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1. Introduction. The theory of solutions of partial differential equations

(1.1) Au + a(x, y)u, + B(x, y)u, + v(x, y)u =0

with analytic coefficients can be based upon the theory of analytic functions
of a complex variable; the basic tool in this approach is integral operators
which map the set of solutions of (1.1) onto the algebra of analytic functions.
For certain classes of operators this mapping which is first defined in the small,
can be continued to the large, cf. Bergman (3). In this way theorems on
analytic functions give rise to theorems on (real and complex) solutions of
(1.1). Some of the operators possess a remarkable property: they generate
solutions of certain partial differential equations (1.1) which also satisfy
ordinary linear differential equations in x or y. This was first observed by
Bergman (1;2) in the special case of the equation Au + » = 0. This property
is of interest since it permits the investigation of such solutions of (1.1) by
means of the theory of ordinary differential equations. The present paper is
concerned with a class of partial differential equations (1.1) which possess
solutions of that type. We shall derive an infinite set of independent particular
solutions and obtain relations between singularities of the coefficients of (1.1)
and those of the corresponding ordinary differential equations; cf. §§ 3-5.
These results will enable us to characterize some basic properties of those
solutions of (1.1); cf. § 6.

2. Partial differential equations of class €. If we introduce the variables
z = x + 1y, ¥ = x — 1y, the equation (1.1) takes the form
2.1 U* + a(z, 25u, + b(z, 25)ux + c(z,25)u =0
where
Upx = TAu, u, = 3(u, — ), u*x = 3(u, + 1u,),
a=7%@+1B), b=3ile—1B), c=1

u = Uexp(—-f
0
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If we set
*

a(z, t)dt)

we obtain from (2.1)
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(2.2) L(U) = U..x + B(z,2)U.x + C(z,25)U = 0

where
E3

B=b—f a,(z, t)dt, C=c— a,— ab.
0

We note that for complex values of x and y the variables z and z* are inde-
pendent.

Definition 1. An operator of the form

(2.3) Uz, 2*) = P(f) = J:E(z, 2 OfGz(1 — £)A — &7 Hde

is called a Bergman operator. In (2.3) the “‘associated function” f(z) of U(z,2*) is
an analytic function of a complex variable regular at the origin. The ‘‘generating
function” E(z,5*t) is independent of the special choice of f(z2).

In order that U(z,z*) be a solution of (2.2) the function E(z,z*t) must
satisfy the equation

(2.4) (1 — E, %, — £ 'E,x + 22t L(E) = 0,
as can be seen by inserting (2.3) into (2.2).

Definition 2. A partial differential equation (2.2) is said to be of the class € if
its solutions can be generated in the form (2.3) with a generating function of the
type

(2.5) E(z, 2*, 1) = exp Q(z, %, 1), Q(z 5% t) = Z:n qu (2, %)t

Necessary and sufficient conditions have been obtained for the coefficients
of (2.2) in order that (2.2) should be of the class €; cf. Kreyszig (4).

3. Existence of ordinary differential equations satisfied by solutions
of partial differential equations of the class €. If in (2.3), f(2) = &,
n =20,1,..., the corresponding solutions of the partial differential equations
of the class € satisfy a linear ordinary differential equation; cf. Kreyszig (5).
It was conjectured that the (more important) solutions with meromorphic
associated functions have a similar property. However, the method used in
(5) fails in this case. In order to treat this problem in a systematic way we
first consider solutions U(z,z*) which correspond to associated functions

(3.1) fue) = =0 =0, n=12....

In order to derive ordinary differential equations satisfied by U(z,z*) we
have to consider this function in certain planes of the (real four-dimensional)
zz*-space. The form of these equations will depend on the choice of these planes.
We take the planes y = vy = const. Then we have the advantage htat
U(z,2*) = U(x,y) is an analytic function of x.
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THEOREM 1. Each solution U(x,y) = U(z,2*) of a partial differential equation
(2.2) of the class € with an associated function (3.1) satisfies an ordinary linear
differential equation

T PY7
3.2) NW) =N@O) = Y. G,(x, v) é—{'—,{ =0, G, =1,y = yy = const,
p=0 dx

of order

(3.3) r<m-+ 3.

