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Abstract
The classical credibility premium provides a simple and efficient method for predicting future damages
and losses. However, when dealing with a nonhomogeneous population, this widely used technique has
been challenged by the Regression Tree Credibility (RTC) model and the Logistic Regression Credibility
(LRC) model. This article introduces the Mixture Credibility Formula (MCF), which represents a convex
combination of the classical credibility premiums of several homogeneous subpopulations derived from
the original population. We also compare the performance of the MCF method with the RTC and LRC
methods. Our analysis demonstrates that the MCF method consistently outperforms these approaches
in terms of the quadratic loss function, highlighting its effectiveness in refining insurance premium
calculations and enhancing risk assessment strategies.

Keywords: Bayesian credibility mean; classification; credibility formula; dominating estimators; squared error loss function

1. Introduction
Consider a sequence of independent and identically distributed (i.i.d.) random variables
X1, . . . , Xn, each sampled from a population characterized by a risk parameter θ . The Bühlmann
credibility, denoted as PB.C., for estimating E(Xn+1|X1, X2, . . . , Xn) is expressed as a convex com-
bination of the collective premium, X̄ and the individual premium μ0, that is, PB.C. = ζ X̄ +
(1− ζ )μ0, where the credibility factor ζ is defined as ζ = n

n+σ 2/τ 2
, with σ 2 = E [Var(X1|θ)] and

τ 2 =Var [E(X1|θ)].
When significant heterogeneity is present within the population, the ratio σ 2/τ 2 tends toward

infinity, causing the credibility factor ζ to approach zero. The fundamental task in risk rating
is the determination of the so-called pure risk premium E[Xi]. Such that the pure, or collective,
premium is the mean of the hypothetical means. This is the premium we would use if we knew
nothing about the individual. It does not depend on the individual’s risk parameter, θ , nor does
it utilize X = x, the data collected from the individual. Because θ is unknown, the best we can
do is leverage the available data, which suggest the use of the Bayesian premium (the mean of
the predictive distribution) E(Xn+1|X1, X2, . . . , Xn); see Bühlmann and Gisler (2005) and Kass
et al. (2008) for more details. Various authors have addressed this issue and proposed potential
solutions. For example, Diao and Weng (2019) introduced the Regression Tree Credibility (RTC)
model, while Jahanbani et al. (2024) proposed the Logistic Regression Credibility (LRC) model.

The roots of credibility theory trace back to the seminal works ofMowbray (1914) andWhitney
(1918), who proposed a convex combination of collective and individual premiums as the optimal
insurance contract premium. Bailey (1950) formalized this concept, known as the exact credibility
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premium, within the framework of parametric Bayesian statistics. Building upon this foundation,
Bühlmann (1967) and Bühlmann and Straub (1970) expanded the notion of the exact credibility
premium to a model-based approach, which significantly contributed to the widespread adoption
of credibility theory across various actuarial domains.

There are two distinct approaches to credibility theory: European and American; see Norberg
(1979) for more details. The European approach, often termed Bayesian credibility theory, priori-
tizes the integration of prior knowledge into the estimation process. It employs Bayesian statistics
to incorporate prior beliefs about an insured individual’s risk profile into the prediction of future
claims experience. Conversely, the American approach, known for its focus on the credibility
premium, relies heavily on past claims data to forecast future losses. Utilizing statistical meth-
ods such as the Bühlmann credibility formula, it calculates a credibility factor based on historical
data, thereby adjusting the individual’s premium accordingly. Although both approaches aim to
enhance risk assessment and premium determination in insurance, they differ in their reliance on
prior knowledge and historical data, reflecting distinct methodologies within actuarial practice.

For an in-depth exploration of the evolution and methodologies within credibility theory,
Bühlmann and Gisler (2005) and Payandeh Najafabadi (2010) provide comprehensive discus-
sions. While classical credibility theory offers a straightforward yet somewhat rigid approach to
predictive distribution, for example, Hong and Martin’s research (2017, 2018) introduced flexible
Dirichlet process mixture models for predicting insurance claims and analyzing loss data. Their
work demonstrated the effectiveness and adaptability of Bayesian nonparametric frameworks
compared to traditional parametric methods. Their research delved into the theoretical underpin-
nings and benefits of this approach, comparing it with classical credibility theory. Cheung et al.
(2022) and Yong et al. (2024) offered innovative credibility-based approaches to address chal-
lenges in risk estimation and decision-making, integrating concepts from Bayesian hierarchical
modeling, prospect theory, and variance premium principle to enhance the accuracy and practi-
cality of actuarial processes. More recently, Gómez-Déniz and Vázquez-Polo (2022) presented a
method for deriving exact credibility reference Bayesian premiums based on prior distributions
constructed from available data and a generated model, offering a practical solution when prior
information is insufficient for premium determination in credibility theory.

