]. 
Thus ^2n=i en is not summable A and, a fortiori, not summable d . Another 
familiar tauberian theorem [2, p. 210, Theorem 147] now shows that the series 
in question cannot be summable B, for if it were, the order relation en = 0(1) 
would imply it to be summable Cp for every p > 1. 
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