The coeffictents G,(x,y) = g,(2,2%) are rational functions of q.(z,2*),
w=0,1,...,m. Theorder r is independent of n.

Proof. In consequence of (2.5) and (3.1) the integrand of (2.3) takes the form

(3.4) J(x, 9, 1) = j(z, 2% t) = exp Q(z, 2%, t) s(z, t) (1 — )7}
S(xr Y, t) = S(Zr t) = %2(1 - tz) - g‘

It suffices to prove that J satisfies the non-homogeneous equation
- ad
(3.5) N(J) = R, R(x,y, ) = 2 [(1 = )H(x, 3, 1)]

where H is a regular function of ¢ for |¢§| < 1. If we integrate both sides of this
equation with respect to ¢ from —1 to 1 we obtain (3.2). We choose

(3.6) H=pPS™J
where
l
3.7 Px,y, 1) = p(a, 2% t) = 2 pa(z %)t
*=0
the degree [ and the coefficients p)(2,2*) will be suitably determined, see below.
We have
_aJ 2\—1 -1
(3.8) Jz=5=(Qz+(1—t) t+ o nst) J,
@ _ 9 _
(3.9) J = P T. J
where
(3.10) T, = 9Q _ n(l — £)(@29)™"
ox
and
(3.11) To = |Aar Aoz . . . Aaal , a=23,...,

is a determinant with the column vectors

Aa,ﬂ+1 = <<g>T§B)v <B E ]_)Tiﬂ_l)v ey <g>T1v - ly 07 01 .. > )

T
Tiﬂ)Ea—xBl’ B=01,...,a—1;

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 23:34:50, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

186 ERWIN KREYSZIG

(the number of zeros decreases with increasing f8; in A, o1 there are no more
zeros left, and in 4., the term T is the last one). This can easily be proved by
induction. From (3.5) — (3.8) we find

(312) R={—tP+ (0 -P,+P[S'r+n—-Diz+Q} J S

If we insert (3.9) and (3.12) into (3.5), omit the common factor J and multiply
each term by S7, each side of the resulting equation becomes a polynomial in ¢.
If we choose

(3.13) l=(m+2)r—m—23,

cf. (3.7), these two polynomials have the same degree, namely (m-+2)r. In
the equation thus obtained the coefficients of each power of ¢ must be the same
on both sides. Hence we obtain a system of (m + 2)r + 1 linear equations.
If we choose

(3.14) r=m-+3

the number of equations equals the total number of the coefficients G,

., G,—1 of (3.2) and of the coefficients py, . . ., p; of (3.7). In order to be able
to determine these functions G, and p, it suffices that the determinant D(z,2*)
of the coefficients of the system does not vanish identically, since every
neighbourhood of a point of a zero surface of D contains always points at
which D(z,z*) # 0. Furthermore, it can readily be seen that the rank of D
is always different from zero. Hence if D(z,5*) = 0 there exists a subdeter-
minant of D which does not vanish identically. In the case D = 0 the order r
of (3.2) reduces to values smaller than m + 3; cf. (2.5), and the coefficients
of (3.2) can be determined in a similar manner. This completes the proof.

This result may be extended to the case of solutions with arbitrary rational
associated functions as follows.

THEOREM 2. Each solution U(x,y) = Ul(z,2*) of a partial differential equation
(2.2) of the class € with a rational associated function f(2) satisfies an ordinary
linear differential equation in x whose coefficients are rational functions of

Qoy + + + y Qm, ¢f- (2.5). If f(2) has poles of orders Beat 2 = 2z, 6k = 1,2,. .., k, the
equation has the order
(3.15) r<(e+B8+1)m-+a+38

where B = B1+ B2+ ...+ By and o is the degree of the polynomial Fi(z) in
the representation of f(2) as a sum of F1(2) and a proper rational function Fa(z);
m is defined by (2.5).