Further advancements in Bayesian credibility theory have focused on the selection of prior
distributions, as investigated by Hong and Martin (2022), highlighting the importance of precise
prior specification in Bayesian credibility modeling. The Bayesian credibility mean under mix-
ture distributions has garnered attention from several researchers, including Lau et al. (2006),
Cai et al. (2015), Hong and Martin (2017, 2018), Zhang et al. (2018), Payandeh Najafabdi and
Sakizadeh (2019, 2024), Li et al. (2021), and others. However, many of these approaches rely on
approximations. For example:

(1) Payandeh Najafabadi and Sakizadeh (2019) employed a mixture distribution to approximate
the complex posterior distribution, subsequently deriving an approximation for the Bayesian
credibility means. Unfortunately, their approximation error increases with the number of past
experiences.

(2) Following Lo (1984) and Lau et al. (2006) reformulated the predictive distribution of Xn+1
given past claim experiences X1, X2, . . . , Xn as a finite sum over all possible partitions of the
past claim experiences. They then utilized the credibility premium, a convex combination
of the collective premium (prior mean) and the sample average of past claim experiences,
to derive the Bayesian credibility mean. Notably, within the exponential family of distribu-
tions, such a credibility premium coincides with the Bayesian credibility mean, as detailed by
Payandeh Najafabadi (2010) and Payandeh Najafabadi et al. (2012).

On the contrary, the American credibility (for the sake of convince, just say credibility) theory
holds a foundational position within actuarial science, recognized as a cornerstone of insurance
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experience rating (Hickman & Heacox, 1999) and tracing its origins back to Whitney (1918).
This theory conceptualizes the net premium of individual risk, denoted as μ(�), as a function
of a random element �, representing the unobservable characteristics of the individual risk. The
(credibility) premium is then calculated as a linear combination of the average rate of individ-
ual claims experience and the collective net premium. Credibility theory has evolved into two
main streams: limited fluctuation credibility theory and greatest accuracy credibility theory. The
former prioritizes stability, aiming to incorporate individual claims experience while maintain-
ing premium stability. Conversely, the latter, widely employed in modern applications, focuses
on achieving the minimum mean squared prediction error by utilizing the best linear unbiased
estimator to approximate individual net premiums. This approach integrates both individual and
collective claims experience to optimize prediction accuracy.

This article proceeds under the assumption that through the use of an appropriate classifica-
tionmethod, a random sample of observationsX = (X1, X2, . . . , Xn) can be effectively categorized
into k distinct homogeneous subpopulations Xl = (X1, X2, . . . , Xnl) for l= 1, 2, . . . , k (nl is the
number of observations that fall into class l). It then introduces the expression:

PMCF =
k∑

l=1

ωlPCredl =
k∑

l=1

ωl{αlX̄l + (1− αl)μl},

whereωl are premiummixture weights obtained based on a statistical technique, such as the logis-
tic regression, such that

∑k
l=1 ωl = 1, αl credibility weight for class l as αl = nl/(nl + σ 2

l /τ 2l ), μl,
is collective premium of class l and X̄l = 1

nl
∑nl

i=1 xi for l= 1, 2, . . . , k.
The rest of this article unfolds as follows: Section 2 elucidates our model assumptions, provides

an overview of the Bayesian credibility model, explores the advantages of data space partitioning,
and outlines a general credibility model based on partitioning. Section 3 delineates the process of
formulating a Mixture Credibility Formula (MCF) and explains the procedure for premium pre-
diction calculations. Section 4 applies our MCF-based prediction model to real-world Medicare
data. Finally, Section 5 summarizes the results of the article.

2. Preliminaries andmodel assumptions
In classical insurance analysis, the treatment of insurance claims typically revolves around mod-
eling them as random variables, denoted as X, with corresponding density functions represented
by f (x|θ). Here, θ signifies a fixed parameter associated with the risk, though often obscured by
uncertainty. However, the Bayesian approach to risk analysis introduces a fundamental shift in
perspective: θ is no longer regarded as a fixed value but rather as a random variable itself. This
paradigmatic change necessitates the adoption of prior distributions for � within heterogeneous
insurance portfolios.