Proof. The polynomial Fi(z) is a sum of at most & + 1 terms. To each of
these terms and to each partial fraction of F.(z) there corresponds a particular

solution U;(x,y) of (2.2). We thus have

d
(3.16) Ulx, y) = 82_)1 Us(x, y), d<a+8+1.
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Each of the functions Us(x,y) corresponding to Fi(z) satisfies an ordinary
linear differential equation of the order 7* < m + 1, cf. (5, Theorem 2), while
each of the other functions satisfies such an equation of the order 7** < m + 3,
cf. Theorem 1 of this paper. Thus, we have a system (S) of ordinary linear
differential equations whose coefficients are rational functions of gy, . . . , ¢n, cf.
(2.5). We differentiate each of these differential equations and also the equation
(3.16) r times and eliminate all the functions U;(x,y) and their derivatives
from the enlarged system (S*) thus obtained. In order to be able to do so we
have to choose 7 so that the number of equations of (S*) equals the number of
functions to be eliminated. It can easily be seen that 7 cannot be greater than
(e« + B8+ 1) m + a + 38. Since we differentiated (3.16) » times the r® de-
rivative of U(x,y) is the highest one which occurs in (S*). This completes the
proof.

4. Subclasses of the class €. The coefficients B(z,2*) and C(z,3*) of the
partial differential equations (2.2) of the class € are related to the coefficients
¢.(2,2*) of the generating function (2.5) as follows (4, Theorem 1).

(I) If qi(2,2*) & O then

— _ 9% ¢ - _ 019

1) B = 0z z’ €= 2z 9z* °
(IT) If gy =0 thenalsoqgs =0,qs=0,. .., and

— _9%0 _¢ _ _ 19

(4.2) B = 9z 2’ €= 2z 9z*’

Qo depends only on z and can have singularities. In case (I) q1 depends on z and
2* and can have singularities, considered as a function of z* for any finite constant
value of z. In case (I), g2 is regular while in case (II) g2, considered as a function
of 2* for any finite constant value of z, can have singularities.

Hence the class € consists of two subclasses €; and €;; corresponding to the
two cases (I) and (II).

In case (II) the function Q(z,5*,t), defined by (2.5), is an even function of £.
Hence, in this case, the functions T, cf. (3.10), (3.11), are also even functions
of t. Let P(x,y,t) be an odd function of ¢; then R .S"J~!is an even function of ¢;
cf. (3.4)—(8.7). Hence, in this case the polynomials considered in the proof of
Theorem 1 are even functions of ¢ and have the degree (m + 2)r. The function
P(x,y,t) has now only 3(I 4+ 1) coefficients p(z,5*) where I is defined by
(3.13). The total number 3(/ + 1) + 7 of the functions G, and p) must equal
the number of powers occurring in the above-mentioned polynomials. We thus
obtain the result that each solution of a partial differential equation (2.2) of
the subclass @;; with an associated function (3.1) satisfies an ordinary linear
differential equation of the order

(4.3) r=<3im+4 2, (m even).
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It can be similarly proved that such a solution with an associated function

fa(z) = 2", n=0,1,..., satisfies an ordinary linear differential equation of
the order
(4.4) r< im+ 1, (m even).

Applying to these results the idea of the proof of Theorem 2 we obtain the
following

COROLLARY. Each solution of a partial differential equation (2.2) of the sub-
class €1 with a rational associated function satisfies an ordinary differential
equation in x of the order

(4.5) r<m+ B+ (3m+ 1)(a+ B6), (m even),
where o and B are defined as in Theorem 2. The coefficients of this equation are
rational functions of qo, . . . , @m, cf. (2.5).

Partial differential equations of the subclass €;; thus have the remarkable
property that the corresponding ordinary differential equations have a smaller
order than those corresponding to partial differential equations of the subclass

€.

5. Relations between singularities of the partial differential equation
(2.2) and those of the corresponding ordinary differential equation
(3.2). The relations between gy, . . ., gn (cf. (2.5)) and the coefficients B, C
of (2.2) on the one hand, and between qq, . . ., ¢, and the coefficients G, of
(3.2) on the other hand, enable us to obtain direct relations between the
singularities of the given partial differential equation (2.2) and the ordinary
differential equation (3.2) which we have derived. Since the procedure of
obtaining such relations is similar to that developed in (5) we omit details
and state the result only. We find

THEOREM 3. The singularities of the ordinary differential equation (3.2) and
those of the corresponding partial differential equation (2.2) of the class € are
related as follows.