The Bayesian framework offers considerable advantages to actuaries. First, it liberates them
from the constraints of specific models, fostering adaptability in tackling a wide array of problems.
Once adept at analyzing one scenario, actuaries find themselves equipped to handle analogous,
albeit more intricate, situations with minimal additional complexity. This inherent flexibility is
invaluable in navigating the dynamic landscape of insurance and risk management.

Second, the Bayesian approach simplifies the process of obtaining estimates. Notably, it pro-
vides a seamless transition from obtaining point estimates to deriving interval estimates. Also, the
key point in the Bayesian approach is it allows actuaries to assess the uncertainty of their inference
in terms of probabilities. This characteristic is particularly pertinent in contemporary actuarial
practice, where stakeholders increasingly demand not only precise estimates but also insights into
the uncertainty surrounding them.
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By embracing the Bayesian framework, actuaries can navigate the complexities of risk analysis
with greater confidence and efficiency. It empowers them to provide robust evidence regarding the
quality and reliability of their estimates, thereby enhancing decision-making processes within the
insurance and financial industries. As the landscape of risk management continues to evolve, the
Bayesian approach stands as a beacon of innovation and adaptability in the pursuit of informed
decision-making and risk mitigation strategies.

Consider a scenario where X1, X2, . . . , Xn represent a vector of insurance claims, while
Zi = (Zi1, Zi2, . . . , Zim) denotes the covariate vector associated with individual risk θi, for i=
1, 2, . . . , n. Each individual risk is characterized by a unique risk profile, encapsulated by a scalar
θi. Importantly, θi is not a fixed parameter but rather a realization of a random element denoted
as �i, reflecting the inherent uncertainty associated with each individual’s risk profile.

Continuing from the above, let us use the following to elaborate on the division of observations
into homogeneous subpopulations:

Model Assumption 1. Assume that aside nonhomogeneous random sample X1, X2, . . . , Xn,
there is some extra information, restated under covariates Z1, Z2, . . . , Zm where using such
extra information, one may partition such random sample into k homogeneous subpopulations,
I1, I2, . . . , Ik. Moreover, suppose that the risk parameter for such subpopulations can be restated as
�1,�2, . . . ,�k where μl = E�l(E(X

(l)
i |�l)), σ 2

l = E�l

[
Var(X(l)

i |�l)
]
, τ 2l =Var�l

[
E(X(l)

i |�l)
]
,

and nl = #Il (the notation #Il represents the number of observations or data points in the
subpopulation identified as Il).
Note 1. Under the Model Assumption 1, one should note that:

(1) The credibility formula for the lth subpopulation would be PCredibilityl = αlX̄l + (1− αl)μl,
where αl = nl/(nl + σ 2

l /τ 2l ). However, without the above partitioning that the Model
Assumption (1) recommended, the credibility formula for the entire of population is PCredibilityTotal =
αX̄ + (1− α)μ, where α = n/(n+ σ 2/τ 2).

(2) Under the square error loss function, the risk function for the above estimators, respectively, is

RCredibilityTotal

(
PCredibilityTotal

)
= E

[(
PCredibilityTotal − μ(�)

)2]
= 1

n
σ 2 + 1

τ 2

RCredibilityl

(
PCredibilityl

)
= E

[(
PCredibilityl − μ(�l)

)2]= 1
nl
σ 2
l

+ 1
τ 2l

,

where l= 1, 2, . . . , k.

Classification of the nonhomogeneous random sample X1, X2, . . . , Xn, into k homogeneous
subpopulation, suggested by Model Assumption 1, plays a crucial role in insurance pricing, lever-
aging observable characteristics to group insured individuals with similar expected claims. This
classification enables the development of premium rating systems, which express a priori informa-
tion about new policyholders or insured individuals lacking claims experience. However, a priori
classification schemes may not capture all relevant factors for premium rating, as some factors are
unmeasurable or unobservable.

Classification of the nonhomogeneous random sample X1, X2, . . . , Xn into k homogeneous
subpopulations, as suggested by Model Assumption 1, plays a crucial role in insurance pric-
ing. This process leverages observable characteristics to group insured individuals with similar
expected claims. Such classification enables the development of premium rating systems, which
provide initial information about new policyholders or insured individuals lacking claims expe-
rience. However, these a priori classification schemes might overlook certain relevant factors in
premium rating, as some factors are unmeasurable or unobservable.
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To address these limitations, a posteriori classification, also known as experience rating,
becomes essential. This system re-rates risks by incorporating claims experience into the rating
process, resulting in a more equitable and rational price discrimination scheme. By integrat-
ing actual claims data, insurers can refine their pricing strategies, better align premiums with
individual risk profiles, and promote fairness in insurance pricing.

Diao and Weng (2019) introduced the RTC model, which employs statistical techniques like
regression trees to partition the measurable space X into smaller regions where simple models
provide accurate fits. In the subsequent step, for each region, they apply the Bühlmann-Straub
credibility premium formula to predict the credibility premium. Specifically, given observed
data Xi and associated information Zi,1, . . . , Zi,m for i= 1, . . . , n, a statistical model such as a
regression tree determines the probability that the claim experience X1, X2, . . . , Xn arises from
Population l. If this probability exceeds 0.5, the credibility premium is predicted using the model
developed for Population 1; otherwise, the model developed for Population 2 is used. As the RTC
method employs the Bühlmann-Straub credibility premium formula, its credibility premium is
given by PRTCl = αlX̄l + (1− αl)μl when Population l= 1, 2, . . . , k is chosen. However, without
any classification, the credibility premium is PCredibilityTotal = αX̄ + (1− α)μ, where α = n/(n+ σ 2

τ 2
).

The following provides a more general version of Diao andWeng (2019)’s finding for the RTC
model under the square error loss function:

Theorem 1. Under the Model Assumption 1 and the square error loss function:

(1) The risk function for the Regression Tree Credibility, say, R∼
RTC( · · · ), and the Total Credibility,

say, RCredibilityTotal (·), respectively, are given by

R∼
RTC

(
PRTC1 , PRTC2 , . . . , PRTCk

)
=

k∑
l=1

ωl

[
α2
l
σ 2
l
n

+ (1− αl)2τ 2l

]
=

k∑
l=1

ωl

[
1

nl
σ 2
l

+ 1
τ 2l

]

RCredibilityTotal

(
PCredibilityTotal

)
= α2 σ 2

n
+ (1− α)2τ 2 = 1

n
σ 2 + 1

τ 2

where σ 2
l represents the variance of the subpopulation l, τ 2l denotes the variance of the

subpopulation mean, and nl represents the number of observations in subpopulation l.
(2) Under the extra assumptions

∑k
l=1 ωlσ

2
l = σ 2 and

∑k
l=1 ωlτ

2
l = τ 2, the Regression Tree

Credibility premium PRTC, dominates the Total Credibility PCredibilityTotal , that is, R∼
RTC( · · · )≤

RCredibilityTotal (·).

Proof. To drive an induction argumentation, consider the case of k= 2. Using the concave
function f (x, y)= 1

1/x+1/y , we may conclude that

R∼
RTC

(
PRTC1 , PRTC2

)
=

2∑
l=1

ωlf
(

σ 2
l
n
, τ 2l

)

≤ f
(

ω1
σ 2
1
n

+ ω2
σ 2
2
n
,ω1τ

2
1 + ω2τ

2
2

)

= RCredibilityTotal (PCredibility).

The rest of the proof arrives under an induction argumentation. �
Theorem 1 provides key insights into the risk management implications of utilizing the RTC

premium within insurance pricing frameworks. By considering the square error loss function,
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it underscores the significance of balancing within-subpopulation variance σ 2
l with between-

subpopulation variance τ 2l . This balance is essential for optimizing the mixing proportions ω to
minimize overall risk, highlighting the importance of strategic decision-making in risk assessment
and pricing strategies.

Furthermore, the theorem establishes that incorporating subclassifications based on ω into
the MCF premium does not increase the overall risk. In fact, it suggests that the resulting risk
is no greater than that associated with PBayes (Bayes premium) without subclassifications. This
implies that subclassification strategies improve risk management efficacy without elevating over-
all risk levels, emphasizing the effectiveness of the RTC premium in refining pricing strategies and
enhancing risk assessment accuracy.

Additionally, Theorem 1 elucidates that partitioning a collective of individual risks does not
compromise the prediction accuracy of the RTC formula premium, provided that structural
parameters of resulting sub-collectives can be accurately computed. While this theoretical foun-
dation supports the use of partitioning-based premium prediction methods, it also acknowledges
the inevitability of statistical estimation errors. The challenge lies in balancing the benefits of
partitioning against the adverse effects of estimation errors, necessitating a judicious trade-off
in decision-making processes.