(¢2) If B, considered as a function of z for any finite value z* = const, has a
pole of the order s at a point 3 = a, the coefficient G, of (3.2), considered as a
function of z, has a pole of the order
(5'1) Sl(Syp) = SW,, W, =m + 3 - Py
atz = a. If s = 1 then (3.2) is of Fuchsian type at z = a.

(#1) If q1(2,2*) = 0 and C, considered as a function of z* for any finite value

2 = const, has a pole of the order 2s—1, s > 1, at a point z* = a*, the coefficient
G, of (3.2), considered as a function of z*, has a pole of the order

_)sw,— (5 - 1)61’ (Wl
(5.2) s2(s,p) = {5 w, + (s — 1)ep1 (m

1)
2)

A\
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at g* = a*, where

_ {O (a even)
“ =1 (« 0dd).

It should be noted that, for a fixed value of m, these relations are the same
for all solutions of (2.2) with the associated functions (3.1).

6. Final remark. Let us finally state some remarks about the characteriza-
tion of solutions of (2.2) by means of the preceding results.

(a) The solutions U(z,z*) = U(x,y) of partial differential equations (2.2) of
the class € with rational associated functions also satisfy an ordinary linear
differential equation, comnsidered as functions of y for any finite value x = xo
= const, as can be proved by using the preceding methods. This result and the
results obtained in §§ 3-5 enable us to investigate these (single or multi-
valued) solutions of (2.2) outside of the domain of validity of the integral
representation (2.3). An appropriate theory of this kind (2) leads to a charac-
terization of the behaviour of the solutions in the neighbourhood of branch
surfaces and some other basic properties; the theory can immediately be
applied to the class of equations (2.2) under consideration, but we should stress
the fact that for this purpose we need the detailed information about the
ordinary differential equations which is given by the preceding theorems.

(b) The coefficients of the ordinary differential equations satisfied by
U(z,2*) = U(x,y) are rational functions of ¢, . . ., ¢m. In the special case of
partial differential equations (2.2) with rational coefficients the coefficients of
the ordinary differential equations are rational functions of x and vy, respectively.
Hence, in this case, the singularities of the solutions of (2.2) with rational
associated functions lie on two-dimensional algebraic manifolds in the real
four-dimensional space.

(c) So far we have obtained conditions on the associated functions of the
solutions U(z,2*) = U(x,y) of (2.2) in order that U(x,y) satisfies ordinary
differential equations. These conditions may be replaced by conditions on the
coefficients a, of the development

0

(6.1) Uzg*) = 2. anz'z*.

X, A=0

Let the associated function f(2) of U(z,2*) be represented in the form
(6.2) f@z) = E=0 2"

and the generating function (2.5) of the operator (2.3) in the form

oo}

(6.3) E(z, 2, t) = exp O(z, 2%, 8) = 2 . b (t) 22

H, o=

Then, by (2.3),
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e}

Uz 0) = ZO awz" = D, ¢, A2t

B, v=0

where
1
Ay =277 f bao(t) (1 — £%)" 4.
-1

By comparing the coefficients of corresponding powers of z on both sides we
obtain

K

(6.4) Ao = ZO A vy, k=01,....
The solution of this system yields representations of the coefficients ¢, of the
associated function in terms of the coefficients a,y of the development (6.1).
Using these representations and theorems by Hadamard (6) we obtain infor-
mation on the nature and location of the singularities of the associated function
of U(z,2*) from the sequence {a.} of the coefficients in (6.1). This yields
sufficient conditions on the coefficients ay in order that U(zz*) = U(x,y)
satisfy ordinary linear differential equations. In this connection the important
problem arises as to what extent similar conclusions can be drawn if other
subsequences, say {aa}, A > 0 and fixed, of the coefficients in (6.1) are known.
This question will be considered in another paper.
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