Model Assumption 2. Additional to Model Assumption 1, suppose that for each random vari-
able Xi, for i= 1, 2, . . . , n, there exists additional information Zi,1, Zi,2, . . . , Zi,m such that using
the following logistic regression, one can evaluate the probability that observation belongs to the lth
subpopulation, that is,

ωl = P(Xi ∈ PoPl|zi,1, zi,2, . . . , zi,m)= 1
1+ exp {−β0 −∑m

j=1 βlzj,l} , (1)

for l= 1, 2, . . . , k. Moreover, suppose that the claim experience X1, X2, . . . , Xn, given parameter
vector � = (θ1, θ2, . . . , θk)′, follows a k-component normal mixture distribution

∑k
l=1 ωlN(θl, σ 2

l ),
where σ 2

l are given, and for l= 1, 2, . . . , k, �l has a conjugate prior distribution N(μl, τ 2l ).

Under Model Assumption 2, Jahanbani et al. (2024) introduced the LRC premium as∑k
l=1 ωl[ξ1X̄l + (1− ξl)μl]. They also showed that, under the squared error loss function, its

corresponding risk function is:

RLRC(PLRC) =
k∑

l=1

ω2
l

[
ξ 2l

σ 2
l
n

+ (1− ξl)2τ 2l

]
,

where ξl =
∑n

i=0 ωi
l(1− ωl)n−i(n

i
) iτ 2l
iτ 2l +σ 2

l
.

Also, it has been shown that in the case of k= 2, the LRC premium dominates. Jahanbani
et al. (2024) demonstrated that under certain conditions, the risk function of LRC dominates the
RTC premium whenever ω is around 0.5. Additionally, see Jahanbani et al. (2022) for practical
applications of the RTC model.

3. Mixture credibility formula
This section serves as the main contribution of this article, presenting the introduction of anMCF
model. This model integrates the k-means technique into credibility theory, aiming to improve
premium prediction accuracy as measured by the risk function under the square error loss func-
tion. Through the incorporation of machine learning methods, the MCF model demonstrates
enhanced performance compared to traditional approaches in credibility theory.
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Our MCF model offers a versatile approach to leverage covariate information for premium
prediction, consisting of three key steps. First, we introduce a k-means-based algorithm to uti-
lize covariate information, effectively partitioning a collective of risks into distinct sub-collectives.
This segmentation ensures homogeneity within each sub-collective while promoting heterogene-
ity across sub-collectives in terms of risk profiles. Second, the credibility premium formula is
applied to each sub-collective, enabling precise estimation of premiums tailored to the charac-
teristics of each segment. Lastly, we aggregate these segment-specific credibility premiums to
derive the overall insurance premium, employing logistic regression to estimate mixture weights
for each class. This comprehensive approach maximizes the utilization of covariate information
while enhancing the accuracy and flexibility of premium prediction.

The following theorem evaluates the risk function for the MCF when the square error loss
function is employed.

Theorem 2. Under Model Assumption 1, and probabilities of belonging to each class
(ω1,ω2, . . . ,ωk), the total premium is computed as PMCF =∑k

l=1 ωl[αlX̄l + (1− αl)μl].
Consequently, the total risk function under the square error loss function can be expressed as
follows:

RMCF(PMCF) =
k∑

l=1

ω2
l

[
α2
l
σ 2
l
nl

+ (1− αl)2τ 2l

]
.

Proof. Using the Model Assumption 1, one may write

RMCF(PMCF) = E
[
(PMCF − μ(�))2

]
= E

[(
PMCF −

k∑
l=1

ωlμ(�l)
)2]

= E
[( k∑

l=1

[
ωl[αlX̄l + (1− αl)μl]− ωlμ(�l)

])2]

= E
[( k∑

l=1

[
ωl[αlX̄l + (1− αl)μl]− ωlμ(�l)± ωlαlμ(�l)

])2]

=
k∑

l=1

ω2
l α

2
l E
[(

X̄l − μ(�l)
)2]

+
k∑

l=1

ω2
l (1− αl)2E

[(
μl − μ(�l)

)2]

=
k∑

l=1

ω2
l α

2
l
σ 2
l
nl

+
k∑

l=1

ω2
l (1− αl)2Var [μ(�l)]

=
k∑

l=1

ω2
l

[
α2
l
σ 2
l
nl

+ (1− αl)2τ 2l

]
.

�
The following theorem demonstrates that the MCF under the square error loss function

outperforms the RTC method introduced by Diao and Weng (2019).

Theorem 3. Under the Model Assumption 1, the MCF under the square error loss function
outperforms the RTC, that is, RMCF(·)≤ R∼

RTC( · · · ).
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Proof. Using the result of the above two theorems along with the fact that for all l= 1, 2, . . . , k
0≤ ωl ≤ 1, one may have:

RMCF(PMCF)− R∼
RTC

(
PRTC1 , . . . , PRTCk

)

=
k∑

l=1

ω2
l

[
α2
l
σ 2
l
nl

+ (1− αl)2τ 2l

]
−

k∑
l=1

ωl

[
α2
l
σ 2
l
nl

+ (1− αl)2τ 2l

]

=
k∑

l=1

[
α2
l
σ 2
l
nl

+ (1− αl)2τ 2l

]
ωl(ωl − 1)≤ 0.

�
We proceed to compare the LRC model with the MCF. Specifically, we demonstrate, under the

assumption of normality, that the MCF dominates the LRC model.

Theorem4. Under theModel Assumption 2, theMCF premium under the square error loss function
dominates the LRC, that is, RMCF(·)≤ RLRC(·).

Proof. In the case of k= 2, the difference between the risk functions of two premiums can be
restated as

RMCF(PMCF)− RLRC(PLRC)

=
2∑

l=1

ω2
l

[
α2
l
σ 2
l
nl

+ (1− αl)2τ 2l

]
−

2∑
l=1

ω2
l

[
ξ 2l

σ 2
l
nl

+ (1− ξl)2τ 2l

]

=
2∑

l=1

ω2
l
σ 2
l
nl

[
α2
l − ξ 2l

]
+

2∑
l=1

ω2
l τ

2
l

[
(1− αl)2 − (1− ξl)2

]

=
2∑

l=1

ω2
l
σ 2
l
nl

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)[ nlτ 2l
nlτ 2l + σ 2

l
+ iτ 2l

iτ 2l + σ 2
l

][ nlτ 2l
nlτ 2l + σ 2

l
− iτ 2l

iτ 2l + σ 2
l

]

+
2∑

l=1

ω2
l τ

2
l

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)[
σ 2
l

nlτ 2l + σ 2
l

+ σ 2
l

iτ 2l + σ 2
l

][
σ 2
l

nlτ 2l + σ 2
l

− σ 2
l

iτ 2l + σ 2
l

]

=
2∑

l=1

ω2
l
σ 2
l τ 2l
nl

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)
τ 2l

[
nl

nlτ 2l + σ 2
l

+ i
iτ 2l + σ 2

l

][
nl

nlτ 2l + σ 2
l

− i
iτ 2l + σ 2

l

]

+
2∑

l=1

ω2
l
σ 2
l τ 2l
nl

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)
nlσ 2

l

[
1

nlτ 2l + σ 2
l

+ 1
iτ 2l + σ 2

l

][
1

nlτ 2l + σ 2
l

− 1
iτ 2l + σ 2

l

]

=
n∑

i=0
ωi
1(1− ω1)n−i

(
n
i

)
ω2
1
σ 2
1 τ 21
n1

[ n21τ 21 + n1σ 2
1

(n1τ 21 + σ 2
1 )2

− i2τ 21 + n1σ 2
1

(iτ 21 + σ 2
1 )2

]

+
n∑
i=0

(1− ω1)i(ω1)n−i
(
n
i

)
(1− ω1)2

σ 2
2 τ 22
n2

[ n22τ 22 + n2σ 2
2

(n2τ 22 + σ 2
2 )2

− i2τ 22 + n2σ 2
2

(iτ 22 + σ 2
2 )2

]

=
n∑

i=0
ωi
1(1− ω1)n−i

(
n
i

)
H(1,2)(i),
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where

H(1,2)(i) = ω2
1
σ 2
1 τ 21
n1

[ n21τ 21 + n1σ 2
1

(n1τ 21 + σ 2
1 )2

− i2τ 21 + n1σ 2
1

(iτ 21 + σ 2
1 )2

]

+(1− ω1)2
σ 2
2 τ 22
n2

[ n22τ 22 + n2σ 2
2

(n2τ 22 + σ 2
2 )2

− (n− i)2τ 22 + n2σ 2
2

((n− i)τ 22 + σ 2
2 )2

]
(2)

which arrives by using the fact that
(n
i
)= ( n

n−i
)
.

Now, without loss of generality, assume that the functionH(1,2)(i) is a continuous function with
respect to i. Therefore, using the first derivative

∂H(1,2)(i)
∂i

= −ω2
1
σ 2
1 τ 21
n1

2τ 21 σ 2
1 i

(iτ 21 + σ 2
1 )3

+ (1− ω1)2
σ 2
2 τ 22
n2

2τ 22 [(n− i)σ 2
2 − n2σ 2

2 ]
((n− i)τ 22 + σ 2

2 )3
,

one may conclude that ∂H(1,2)(i)
∂i |i=0 > 0 and ∂H(1,2)(i)

∂i |i=n < 0. On the other hand, since
∂2H(1,2)(i)

∂2i < 0, one may conclude thatH(1,2)(i) as a function of i is a concave function which attains
its maximum at i= n1 = n− n2 in which H(1,2)(i= n1)= 0. Therefore, for the case of k= 2, we
always have RMCF(·)− RLRC(·)≤ 0.

Now of the general case of k> 2, observe that

ωi
k(1− ωk)n−i = (1− ω1 − · · · − ωk−1)i(ω1 + · · · + ωk−1)n−i

≤
k−1∑
l=1

ωi
l(1− ωl)n−i.

Using the above inequality, the difference between the two risk functions can be bounded above
by

RMCF(PMCF)− RLRC(PLRC)

=
k∑

l=1

ω2
l

[
α2
l
σ 2
l
nl

+ (1− αl)2τ 2l

]
−

k∑
l=1

ω2
l

[
ξ 2l

σ 2
l
nl

+ (1− ξl)2τ 2l

]

=
k∑

l=1

ω2
l
σ 2
l
nl

[
α2
l − ξ 2l

]
+

2∑
l=1

ω2
l τ

2
l

[
(1− αl)2 − (1− ξl)2

]

=
k∑

l=1

ω2
l
σ 2
l
nl

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)[ nlτ 2l
nlτ 2l + σ 2

l
+ iτ 2l

iτ 2l + σ 2
l

][ nlτ 2l
nlτ 2l + σ 2

l
− iτ 2l

iτ 2l + σ 2
l

]

+
k∑

l=1

ω2
l τ

2
l

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)[
σ 2
l

nlτ 2l + σ 2
l

+ σ 2
l

iτ 2l + σ 2
l

][
σ 2
l

nlτ 2l + σ 2
l

− σ 2
l

iτ 2l + σ 2
l

]

=
k∑

l=1

ω2
l
σ 2
l τ 2l
nl

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)
τ 2l

[
nl

nlτ 2l + σ 2
l

+ i
iτ 2l + σ 2

l

][
nl

nlτ 2l + σ 2
l

− i
iτ 2l + σ 2

l

]

+
k∑

l=1

ω2
l
σ 2
l τ 2l
nl

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)
nlσ 2

l

[
1

nlτ 2l + σ 2
l

+ 1
iτ 2l + σ 2

l

][
1

nlτ 2l + σ 2
l

− 1
iτ 2l + σ 2

l

]
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Table 1. Output of command str(Data)

1 Data.frame 1180255 observations with 6 variables Values

2 National ID Character "0579514676", "3874606295",. . ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Province Character "Tehran", "Esfahan", . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Age Number 57, 54, 56, 74, 34, 45, 17, . . ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Gender Character "male", "female", "male",. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Type of insured Character "Primary insured", "Subsidiary insured" , . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Claim size Real value 9331040, 16900000, 2633500,. . .

(a) (b)

Figure 1. The box plot of damages’ size before removing outliers (a) and after removing outliers (b).

=
k∑

l=1

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)
ω2
l
σ 2
l τ 2l
nl

[ n2l τ 2l + nlσ 2
l

(nlτ 2l + σ 2
l )2

− i2τ 2l + nlσ 2
l

(iτ 2l + σ 2
l )2

]

≤
k−1∑
l=1

n∑
i=0

ωi
l(1− ωl)n−i

(
n
i

)
H(l,k)(i),

where H(l,k)(i) is a general version of the H(1,2)(i) given by Equation (2). The same argument,
as we did above for the case k= 2, leads to desired result for the general case k> 2, that is,
RMCF(·)− RLRC(·)≤ 0. �

4. Application to the real-world data
To illustrate the practical application of the above findings, we now consider a real-world dataset
from an Iranian insurance company. This dataset contains demographic information (such as
gender, age, etc.) as well as the size of claims for 1,180,255 individuals. Table 1 represents the list
of available information in the dataset.

Figure 1(a) illustrates the box plot of claim size. However, Figure 1(b) illustrates the box plot of
claim size after outlier data has been removed from the dataset. We defined an outlier observation
as any observation that exceeds the value of 181,727,944 rials (the Iranian currency), and after
removing such outlier data, we obtained 1,179,470 individuals.

Figure 2 shows our attempt to fit a statistical distribution to the claim size.
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Figure 2. Histogram and density plots of the claim size.

Figure 3. The box plot of damages’ size for different categories.

As one may observe, there is considerable non-homogeneity in the data. Therefore, we decided
to derive some subpopulations to homogenize the data.

To get started, we categorized the covariates “Age” into 5 classes and “Province” into 8 classes.
The Spearman test validated a significant relationship between age, gender, province, type of
insured, and claim size. Moreover, the nonparametric Kruskal–Wallis test revealed a significant
difference between groups associated with gender, type of insured, age, and province. Figure 3
shows the box plot of claim size regarding the aforementioned covariates.
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Figure 4. A bivariate visualization of the two subpopulations.

Figure 5. Histogram of claim size for the high-risk and the low-risk classes.

Using Figure 3, one may conclude that these covariates can be employed to define some more
homogenous subpopulations.

In the next step, using the k-means clustering method, we derived two subpopulations, which
classify insured individuals into high-risk and low-risk categories. A bivariate visualization of the
two subpopulations is presented in Figure 4. Moreover, Figure 5 illustrates a histogram of claim
size for those subpopulations.
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Table 2. Logistic regression

Random variable Estimate SE Pr(>|z|)

Intercept 12.88 0.38519 2e−16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Province −0.14 0.03589 8.87e−05
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age 9.17 0.19301 2e−16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gender 31.66 0.2564 2e−16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type of insured −55.8 0.2413 2e−16

To determine the probability that a given individual belongs to a given subpopulation, we
implement the following logistic regression:

ω1 = P(Yi ∈ Pop1|Zi = zi)= 1/{1+ e−β0−β1z1−β2z2−β3z3−β4z4}, (3)

where z1, z2, z3, z4, respectively, stand for the re-categorized province, age, gender, and type of
insured. Using the least square error method against observed data, we estimated the logistic
regression parameters. Table 2 reports such estimated parameters.

Now, as an example, consider a 50-year-old single man who lives in a location labeled 6.
Moreover, suppose that the logarithms of his 11 years claim experiences are 16.91, 17.68, 15.97,
19.23, 15.63, 16.03, 14.85, 18.41, 14.20, 16.20, and 14.75258.

Using the logistic regression model (3) against his information, with probability 0.2378 (ω =
0.2378), he would fall into Class 1. Therefore, the logarithm of the MCF for his next year is

log (PMCF) = ω

⎡
⎢⎣
⎛
⎝ n1
n1 + 2

τ̂ 21

⎞
⎠ x̄1 +

⎛
⎜⎝1− n1

n1 + σ̂ 2
1

τ̂ 21

⎞
⎟⎠ μ̂1

⎤
⎥⎦

= +(1− ω)

⎡
⎢⎣
⎛
⎜⎝ n2

n2 + σ̂ 2
2

τ̂ 22

⎞
⎟⎠ x̄2 +

⎛
⎜⎝1− n2

n2 + σ̂ 2
2

τ̂ 22

⎞
⎟⎠ μ̂2

⎤
⎥⎦

= 0.2378

[(
597253

597253+ 2
1.48

)
17.42+

(
1− 597253

597253+ 2
1.48

)
15

]

+0.7622

[(
582217

582217+ 3
1.51

)
17.83+

(
1− 582217

582217+ 3
1.51

)
20

]

= 17.73251.

5. Conclusion
The insurance industry relies heavily on accurate predictions of future damages and losses.
Various methods, including time series analysis, Bayesian methods, and belief theory, are
employed for such predictions. Among these, both classical and Bayesian credibility methods offer
accurate and robust predictions.

In this article, under the k-component normal mixture distribution assumption, we intro-
duced the MCF method for insurance premium calculation. This method begins by clustering
the insured population into homogeneous subpopulations using data mining techniques, such as
k-means. Then, the classical credibility premium is evaluated for each subpopulation. The MCF is
a convex combination of those classical credibility premiums. For the case of two subpopulations,
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the convex weight can be determined by using logistic regression. We also compared the perfor-
mance of the MCFmethod with the RTCmethod and the LRCmethod. Our analysis revealed that
the MCF method consistently outperforms those methods in terms of the quadratic loss function.
This underscores the effectiveness of theMCFmethod in refining insurance premium calculations
and improving risk assessment strategies.

As mentioned earlier, we derive our findings under the k-component normal mixture distribu-
tion assumptions; for a possible extension, one may consider how this restrictive assumption can
be removed.
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